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C O G N I T I V E  N E U R O S C I E N C E

Brain connectivity–based prediction of real-life 
creativity is mediated by semantic memory structure
Marcela Ovando-Tellez1*, Yoed N. Kenett2, Mathias Benedek3, Matthieu Bernard1, Joan Belo1, 
Benoit Beranger4, Theophile Bieth1,5, Emmanuelle Volle1*

Associative theories of creativity argue that creative cognition involves the abilities to generate remote associa-
tions and make useful connections between unrelated concepts in one’s semantic memory. Yet, whether and how 
real-life creative behavior relies on semantic memory structure and its neural substrates remains unclear. We 
acquired multi-echo functional magnetic resonance imaging data while participants underwent a semantic related-
ness judgment task. These ratings were used to estimate their individual semantic memory networks, whose 
properties significantly predicted their real-life creativity. Using a connectome predictive modeling approach, we 
identified patterns of task-based functional connectivity that predicted creativity-related semantic memory net-
work properties. Furthermore, these properties mediated the relationship between functional connectivity and 
real-life creativity. These results provide new insights into how brain connectivity patterns support real-life creative 
behavior via the structure of semantic memory. We also show how computational network science can be used to 
couple behavioral, cognitive, and neural levels of analysis.

INTRODUCTION
Creativity is key to our ability to cope with change, innovate, and find 
new solutions to address societal challenges. Understanding the com-
plex and multidimensional construct of creativity is thus fundamental 
to support societal, cultural, and economic progress. Creative behavior 
in real life depends on individual differences in cognitive ability, in 
addition to personality and environmental factors (1). The cognitive 
mechanisms underlying creative abilities are not yet fully understood, 
but pertinent theories of creative cognition consistently highlight 
the role of specific associative processes and the need to uncover 
meaningful links between unrelated concepts (2–7).

The associative theory of creative thinking hypothesizes that creative 
abilities are related to the organization of associations in semantic 
memory (6). In support of the associative theory, several studies found 
that more creative individuals are able to more easily link distant 
concepts: They provide lower estimates of the remoteness of unre-
lated words than less creative individuals (8), are faster in judging 
the relatedness of concepts (9), have less common or constrained 
word associations in free generation tasks (3, 10, 11), and have a 
more flexible organization of semantic memory (2, 7, 12–14). Other 
studies have specifically demonstrated the important role of dis-
sociation ability and associative combination in creative thinking 
(2–4, 15, 16). In addition, in brain-damaged patients, rigid seman-
tic associations were associated with poor creative abilities (17, 18). 
Associative thinking has been related to creative abilities as mea-
sured within several existing frameworks, such as divergent thinking 
(2–4, 8, 19), insight problem solving (6), and analogical reasoning 
(20), as well as to creative achievements in real life (11, 15, 21). For 
instance, creative behavior in real life has been related to associative 

processes including generating remote semantic associations (11) or 
bi-associations (15). Overall, there is ample evidence that the way 
in which concepts are associated and activated via associative pro-
cesses relies on the structure of semantic memory, which influences 
the ability to connect remote concepts into novel ideas (5, 7, 22–24), 
and, thereby, semantic memory has a critical role in creativity.

Recent research has demonstrated how computational network 
science methodologies (25) based on mathematical graph theory allow 
exploring the structure of semantic memory via semantic networks 
(SemNets). Applying these methods, several studies have shown that 
creative abilities can be related to the structure of semantic memory 
(5, 13, 14, 23, 24, 26). Kenett et al. (14) investigated the SemNets of 
groups of low and high creativity individuals on the basis of free 
associations generated by both groups to a list of 96 cue words. 
They found that the SemNets of low creativity individuals were less 
connected and more spread out compared to the SemNets of high 
creativity individuals. However, estimating SemNets at the group level 
may obscure individual differences related to creativity. To address 
this issue, Benedek et al. (13) developed a method to estimate indi-
vidual SemNets on the basis of word relatedness judgment ratings. 
Participants made relatedness judgments on the relationship between 
all possible pairs of 28 cue words, serving as a proxy for the organi-
zation of these words in an individual’s semantic memory. They 
demonstrated how individual-based SemNet metrics replicated the 
group-based findings of Kenett et al. (14) and were related to indi-
vidual differences in divergent thinking scores [the most widely 
assessed component of creative thinking (27)]. The findings of 
Benedek et al. (13) have since been replicated across different lan-
guages (5, 26, 28), demonstrating the validity of this approach.

In a previous study (26), we replicated and extended the approach 
developed by Benedek et al. (13) with two improvements: We con-
trolled the selection of the cue words using a computational method 
optimizing the distribution of theoretical distances between words, 
and we assessed creative abilities and behaviors using a more diverse 
set of tools. Our previous study showed that the network metrics 
of individual SemNets, built from the relatedness judgments the 
participants gave to several pairs of words, correlated with several 
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measures of creativity, including a questionnaire of creative activi-
ties and achievements (29). Hence, individual SemNet measures allow 
exploring the underlying cognitive mechanisms of creativity by re-
vealing how different aspects of the semantic memory structure relate 
to creativity and to creative behavior (5). However, the neurocogni-
tive determinants of individual differences in creativity related to 
the structure of semantic memory are still unclear and unexplored.

Existing magnetic resonance imaging (MRI)–based neuroimaging 
studies have identified a large set of brain regions involved in cre-
ative cognition (7, 30–32). A growing body of creativity neuroscience 
research has highlighted the importance of functional interactions 
within and between several brain networks, including the executive 
control network, the salience network, and the default mode network 
(30). In addition, semantic and episodic memory regions (32–35) 
and the motor and premotor regions have been shown to play a role 
in creative cognition (32, 36). Evidence from studies in semantic 
cognition has further linked creativity to neural interactions between 
semantic representations and control processes (37). These compo-
nents of semantic cognition draw on different brain regions (38), with 
anterior temporal lobes (partially overlapping with default mode 
network) critical for heteromodal conceptual information in long-
term memory and regions interspersed between default mode net-
work and multiple-demand network supporting semantic control 
(39, 40). The advantage of a whole-brain functional connectivity 
approach is to provide a holistic and functional view of how brain 
networks relate to creative thinking. For example, resting-state func-
tional connectivity within and between these networks was shown 
to predict creative abilities (31), and task-based functional connec-
tivity within and between these networks increased during a creativity 
task, compared to a control task (30, 31). A recent approach in neuro-
imaging research is connectome predictive modeling (CPM) (41), 
which uses machine learning methods to identify patterns of func-
tional connectivity that predict complex cognitive functions, including 
divergent thinking ability (31, 41, 42). Unlike previous research that 
focused on the brain connectivity associated with specific creativity 
tasks (e.g., divergent thinking), the current study explores the neuro-
cognitive determinants of real-life creativity by studying the neural 
basis of semantic memory organization related to creative behavior. 
We hypothesized that the associative mechanisms reflected by SemNet 
metrics are relevant to real-life creative activities and achievements 
and can be predicted by functional connectivity patterns, involving, 
in particular, the control, default, and salience networks (31).

To this end, we first examine the properties of individual SemNets 
via network metrics and identify SemNet metrics that reliably pre-
dict differences in creative achievement and activities and thus con-
stitute cognitive markers of real-life creativity. We then explore the 
functional connectivity of brain networks predicting individual dif-
ferences in these SemNet markers. We use the CPM method and 
analyze functional brain connectivity during the performance of the 
semantic relatedness task that is used to estimate individual SemNets. 
This allows us to identify the task-based functional connectivity 
patterns predicting individual differences in SemNet properties. As 
an internal validation, we additionally explore whether the predictive 
models built in the task-based functional connectivity are generalizable 
to participants’ resting-state functional connectivity. Last, we examine 
whether SemNet properties mediate the link between these brain 
connectivity patterns and real-life creativity, thus linking functional 
connectivity to real-life creativity via individual differences in se-
mantic memory organization.

RESULTS
Individual SemNet metrics and creativity
First, we explored the properties of individuals’ SemNets in relation 
to creativity. Similar to previous studies (5, 13, 26), we estimated 
participants’ individual semantic memory network as weighted (WUN) 
and unweighted (UUN) undirected networks based on performance 
in the semantic relatedness judgment task (RJT; Fig. 1). During the 
RJT, participants judged the relatedness between all possible pairs 
of 35 words (595 ratings).

In undirected networks, the relation between node a and node b 
is equal to the relation between node b and node a, which conforms 
to the nature of the judgment task. WUN and UUN differ in either 
assuming weighted or unweighted network links. The WUN is a 
more informed type of SemNet as it retains the weights of all links 
between the words (nodes). The UUN is a binary network that only 
retains the links between words (nodes) that are moderately or highly 
associated (i.e., ratings greater than 50 on the visual scale; Fig. 1A) 
and sets their weights to 1. We built these two types of networks, 
UUN and WUN, as previous studies had suggested that they are particu-
larly sensitive to creative ability (5, 13, 26), with subtle differences 
across creativity measures (5, 13, 26). Therefore, we aimed to explore 
whether the properties of a more informed (WUN) or less informed 
(UUN) network are better captured by the individual’s brain func-
tional connectivity patterns during the RJT task. We then computed 
established network measures in cognitive network research (25) for 
WUN and UUN that have been previously related to creative abili-
ties (5, 13, 14, 24, 26) including the following: average shortest path 
length (ASPL; measuring average distances or the spread of the 
SemNet), clustering coefficient (CC; measuring overall connectivity 
in the SemNet), modularity (Q; measuring the level of segregation 
of the SemNet), and small worldness (S; measuring the ratio between 
connectivity and distances in the network; see Materials and Methods). 
In addition, we assessed individual differences in real-life creative 
activities (C-Act) and achievements (C-Ach) via the Inventory of 
Creative Activities and Achievements (ICAA; see also section S3) (29) 
completed outside the MRI scanner (descriptive statistics for behavioral 
and network measures are reported in Table 1). On the basis of previous 
studies that related SemNets to creative abilities (5, 13, 14, 24, 26), 
we expected higher creative behavior (higher C-Act and/or C-Ach 
scores) to be related to more connected and flexible (higher CC and 
S), less spread out (lower ASPL), or less segregated (lower Q) net-
works. Given that most previous work had focused on creative poten-
tial, we had no strong expectation on differences between predictions 
regarding WUN and UUN in the context of creative behavior.

We then examined how SemNet metrics predict real-life creativity 
by applying linear regression models, regressing creativity on each 
SemNet metric with leave-one-out cross-validations: We iteratively 
fitted predictive linear models in N − 1 participants and tested the 
model in the left-out participant. The significance of the model pre-
diction was assessed by the correlation between the predicted value 
of C-Act (or C-Ach) computed by the model and the observed value 
using permutation testing. These analyses revealed that both real-life 
creative activities and achievements are predicted from different in-
dividual SemNet metrics (Fig. 2). The Spearman correlations showing 
the direction and size of the relationships between SemNet metrics 
and creativity are reported in Table  2. C-Act was predicted from 
WUN ASPL and UUN Q. C-Ach was predicted from WUN Q and 
UUN Q. Overall, more creative individuals had less modular SemNets. 
To ensure that the results were not affected by age, sex, education, 
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and intelligence quotient (IQ), we explored the correlations between 
these variables and SemNet metrics and creativity scores (table S1). 
The results remained significant after controlling for the variables 
that correlated with either the SemNet metrics or the creativity 
scores (fig. S1).

Prediction of creativity-related SemNet properties 
from brain connectivity
We applied the CPM approach (31,  41) to explore whether task-
based functional connectivity patterns predict semantic memory 
network metrics that related to creativity (i.e., Q in WUN and UUN 
and ASPL in WUN; see Table 2; the applied CPM approach is illus-
trated in Fig. 3). We used a functional brain atlas to define 200 brain 
nodes belonging to 17 functional networks (43). For each participant, 
Pearson correlations of the blood oxygen level–dependent (BOLD) 
signal between all unique pairs of brain regions (i.e., nodes; n = 19,900) 
were computed to estimate the task-related functional connectivity 
of the whole-brain connectivity network (Fig. 3A). We then identi-
fied relevant links of the brain connectivity network that positively 
(positive model network) or negatively (negative model network) 
correlated with the SemNet metric across participants (Fig.  3B). 
Next, we adapted the classical CPM method (41) to better take into 
account the network properties of the brain model networks. Instead 

of using the sum of the connectivity in the model networks, we 
computed two key network metrics describing small-worldness 
properties of human brain networks (44, 45): their CC (brain-CC) 
and efficiency (brain-Eff) (Fig. 3C). We selected these brain network 
metrics because the small-world organization of the brain networks 
has been widely supported in network neuroscience (44). Such re-
search has characterized the brain by a high clustering (brain-CC) 
and long-distance connection, allowing efficient local and global 
information processing and integration (brain-Eff; measured as the 
inverse of the ASPL). Long-distance connections (as measured by 
brain-Eff) were shown to support the functional diversity of the 
whole brain acting as an integrated brain network (46). In addition, 
brain-Eff has been previously correlated to personality traits related 
to creative behaviors (47). We then ran six separate linear models 
regressing each SemNet metric (Q for WUN and UUN and ASPL 
for WUN) on each model network metric (brain-CC and brain-Eff). 
We used leave-one-out cross-validations, iteratively fitting predic-
tive linear models in N − 1 participants and tested these models on the 
left-out participant (Fig. 3D). Last, the model prediction was assessed 
by the Spearman correlation between the predicted value from the 
model and the observed values.

We then tested the relation between predicted and observed 
CPM models on the various SemNet metrics, using 1000 iteration 

Fig. 1. Estimation of individual SemNets to predict creativity. (A) Trial representation of an exemplary trial of the RJT asking participants to judge the relatedness of 
595 word pairs. Each trial began with the display of a pair of words along with a visual scale (reflection period) ranging from 0 (unrelated words) to 100 (strongly related 
words). During the next 2 s (response period), participants were allowed to move the cursor (in red) using a trackball to indicate the relatedness of the two words. An in-
tertrial interval of 0.3- to 0.7-s separated trials. (B) For each participant, we computed a 35 by 35 adjacency (connectivity) matrix with columns and rows representing each 
of the 35 RJT words, and cell values corresponding to the relatedness judgments given by the participant during the RJT. (C) We estimated individual semantic memory 
networks following two established approaches: WUN and UUN, using the RJT words as the network nodes. In the WUN, the RJT judgments reflected the strength of links 
between nodes. In the UUN, the RJT judgments above average (50) were kept and set to one. The SemNet metrics were computed for both WUN and UUN separately: 
ASPL, CC, Q, and S. (D) Representation of the individual WUN SemNets for a low creativity participant and a high creativity participant. (E) Linear regressions using leave-
one-out cross-validations were performed to explore whether real-life creative activities (C-Act) and achievements (C-Ach) were predicted from SemNet properties esti-
mated in (B). The SemNet metrics were used to build predictive linear models in N − 1 participants. The predictive model was tested on the left-out participant using its 
SemNet metric (m) to predict its creativity scores. ASPL, average shortest path length; CC, clustering coefficient; Q, modularity; S, small worldness.
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Table 1. Descriptive statistics of creativity scores and SemNet measures. Data are shown for real-life creativity activities (C-Act) and achievements (C-Ach) 
and for SemNet metrics of weighted (WUN) and unweighted (UUN) networks. ASPL, average shortest path length; CC, clustering coefficient; Q, modularity; S, 
small worldness. 

Means SD Min Max Skewness Kurtosis

Creativity scores

C-Act 47.894 21.695 13 102 0.428 −0.609

C-Ach 74.638 42.249 1 207 0.744 0.507

WUN metrics

ASPL 0.021 0.004 0.015 0.037 1.713 3.353

CC 0.363 0.096 0.142 0.628 0.274 0.267

Q 0.122 0.058 0.032 0.319 1.037 1.436

S 1.003 0.073 0.828 1.387 1.913 9.134

UUN metrics

ASPL 1.633 0.221 1.262 2.361 1.456 2.665

CC 0.585 0.082 0.438 0.781 0.130 −0.658

Q 0.178 0.064 0.058 0.392 0.919 1.387

S 1.386 0.271 1.011 2.936 2.628 11.269

Fig. 2. Prediction of creativity scores from SemNet metrics. The plots show the Spearman correlations between the predicted values (y axis) and observed values 
(x axis) of creative activities and achievements based on individual SemNet metrics for the significant predictions. At the bottom-right part of each plot, we present the rs 
and the P values, based on permutation testing.
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permutation testing (Fig. 4) (41). The CPM-based prediction from 
brain-CC was significant for the WUN Q metric (rs  =  0.386, 
P = 0.004). The CPM-based predictions from brain-Eff were signif-
icant for the WUN Q metric (rs = 0.476, P = 0.001) and the UUN Q 
metric (rs = 0.272, P = 0.036). The CPM-based predictions of WUN 
ASPL from both brain-CC and brain-Eff and UUN Q from brain-
CC were not significant, showing either a negative correlation be-
tween predicted and observed values (indicating the prediction model 
failure) or not significant P value after permutation testing. These 
results remained significant after controlling for variables (fig. S2) 
that correlated with either the SemNet metrics or ICAA scores (table S1), 
i.e., sex, education, and IQ, suggesting that our findings are robust 
to individual differences in these factors. In summary, CPM analyses 
on task-based functional connectivity showed that brain connectivity 
CC and efficiency allowed reliable predictions of SemNet Q.

Functional anatomy of the predictive brain 
connectivity patterns
To characterize the functional brain connectivity patterns predictive 
of SemNet metrics, we explored the links of the model networks 
that account for SemNet properties relevant to creativity. Unique 
positive and negative model networks were identified for each SemNet 
metric (Fig. 3B) (41) and were used to compute their network properties 
(brain-CC and brain-Eff; Fig. 3C). Because SemNet modularity (Q) 
was negatively correlated with both creativity measures (C-Act and 

Fig. 3. CPM-based prediction method. (A) We defined the brain nodes on the basis of the Schaefer atlas consisting of 200 regions of interests (ROIs) (43). For each par-
ticipant, we assessed the BOLD activity during the RJT in each ROI and used pairwise Pearson correlations to estimate a 200 by 200 task-related functional connectivity 
matrix. Using a leave-one-out approach, all the CPM steps were conducted in N − 1 participants. (B) The functional connectivity matrix (all links) was correlated to SemNet 
metrics using Spearman correlations. The links that significantly positively or negatively correlated with the SemNet metric (P < 0.05) formed a positive and a negative 
model network, respectively. (C) We calculated two network properties (in separate CPM analyses) of the positive and negative model networks, brain-CC and brain-Eff 
metrics. (D) The brain metrics in the positive (p) and negative (n) model networks were used to build a linear model predicting the SemNet metric in the left-out partici-
pant. Because head motion can affect CPM, we included the mean FD variable (m), a head motion parameter, as a regressor in the model to avoid a possible effect in the 
prediction. Last, the model was applied to the left-out participant to compute a predicted SemNet value from his/her brain model networks. The predicted value was then 
correlated with the observed value to assess the model predictive validity.

Table 2. Relationship between individual SemNet metrics and 
creativity. The Spearman correlations between SemNet metrics and 
creativity scores are reported (rs for C-Act and C-Ach). In bold are the 
significant predictions of creativity from the SemNet properties after 
permutation testing shown in Fig. 2. 

Creativity 
scores C-Act C-Ach

rs P rs P

WUN 
metrics

ASPL −0.276 0.007* −0.208 0.044

CC 0.165 0.111 0.201 0.052

Q −0.179 0.085 −0.295 0.004*

S 0.234 0.023 −0.017 0.868

UUN metrics

ASPL −0.125 0.230 −0.149 0.152

CC 0.092 0.378 0.080 0.441

Q −0.281 0.006* −0.287 0.005*

S −0.154 0.139 −0.219 0.034

*Correlations that reached significance after false discovery rate 
correction for multiple comparisons.
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C-Ach; Table 2), as expected from previous studies (5, 13, 14, 26), 
we focused on the description of the negative model network pre-
dicting UUN Q (Fig. 5) or WUN Q (fig. S3). In this model network, 
we considered the links that were shared in all iterations of the 
leave-one-out analysis, as the links in the model network can slightly 
vary at each iteration.

For the standard CPM-negative model network of UUN Q, we 
identified 452 links. The connectivity of these links was related to 
lower SemNet Q, which again predicted higher real-life creativity. 
These links represented connections mainly within and between tem-
poral, parietal, limbic, and prefrontal lobes (Fig. 5, A and B). When 
we explored the distribution of these links at the functional networks 
level, on the basis of the functional networks included in the Schaefer 
atlas (43), most of the links were part of the somatomotor, salience, 
and default mode networks (Fig. 5C). The highest number of links 
were found between control and default mode networks (8.2%), fol-
lowed by links within the salience network and between somatomotor 
and visual networks. In this model network, the highest-degree nodes, 
nodes with the highest number of connections (k; i.e., the number 
of functional connections), belonged to the right hemisphere being 
part of the visual network (i.e., extrastriate inferior, k = 53), default 
mode network (i.e., medial prefrontal cortex, k = 39), salience (i.e., 
insula, k = 31; parietal medial, k = 28), temporoparietal (i.e., temporal- 
parietal; k = 29), and limbic (temporal pole, k = 28) networks 
(Fig. 5D). In summary, the main patterns of functional connectivity 
that predicted lower SemNet Q (i.e., related to higher creativity) had 
a whole-brain distribution and involved the control, default mode, 
salience, and somatomotor networks.

Internal validation: Prediction of creativity-related SemNet 
properties from resting-state functional connectivity
We then explored whether the predictive models built on the basis 
of the task-based functional connectivity data can be generalized to 
the prediction of SemNet metrics from the resting-state functional 
connectivity. To this end, we used the positive- and the negative- 
network models from the task-based functional connectivity data 
from all participants to build the predictive model for UUN Q and 
WUN Q (using the same method as for the task-based functional 
connectivity prediction described above but with all participants 
included). We then applied these predictive models to the partici-
pants’ resting-state data by computing the brain-Eff and brain-CC 
of the model networks during resting state for each participant. The 
model prediction was assessed by the Spearman correlation between 
the predicted value from the model and the observed values. The 
CPM-based prediction from brain-CC of resting-state connectivity 

was significant for the WUN Q metric (rs = 0.210, P = 0.043). The 
CPM-based predictions from brain-Eff of resting-state connectivity 
was significant for the WUN Q metric (rs = 0.267, P = 0.010) but not 
for the UUN Q metric (rs = 0.103, P = 0.327) (Fig. 6). Thus, the pre-
dictive model of creativity-related SemNet properties built on task-
based functional connectivity data was also partly significant when 
applied to the brain intrinsic connectivity data of the individuals. This 
result suggests that properties of memory structure, and particular-
ly the modularity metric, are also represented in intrinsic functional 
connectivity. Critically, this result support the CPM-based predic-
tive model’s robustness and generalization to the resting-state func-
tional MRI (fMRI) data (31).

Mediation analysis
In the previous analyses, we found a relationship between SemNets 
and real-life creativity and between brain functional connectivity and 
SemNets. In a final step, we analyzed whether the relationship be-
tween task-based functional brain connectivity and real-life creativity 
is mediated by the SemNet properties. Hence, we conducted media-
tion analyses that focused on the indirect effect of functional connec-
tivity on creative activities and achievements, using either C-Act or 
C-Ach as the dependent variable for each significant CPM model. 
To simplify interpretations, because UUN Q had a negative correla-
tion with creativity, its value was reversed (UUN QR) to be positively 
correlated with creativity. Hence, lower modularity of the SemNet 
can be described as a higher flexibility of the SemNet (23, 24, 48).

Because C-Act was significantly predicted by the SemNet metric 
UUN Q, we explored the mediating role of UUN Q on the relation-
ship between the properties of the functional brain network predicting 
UUN Q (brain-Eff) and C-Act (Fig. 7A). As shown in the previous 
analyses, the regression coefficient between brain-Eff and UUN QR 
was statistically significant (beta = 0.305, P < 0.001), as was the re-
gression coefficient between UUN QR and C-Act (beta = 0.443, 
P = 0.002). The total effect and the direct effect were not statistically 
significant (beta = 0.116, P = 0.328; beta = −0.019, P = 0.872). In all 
mediation analyses, we calculated the indirect effect as the product 
of path a (i.e., the regression coefficient between brain functional 
connectivity and SemNet metric) and path b (i.e., the regression co-
efficient between SemNet metric and creativity) (Fig. 7). We tested 
the significance of the indirect effect using a bootstrapping method. 
The bootstrapped indirect effect was (0.305) × (0.443) = 0.135, and the 
95% confidence interval ranged from 0.024 to 0.320. Thus, the indi-
rect effect was statistically significant (P = 0.002). Hence, SemNets 
UUN Q mediated the relationship between the efficiency of func-
tional brain connectivity (brain-Eff) and creative activities (C-Act): 

Fig. 4. Predicted and observed SemNet metrics. The plots show the Spearman correlations between the predicted values (y axis) and observed values (x axis) of SemNet 
metrics based on brain connectivity for the significant predictions. Green plots are presented for brain-Eff and magenta ones for brain-CC. In the upper-right side of each 
plot, we present the rs and the P values. The reported P values are based on permutation testing.
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The higher the efficiency of the negative model network that pre-
dicts UUN Q, the lower the SemNet Q, and the higher are real-life 
creative activities.

C-Ach score was predicted from SemNet WUN Q and UUN Q 
metrics. We explored the mediating role of UUN Q between the 
functional connectivity of the negative model network predicting it 
(brain-Eff) and C-Ach (Fig. 7B). The mediation analysis showed 
that the regression coefficient between brain-Eff and UUN QR was 
statistically significant (beta = 0.305, P < 0.001), as was the regression 
coefficient between the C-Ach and UUN QR (beta = 0.241, P = 0.005). 
The total effect and the direct effect were not statistically significant 
(beta = 0.142, P = 0.056; beta = 0.069, P = 0.353). The bootstrapped 
indirect effect was (0.305) × (0.241) = 0.073, and the 95% confidence 
interval ranged from 0.018 to 0.140. Thus, the indirect effect was 
statistically significant (P < 0.001). Hence, SemNets UUN Q mediated 
the link between the efficiency of brain functional connectivity 
(brain-Eff) and real-life creative achievements (C-Ach): The higher 
the efficiency of the negative model network that predicts UUN Q, 
the lower the modularity of SemNet, and the higher the real-life cre-
ative achievements.

Similarly, we explored the mediating role of WUN Q on the re-
lationship between the properties of the functional connectivity of 
the negative model network predicting it (brain-Eff and brain-CC) 
and C-Ach (Fig. 7C). Using brain-Eff as an independent variable, 
the regression coefficient between brain-Eff and WUN QR was sig-
nificant (beta = 0.286, P = 0.004), as was the regression coefficient 
between C-Ach and WUN QR (beta = 0.183, P = 0.015). The total 
effect and the direct effect were not statistically significant (beta = 
0.094, P = 0.183; beta = 0.042, P = 0.560). The bootstrapped indirect 
effect was (0.286) × (0.183) = 0.052, and the 95% confidence interval 
ranged from 0.005 to 0.110. Thus, the indirect effect was statistically 
significant (P = 0.018).

Using brain-CC as an independent variable, the regression co-
efficient between brain-CC and WUN QR was significant (beta = 0.280, 
P = 0.008), as was the regression coefficient between C-Ach and WUN 
QR (beta = 0.192, P = 0.01) (Fig. 7D). The total effect and the direct 
effect were not statistically significant (beta = 0.068, P = 0.365; beta = 
0.014, P = 0.850). The bootstrapped indirect effect was (0.280) × (0.192) = 
0.054, and the 95% confidence interval ranged from 0.006 to 0.130. 
Thus, the indirect effect was statistically significant (P = 0.018).

Fig. 5. Functional anatomy of the CPM model predicting the SemNet metric UUN Q. (A) First, we examined the distribution of the links of the model network at the 
brain location level, specifically into the brain lobes. The correlation matrix represents the percentage of links within the model network connecting seven different brain 
lobes (total links = 452). (B) A circular graph represents the distribution of links within and between brain regions in the left (L) and right (R) hemispheres. Brain regions 
are color-coded as in (A), and the cyan lines represent the links connecting the ROIs. For visualization purposes, we used a nodal degree threshold of k > 10. (C) Second, 
we examined the distribution of the links across intrinsic functional networks on the basis of Schaefer’s atlas (43). The matrix represents the percentage of links within the 
model network (i.e., within the 452 links) occurring within and between eight intrinsic brain networks. (D) The nodes and links of the model network are superimposed 
on a volume rendering of the brain. The color of the nodes represents the functional network they belong to, using a similar color code as in (B). The size of the nodes is 
proportional to their degree, and the highest-degree nodes are marked by arrows. Nodes with degree k = 0 are not displayed.
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Hence, SemNet WUN Q mediated the link between the efficiency 
(brain-Eff) and the clustering coefficient (brain-CC) of functional 
brain connectivity and real-life creative achievements (C-Ach): The 
higher the efficiency and clustering of the negative model network 
that predicted WUN Q, the lower SemNets Q, and the higher the 
real-life creative achievements. In summary, individual SemNets Q 
measured in WUN and UUN mediated the relationship between 
brain functional connectivity and real-life creativity.

DISCUSSION
Our results advance our knowledge on the role of semantic memory 
structure in creativity by showing how individual SemNet proper-
ties predict real-life creative activities and achievements in various 
domains. In addition, our neuroimaging results reveal patterns of 
brain functional connectivity predicting individual differences in 
real-life creativity via these quantitative properties of semantic 
memory structure. A few studies had shown a link between creative 
performance and semantic memory structure, and others identified 
brain connectivity profiles predictive of creative abilities. Here, we 

combined and extended these approaches to investigate the neural 
and cognitive basis of creative behavior in real life. Recently devel-
oped computational approaches (41, 42) allowed us to predict com-
plex cognitive functions from brain connectivity and to explore the 
organization of semantic memory at the individual level using SemNets 
(5, 13, 26). We show that brain connectivity during semantic related-
ness judgments predicted individual differences in the modularity 
of SemNets that was identified as a behavioral marker of individual 
differences in real-life creativity. Specifically, more efficient and denser 
functional connectivity between the default, control, salience, mo-
tor, and visual networks predicted a more integrated semantic mem-
ory structure (less modular SemNets) that, in turn, predicted more 
creative behaviors. These findings provide an unprecedented under-
standing of how brain and semantic memory networks relate to real- 
life creative behavior.

According to the associative theory of creativity (6), highly cre-
ative individuals are characterized by a more flexible organization 
of concepts in their semantic memory, allowing them to more easily 
retrieve remote associations (4, 17, 49). A recent study revealed the 
mediating role of associative abilities between semantic memory 

Fig. 7. Mediation analyses. Results of the mediation models are presented in path diagrams. Each diagram indicates the beta weights of the regression coefficients, with 
the brain metrics of the model network (brain-Eff and brain-CC) as the independent variable (predictor), SemNet metrics as the mediator (UUN QR and WUN QR), and 
real-life creativity (C-Act and C-Ach) as the dependent variable (outcome). The total effect is indicated by path c, the direct effect by path c′, and the indirect effect is given 
by the product of path a and path b. The indirect effect was significant in all the reported mediations. (A) The mediating role of UUN Q on the relationship between the 
brain-Eff of the brain functional network predicting it and C-Act. (B) Mediating role of UUN Q between the brain-Eff of the brain network predicting it and C-Ach. 
(C) Mediating role of the weighted network WUN Q on the relationship between the brain-Eff of the functional connectivity of the negative model network predicting it 
and C-Ach. (D) Mediating role of WUN Q on the relationship between the brain-CC of the functional connectivity of the negative model network predicting it and C-Ach. 
*P < 0.05, **P < 0.01, and ***P < 0.001.

Fig. 6. Predicted and observed SemNet metrics from resting-state connectivity. The plots show the Spearman correlations between the predicted values (y axis) and 
observed values (x axis) of SemNet metrics based on resting-state brain connectivity. Green plots are presented for brain-Eff and magenta ones for brain-CC. In the 
upper-right side of each plot, we present the rs and the P values.
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structure and creativity as measured by verbal divergent thinking 
tasks (5). Here, we show that individual-based semantic memory net-
work properties also relate to real-life creativity: Individuals with a 
more compact and less modular organization of their semantic 
memory exhibit more creative accomplishments. Part of this effect 
was consistent across both indicators of creative behavior (C-Act 
and C-Ach were predicted from Q), while there were also subtle 
differences (C-Act was additionally predicted by ASPL), which in-
dicates differences in reliance on semantic memory structure in dif-
ferent realization of real-life creative behavior. This finding was also 
consistent using two different thresholding methods for the SemNet 
(WUN and UUN) and remained significant when controlling for 
sex, education, and IQ. Our finding is in line with the previously 
reported relationship between semantic associative ability and cre-
ative behavior in real life (11, 15) and additionally shows how this 
relationship could be explained by individual differences in seman-
tic memory structure, in particular, as reflected by SemNet modu-
larity. Less modular networks may allow more flexible thinking, 
with a higher connectivity between weakly related elements facili-
tating their combination. Overall, our results reveal that semantic 
memory structure assessed at the individual level is a cognitive 
marker of real-life creativity and that a less segregated (less modu-
lar) SemNet structure is especially important for creative behavior.

Furthermore, we show that semantic memory structure mediates 
the effect of brain functional connectivity on real-life creative activities 
and achievements. The higher the efficiency and overall connectivity 
of the brain predictive network, the more flexible the SemNet (char-
acterized by being more compact and less modular), and the more 
creative the participant is. Previous studies exploring the cognitive 
processes involved in creativity have revealed brain regions and func-
tional networks associated with different creativity tasks (30, 32). 
The use of SemNets allowed us to explore mechanisms that appear 
more broadly relevant to the associative basis of creative cognition, 
avoiding the specificities of association tasks. Using a whole-brain 
functional connectivity approach, we identified the task-based func-
tional connectivity patterns related to semantic memory network 
properties predicting creative activities and achievements. An inter-
nal validation of the predictive models using resting-state fMRI 
data suggests that the whole-brain predictive models that we built 
in the task-based functional connectivity are robust and generaliz-
able to the individual’s resting-state functional connectivity. How-
ever, while the validation was significant for the CPM predictions of 
WUN metrics, this did not apply to UUN metrics, which remains to 
be explained.

The predictive patterns included functional connections distrib-
uted across the whole brain, the densest being observed between brain 
networks previously linked to creativity (30, 31, 36, 50, 51). The 
major contributions to the prediction of creativity resulted from 
functional links between control and default mode networks, within 
salience network, and between somatomotor and visual networks. 
The default mode network has been associated with several aspects 
of cognition involving heteromodal memory representation includ-
ing self-generated thoughts and spontaneous associations (17, 19), 
as well as control-demanding activities such as semantic goal main-
tenance (40). The control network is associated with controlled pro-
cesses such as attentional control, working memory, inhibition, 
memory retrieval, and flexibility, which are necessary to accomplish 
the objectives of a specific task (52). The functional coupling between 
control and default mode networks has been reported in relation to 

creative cognition in several studies (30, 31). In addition, higher in-
trinsic connectivity of semantically relevant control and default mode 
network regions was associated with better performance in a task 
largely similar to the remote associate task commonly used to study 
creativity (37). Hence, our results can be interpreted in light of the 
controlled semantic cognition framework (38), where conceptual 
representations interact with control processes when semantic re-
trieval is tailored to suit the circumstances. In addition to control 
and default mode networks, the salience network has also been re-
ported to play a critical role in creativity. It has been associated with 
attentional switching and detection of salient external or internal 
stimuli and appears to play a role in triggering the engagement of 
control and default mode networks during creativity tasks (30). 
Overall, our findings indicate the relevance of functional coupling 
within and between control, default, and salience networks for 
real-life creativity and characterize its role in semantic memory 
properties captured by SemNet metrics.

A considerable number of functional connections between so-
matomotor and visual networks also contributed to the prediction 
of creativity via SemNet properties. Both networks have been asso-
ciated with creativity in previous studies (36, 42), but independently. 
The motor system has been related to creativity as measured by dif-
ferent approaches, including verbal creativity, music improvisation, 
and visuospatial creativity (36, 50). The brain regions of visual net-
works also appear to play an important role mainly in visuospatial cre-
ativity (50), and their activation was previously correlated with higher 
creative achievements (53). A recent study using the CPM approach 
showed the contribution of visual networks in the overlapping brain 
patterns predicting creativity and intelligence (42). Our study adds 
to this previous work by showing the involvement of the coupling of 
motor and visual networks in creativity. The role of motor and visual 
regions in creativity can be plural. In the context of our RJT task used 
to estimate SemNets, semantic relatedness judgments may evoke 
visual representations and motor experiences associated with the 
concepts (38). It is then possible that less modular SemNets reflect 
less segregated motor and visual memory contents in more creative 
individuals than in less creative ones and closer connections between 
remote concepts in memory. In addition to the connectivity between 
control, default, and salience networks, the current findings also 
shed new light on the contribution of the coupling between regions 
of the visual and motor networks for creativity.

To further characterize the predictive patterns of functional 
brain connectivity, we identified the nodes with the highest number 
of connections being localized in the medial prefrontal cortex, insula, 
the extrastriate inferior region, parietal medial and temporoparietal 
regions, and temporal pole in the right hemisphere. Most of these 
regions have been reported to play a role in creative cognition. In a 
brain lesion study, the medial prefrontal cortex of the default mode 
network has been shown to be relevant in associative processes 
underlying creative cognition (17). Moreover, this brain region and 
the insula of the salience network have been highlighted as essential 
regions for verbal creativity (30, 31). The right lingual gyrus, part of 
the extrastriate cortex, is also recruited in verbal creativity tasks (32) 
in relation to the originality of semantic associations (15) and to 
internally directed attention reflecting increased visual imagery 
(54). Other temporal areas, including the right temporoparietal 
regions and temporal pole, have been associated with verbal and 
visual creativity (55), including insight problem solving (56), men-
tal imagery (57), and creative achievements (58). The involvement 
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of the anterior temporal pole is consistent with its role as a semantic 
hub (38) and in abstract thinking and categorization (59, 60).

One unexpected result is that the highest-degree brain nodes re-
lated to real-life creativity were distributed within the right hemi-
sphere. Previous analyses reported a left dominance for creativity 
regions in functional (32, 34), connectivity (31), and structural (61) 
imaging studies. Most verbal creativity tasks highlight the critical 
role of brain regions of the left hemisphere, particularly in the pre-
frontal and temporal cortices, possibly related to linguistic/semantic 
processing (32, 62). Here, we also identified left-lateralized highly 
connected nodes contributing to the prediction of differences in 
real-life creativity in the left ventral prefrontal cortex of the control 
network and in the insula of the salience network, regions that have 
been shown critical for verbal creativity (18, 31), as well as in re-
gions underlying semantic cognition (38–40).

Yet, the right dominance of the predictive patterns in our study 
was unexpected because our study focused on the semantic basis of 
creative cognition and used a verbal task. The strong engagement of 
the right hemisphere might be related to the process of judging re-
mote concepts during the RJT. Previous studies have indeed associ-
ated the right hemisphere with a relatively coarser semantic coding 
(63) and the activation of broader semantic fields by words or con-
texts (64). Moreover, the engagement of broad associative processes 
in the right hemisphere has been related to hemispheric brain 
asymmetries in dopamine function (65). More creative individuals 
may rate distant words as more related during the RJT than less 
creative ones, which might rely on a higher functional connectivity 
with or within the right hemisphere. Hence, these findings show 
that diverse regions previously reported as central to creative cogni-
tion participate together in the predictive connectivity patterns of 
real-life creativity through a less segregated organization of seman-
tic memory (lower SemNet modularity). Whether and how SemNet 
modularity reflects remote thinking that would rely more specifically 
on the right functional connectivity remain to be addressed in 
future studies.

Last, the current SemNets-related results relate to recent neuro-
imaging studies exploring the associative processes of creativity 
(19, 33). Higher associative abilities in a free chain association task 
have been related to higher resting-state functional connectivity 
within the default mode network (19) and to larger gray matter 
volume in the left posterior inferior temporal gyrus (33). In both 
studies, higher associative abilities mediated the relationship be-
tween a priori–selected regions of the brain and creativity. One 
recent study showed that efficiency in SemNets mediated the link 
between gray matter volume in the left temporal pole and a diver-
gent thinking task (28). Our findings provide additional knowledge 
in several critical ways. First, by using SemNets, we were able to 
estimate ones’ structure of semantic memory, which offers some 
mechanistic perspective on remote and associative thinking and 
reveals the importance of a less segregated structure of semantic 
memory in creativity. Second, our findings highlight the role of 
semantic memory structure not only in creative thinking as as-
sessed in the laboratory, and previously shown (5, 13, 14, 26), 
but also in relation to real-life creative activities and achievements. 
Third, we used a whole-brain approach without focusing on a pri-
ori regions or networks. Last, we explored functional connectivity 
not during rest, but during the RJT, while all participants per-
formed the same trials. This approach minimized individual differ-
ences in mental activity during scanning. It importantly provided 

access to the functional connectivity configuration that occurs 
during semantic relatedness judgments that reflect semantic asso-
ciations. Overall, the unprecedented combination of recently devel-
oped network approaches allowed us to demonstrate that brain 
functional connectivity profiles predict creative behavior medi-
ated by semantic memory structure, thereby characterizing what 
aspects of brain and memory structure are relevant to support creative 
behavior. More generally, our research jointly considers neuro-
physiological, psychological, and behavioral levels, uniquely en-
hancing our understanding of how complex creative behavior manifests 
across neural and cognitive mechanisms. A recent bio-psycho- 
behavioral model of creativity (66) highlighted how only research 
that systematically cuts across these multiple levels of analysis 
could advance our understanding of real-life creativity.

Some limitations to this study need to be acknowledged. First, 
our sample is relatively small and the use of additional external valida-
tion would add strong support to our findings. In addition, we ob-
served significant sex differences in some SemNet metrics in WUN 
and UUN. We performed analyses at the behavior and brain level to 
control for the impact of sex differences (as well as education and 
IQ) on our results, which supported the robustness of the findings. 
However, the sample size did not allow us to explore the CPM pre-
dictions separately for women and men. Thus, future studies should 
explore how SemNet metric differences between women and men 
influence creative abilities. Second, we used the SemNet approach 
that is rooted in the associative theory of creativity (6) to estimate 
individual semantic memory networks on the basis of relatedness 
judgments of word pairs. The RJT-based SemNet metrics may not 
capture all the complexity of associative thinking. Thus, more work 
is needed to replicate our findings, using alternative methods to es-
timate an individual’s SemNets. It further remains to be explored 
how the results generalize across different performances in distinct 
creative domains. Third, the stability of the SemNet properties with 
different sets of words remains to be properly tested. However, com-
paring the current results to previous studies that used the RJT with 
different words in different languages to estimate individual SemNets 
provides indirect support for the reliability of network solutions 
(5, 13). Moreover, a recent study explored SemNet metrics across 
two time points without any manipulation task in between for a 
baseline group of the study. The authors found no differences across 
the two SemNets in this group, thus providing further support for 
the stability of these network estimation approaches (67). Last, 
real-life creativity is not exclusively predicted by semantic memory. 
Many other internal and external factors are important to creativity, 
such as personality, motivation, emotions, and environment (1, 68, 69). 
Despite these other potential dimensions and sources of vari-
ability, the brain connectivity patterns allowed us to predict real-life 
creativity through the individual differences in semantic memory 
structure, uncovering its strong influence on creative activities and 
achievements.

In conclusion, our findings substantially advance our under-
standing of the cognitive and neural basis of creativity by revealing 
the brain connectivity profile that characterizes higher creativity in 
real life and by identifying one of the underlying cognitive mecha-
nisms anchored in semantic memory structure. Our study com-
bining advanced network-based methods in unprecedented ways 
also illustrates how the organization of cognitive and neural net-
works can relate to each other, opening up exciting new avenues for 
scientific inquiry.
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MATERIALS AND METHODS
Participants
All participants were French native speakers, right handed, and with 
normal or corrected-to-normal vision. A total of 101 healthy partici-
pants (48 women) aged between 22 and 40 years (mean 25.6 years ± 
SD = 3.7) with formal years of education between 12 and 22 years 
(mean 16.6 years ± SD = 1.5) were recruited via the Relais d’informa-
tion sur les sciences de la cognition (RISC) platform (www.risc.cnrs.fr). 
Participants declared no history of neurological or psychiatric disease, 
no evolutive neuropsychiatric condition, no psychotropic medica-
tion, and no drug abuse or cognitive difficulties. In total, eight par-
ticipants were excluded from the fMRI analysis: Six participants 
were excluded because of the discovery of MRI brain abnormali-
ties, one participant fell asleep during the acquisition of the data 
(precluding the analysis of both MRI and RJT data), and another 
participant had a claustrophobia episode at the beginning of the 
MRI scanning. The latter participant performed the RJT task out-
side the scanner and, because his data did not deviate with respect to 
the group (scores and metrics were within ±2 SDs of the group 
mean), it was kept in the behavioral analyses (also see table S2 for 
the results without this participant). The final sample was hence 
composed of 94 participants aged between 22 and 37 years (mean 
25.4 ± 4.2; 44 women) in behavioral analyses and 93 participants in 
the fMRI analyses (mean age 25.4 ± 3.4; 44 women). An approved 
French ethics committee approved the study. After being informed 
of the study, the participants signed a written consent form. They 
were paid 140 euros for their participation (that included an MRI 
session lasting almost 2 to 3 hours of cognitive tests) and were re-
imbursed for transportation when relevant. Cognitive testing 
included tasks that are outside the scope of this article.

General procedure
Participants underwent a task-based fMRI session during which 
they performed the RJT. Several training tasks were conducted be-
fore acquiring the fMRI data, first outside the scanner, then in the 
scanner. The training included a motor training task to become fa-
miliar with giving responses using the MRI-compatible trackball on 
a visual scale in the RJT and a task training to get familiar with the 
actual task. The task training was similar to the actual task but using 
different stimuli. In addition, all words used in the RJT were dis-
played to participants to check that they were familiar with all of 
them (details of the task training are described in section S1). After 
the fMRI session, participants completed a set of creativity tasks on 
a computer outside the scanner that lasted around 3 hours.

Relatedness judgment task
Task and material description
The RJT has been used to estimate individual-based SemNets and to 
explore the structure of semantic memory (5, 13, 26). The task re-
quires participants to judge the relatedness of all possible pairs of 
words from a list of cue words. These judgments are then used to 
estimate an individual’s semantic memory network of these words. 
The selection of the RJT stimulus words used in our study is de-
tailed by Bernard et al. (26) (a summary is given in section S2). 
Briefly, we first created a French SemNet, based on French verbal 
association norms (http://dictaverf.nsu.ru/dictlist), where the nodes 
represent the words and the links were weighted by the normative 
associative strength between words. Next, we computed the shortest 
path between words, and the minimal number of links between 

each pair was considered as the theoretical semantic distance between 
the words. Last, we applied a computational method to select the 
RJT words that optimized the repartition of the theoretical semantic 
distance between all possible pairs of these words. The optimal solu-
tion included 35 words, resulting in a total of 595 word pairs that 
represented the 595 RJT trials.

Each trial began with the displaying word pair on the screen 
along with a visual scale below ranging from 0 (unrelated) to 100 
(strongly related). The stimuli were displayed for 4 s in total, divided 
into a reflection period of 2 s to ensure a comparable minimum 
judgment time and a response period of 2 s. During the first 2 s, the 
participants studied the word pair but could not move the slider yet. 
Two seconds after stimuli onset, the response period began, the cur-
sor appeared in the middle of the visual scale, and the participants 
were allowed to move the slider on the visual scale to indicate their 
rating using a trackball. Participants were instructed to validate 
their response by clicking the left button of the trackball. The posi-
tion of the cursor on the scale at the moment of the validation was 
recorded as the relatedness judgment. When participants did not 
validate their response, we recorded the slider position at the end of 
the 2-s response period. After the response period, a blank screen 
was shown during the intertrial interval jittered from 0.3 to 0.7  s 
(steps = 0.05; Fig. 1A).

Task trials were distributed into six runs composed of 100 trials 
each, except for the last run (95 trials). Each run consisted of four 
blocks of 25 trials each (except the last block of the sixth run, with 
only 20 trials), separated by a 20-s rest period with a cross fixation 
on the screen. Trials were pseudo-randomly ordered within blocks, 
such that each block contained a similar proportion of word pairs of 
each theoretical semantic distance. At the beginning and end of 
each run, participants had a 10-s rest period with a cross fixation on 
the screen. During the last 2 s of cross fixation periods, the cross 
changed color, warning the participant that the task was about to 
start. Participants had a self-paced break inside the scanner be-
tween runs.
Assessment of individual SemNet structure
Building individual SemNets. The relatedness ratings given by the 
participant to each pair of words was used to weigh the links of the 
individual SemNet where each word is a node. We represent each of 
these networks as a 35 by 35 matrix with one column and one row 
for each word, and cell values correspond to the judgment given by 
the participant during the RJT (Fig. 1B). On the basis of previous 
studies and on our pilot study (5, 13, 26), we estimated two types of 
networks, WUN and UUN (Fig.  1C), which vary on the type of 
threshold applied to the network. The WUN is a more informed 
type of the SemNet because it keeps the weights of all links between 
the words. The UUN is a less informed approach, retaining links 
above a defined threshold, and the links with a weight below the 
threshold are removed. We defined the threshold as a rating value 
of 50 (the middle of the visual scale) to keep the links between words 
that were considered moderately or highly associated by the partic-
ipants. The weights of the remaining links are uniformly set to 1.

Calculation of the individual SemNet metrics. We estimated the 
properties of the individual SemNet independently for the UUN 
and the WUN graphs. On the basis of previous studies relating 
SemNet to creative abilities (5,  13,  14,  24,  26), we computed the 
SemNet metrics that have been correlated to creativity: ASPL, CC, 
Q, and S metrics. The ASPL is the average shortest number of steps 
needed to be taken between any pair of nodes. In SemNets, path 
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length reflects how related two concepts are to each other (70). The 
clustering coefficient (CC) measures the network’s connectivity. It 
refers to the probability that two neighbors of a node will be neigh-
bors themselves. In SemNets, higher CC relates to a higher overall 
relatedness between concepts. Modularity (Q) measures how a net-
work is divided (or partitions) into smaller subnetworks; a higher Q 
relates to more subcommunities in the network (71). These sub-
communities can reflect semantic categories in a SemNet. In cre-
ativity research, for example, more creative individuals often exhibit 
a more connected (higher CC), less segregated (lower ASPL and Q) 
SemNet than less creative individuals, and these differences were 
related to flexibility of thought (24). The small-worldness (S) prop-
erty of the network is calculated as the ratio between CC and ASPL 
and describes how much the nodes that are not directly linked can 
be reached through connections between their neighbors. In SemNets, 
higher S has been linked to higher flexibility of thought (14). The 
computations were performed in MATLAB, via the Brain Connec-
tivity Toolbox (72) (www.mathworks.com).

Assessment of real-life creativity
Outside the scanner, we used the ICAA questionnaire (29) to assess 
the real-life creative activities and achievements across eight differ-
ent creative domains (i.e., literature, music, art and crafts, creative 
cooking, sport, visual arts, performing arts, and science and engi-
neering). The creative activities (C-Act) score reflects the frequency 
in which participants engaged in various creative activities. Six dif-
ferent questions were posed for each domain, and participants 
reported the frequency with which they engaged in each activity 
during the last 10 years using a scale ranging from 0 (never) to 4 
(more than 10 times). The maximum score for each domain is 
24 points. For each participant, the final domain-general score of 
C-Act was the sum of the creative activities across all activities of 
the eight different domains. The creative achievements (C-Ach) 
score estimated the level of achievement acquired in a creative do-
main. Ten different levels of achievement were included for each 
domain going from 0 (never engaged in this domain) to 10 (I have 
already sold some of my work in this domain). The maximum score 
for each domain is 55 points. For each participant, the final domain- 
general score of C-Ach was the sum of the scores across the eight 
different domains. Overall, creative activities capture the differenc-
es in the frequency of everyday creative behaviors, whereas creative 
achievements capture differences in publicly acknowledged creative 
accomplishments (29). A summary of the questions is reported in 
the Supplementary Materials (section S3), and the descriptive sta-
tistic for each specific domain explored in the ICAA is presented in 
the Supplementary Materials (table S3).

Relationships between individual SemNet metrics 
and creativity
We explored whether individual SemNet properties were predictive 
of real-life creative activities (C-Act) and achievements (C-Ach; 
Fig. 1E). In independent analyses, we performed linear regressions 
using leave-one-out cross-validations to predict C-Act and C-Ach 
scores for each of the SemNet metrics (ASPL, CC, Q, and S of WUN 
and UUN SemNets). The analyses consisted of building a predictive 
linear model iteratively in N − 1 participants using their SemNet metrics 
(e.g., WUN Q SemNet metric) and testing it in the left-out partici-
pant. The model was applied on the SemNet metric of the left-out 
participant to compute a predicted value of the ICAA scores. The 

significance of the prediction was evaluated via Spearman correlations 
between the predicted and the observed creativity scores. When the 
correlations between observed and predicted values were positive 
with P < 0.05, we assessed its statistical significance using 1000-iteration 
permutation testing. We report the rho coefficient and the P value 
of the permutation test. Note that Spearman correlations are used 
for behavioral analyses as creative activities and achievements are 
typically skewed (73). We also ran Spearman correlations between 
SemNet metrics and ICAA scores to better represent the statistical 
association between the different SemNet metrics and creativity 
(Table 1). In addition, we explored the correlations between SemNet 
metrics and creativity and the following factors: age, education, sex, 
and IQ. As a proxy of the IQ, participants performed the matrix 
reasoning subtest of the Wechsler Adult Intelligence Scale test. The 
results of these correlations are reported in the Supplementary Mate-
rials (table S1). The prediction models of the significant results were 
reanalyzed by controlling for the factors that significantly correlat-
ed with SemNet metrics or creativity scores (fig. S1).

MRI data acquisition and preprocessing
Neuroimaging data were acquired on a 3T MRI scanner (Siemens 
Prisma, Germany) with a 64-channel head coil. Six functional runs 
were acquired during each six task runs using multi-echo echo- 
planar imaging (EPI) sequences. No dummy scan was recorded during 
the acquisition; therefore, we did not discard any volume. Each run 
included 335 whole-brain volumes acquired with the following 
parameters: repetition time (TR) = 1600 ms; echo times (TE) for echo 
1 = 15.2 ms, echo 2 = 37.17 ms, and echo 3 = 59.14 ms; flip angle = 
73°; 54 slices, slice thickness = 2.50 mm; isotropic voxel size of 2.5 mm; 
Ipat acceleration factor = 2; multiband = 3; and interleaved slice or-
dering. After the EPI acquisitions, a T1-weighted structural image was 
acquired with the following parameters: TR = 2300 ms, TE = 2.76 ms, 
flip angle = 9°, 192 sagittal slices with a 1-mm thickness, isotropic 
voxel size of 1 mm, Ipat acceleration factor = 2, and interleaved slice 
order. A resting-state fMRI session of 15 min (570 volumes) fol-
lowed with the same parameters of acquisition as the task runs.

The preprocessing of the on-task fMRI data was performed for 
each run separately and for the resting-state data using the afni_
proc.py pipeline from the Analysis of Functional Neuroimages soft-
ware (AFNI; https://afni.nimh.nih.gov). The different preprocessing 
steps of the data included despiking, slice timing correction, and 
realignment to the first volume (computed on the first echo). We 
then denoised the preprocessed data using the TE-dependent anal-
ysis of multi-echo fMRI data (TEDANA; https://tedana.readthedocs.io/
en/stable/), version 0.0.9 (74). The advantage of using multi-echo 
EPI sequences is that it allows better cleaning of the data by assessing 
the BOLD and non-BOLD signal through the independent compo-
nent analysis (ICA)–based denoising method, improving the reli-
ability of the functional connectivity–based measurement (75). The 
TEDANA pipeline consisted first of an optimal combination of the 
different echo time series. Then, the dimensionality of the optimally 
combined data is reduced through the decomposition of the multi-echo 
BOLD data using principal components analysis and ICA. TEDANA 
then classifies the resulting components as BOLD or non-BOLD. The 
exclusion of the non-BOLD components allowed the removal of 
thermal and physiological noise such as the artifacts generated by 
the movements, respiration, and cardiac activity. The resulting de-
noised data were co-registered on the T1-weighted structural image 
using the Statistical Parametric Mapping (SPM) 12 package running 
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in MATLAB (MATLAB R2017b, The MathWorks Inc., USA). We 
then normalized the data to the Montreal Neurological Institute tem-
plate brain, using the transformation matrix computed from the 
normalization of the T1-weighted structural image, performed with 
the default settings of the computational anatomy toolbox (CAT 12; 
http://dbm.neuro.uni-jena.de/cat/) (76) implemented in SPM 12. The 
resulting denoised and normalized images from the task-based 
fMRI data were then entered in a general linear model in SPM to 
covary out the task-related signal from each run. In this analysis, we 
entered 24 motion parameters (standard motion parameters, first 
temporal derivatives, standard motion parameters squared, and first 
temporal derivatives squared) and the onsets and durations of each 
task-related event (reflection period, response period, intertrial in-
terval, cross fixation periods, and change of the cross fixation color) 
as confounds that were regressed from the BOLD signal. We stan-
dardized and detrended the residuals of this model for each run and 
then concatenated the six runs, removing the rest periods between runs 
(six volumes in total). This final dataset composed of the six task-
run residuals concatenated was used as input for the subsequent task-
based functional connectivity analyses.

Building task-based and resting-state functional 
connectivity matrices
Calculation of the task-based and resting-state functional connec-
tivity matrices for each participant was performed using Nilearn v0.3 
(77) in Python 2.7 (https://ir.cwi.nl/pub/5008). We used the Schae-
fer brain atlas to define our regions of interest (ROIs) that consisted 
of 200 ROIs distributed into 17 functional subnetworks than can be 
summarized in eight main functional networks (43). For each ROI, 
we extracted the BOLD signal during the RJT (averaged across voxels) 
and computed the Pearson correlation coefficients of all pairs of ROIs. 
As a result, we obtained for each participant a 200 by 200 matrix with 
the correlation coefficients between all ROIs. These matrices were 
z-Fisher–transformed and rescaled in the range of −1 to 1 for the sub-
sequent analyses. This matrix corresponds to the functional con-
nectivity network of each participant in which ROIs are the nodes 
and correlation coefficients the links.

A CPM approach
We used a CPM approach (31, 41) to explore how SemNet proper-
ties can be predicted from functional connectivity patterns during 
the RJT task. We focused the CPM analyses on the SemNet metrics 
that predicted creativity scores following the method described by 
Shen et al. (41) (Fig. 3). We used a leave-one-out cross-validation 
that consisted in building the model iteratively on N − 1 participants 
and test the prediction on the left-out participants.

Because head motions during the fMRI acquisition can affect the 
CPM results, we verified that there was no correlation between mo-
tion patterns during the fMRI acquisition and the SemNet metrics. 
We estimated the mean framewise displacement (FD), which is the 
sum of the absolute values of the derivatives of the six realignment 
parameters (78), and computed Spearman correlations between the 
mean FD and all SemNet metrics. The correlations revealed no sig-
nificant correlation between the motion patterns and WUN ASPL 
(r = −0.052, P = 0.622), WUN Q (r = 0.133, P = 0.203), and UUN Q 
(r = 0.127, P = 0.225).

The first step of the CPM consists of selecting the significant fea-
tures of brain connectivity to build the “model brain networks.” In 
the training set (N − 1), we selected the links of the functional connectivity 

matrix (correlation coefficients between the ROIs) that significantly 
correlated with the tested SemNet metric (threshold P < 0.05) either 
positively (the positive model network) or negatively (the negative 
model network) across participants (Fig. 3, A and B). Because SemNet 
metrics had non-Gaussian distributions, we used Spearman correla-
tions. In these model networks of brain connectivity, negative links 
were removed (79). We normalized the values of the links (i.e., the 
correlation coefficients between ROIs) to have the same range of values 
for the calculation of the brain networks in the following step.

The second step consists in estimating functional connectivity 
properties within each participant’s positive and negative model 
networks. This is one amendment from the classical protocol (41) 
to better take into account the structural properties of functional 
brain connectivity patterns. Instead of summing the links in the 
model networks (as in the classical CPM method), we estimated the 
network properties of the positive and the negative model networks 
using network metrics (Fig. 3C). We computed two different whole-
brain model network metrics: (i) network efficiency (brain-Eff), mea-
suring rapid and efficient integration across the network (80), and 
(ii) CC (brain-CC), key property describing a small-world prop-
erties network characterizing the human brain (44). The brain-Eff 
metric was calculated as the average of the inverse shortest path 
length. The computation of the brain-CC metrics was similar to the 
CC of the SemNet described above in the “Calculation of the indi-
vidual SemNet metrics” section.

The third and fourth steps consist in building the predictive 
model using the computed network properties and then applying it 
to a novel participant (the left-out one for each iteration; Fig. 3D). 
These steps were conducted separately for each SemNet metric and 
each model network property. We built a single linear model com-
bining the network metric of the positive and negative model net-
works of  N − 1 participants as predictors of a given SemNet metric. 
The mean FD was included in the model to deal with possible 
effects of the head motion related to fMRI acquisition on the CPM 
process. At each iteration, we computed the network metric of the 
positive and the negative model networks in the left-out participant. 
We used these values as predictors in the linear model to compute 
its predicted value of the SemNet metric tested.

The final step evaluated the predictive model by performing a 
Spearman correlation between the predicted and the observed SemNet 
metric. The correlations near or below zero indicate model failure 
(41). Because we used within-dataset cross-validation, for the signifi-
cant predictions, it was necessary to evaluate the predictive power 
of the CPM using permutation testing to assess the statistical signif-
icance of the results. To this end, we randomly shuffled the values of 
the SemNet metric 1000 times, and we ran the new random data 
through the pipeline of our predictive model to generate an empirical 
null distribution and estimate the distribution of the test statistic 
given by the correlation between predicted and observed values. In 
addition, the prediction models of the significant results were analyzed 
by controlling for the factors that significantly correlated with SemNet 
metrics or creativity scores (table S1). To perform this analysis, we 
varied the third step of our CPM analysis by including sex, education, 
and IQ measures to the predictive model. We evaluated the predictive 
model by performing a Spearman correlation between the predicted and 
the observed SemNet metric (fig. S2). The CPM analyses were performed 
using the MATLAB Statistical Toolbox (MATLAB R2020a, The 
MathWorks Inc., USA). The pipeline for the CPM is an adaptation 
from the protocol by Shen et al. (41).
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Functional anatomy of the predicting brain model networks
To explore the patterns of connectivity predicting the SemNet metrics, 
we characterized the main nodes and links of the significant model 
networks. We examined the distribution of the connections at the 
lobar level (between and within brain lobes) and at the intrinsic net-
work level (within and between the eight main functional networks 
defined by the Schaefer atlas). Last, we explored the brain distribu-
tion of the six highest-degree nodes (i.e., ROIs), which are the nodes 
with the highest number of connections. Because of the nature of 
the cross-validation approach (running one model for each itera-
tion on N − 1 participants), each iteration likely resulted in slightly 
different links in the model networks. Therefore, we considered the 
links that were shared between all iterations. The data visualization 
and plots were performed using BioImage Suite Web 1.0 (https://
bioimagesuiteweb.github.io/webapp/connviewer.html), BrainNet 
viewer (81) (www.nitrc.org/projects/bnv/) in MATLAB, and custom 
scripts in RStudio version 1.3.1056.

Internal validation: Prediction of creativity-related SemNet 
properties from resting-state functional connectivity
To generalize our predictive models, and as an internal validation, 
we performed the prediction of the SemNet metrics from the resting- 
state functional connectivity. To this end, we used the on-task 
functional connectivity properties (brain-Eff and brain-CC) within 
each participant’s positive and negative model networks to build the 
predictive model. We applied the predictive model in the resting- 
state data of the participants using the resting-state functional con-
nectivity properties within each participant’s positive and negative 
model networks during the resting-state acquisition (31). As for 
task-based analyses, mean FD was included in the models. The 
Spearman correlations between the predicted and the observed 
SemNet metrics were estimated to evaluate the prediction.

Mediation analysis
To test whether the patterns of functional connectivity that predict 
SemNet properties are also relevant for real-life creativity, we ran 
mediation analyses. For significant CPM predictions, we tested 
whether the SemNet metrics mediated the relationship between the 
patterns of brain functional connectivity and creativity. As for the 
CPM analyses, the mediation analyses focused on the SemNet met-
rics that correlated with creativity scores. Hence, they explored an 
indirect effect of the functional brain connectivity on creativity through 
the SemNet properties.

The mediation analysis (82) consisted in calculating the product 
of (i) the regression coefficient of the regression analysis on the in-
dependent variable (i.e., brain functional connectivity metric, brain-CC, 
or brain-Eff of the positive or the negative model networks) to pre-
dict the mediator (i.e., SemNet metrics) and (ii) the regression co-
efficient of the regression analysis on the mediator to predict the 
dependent variable (i.e., creativity score) when controlling for the 
independent variable. We also calculated the regression coefficient 
of the regression analysis on the independent variable to predict the 
dependent variable without controlling for the mediator (total ef-
fect) and when controlling for it (direct effect; Fig. 7). The indirect 
effect was calculated as the product of path a and path b. All the 
variables entered in the mediation analyses were normalized. To de-
crease the impact of the skewness, we log-transformed the variables 
with skewed distributions (C-Ach, C-Act, and SemNet metrics). 
The variables that had a negative correlation with creativity were 

reversed (multiplied by −1). The selection of the positive or the negative 
network to be used on the mediation analysis depended on which of 
them is expected to be positively correlated to the creativity score. 
We tested the significance of the indirect effect using bootstrapping 
method, computing unstandardized indirect effects for each 5000 
bootstrapped samples, and the 95% confidence interval was com-
puted by determining the indirect effects at the 2.5th and 97.5th 
percentiles. The mediation analyses were performed using the PROCESS 
macro (82) in SPSS 22.0 (IBM Corp. in Armonk, NY, USA).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abl4294

View/request a protocol for this paper from Bio-protocol.
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