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Brain connectomics predict response to treatment in social

anxiety disorder
S Whitfield-Gabrieli1,2, SS Ghosh1,3, A Nieto-Castanon1,2,4, Z Saygin2, O Doehrmann1, XJ Chai1,2, GO Reynolds1, SG Hofmann5,

MH Pollack6 and JDE Gabrieli1,2

We asked whether brain connectomics can predict response to treatment for a neuropsychiatric disorder better than conventional

clinical measures. Pre-treatment resting-state brain functional connectivity and diffusion-weighted structural connectivity were

measured in 38 patients with social anxiety disorder (SAD) to predict subsequent treatment response to cognitive behavioral

therapy (CBT). We used a priori bilateral anatomical amygdala seed-driven resting connectivity and probabilistic tractography of the

right inferior longitudinal fasciculus together with a data-driven multivoxel pattern analysis of whole-brain resting-state

connectivity before treatment to predict improvement in social anxiety after CBT. Each connectomic measure improved the

prediction of individuals’ treatment outcomes significantly better than a clinical measure of initial severity, and combining the

multimodal connectomics yielded a fivefold improvement in predicting treatment response. Generalization of the findings was

supported by leave-one-out cross-validation. After dividing patients into better or worse responders, logistic regression of

connectomic predictors and initial severity combined with leave-one-out cross-validation yielded a categorical prediction of clinical

improvement with 81% accuracy, 84% sensitivity and 78% specificity. Connectomics of the human brain, measured by widely

available imaging methods, may provide brain-based biomarkers (neuromarkers) supporting precision medicine that better guide

patients with neuropsychiatric diseases to optimal available treatments, and thus translate basic neuroimaging into medical

practice.
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INTRODUCTION

Although there are a number of treatment alternatives available
for major neuropsychiatric disorders, there is remarkably little
scientific evidence about which treatment would be optimal for a
particular patient. Because neuropsychiatric diseases reflect brain
differences in structure and function, neuroimaging could provide
neuromarkers supporting selection of optimally personalized or
precision medicine. One such disorder is social anxiety disorder
(SAD), one of the most common psychiatric conditions in the
United States,1 which is characterized by intense fear of social
situations and associated with substantial impairment, decreased
quality of life and psychiatric comorbidity.2–5 The standard
treatments for SAD, cognitive behavioral therapy (CBT) and
pharmacotherapy, are similarly but only moderately effective,
with a large proportion of patients remaining symptomatic after
initial intervention.6–8 Although such treatments are superior to
placebo on average, no reliable predictor of treatment response
has been identified.
Here we asked whether the intrinsic functional and structural

organization of the brain (connectomics), as measured through
resting-state functional magnetic resonance imaging (rsfMRI) and
diffusion-weighted magnetic resonance imaging (dMRI), respec-
tively, predicts therapeutic response to CBT in SAD patients.
Resting-state functional connectivity reveals intrinsic functional
brain organization by identifying networks as defined by regions

exhibiting correlated, low-frequency functional magnetic reso-

nance imaging (fMRI) signals in the absence of external stimuli.9,10

Structural connectivity can be measured with dMRI, which
characterizes the microstructure of white-matter pathways. Both
rsfMRI and dMRI have broad clinical appeal because they can be

acquired easily and similarly across different sites, involve no task
demands and minimal compliance during a brief scan, and do not
have behavioral confounds. Such measures would have potential
clinical value if they predict treatment response better than
current behavioral and clinical assessments of SAD.
Prior studies of SAD have reported alterations of both resting-

state functional connectivity11–13 and structural connectivity.14–16

The rsfMRI studies have focused on connectivity between the
amygdala and orbitofrontal cortex with inconsistent findings in

SAD patients of hypoconnectivity12 or hyperconnectivity.11 One
study17 reported that greater resting-state amygdala-orbitofrontal
cortex functional connectivity at baseline correlated with better
response to CBT in SAD patients, but this study did not use

statistics allowing for the calculation of prediction (the model was
not tested on independent data), and the correlations were
inflated due to the recalculation of statistics on already identified
clusters.18 Three dMRI studies of SAD reported altered micro-
structure of the uncinate fasciculus, which connects frontal and

limbic regions.15,19
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In the present study, SAD patients participated in 12 weekly
sessions with CBT according to a standardized protocol-based
group treatment.20 Treatment-related improvement in SAD was
measured by pre-post change in the Liebowitz Social Anxiety
Scale (LSAS).21 A higher initial LSAS score (more severe SAD) has
correlated modestly with greater treatment benefit.21 Here we
asked whether connectomic measures would significantly
improve the prediction of treatment benefit relative to conven-
tional initial LSAS scores.
We performed three connectomic measures, and then com-

bined them in a multimodal analysis. First, because the amygdala
has been the most common brain locus of dysfunction in SAD,22

we examined whether amygdalae seed-driven rsfMRI could better
predict treatment outcome for CBT than current behavioral or
subjective assessment for SAD. Second, we implemented an
agnostic data-driven approach, resting-state multi-voxel pattern
analysis (MVPA), in order to try to maximize prediction of clinical
improvement. Third, using dMRI, we examined the right inferior
longitudinal fasciculus (ILF) because it is the tract most associated
with right-hemisphere occipital-temporal regions in which activa-
tion predicted the efficacy of CBT in SAD patients.23 The right ILF is
thought to mediate the fast transfer of visual emotional signals to
anterior temporal regions and neuromodulatory back-projections
from the amygdala to early visual areas.24 Finally, we implemented
a multimodal predictive model to investigate whether the
combination of the different imaging measures (rsfMRI and dMRI)
would improve prediction or whether these imaging measures
contained redundant information.
To test the generalizability of the connectivity models, we

implemented leave-one-out cross-validation. This cross-validation
step was used to minimize potential biases due to voxel-selection
in the predictive models. R2 values represent the estimated
percent variance explained in CBT outcome (change in LSAS) for
SAD patients. We calculated adjusted R2 values (R2*)25 to minimize
potential biases because of model selection or overfitting, and to
better compare across models with different numbers of
predictors. We report results as the estimated percent variance
in CBT outcome explained in the general SAD patient population
as calculated by R2*. Finally, we divided patients into two groups
based on their greater or lesser response to CBT, and calculated
how accurately individual patients could be classified into those
two groups on the basis of connectomics and initial severity.

MATERIALS AND METHODS

Participants

The participants (24 men and 14 women; 32 right-handed) had a mean age
of 29.2 years (range 18–49 years) and had an above average intelligent
quotient as measured with the American National Adult Reading Test
(mean American National Adult Reading Test score of 117.9).26 The mean
estimated age of onset of SAD was 12.2 years, and the mean illness
duration was 17.4 years. Participants were recruited from the Center for
Anxiety and Related Disorders at Boston University and the Center for
Anxiety and Traumatic Stress at the Massachusetts General Hospital. All
patients gave written informed consent to all procedures, which were
approved by the Internal Review Boards of the two clinical sites and the
imaging site.
Patients were off concurrent psychotropic medication for at least

2 weeks before the scan session, which is a commonly used criterion in
clinical trials to balance the need for scientific rigor and ethical
considerations. Diagnoses were confirmed with Structured Clinical Inter-
views for DSM-IV 27 or the Anxiety Disorders Interview Schedule for DSM-
IV.28 Severity of social anxiety was measured using the clinician
administered version of the LSAS with a minimal LSAS score of 60 as an
additional inclusion criterion. Thus, the sample consisted of patients with a
comparatively high severity of SAD.
Exclusion from the study occurred in the case of a lifetime history of

bipolar disorder, schizophrenia, psychosis, delusional disorders or
obsessive-compulsive disorder; an eating disorder in the past 6 months;
a history of substance or alcohol abuse or dependence (other than

nicotine) in the last 6 months and posttraumatic stress disorder within the
past 6 months. Entry of patients with other mood or anxiety disorders was
permitted if the SAD was judged to be the predominant disorder. In
addition to the primary diagnosis of SAD, 15 patients also qualified for a
comorbid mood disorder and 15 patients for a comorbid anxiety disorders.
Patients additionally completed the Social Phobia and Anxiety Inventory29

and the State and Trait Anxiety Inventory.30 Participants were excluded in
the case of neurological disorders or serious medical illnesses.
Patients participated in 12 weekly sessions with CBT according to a

standardized protocol-based group treatment. Measures of social anxiety,
obtained before and after therapy sessions, were collected to assess
treatment-related changes. Unrelated to the objective of this analysis,
patients were randomized to receive either placebo or d-cycloserine
before 5 of the 12 CBT sessions because some research suggests
that d-cycloserine may increase CBT effectiveness.31 However, this was
accounted for in the current analysis and there was no main effect
between the larger placebo and d-cycloserine groups.32

Imaging

Data acquisition. Data were acquired on a 3 T Siemens Trio Tim MRI
scanner with a standard Siemens 32-channel phased array head coil. One
6-min resting-state scan was collected while participants fixated on a cross
(T2* weighted gradient echo repetition time/echo time/Flip = 6000ms/
30ms/90°, 67 contiguous interleaved oblique slices, voxel size: 2.0 mm3).
The diffusion-weighted scan (10min total) included 10 non-diffusion
weighted volumes (b = 0) and 60 diffusion-weighted volumes acquired
with non-collinear gradient directions (b= 700 s mm− 2), all at 128 × 128
base resolution and isotropic voxel resolution of 2.0 mm3.

Data analysis

Resting-state functional magnetic resonance imaging. We used methods
that both minimize the influence of motion and artifacts, and that allow for
valid identification of correlated and anti-correlated networks33 (see
Supplementary Information).
We implemented an a priori bilateral anatomical amygdala seed-driven

approach as well as MVPA, a data-driven agnostic approach motivated to
maximize clinical prediction, with Conn.33

To create a robust prediction model that can be generalized to new
cases, we performed leave-one-out cross-validation. See Supplementary
Information for a detailed description of rsfMRI analyses.

Diffusion-weighted magnetic resonance imaging. We performed probabil-
istic tractography with TRACULA, Tracts Constrained by UnderLying
Anatomy,34 an automated method that reconstructs probabilistic distribu-
tions of major white matter tracts from each participant’s native diffusion
images. This method has been shown to accurately reconstruct tracts in
individual participants and thus preserves individual variation while
maintaining confidence in choosing the same tract across individuals.
See Supplementary Information for a detailed description of dMRI analyses.

Logistic regression. We divided patients into two categories: the better
responders who were the 19 patients with an LSAS improvement of 50% or
greater, or the worse responders who were the other 19 patients with less
than a 50% improvement. We used logistic regression of initial severity
(initial LSAS scores) and the three connectomic measures combined with
leave-one-out cross-validation (that is, all participants except one were fit
and predicted the out-of-sample participants outcome category; this was
iterated for each participant and used to build cross-validated predictions
and estimate specificity/sensitivity from the out-of-sample predictions).

RESULTS

Initial anxiety severity

Initial LSAS (pre-treatment severity) accounted for 12% of the
variance in treatment outcome (Null Model (Initial LSAS),
T(36) = 2.48, P= 0.018) with more severe patients exhibiting
greater gains on LSAS scores.

Resting-state functional magnetic resonance imaging

The amygdalae resting state functional connectivity measures
together with initial LSAS scores accounted for 33% of the
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variance in treatment outcome. This model performed signifi-
cantly better than the model with initial LSAS alone (T(35) = 3.45,
P= 0.001; Figure 1). These analyses identified four regions of
significant correlation with the amygdala that were associated
with LSAS change scores: (1) subgenual ACC/caudate/putamen,
(2/3) left and right central sulcus and (4) right inferior temporal/
occipital (cluster-level FDR-corrected Po0.05; height threshold
uncorrected Po0.01). Greater amygdala connectivity with the
subgenual ACC/caudate/putamen cluster and lesser amygdala
connectivity with the bilateral central sulcus and right temporal-
occipital clusters predicted better treatment gain. Resting-state
MVPA together with initial LSAS scores accounted for 34% percent
of the variance in treatment outcome (T(35) = 3.62, P= 0.001;
Figure 2). Combined, the resting-state data (amygdalae and
MVPA) together with initial LSAS accounted for 50% of the
variance in treatment outcome (F(2,34) = 14.33, Po0.001).

Diffusion-weighted magnetic resonance imaging

The first principal component of the four dMRI measures
(fractional anisotropy (FA), radial diffusivity, mean diffusivity and

axial diffusivity (AD)) of the right ILF in combination with pre-
treatment LSAS accounted for 28% of the variance in treatment
outcome. This model performed significantly better than a model
with initial LSAS scores alone (T(34) = 3.00, P= 0.005). The
correlation of FA and treatment outcome is depicted in Figure 3.

Multimodal prediction

Combining all connectomic predictors (dMRI, amygdala rsfMRI
and MVPA) with initial LSAS scores accounted for 60% of variance
in treatment response (Figure 4), which was a significant
improvement over the model with initial LSAS scores alone
(F(3,32) = 14.73, Po0.001). Each predictor carried different infor-
mation (that is, there were significant effects for each predictor
that uniquely explained variance after discounting the variance
explained by the other predictors): whole-brain MVPA rsfMRI
(T(32) = 3.71, P=0.001), amygdala rsfMRI (T(32) = 3.26, P=0.003) and
dMRI (T(32)= 3.00, P=0.005). Adding patient demographics (age,
intelligent quotient and gender) did not significantly improve the
model predictions (F(3,29) = 1.35, R2*=0.61, P=0.278).

Logistic regression

Using initial LSAS and the three connectomic measures, individual
patients could be categorized into better (or worse) responders
with 81% accuracy, 84% sensitivity and 78% specificity.

DISCUSSION

The major finding was that neuromarkers from two widely
available connectomics neuroimaging methods, rsfMRI and dMRI,
predicted response to CBT treatment for SAD patients substan-
tially better than a current clinician-administrated measure of
disease severity. Baseline SAD severity accounted for 12% of the
variance in clinical benefit, whereas the combination of neuro-
markers and baseline SAD severity accounted for 60% of the
variance in clinical benefit. Further, individual patients could be
categorized as likely to have better or worse clinical benefit from
CBT with over 80% accuracy. These findings indicate that
connectomics-based neuromarkers may provide a major improve-
ment in precision treatment for SAD, and perhaps other
neuropsychiatric disorders.

Figure 1. Seed-based brain regions predicting clinical response in
social anxiety disorder to cognitive behavioral therapy. Anatomically
based amygdala seed region is displayed in red (left). Clusters in red
identify brain regions that predicted clinical outcome as a function
of temporal correlations with bilateral amygdalae seed regions
(right). Clusters from left to right include (1) subgenual anterior
cingulate/caudate/putamen, (2) bilateral central sulcus and (3)
inferior temporal/occipital cortex.

Figure 2. Multi-voxel pattern analysis-based brain regions predicting clinical response in social anxiety disorder to cognitive behavioral
therapy. Empirically defined seed regions (left). Clusters in red (right) identify brain regions that predicted clinical outcome as a function of
temporal correlations with the seed regions. Blue circles highlight bilateral inferior temporal/amygdala clusters (right).
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A prior study with some of the same patients reported that fMRI
task activation also predicted clinical response to CBT treatment.23

In that study, patients viewed angry and neutral facial expressions,
and greater activation for angry expressions in two right-
hemisphere posterior visual regions predicted better clinical gains.
The present neuromarkers have three major advantages relevant
to fMRI task activations. First, the fMRI task activations accounted
for about 40% of variance in treatment response, which was
superior to the 14% derived from baseline severity, but

substantially less than the 60% achieved with the connectomics
measures. Second, because there is no activation task with specific
stimuli and task instructions, rsfMRI and dMRI can more readily be
measured in a consistent fashion across settings and they hold
promise for reliability.35 Finally, connectomic measures can be
performed with a broad range of participants (including infants),
and are independent of task performance confounds.
Resting-state fMRI was approached in two related ways. A seed-

driven analysis was motivated by evidence that the amygdala is
the most frequent locus of dysfunction in SAD.14 The finding that
greater resting-state amygdala-prefrontal connectivity (including
subgenual ACC) predicted greater response to CBT is consistent
with prior evidence for generalized SAD.17 The finding that greater
amygdala-right temporal-occipital cortex correlation was asso-
ciated with less treatment response to CBT is consistent with
evidence that task activation in right temporal-occipital cortex
predicted response to CBT in SAD patients.23 A second data-driven
analysis examined the functional connectivity of all voxels in the
brain, independent of a priori anatomical hypotheses, using MVPA.
Both rsfMRI measures similarly predicted treatment efficacy with
the seed-driven amygdala analysis accounting for 33% of the
variance and the MVPA analysis accounting for 34% of the
variance. The strength of MVPA is its utilization of a massive data
set (connectivity between all pairs of recorded voxels) for
purposes of prediction, but such an analysis often lacks sensitivity
to illuminate the role of specific a priori neuroanatomical
structures or circuits in a disease. It is noteworthy, however, that
the amygdala, which is the most common locus of activation
differences in SAD,20 was predictive of treatment outcome in both
seed-based and data-driven (MVPA) analyses.
Diffusion MRI analysis of the right ILF white-matter micro-

structure also contributed to enhancing prediction accuracy.
The right ILF was investigated because it was anatomically
consistent with the right-hemisphere posterior cortical locus of
fMRI activation that also predicted treatment outcome23 (and

Figure 3. Pretreatment diffusion-weighted magnetic resonance imaging (dMRI) of the right inferior longitudinal fasciculus (ILF; bottom left)
predicting clinical response in social anxiety disorder to cognitive behavioral therapy. Fractional anisotropy (FA) is plotted against clinical
change (Liebowitz Social Anxiety Scale (LSAS) change); the thick line represents the best fit and the thin dotted lines represent the 95%
confidence intervals. To illustrate the relation between initial FA and LSAS change, ILF tracts were 3D reconstructed from four example
participants (filled red circles in scatter plot) and colored according to FA (bottom). The tracts are ordered by increasing clinical benefit or LSAS
change from left to right. Increased FA along the ILF predicted better clinical response.

Figure 4. Multimodal neuroimaging best predicts clinical response
in social anxiety disorder to cognitive behavioral therapy. From left
to right, percent variance in treatment effect accounted for by (1)
initial clinical interview (initial Liebowitz Social Anxiety Scale (LSAS));
(2) diffusion-weighted magnetic resonance imaging (dMRI) and
LSAS; (3) resting-state functional magnetic resonance imaging
(rsfMRI; both amygdala-seed and multi-voxel pattern analysis
(MVPA) analyses) and LSAS and (4) all dMRI and rsfMRI measures
and LSAS. Multimodal neuroimaging yielded a fivefold improve-
ment over initial LSAS in predicting clinical response.
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turned out to be consistent with the right temporal/occipital
cluster correlated with the amygdala in the present study).
Because we did not have an a priori hypothesis as to which
measure would be relevant in relation to clinical change, we were
agnostic and included the first principal component of all four
dMRI (FA, radial diffusivity, axial diffusivity and mean diffusivity)
measures.
There are two different uses of the term ‘prediction’, and the

present study used the more rigorous and generalizable sense of
that term. In many studies, ‘prediction’ refers to a correlation
between initial or baseline measures and future outcomes. These
correlational studies have value in identifying such relations, but
they are known to overestimate (be overly optimistic) how a
finding in a given data set will apply to a new data set (for
example, another set of patients). If neuromarkers were to become
a useful part of clinical practice for brain disorders, they would
need to be optimized to have a high generalization that would be
applicable to a single new case with an as yet unknown outcome.
In the long run, this is best accomplished by having larger patient
groups in which a model developed for one group transfers
usefully to a second, independent group. Within groups, however,
a method such as the leave-one-out cross-validation used in
present study, in which a prediction for each individual patient
was made on the basis of data from the other patients, supports
the likely generalizability of findings.
Developing neuromarkers predicting treatment outcomes for

neuropsychiatric diseases differs fundamentally in its purposes
from the many neuroimaging studies that have compared a
patient group to a healthy control group. Comparisons between
groups, both conceptually and statistically, highlight differences in
which there tends to be homogeneity among patients that
distinguish them from a control group (for example, reduced
volume or activation of a brain structure). In contrast, predicting
treatment outcome capitalizes on heterogeneity among brains of
patients that corresponds to heterogeneity in treatment outcomes
among patients. In other words, neuromarkers reflect the brain
bases of treatment responsivity and not necessarily the brain
bases of the etiology or manifestation of a neuropsychiatric
disorder.
There is growing evidence that neuromarkers may usefully

identify individual differences in future treatment response that
can support precision medicine for brain disorders, although most
studies to date are correlational rather than predictive in nature.36

There is evidence that baseline neuromarkers can correlate
with or predict treatment outcome in depression,37–39 schizo-
phrenia,40 obsessive compulsive disorder,41 generalized anxiety42

and addiction.43 There is also evidence that neuromarkers can
predict clinical courses in dyslexia44 and behaviors that lead
to poor health outcomes, such as future abuse of alcohol in
adolescence45,46 or weight gain.47

Future neuromarker studies of SAD, or other disorders, will need
to approach three criteria. First, patients and clinicians making
decisions about treatment options need to know not only whether
a particular treatment (for example, CBT) is more or less likely to
be efficacious, but also whether an alternative treatment (for
example, a drug) is a better or worse choice. Indeed, there is
evidence that positron emission tomography can identify
neuromarkers that simultaneously indicate whether behavioral
or pharmacological treatment is more likely to be effective for
depression.48 It is unknown as yet whether positron emission
tomography or MRI imaging provides more sensitive prediction of
treatment outcome, but positron emission tomography imaging is
relatively rare and invasive, so it would be useful if widely available
and non-invasive MRI measures such as rfMRI and dMRI
connectomics could also identify which among alternative
treatments is optimal for an individual patient. Second, a future
study ought to have a larger sample than the 38 patients in the
present study to determine the reliability of a connectomic

approach for a large and diverse patient sample. Third, for
practical clinical use, a choice for treatment must occur for an
individual patient. Therefore, neuromarkers must have consider-
able accuracy for a single patient. Indeed, the combination of
initial severity and connectomic measures yielded 81% accuracy
(84% sensitivity and 78% specificity) in predicting for each
individual patient a better or worse clinical benefit from CBT.
There are other examples of such individualized predictive
accuracies from neuromarkers for future outcomes in
addiction,49 panic disorder,50 generalized anxiety and panic
disorders,51 and dyslexia.52 A limitation of this analysis is that
there is no conventional criterion for categorizing the efficacy of
CBT treatment for SAD, so that the 50% improvement criterion is
somewhat arbitrary. Nevertheless, it can serve as a benchmark in
relation to alternative therapies in future studies.
To our knowledge, this is the first multimodal brain imaging

study predicting treatment outcome. Because the structural and
functional connectivity measures did not carry redundant
information, combining these connectomic measures improved
the prediction of treatment response with a high degree of
accuracy for individual patients. Connectomics may provide
neuromarkers that substantially improve predictions for success
of clinical interventions, and such neuromarkers may offer
evidence-based, precision medicine approaches for optimally
selecting treatment options. This approach can lead to a more
clinically useful classification of patients, which is in line with the
Research Domain Criteria initiative of the National Insti-
tute of Mental Health.52
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