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Abstract.

Objective

While motor-imagery based Brain-Computer Interfaces (BCIs) have been studied over many

years by now, most of these studies have taken place in controlled lab settings. Bringing BCI

technology into everyday life is still one of the main challenges in this field of research.

Approach

This paper systematically investigates BCI performance under 6 types of distractions that

mimic out-of-lab environments.

Main results

We report results of 16 participants and show that the performance of the standard CSP+RLDA

classification pipeline drops significantly in this “simulated” out-of-lab setting. We then

investigate three methods for improving the performance: 1) artifact removal, 2) ensemble

classification, and 3) a 2-step classification approach. While artifact removal does not

enhance the BCI performance significantly, both ensemble classification and the 2-step

classification combined with CSP significantly improve the performance compared to the

standard procedure.

Significance

Systematically analyzing out-of-lab scenarios is crucial when bringing BCI into everyday life.

Algorithms must be adapted to overcome nonstationary environments in order to tackle real-

world challenges.

1. Introduction

Brain-Computer Interfacing (BCI) [1, 2] allows non-muscular communication between

a human and a computer by detecting a user’s intentions via brain signals, e.g. with

an electroencephalogram (EEG), and translating them into control commands. This is

particularly useful for people affected by diseases that lead to the loss of muscular control,
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such as amyotrophic lateral sclerosis (ALS), brainstem stroke, multiple sclerosis and

especially for people who suffer from locked-in syndrome. BCIs can not only be applied

for communication but also for the control of external devices such as a wheelchair [3], for

rehabilitation [4] and mental state monitoring [5].

Over the years, various improvements in BCI research have been presented. Integrating

machine learning algorithms has helped to substantially reduce calibration time [6, 7, 8, 9]

which has crucially enhanced usability of BCIs. Also, novel approaches in robust feature

extraction [10, 11, 12, 13, 14], artifact detection [15, 16, 17] and adaptive methods [18, 19, 20]

have particularly improved reliability.

Those approaches already work well in controlled lab environments. However, these

environments are highly artificial and significantly differ from everyday life situations, where

people have to handle various visual, auditory or other cognitive distractions. In order to fulfill

its main purpose, to provide disabled people with a non-muscular communication pathway,

BCI research has recently begun to leave those controlled lab environments. Since most

algorithms may not work well in real world scenarios, it becomes mandatory to investigate

and improve them.

First steps into the real world have been made [5]. Ambulatory BCIs, for instance, allow

participants to walk indoors [21], outdoors [22] and on a treadmill [23] while using a P300

spelling device. Motor imagery-based BCIs have been investigated under the presence of

speech [24] and also applied to control a pinball machine [25], a virtual helicopter [26], a

quadcopter [27] and a tetris game [28]. Several patient studies have been carried out on

stroke, tetraplegic and even locked-in patients [29, 30, 31, 32, 33, 34].

However, there still lacks, to the best of our knowledge, a study where data is recorded in

systematic out-of lab scenarios and evaluated in detail. In this paper we close this gap by

presenting and analyzing a motor imagery-based BCI study where 16 healthy participants

were distracted by 6 different secondary tasks while performing a primary motor imagery

task. The aim of those secondary tasks was to simulate a more realistic environment where

participants e.g. listen to news, watch a flickering video, search the room for a particular

number or handle vibrotactile stimulation. This study investigates BCI performance in

environments different from the training environment and analyze the problems that occur

in such scenarios.

Note that this paper represents an extension of a preliminary analysis of this study [35].

In particular, we investigate standard machine learning techniques, commonly used in BCI

research, in semi-realistic scenarios. We identify three major problems which lead to poor

performance in those out-of-lab scenarios

(i) Artifact contamination

(ii) Feature shifting

(iii) High cognitive workload

and discuss several new approaches which try to overcome those challenges.

The rest of this paper is organized as follows: In the next section, we present the BCI study and

describe its setup in detail. In the third section, we evaluate BCI performance with standard
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machine learning techniques and discuss the problems that appear. In the fourth section, we

present novel approaches to tackle the identified problems, before we summarize and discuss

our findings in the conclusion.

2. Experiments

The simulation of everyday life situations during a motor imagery task such as watching TV or

listening to news, gives us the opportunity to investigate BCI performance in a more realistic

environment. Since we conduct those experiments in-lab, we are able to systematically

analyze scenarios and to draw conclusions for future experiments.

Table 1: Overview over distraction tasks.

Task Purpose

Clean Motor imagery without distractions Control task

Eyes-closed Motor imagery with eyes closed Investigation of α-rhythm

News Motor imagery while listening to news sequences Distraction + activation of

auditory cortex

Numbers Searching the room for one of the 26 letter-number

combinations hanging on the wall while performing the

motor imagery task

Distraction + muscular

artifacts

Flicker Motor imagery while watching a video with a flicker in

gray shades at a frequency of 10 Hz

Investigation of SSVEP

Stimulation Motor imagery plus vibtrotactile stimulation on both

forearms with carrier frequencies of 50 and 100 Hz,

modulated at 9, 10 and 11 Hz

Investigation of SSVSEP

2.1. Participants

We recorded EEG from 16 healthy participants (6 female; age range: 22-30 years; mean age:

26.3 years) of which only three had previously participated in another BCI experiment. Since

all the instructions were in German, a certain level of language proficiency was required.

Three of the participants are members of the TU Berlin Machine Learning Group, whereas

the other volunteers were paid for their participation.

2.2. Experimental setup

The participants sat in an armchair at a distance of 1m from a 24” computer screen. During

the experiment, the participants wore headphones to receive auditory instructions.

To record the EEG signals, we used a Fast’n Easy Cap (EasyCap GmbH) with 63 wet
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Ag/AgCl electrodes and placed them at symmetrical positions according to the international

10–20 system [36] referenced to the nose. We furthermore used two 32-channel amplifiers

(BrainProducts) to amplify the signals, which were sampled at 1000 Hz.

Including breaks and preparation, each experimental session lasted about three hours, of

which signal recording took about 90 minutes. Before starting the main experiment, we

recorded 8 baseline trials in which the participant had to either open or close both eyes within

15 seconds.

We divided the main experiment into 7 runs. Each run lasted about 10 minutes and consisted

of 72 trials. Since the first run was used as a calibration phase, no distractions were added

and no feedback was given. See Figure 1 for an overview of the setup. After the calibration

phase, each run also consisted of 72 trials but was divided into 3 × 4 trials per secondary

task. Each trial lasted 4.5 seconds and included one motor imagery task. The order of the

secondary tasks was randomized such that it changed after a random sequence of two left and

two right trials. See Figure 2 for an example of a run during the feedback phase. Auditory

instructions (left and right commands) were given over the headphones at the beginning of

each trial (since the experiment was conducted in German, the actual instructions were links

and rechts). When the trial finished after 4.5 seconds, there was a stop command followed

by a break of 2.5 seconds, after which the next trial started. Every three to four minutes the

participant had the possibility to take a break.

Participants could choose their individual haptic motor imagery task involving a movement

that only effects the hand itself. Most popular, also because it was the first and easiest example

we gave them, was the imagination of squeezing a soft ball. Other strategies involved opening

a water tap, piano playing or using a salt shaker.

To keep motivation levels high, we included auditory feedback after the calibration phase.

Therefore, Laplacian filters [37] of the C3 and C4 electrode were calculated and a classifier

based on Regularized Linear Discriminant Analysis (RLDA) [38] was computed using the

spectral power of the signals in two broad bands (9-13 Hz and 18-26 Hz) as features. During

the feedback phase, the classifier was applied to classify the motor imagery tasks and to

provide auditory feedback. Due to the eyes-closed task we could not give any feedback

via the screen. This means that the auditory stop command was followed by a decision left

(Entscheidung links) or decision right (Entscheidung rechts) during the 2.5 seconds break.

2.3. Distractions

To study the effects of increased cognitive load and additional artifacts, we included 6

distractions in form of secondary tasks in addition to a primary motor imagery task in the

experimental setup (see Table 1). We will now explain the design and motivation for those

distractions.

(i) Clean

This condition serves as a control group without any distraction.

(ii) Eyes Closed

Participants performed motor imagery with their eyes closed. Here, we investigated the
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calibration phase
(72 trials)

feedback phase
(432 trials)

1 run without distractions
(12 trials per distraction in each run)

...
6 runs with distractions

left
right

calibration feedback

left
right

Figure 1: The experiment consisted of 7 runs, each containing 72 motor imagery trials. The

calibration run did not contain secondary tasks, whereas each feedback run consisted of 12

trials per type of secondary task.

effect of a more prominent α-rhythm due to the closed eyes. Since the motor task related

µ-rhythm appears within a similar frequency band (8-13 Hz), we expected an overlay

with the α-rhythm. Because of this task we gave all instructions and feedback over

headphones and not visually.

(iii) News

Sequences of a public newscast were played over the headphones containing current

news and news from 1994. Each sequence was played once in each experiment, except

for participant od, for whom some files were played twice. Here, we analyzed the

influence of the cognitive distraction and of an activated auditory cortex on the motor

imagery performance. The volume of the instructions was increased for this task.

In the experiment, we did not check if the participants were actively listening to the

newscast. We therefore tried to contact most of them afterwards; only three participants

remembered that they were actively listening (participants od, njy, njz) and one perceived

it more as background noise (nkm). The remaining participants either could not

remember or could not be contacted.

(iv) Numbers

For this task, 26 sheets of paper with a randomly mixed letter-number combination were

put up on the wall in front of the participants and also on the left and right side of the

room. This means the participants needed to turn their head in order to see the sheets.
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One run

Figure 2: This represents an example of a run during the feedback phase. After 4 trials (2

left MI, 2 right MI), the secondary task changes randomly. In every run we record 12 trials of

each secondary task.

For each trial a new window appeared on the screen asking the participants to search

the room for a particular letter to match with a stated number. Each combination was

shown 2-3 times to all participants. We counted the found letters and out of 72 trials,

59.7 combinations were found on average. This task investigates both, the effect of a

high cognitive distraction and of additional muscular artifacts.

(v) Flicker

A flickering stimulus with alternating gray shades at a frequency of 10 Hz was presented

on the screen. We included this task to analyze the influence of the steady state visually

evoked potential (SSVEP) [39] .

(vi) Stimulation

We placed two coin vibration motors with a diameter of 3 cm on the insides of both

forearms, one over the wrist and another one just below the elbow. To investigate

the interference of steady state vibration somatosensory evoked potential (SSVSEP)

[40, 41] on the motor imagery task, vibrotactile stimulation was carried out with carrier

frequencies of 50 and 100 Hz, each modulated at 9, 10 and 11 Hz.

2.4. Data analysis

We downsampled the data to 100 Hz and selected a frequency band between 5 and 35 Hz and

a time interval for the offline analysis of each participant individually as described in [42].

All frequency bands and time intervals are displayed in the second and third column of Table

2. All classification approaches throughout this paper are based on feature extraction using

Common Spatial Patterns (CSP) [43] and RLDA [42, 9].
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training clean eyes news numbers flicker stimulation

right

left

Figure 3: CSP Patterns for participant od for training and testing data

3. Evaluation of in-lab training

In this section, we present the results, obtained from classification based on the calibration

data with three CSP filters per class. That is, we trained the classifier on data without

secondary tasks and tested it on data including secondary tasks. Translating this to our

systematic framework, we trained in-lab and tested in the out-of-lab setting. Since the

resulting classification rates lead to the assumption of poor out of lab BCI performance, we

investigate possible reasons for this outcome.

3.1. Classification on clean training

In Figure 3 and 4, we show patterns, ERD/ERS effects [44] and spectra of participant od. We

selected the most discriminative CSP filter in both classes.

In Figure 3, we plotted CSP patterns for all secondary tasks and for the calibration phase. In

Figure 4, each subplot depicts data of left hand MI (blue) and right hand MI (red). In the

first two columns, we visualized ERD/ERS effects as time series, each row representing one

secondary task. Columns 3-4 show spectra between 5 and 35 Hz. Below each subplot, we also

added colorbars with r
2-values, representing the discriminancy between left and right hand

MI. Since r
2-values vary much between ERD/ERS and spectra, there are two separate color-

bars, displayed on the upper left and right. We further marked the background of the selected

time interval and frequency band which we used for extracting the CSP filters in grey.

Changes due to the different character of the secondary tasks are visible in both, spectra and

ERD/ERS effects. The fourth row with the numbers task shows a much less prominent peak

in the spectrum, especially for the right hand CSP filter (column 4). For the stimulation task,

the spectrum of the left hand CSP filter (column 3) shows several additional peaks, e.g. over

18 Hz, 20 Hz and 22 Hz. They represent the 2f peaks (first harmonics), since modulation

frequencies (f) were at 9 Hz, 10 Hz and 11 Hz. This coincides with findings in earlier publi-

cations on SSVSEP [40].

In Table 2, average classification rates are summarized; each row represents one participant.

Classification accuracies vary much between participants [between 49.42% and 90.97%] but

also within a participants’ recording [njz: 45.83% − 83.33%]. Most of the volunteers par-
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ticipated for the first time in a BCI experiment, so not everyone achieved classification rates

significantly higher than chance level. Applying binomial tests (α = 5%) led to thresholds of

54.17% and 61.11% for the overall experiment (432 trials) and for each secondary tasks (72

trials), respectively. For classification accuracies above or equal to these thresholds, we as-

sume actual BCI control. The topic of significant BCI control taking into account the number

of trials has been addressed in [45].

We grouped the 16 participants in three categories. The first category contains the three par-

ticipants which gained significant BCI control in all secondary tasks. The second category

contains 7 participants that reached the overall threshold of at least 54.17%. The last cate-

gory contains the remaining 6 participants below this threshold which means that we cannot

assume any BCI control.

Out of the 16 participants, 4 did not reach the threshold of 61.11% in their best distraction task

(nkp,ma4,nkk,nks). Especially in the numbers task with its dual challenge of contaminated

data and high cognitive load, most participants only reached classification accuracies around

50%. Also for the eyes-closed task, only 6 participants reached the threshold of 61.11%.

Whereas most users gained their highest classification rates in the flicker task.

3.2. Why poor performance?

Most participants did not reach the significance threshold in at least one task. We therefore

need to find out how to improve the overall performance. We found several possible

explanations. One is that the distraction tasks influence the EEG recordings in a way that

leads to major feature shifts between calibration data (without secondary tasks) and testing

data (with secondary tasks). Some of the tasks might cause too many artifacts. These could

contaminate data in a way that makes it impossible to identify actual neural activity. It is also

worth considering that some tasks are more cognitively demanding than others. This could

increase the difficulty to fully concentrate on the motor imagery task. This leads to three

possible explanations for the poor BCI performance which we will tackle in the following

sections.

(i) artifact contamination

(ii) major feature shifts between distraction tasks

(iii) participants are too distracted to focus on the motor imagery task, so the data is not

separable

Apart from those three reasons there is also the probability of BCI illiteracy which is

the lack of ability to control a BCI. This phenomenon affects an estimated proportion of

15%−30% of the participants and has already been discussed in broad variety in the literature

[46, 47, 48, 49]. In the clean task which represents a classical motor imagery task, 11 out of

16 participants reached the significance threshold of 61.11% which means, BCI control failed

for 31.25% of the participants. This proportion lies slightly above the 15% − 30% range and

could be explained by the fast change of scenery. The secondary task changed every 4 trials.

We will investigate the subject of non-separability of the data in Section 3.5.
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Table 2: Mean classification accuracies for all distractions and all participants. One row

represents one participant, the first column shows the participant codes. For each experiment,

the tasks with highest (bold) and lowest (red) performance rates are highlighted. Participants

with former BCI experience are marked as ?, lab members as +.

band [Hz] ival [ms] overall clean eyes news num flicker stim #

od?,+ [5,13.5] 720-4050 90.97 95.83 95.83 93.06 72.22 95.83 93.06

1obx [10.5,14.5] 700-3960 82.87 88.89 87.50 81.94 70.83 91.67 76.39

nko [10.5,13.5] 1170-4420 82.13 93.06 83.33 80.56 62.50 94.44 78.87

njz [10.5,14] 930-3540 71.30 83.33 81.94 75.00 45.83 77.78 63.89

2

nkq? [7.5,13] 640-3740 63.26 73.61 59.72 61.97 47.89 66.67 69.44

nkt [9.5,13] 1020-2640 61.34 66.67 62.50 66.67 51.39 70.83 50.00

nkr [8.5,15.5] 810-4200 61.11 63.89 61.11 62.50 51.39 65.28 62.50

njy+ [6.5,12.5] 500-2720 60.42 62.50 54.17 65.28 50.00 69.44 61.11

nkm [19.5,25.5] 620-3170 60.42 68.06 52.78 65.28 56.94 55.56 63.89

nkn+ [7.5,12.5] 910-2380 58.00 62.50 52.78 61.11 49.30 65.28 56.94

nkl [11.5,16.5] 730-3950 52.55 45.83 48.61 54.17 54.17 61.11 51.39

3

nkp [16.5,22.5] 1140-3900 51.62 51.39 55.56 50.00 50.00 52.78 50.00

nku [8.5,13.5] 600-3620 51.62 61.11 52.78 47.22 50.00 48.61 50.00

ma4? [8.5,13.5] 600-3620 51.16 56.34 58.33 48.61 49.30 41.67 52.78

nkk [13.5,18.5] 590-3910 50.00 48.61 55.56 43.06 51.39 51.39 50.00

nks [5,9] 1370-3990 49.42 47.22 47.14 45.83 47.89 54.17 54.17

∅ 62.39 66.68 63.10 62.64 53.81 66.41 61.53

1: BCI control during all distraction tasks (at least 61.11% in each task)

2: BCI control during most distraction tasks (at least 54.17% in overall experiment)

3: no BCI control

3.3. Artifacts

Since different artifact types influence data in different ways, the impact of their

contamination and the methods for their removal also differ. We wanted to quantify

the extent of contamination in each secondary task to investigate differences that might

explain classification performances in the different tasks. Additionally, we investigated

whether the removal of groups of artifacts could improve classification. We performed

these analyses by decomposing the calibration data with Independent Component Analysis

(ICA) and classifying the resulting independent components as different artifact types. We

used the implementation of Extended Infomax in EEGLab [50] to perform the ICA and an

automatic classifier of independent components of EEG data, IC MARC [51], to classify

ICs. IC MARC assigns a probability to each independent component of representing neural

activity, eye blinks, heart beat artifacts, lateral eye movements, or muscle contractions. In

addition to these five well defined classes, a class referred to as “mixed” is also included. This
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class contains artifact types other than those already mentioned and independent components

that include several types of activity or noise. We assigned independent components to the

class for which the highest probability was predicted by IC MARC. Figure 5 shows two

randomly selected examples of each class from the clean task. The samples from the blink,

neural, heart beat, and lateral eye movements are good examples of what we would expect in

these classes. The top sample from the muscle class is more similar to what we would expect

from the lateral eye class, while the bottom sample from the mixed class represents a typical

muscular artifact. The two samples from the mixed class do not clearly belong to another

class, as expected.

We grouped these artifact classes into five groups:

1) Muscular (muscle artifacts).

2) Ocular (blinks and lateral eye movements).

3) Non-neural (blinks, heart beats, lateral eye movements, muscle, and mixed artifacts).

4) Muscular and mixed (muscle and mixed artifacts).

5) Non-mixed artifacts (blinks, heart beats, lateral eye movements, and muscle artifacts).

Figure 6 shows the percentage of data variance explained by each artifactual group for all

secondary tasks. Displayed values represent mean and standard deviation over all participants.

The percentage of variance explained by the artifact groups is quite similar for all tasks, except

for the numbers task. There, the ocular artifacts, non-neural independent components, and

non-mixed artifacts explain more than twice as much variance as in the other tasks. We

might expect that a BCI system would perform similarly across the secondary tasks whose

artifact distributions are similar. If this is the case, one classifier should work well across

the not-numbers tasks (clean, eyes-closed, news, flicker, stimulation). The numbers task on

the other hand requires a separate classifier. The artifact distribution of unseen data might be

informative enough to distinguish between these two cases in order to select the appropriate

classifier. This would make the 2-step approach introduced later a suitable method for out-of-

lab BCI systems.

Figure 7 shows the median power of each independent component class as a function

of frequency for the independent components from the calibration data. These independent

components were the ones used to clean the other conditions in Section 4.1. The power spectra

were first calculated for each epoch using the default settings of the function periodogram in

Matlab R2014b at 100 evenly spaced frequencies between 5 and 33 Hz. The median over

epochs for each participant was then calculated, followed by the median over participants for

each independent component class. Since data was band-pass filtered during pre-processing,

the spectra are flat below 8 Hz and above 30 Hz. It is reassuring that the neural independent

components’ power peaks at around 7-15 Hz since this band contains the motor-imagery

related µ-band. The low amplitudes of the blink and lateral eye independent components’

spectra relative to neural components is not surprising since for these artifacts, activity

typically lies in frequency bands lower than 8 Hz (blinks’ power peaks at 3 Hz and drops off

before 10.5 Hz while lateral eye movements exhibit most power at frequencies below 6 Hz [52,

p. 1237], [53]). Fequency information of heart beats mainly lies between 15-32 Hz [54]. The
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high power seen at lower frequencies than 15 Hz for heart beats indicates that independent

components classified as heart beat artifacts probably also contain other types of activity.

Muscle artifacts are active at high frequencies, from about 20-300 Hz [55]. This expectation

is reflected in the plot. Since mixed artifacts may contain many types of activity, we do not

have any expectations for how the power spectrum for mixed components may look.

3.4. Feature shifts

In Figure 8 we plotted training and testing features for the numbers task (2 best CSP filters) for

participants obx and njy respectively. Since we trained both tasks on calibration data without

secondary tasks, this plot shows how differently data shifts between training (no secondary

tasks) and testing (with secondary tasks). For participant obx, training features differ from

testing features, but they are still separable. Whereas for participant njy test set features shift in

a way that makes it impossible to separate them with the trained classifier. The corresponding

classification rates (70.83% and 50%) support that finding.

With one CSP filter per task, we also performed a 6-fold cross-validation to classify the

different secondary tasks against the (clean) task for both hands. Average classification rates

over all 16 participants are visualized in the form of boxplots in Figure 9. While classification

rates for the news and flicker task against clean are mostly around chance level, it is clearly

observable that it is much easier to classify stimulation, eyes-closed or numbers against clean

where the median accuracies lie between 90% and 95%.

This means, we can indeed assume major feature shifts in the data, especially in the

eyes-closed, numbers and stimulation tasks which significantly complicates classification.

Including an adaptation step into the classification process could solve this problem if we

assume that the data is separable at all.

3.5. Non-discriminativity

To find out whether the data is separable at all, we computed one classifier for each secondary

task and only tested on the same secondary task on which we trained. We therefore conducted

a 6-fold cross-validation on each secondary task (60 training trials, 12 testing trials). Average

classification rates are displayed in Table 3.

In comparison with the results from Table 2 where we computed one classifier for all tasks

(see Section 3.1), the overall classification rates improved for most participants. While the

overall classification rate for the news task hardly changed, the performance for both the

numbers task and the stimulation task, averaged over all participants, improved significantly

by almost 7% and almost 5%, respectively. Both significance tests were carried out with one-

sided Wilcoxon signed rank test to a significance level of α = 5%. This improvement is not

surprising considering the detection of feature shifts in both tasks in Section 3.4.

Several participants (nku, nkp, nkl, nkk) could still not reach the threshold of 61.11% which

shows that their data is not even separable into left and right hand motor imagination.

Classification in the flicker task for participant nkn did not work at all considering the accuracy

of 27.78%. However, for participants nkq and nko classification rates improved by 8%− 9%.



Brain-Computer Interfacing under Distraction: An Evaluation Study 12

Table 3: Mean classification accuracies for 6 classifiers. One row represents one participant,

the first column shows the participant codes. The results that improved compared to Table

2 are highlighted in (bold). Participants which are assigned to a higher group compared to

Table 2 are marked in bold (lower in red), those with former BCI experience are marked as ?,

lab members as +.

overall clean eyes-closed news numbers flicker stimulation

od?,+ 95.83 98.61 100.00 98.61 83.33 98.61 95.83

obx 85.65 91.67 83.33 86.11 81.94 95.83 75.00

nko 91.31 95.83 84.72 91.67 90.28 94.44 90.91

njz 72.92 75.00 84.72 81.94 68.06 68.06 59.72

nkq? 71.53 70.83 69.44 72.73 60.61 80.56 75.00

nkt 65.97 63.89 72.22 58.33 65.28 79.17 56.94

nkr 55.56 48.61 48.61 51.39 66.67 52.78 65.28

njy+ 63.66 59.72 68.06 65.28 41.67 73.61 73.61

nkm 58.33 63.89 52.78 56.94 66.67 54.17 55.56

nkn+ 50.13 55.56 55.56 54.17 42.42 27.78 65.28

nkl 49.31 52.78 48.61 51.39 40.28 52.78 50.00

nkp 50.93 54.17 44.44 52.78 48.61 54.17 51.39

nku 52.78 52.78 54.17 54.17 48.61 50.00 56.94

ma4? 59.24 43.94 48.61 59.72 71.21 68.06 63.89

nkk 51.62 48.61 50.00 58.33 55.56 50.00 47.22

nks 53.16 62.50 50.00 48.61 43.94 52.78 61.11

∅ 64.24 64.90 63.45 65.14 60.95 65.80 65.23

4. Evaluation of new strategies for out-of-lab

In the last section, we found that artifacts highly contaminate the data, especially in the

numbers task. Another problem is that testing data heavily shifts from calibration data

[19, 56, 10]. However, if we compute task-specific classifiers, we could separate left from

right hand motor imagination for most participants. Since standard machine learning methods

may fail in case of feature shifts and artifact contamination, we need to further investigate

other methods such as adaptation or artifact removal. In this section, we propose three

strategies to improve classification.

(i) Artifact removal. Since we discovered in Section 3.3 that data is highly artifact-

contaminated, we remove the classified artifacts before classification.

(ii) Classifier ensemble. Instead of dividing the dataset into the different secondary tasks, we

apply all 6 classifiers from Section 3.5 and average the classifiers output.

(iii) 2-step classification. We first identify the type of distraction task during the motor
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imagination before applying the respective classifier.

4.1. Improvement via artifact reduction

Table 4 shows the mean classification rates over participants for each secondary task when

each artifact group is removed from data. To remove artifact groups, the independent

components from each artifact group were extracted from both the calibration and test

data. When testing whether the performances differ from the baseline performances with

a one-sided Wilcoxon signed rank test, no p-value is below 0.05 (not corrected for multiple

hypothesis tests).

Although removing artifacts does not cause any significant performance differences, some

qualitative trends are interesting. From the first row of Table 4, we see that the best

artifact group to remove is that containing ocular artifacts. This improves the classification

performance for all secondary tasks except stimulation and clean. The most difficult groups

to remove are the muscular and muscular and mixed groups. Both groups cause a decrease

in classification performances in 4 secondary tasks. The performance in the news task is

improved by removing all the artifact groups. Similarly, the numbers task is also improved

when any artifact group, except the muscle group, is removed. However, the improvements

are not statistically significant. These results are consistent with previous investigations in

which removing artifacts did not improve BCI performance significantly [57].

Table 4: Mean classification accuracies for all distractions and removed artifact groups

averaged over participants. For each experiment, the artifact group with improved

performances compared to Table 2 is highlighted in bold. The overall (rightmost) column

from Table 2 is reproduced for baseline comparison.

Muscular Ocular Non-neural
Muscular

and mixed

Non-mixed

artifacts
overall baseline

overall 62.30 62.69 62.20 61.83 62.01 62.20 62.39

clean 66.46 65.67 66.97 65.94 64.72 65.95 66.68

eyes-closed 62.50 63.80 60.75 60.68 63.19 62.19 63.10

news 62.81 63.76 63.51 63.94 63.42 63.49 62.64

numbers 53.56 55.29 56.86 54.69 55.12 55.10 53.81

flicker 67.10 66.58 64.93 65.28 65.10 65.80 66.41

stimulation 61.35 61.01 60.14 60.49 60.48 60.69 61.53

4.2. Improvement via classifier ensemble

Instead of choosing a task-specific classifier for each trial, we propose an ensemble approach,

where we applied all 6 classifiers to all trials and averaged over the output to determine
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Table 5: Mean classification accuracies for classifier ensembles. The results that improved

compared to Table 2 are highlighted in (bold). Participants which are assigned to a higher

group compared to Table 2 are marked in bold, those with former BCI experience are marked

as ?, lab members as #.

od?,+ obx nko njz nkq? nkt

97.92 88.89 93.66 75.93 55.56 71.99

nkr njy + nkm nkn + nkl nkp

73.24 64.58 65.28 58.92 50.23 52.78

nku ma4 ? nkk nks ∅

52.55 55.63 49.07 54.69 66.31

whether the user performed left or right hand motor imagination. We therefore also conducted

a 6-fold cross-validation on each secondary task. Since we recorded 72 trials per secondary

task, we trained on 60 trials and tested on 12 trials, equivalent to Section 3.5.

Average classification rates for all 16 participants can be found in Table 5. Compared to the

results from Table 2, we could significantly improve classification accuracies by 4.5% (one-

sided Wilcoxon signed rank test, α = 5%).

Ensemble methods benefit from accuracy and diversity of individual classifiers. Because

of the feature shifts we detected in Section 3.4, we can assume that data of the different

secondary tasks does not arise from the same two Gaussian distributions (one per MI-class).

Hence corresponding classifiers are indeed diverse. Although separate classifiers do not

classify all participants significantly above chance level, most of them are accurate on average.

Combining those two findings explains why ensemble CSP improves accuracy for participants

of category #1 and #2.

4.3. Improvement via 2-step classification

Calculating one classifier for each distraction indeed yields higher classification rates but

if we think about applying this concept to real world situations, we might not have that

much prior knowledge about the scenarios the BCI is used in. Therefore, we propose a 2-

step classification approach which combines classifying the respective secondary task before

separating left from right hand MI.

In Section 3.4 we identified three secondary tasks with major feature shifts: eyes-closed,

numbers and stimulation. Since features can shift in different dimensions we have to

treat those tasks separately. The numbers task reaches the lowest accuracy when applying

the original CSP approach (see Table 2). Therefore, in the first step, we separated the

numbers task from the not-numbers task (clean, eyes-closed, news, flicker, stimulation). After

categorizing a trial to one of these groups, we applied one of two left vs. right classifiers

(one for numbers and one for not-numbers) to decide whether this trial consisted of a left or



Brain-Computer Interfacing under Distraction: An Evaluation Study 15

right hand motor imagination. For this approach, we only considered the 6 runs including

secondary tasks and conducted a 6-fold cross-validation. This means that for the first step we

used 360 training trials and 72 testing trials. In the second step we used 300 training trials for

not-numbers and 60 training trials for numbers. The number of testing trials depends on the

accuracy in the first step and can theoretically vary between 1 and 72 for both classes.

Results are summarized in Table 6 where the average classification rates for both steps are

listed. The overall classification rate is the weighted average performance of the numbers and

not-numbers task. The weighting compensates for the different number of trials in both tasks.

Please note that a 3-step approach where we additionally separated the stimulation task led to

lower performance than the 2-step approach.

As already discussed in Section 3.4, the different secondary tasks are easily separable,

results of the first step in Table 6 show that classification rates are mostly between 94%

and 100%. Except for participant nkm where we are only able to classify 86% of the

tasks correctly. Since only 12 out of 72 trials in each run belong to the numbers task, this

result leads to the conclusion that the tasks are not really distinguishable for this participant.

However, classification accuracies significantly improved (one-sided Wilcoxon signed rank

test, α = 5%) compared to the original CSP results in Table 2 and for most participants

(except nkk,nkl,nkp,nkr) we reached higher classification rates with this 2-step approach. One

reason for this may also be the amount of training data we used to train the not-numbers

classifier. Whereas we used between 60 and 72 training trials for the previous approaches,

here we could use now up to 300 training trials.

In Figure 10, we display the comparison of the results of all three approaches to our original

CSP approach (see Section 3.1) together with the p-values of the one-sided Wilcoxon signed

rank tests. Each circle represents one participant. For the artifact removal we display the

removal of each artifact group in different colors.

5. Conclusion

In this paper we presented a motor imagery-based BCI study where participants had to handle

6 different secondary tasks in addition to the motor imagery task. The idea behind those

tasks was to simulate a semi-realistic environment and to systematically analyze the influence

of different scenarios on the motor imagery performance. We first trained on data without

secondary tasks and classified on data with secondary tasks using three CSP filters per class

and RLDA for classification. Results between participants varied a lot and only 10 out of 16

participants reached an overall accuracy higher than chance level. Especially classification

results in the eyes-closed, numbers and stimulation tasks are much lower compared to the

clean, news and flicker tasks. We investigated three possible reasons for this poor BCI

performance, namely

(i) artifact contamination

(ii) feature shifts between training (no secondary task) and testing (with secondary tasks)
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Table 6: Mean classification accuracies for 2-step classification. The results that improved

compared to Table 2 are highlighted in (bold). Participants which are assigned to a higher

group compared to Table 2 are marked in bold, those with former BCI experience are marked

as ?, lab members as +.

1st step 2nd step

overall cond not-numbers numbers

od ?,+ 96.53 100.00 99.17 83.33

obx 90.28 99.31 91.92 82.19

nko 93.19 96.71 93.82 90.00

njz 77.55 97.45 78.71 72.00

nkq ? 77.93 99.53 80.28 66.20

nkt 76.85 99.77 79.11 65.75

nkr 58.80 99.07 57.26 66.22

njy + 66.20 96.53 70.54 46.84

nkm 66.90 86.34 70.66 50.62

nkn + 57.75 96.95 59.08 51.90

nkl 46.99 99.31 47.90 42.67

nkp 49.07 95.37 48.56 51.19

nku 52.08 98.84 52.65 49.32

ma4 ? 61.27 98.83 60.45 65.28

nkk 48.61 94.68 48.12 50.57

nks 57.75 98.83 58.43 54.29

∅ 67.36 97.34 68.54 61.77

(iii) non-separability of the data.

We found a high amount of artifacts in the data, especially for the numbers task, where 77%

of data variance can be explained by non-neural artifacts. We also found severe feature shifts

for the stimulation, eyes-closed and numbers tasks by classifying each secondary task against

the clean task. To investigate non-separability, we trained one separate classifier for each

secondary task. Since we could improve classification accuracies for most participants, we

can conclude that, applying the correct classifier, left and right hand motor imagination is

indeed separable for most participants. Thinking about real-world scenarios, the problem

however is, that we do not always know which task a user is carrying out while controlling

the BCI.

We therefore proposed three different approaches to improve performance.

(i) Artifact removal. After decomposing calibration data with ICA, we classified the

independent components (ICs) with IC MARC [51] and assigned one artifact type to

each IC. After removing 5 different groups of artifacts, we used RLDA based on CSP for
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classification. Results are displayed in Table 4.

(ii) Ensemble CSP. For each of the 6 secondary tasks, we trained one classifier based on CSP

and RLDA. We applied all 6 classifiers to the data and used the averaged output as a

classification decision, Table 5 shows the results.

(iii) 2-step CSP. We classified in two steps. During the first step, we separated the noisiest

secondary task (numbers) from the remaining 5 tasks (not-numbers). In the second step

we used two different classifiers, one for numbers and one for the remaining not-numbers

tasks to separate the data into left and right hand MI, results can be found in Table 6.

While the artifact removal did not lead to significant improvement (see Figure 10), both,

ensemble CSP and the 2-step approach did. It is clearly visible that for both, the ensemble CSP

and the 2-step CSP, classification performances improve particularly for those participants

already reaching significant BCI control in the original CSP approach (#1 and #2 in Table

2). It is worth mentioning again that the 2-step approach clearly benefits from the increased

number of training trials compared to the original and the ensemble CSP approach.

We also have to note that most of the participants were confronted for the first time with a

BCI system. Imagining a movement is relatively abstract and some participants may improve

by engaging in more feedback training before going “out-of-lab”.

After first steps have been made to leave the controlled lab environment, this

study systematically and quantitatively analyzes how different scenarios influence BCI

performance. The challenges we identified, especially the ones of dual character in the

numbers task need to be considered for future studies and are worth being further analyzed.

Also training the BCI users more detailed beforehand could lead to a better understanding and

higher performance rates.

Although two of the proposed approaches significantly improve classification accuracy we

should take into account that when applying them to everyday life, additional challenges

might occur. For example, whereas in our study we exactly know under which secondary

task a participant is performing the MI, it is not always clear in which situation end-users find

themselves when controlling a BCI in their everyday life environment. However, this issue

might be tackled with a large amount of training data in various possible real-world scenarios.

We also have to consider the number of EEG channels we used. Preparation of a gel-based

EEG cap is time-consuming and challenging outside of the lab since electrodes dry out over

time and users need to wash their hair afterwards. Reducing the number of channels and

considering dry EEG systems would also further improve usability of real-world applications.

Future studies will also explore whether harvesting a database of significantly larger numbers

of participants and tasks may allow an invariant and user independent decoding [58], e.g.,

using deep neural networks.
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[33] Johannes Höhne, Elisa Holz, Pit Staiger-Sälzer, Klaus-Robert Müller, Andrea Kübler, and Michael
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Figure 4: ERD/ERS (columns 1-2) and spectra (columns 3-4) of participant od for all 6

secondary tasks when CSP trained on clean. Each row represents one secondary task.
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Figure 5: Examples of scalp maps of classified independent components from each class used

by IC MARC.
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Figure 6: Percentage of data variance explained by each artifact group in each condition. The

numbers represent the mean over participants plus/minus its standard deviation.
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Figure 7: Power spectra of independent components from the six classes (blinks, neural, heart

beats, lateral eye, muscle, and mixed). The power spectra were calculated for each epoch

independently. Then the median was first taken over epochs for each participant, and then

over participants.
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Figure 8: Features of participants obx and njy of the classifications between left and right

hand motor imagery (two best CSP filters) where CSP was only trained on clean and tested

on numbers.
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Figure 9: Mean classification accuracies across all 16 participants under different distraction

tasks against clean motor imagery for both hands.
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Figure 10: Accuracies of the three new approaches compared to the accuracy of CSP trained

on clean. One circle represents the accuracy of one participant.


	Introduction
	Experiments
	Participants
	Experimental setup
	Distractions
	Data analysis

	Evaluation of in-lab training
	Classification on clean training
	Why poor performance?
	Artifacts
	Feature shifts
	Non-discriminativity

	Evaluation of new strategies for out-of-lab
	Improvement via artifact reduction
	Improvement via classifier ensemble
	Improvement via 2-step classification

	Conclusion

