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Cytokines are key regulatory mediators involved in the host response to immunological

challenges, but also play a critical role in the communication between the immune and

the central nervous system. For this, their expression in both systems is under a tight

regulatory control. However, pathological conditions may lead to an overproduction of

pro-inflammatory cytokines that may have a detrimental impact on central nervous system.

In particular, they may damage neuronal structure and function leading to deficits of

neuroplasticity, the ability of nervous system to perceive, respond and adapt to external

or internal stimuli. In search of the mechanisms by which pro-inflammatory cytokines may

affect this crucial brain capability, we will discuss one of the most interesting hypotheses:

the involvement of the neurotrophin brain-derived neurotrophic factor (BDNF), which

represents one of the major mediators of neuroplasticity.
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NEUROPLASTICITY AND BRAIN-DERIVED NEUROTROPHIC

FACTOR

For many years the medical field held the belief that the brain

did not make major changes after a certain point in time. It was

fixed or set on a specific path. Today, in contrast, we know that the

brain is actually capable of changing and developing throughout

a lifetime. It is plastic or malleable, and the term neuroplasticity is

used to describe this tendency for the brain to keep developing,

changing, and potentially healing itself.
Specifically, neuroplasticity or neuronal plasticity refers to the

ability of the nervous system to respond and adapt to environ-

mental challenges and encompasses a series of functional and

structural mechanisms that may lead to neuronal remodeling,

formation of novel synapses and birth of new neurons. Neu-

ronal plasticity is intimately linked to cellular responsiveness and

may therefore be considered an index of the neuronal capability

to adapt its function to a different demand. Failure of such

mechanisms might enhance the susceptibility to environmental

challenges, such as stress, and ultimately lead to psychopathology.
Among the genes responsive to neuronal activity, neurotrophic

factors (NTFs), and in particular the neurotrophin family, play

an important role. In fact, besides their classical role in sup-

porting neuronal survival, NTFs finely modulate all the cru-

cial steps of network construction, from neuronal migration

to experience-dependent refinement of local connections (Poo,

2001). These functions were first reported based on the observa-

tion that, during the development of the nervous system, neu-

ron survival depends on the limited amount of specific NTFs

secreted by target cells (Huang and Reichardt, 2001). However,

it is now well established that NTFs are important mediators

of neuronal plasticity also in adulthood where they modu-

late axonal and dendritic growth and remodeling, membrane

receptor trafficking, neurotransmitter release, synapse forma-

tion and function (Lu et al., 2005). The neurotrophin brain-

derived neurotrophic factor (BDNF) has emerged as crucial

mediator of neuronal plasticity, since it is abundant in brain

regions particularly relevant for plasticity, but also because it

shows a remarkable activity-dependent regulation of expres-

sion and secretion (Bramham and Messaoudi, 2005), suggesting

that it might indeed bridge experience with enduring change

in neuronal function. BDNF has a complex genomic struc-

ture, which results into a sophisticated organization in terms

of transcriptional, translational and post-translational regulatory

mechanisms (Aid et al., 2007). In particular, the rat BDNF

gene—that is similar to the human gene—can generate nine

distinct transcripts through the alternative splicing of 5’

un-translated exons to a common 3’ exon (IX), which encodes the

BDNF protein (Aid et al., 2007). These transcripts have different

distribution and/or translation efficacy and, more importantly,

may sub-serve different functions. For example, transcripts that

are primarily localized or targeted to dendrites may sustain local

neurotrophin production, thus providing an effective mechanism

to regulate synaptic structure and function (An et al., 2008; Wu

et al., 2011). Since the transcription of the different isoforms

is regulated by specific signaling pathways (Pruunsild et al.,

2011), their investigation may provide useful information on the

up-stream mechanisms contributing to the changes of BDNF gene

expression.
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The mechanisms that lie downstream from NTFs and

contribute to the maintenance of neuroplasticity are different i.e.,

adult neurogenesis and neuronal remodeling, but on the purpose

of this mini-review we will focus only on adult neurogenesis,

the process by which neurons are generated. Neurogenesis occurs

under precise spatial and temporal control, but it can be modu-

lated by both internal and external stimuli. Among these, several

sources of data indicate the positive impact of BDNF on adult

neurogenesis (Lee et al., 2002; Sairanen et al., 2005; Scharfman

et al., 2005; Gass and Riva, 2007; Bergami et al., 2008; Chan

et al., 2008; Li et al., 2008; Waterhouse et al., 2012), however

in this review we will focus our attention on the effects of pro-

inflammatory cytokines.

NEUROGENESIS AND INFLAMMATORY STATE

Neurogenesis has been defined as the process in which new-

born neurons are generated from progenitors to functionally

integrate in the neuronal network (Ming and Song, 2005; Balu

and Lucki, 2009; Aimone et al., 2014). Actually, active neuro-

genesis take place, in the healthy central nervous system, only

in two specific regions: neurons are continuously generated in

the sub-ventricular zone (SVZ) and migrate into the olfactory

bulb to become interneurons and, in parallel, neurogenesis occurs

also in the sub-granular zone (SGZ) of the dentate gyrus of

the hippocampus, where new granule neurons are continually

generated. Depending on different stimuli, neural stem cells,

located in so-called stem cell niches, could divide symmetrically,

leading to the generation of two identical cells to maintain

the pool of undifferentiated progenitors or, on the other hand,

they can divide asymmetrically in order to generate an identical

daughter cell and a second cell that starts to differentiate. The

de novo formation and integration of new neurons into the

existing circuitry is one of the various plastic changes that allow

the adult brain to adapt to exogenous stimuli (Amrein et al.,

2011). In particular, adult neurogenesis within the hippocampus

could contribute to enhanced neural plasticity, a process that is

fundamental for specific brain functions such as spatial learning,

pattern discrimination, contextual memory and mood regulation

(Clelland et al., 2009; Sahay et al., 2011; Denny et al., 2014).

The important role of hippocampal neurogenesis is underlined by

the fact that this system is altered after various types of negative

stimuli such as stress, one of the major risk factors for psy-

chiatric diseases. Specifically, repeated restraint and inescapable

foot shock, two examples of physical stressors, inhibit one or

more steps of adult neurogenesis in the dentate gyrus (Mal-

berg and Duman, 2003; Pham et al., 2003); the social defeat

paradigm leads to an inhibitory effect on cell proliferation and

survival of newborn granule neurons in rodents (Czéh et al., 2002;

Jun et al., 2012); and social isolation, which is associated with

decreased neurogenesis and behavioral alterations in rodents,

has been recently proven to be deleterious also for hippocampal

neurogenesis and behavior in non human primates (Cinini et al.,

2014).

As previously mentioned, neurogenesis is conditioned by

a very complex microenvironment constituted by the vascu-

lar net, different growth and NTFs, changes in electrical and

chemical environment and support by glial cells (Kohman and

Rhodes, 2013). In this scenario, neuroinflammation is emerg-

ing as one of the main actors. In fact the immune system,

through cells within the brain (e.g., microglia) and the detri-

mental or the beneficial action of signaling molecules (pro-

inflammatory or anti-inflammatory cytokines) could participate

in the response to different exogenous and endogenous stimuli.

The negative effects of neuroinflammation on neurogenesis could

lead to impaired survival and proliferation of new neurons.

For example, intracortical or intraperitoneal administration of

lipopolysaccaride (LPS) from E. coli, an agent able to induce a

strong immune response, decreases new neurons survival and

the differentiation of new cells into neurons (Ekdahl et al., 2003;

Monje et al., 2003). The consequences of inflammation on neu-

rogenesis could have also functional implications for cognition.

In fact, the impact of neuroinflammation could affect also the

correct integration of newborn neurons into pre-existing circuits,

through changes in cellular morphology and in electrophysiolog-

ical properties (Jakubs et al., 2008) and reduction in recruitment

into hippocampal networks encoding spatial information (Belarbi

et al., 2012).

THE IMPACT OF PRO-INFLAMMATORY CYTOKINES ON

NEUROGENESIS

Neuroinflammation has an important role in the pathophysiol-

ogy of different acute or chronic CNS disorders such as cere-

bral ischemia, multiple sclerosis, Alzheimer’s disease, Parkinson’s

disease and major depression (Wang and Jin, 2014). These dis-

eases are characterized by the modulation of different mediators

of inflammation and among them pro-inflammatory cytokines

seem to play a key role. It is important to note that the same

cytokines that in a physiological state are involved in the mainte-

nance of neuronal integrity, may instead have detrimental effects

under pathological conditions. Accordingly, the impact of the

pro-inflammatory cytokines on neurogenesis depends on their

concentration, on the specific cells activated (astrocytes and

microglia) and on the presence of other factors secreted in the

neurogenic niche (Eyre and Baune, 2012). The increase of pro-

inflammatory cytokines is not only due to a direct inflamma-

tory stimulus (infection or trauma), but it could be caused by

environmental stimuli such as stress (García-Bueno et al., 2008).

The main consequence of a dysregulation of cytokine levels

within the brain is the production of inflammatory, oxidative

and nitrosative molecules that could affect neurogenesis and

the neural homeostasis (Kubera et al., 2011; Stepanichev et al.,

2014).

The most common pro-inflammatory cytokines are IL-1β,

IL-6, TNF-α and IFN-γ and here we will present some examples

of the involvement of these molecules in the modulation of

neurogenesis.

The main actions of IL-1β are the stimulation of immune

cells to produce pro-inflammatory cytokines, the activation of

microglia, and the regulation of growth factors activity (Audet

and Anisman, 2013). Recently, IL-1β has been proven to influence

hippocampal cytogenesis and neurogenesis in different ways: by

direct interaction to its receptor (IL-1R1) and the consequent

activation of the nuclear factor-kappa B (NFkB; Koo and Duman,

2008) or through the promotion of glucocorticoids secretion
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after the exposure to environmental stressors (Goshen et al.,

2008). Moreover this cytokine has been proposed as the central

mediator of antineurogenic effect of stress (Ben Menachem-

Zidon et al., 2008). In fact the blockade of IL-1β signaling, using

knockout mice for its receptor or administrating a IL-1R1 antag-

onist (IL-1Ra), prevents the decrease in neurogenesis observed

after acute stressors such as footshock and immobilization in

rats (Koo and Duman, 2008). Another relevant cytokine is IL-

6 that is involved in a multitude of neuroprotective functions.

In physiological conditions IL-6 is able to activate pathways

related to neural plasticity, neurogenesis, Long Term Potentiation,

and memory (Eyre and Baune, 2012). On the other hand, this

cytokine is also responsible of mediating synthesis of acute phase

proteins, growth and differentiation of immune cells and regu-

lation of pro-inflammatory factors (Audet and Anisman, 2013).

Monje et al. demonstrated that the incubation of hippocampal

progenitor cells with recombinant IL-6 decreases neurogenesis

by half and reduces neuronal differentiation in favor of astro-

cytogenesis (Monje et al., 2003; Taga and Fukuda, 2005), an

effect mediated by the activation of the JAK/STAT3 pathway

via gp130 (Namihira and Nakashima, 2013). Tumor necrosis

factor—alpha (TNF-α) is a potent inductor of inflammation

and has been linked to decreased neural stem cell proliferation,

decreased neurogenesis, neurodegenerative processes, apoptosis

and excitotoxicity (Dantzer et al., 2008; Belarbi et al., 2012),

but also to the modulation of synaptic strength and synaptic

preservation through the increase of the α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA) receptors (Khairova

et al., 2009). The negative action of TNF-α on neurogenesis is

mediated by the activation of its receptor TNF-R1, conversely

the interaction with TNF-R2 increases proliferation and survival

of newborn neurons, as demonstrated by using transgenic ani-

mals with deletion of TNF-R1 or TNF-R2 (Iosif et al., 2006). A

similar result on the beneficial role of TNF-R2 activation after

irradiation injury has been recently reported (Chen and Palmer,

2013). Moreover, the up-regulation of TNF-α observed in the

hippocampus of adult rats pre-exposed to maternal deprivation

has been associated with impaired memory consolidation (Pin-

heiro et al., 2014). IFN-γ is a pro-inflammatory cytokine with in

vitro anti-neurogenic effect able to reduce the number of neural

stem cells. The negative action of IFN-γ on neurogenesis may

be exerted by the activation of the caspase 3/7, the upregula-

tion of sonic hedgehog (SHH) pathway and promotion of an

abnormal marker profile of neural stem cells, expressing both

GFAP and βIII tubulin (Walter et al., 2011). Nevertheless, IFN-

γ may also exerts positive action on neurogenesis. For example,

it enhances neurogenesis in dentate gyrus of adult mice and

ameliorates spatial learning and memory performance (Baron

et al., 2008). These observations suggest that IFN-γ has different

effects depending on tissues involved and on the neurogenic

process involved.

Taken together, all these studies indicate that a dysregulation

of pro-inflammatory cytokines may have a detrimental effect on

neurogenesis and point out the importance of neuroinflamma-

tion in the microenvironment around neural stem cell develop-

ment. On this context, the identification and characterization

of the mechanisms by which pro-inflammatory cytokines affect

neurogenesis are crucial to develop new strategies to maintain the

proper function of stem cell niches within the brain.

THE IMPACT OF PRO-INFLAMMATORY CYTOKINES ON BDNF

Given the role of BDNF as an important mediator of neuroplas-

ticity and on the basis of its positive contribution on neuroge-

nesis in contrast to the detrimental effect of pro-inflammatory

cytokines, we may hypothesize that one of the mechanisms by

which inflammation may affect brain function could involve

BDNF modulation.

Several in vivo studies demonstrated that inflammation clearly

affects the expression of BDNF within the brain. In particular, it

has been reported that the administration of pro-inflammatory

cytokines or of the cytokine-inducer lipopolysaccharide, (LPS;

Raetz and Whitfield, 2002) causes a significant reduction of

BDNF gene expression. For example, the mRNA levels of BDNF

were significantly decreased in the rat hippocampus 4 h after

intraperitoneal injection of IL-1β or LPS (Lapchak et al., 1993)

and a similar reduction was also observed in several cortical

regions and at protein level (Guan and Fang, 2006; Schnydrig

et al., 2007). Interestingly, the effect of the systemic inflammatory

challenge was not restricted to BDNF: other neurotrophins such

as nerve growth factor (NGF) and neurotrophin-3 (NT-3) were

similarly reduced although with different magnitude (Guan and

Fang, 2006).

Recently, it has also been evaluated the effect of peripheral

immune challenge on the different BDNF transcripts, finding

that the expression of exons I, II, and IV in the dentate gyrus

was reduced in the CA1 and in the dentate gyrus of rats acutely

treated with E. coli (Chapman et al., 2012), indicating that

inflammation may affect specific isoforms of the neurotrophin.

Nevertheless, there is a critical lack of information about the

effects of inflammation on the expression of specific BDNF tran-

scripts and further studies are demanded in order to clarify the

mechanisms involved in the modulation of the neurotrophin by

the immune/inflammatory system.

The negative impact of inflammation on BDNF has impor-

tant implications for a number of pathological conditions. For

example, it is known that pro-inflammatory cytokines com-

promise hippocampus-dependent memory (Pugh et al., 1998),

spatial memory (Arai et al., 2001) and increase apoptosis in

the brain (Nolan et al., 2003), features that are involved in

many aging-associated pathologies and neurodegenerative dis-

eases. In addition, it is well-know that the activation of the

immune/inflammatory system may contribute to the develop-

ment of different psychiatric diseases such as schizophrenia and

major depression (Dantzer et al., 2008; Miller et al., 2009; Leonard

and Maes, 2012; Zunszain et al., 2013). Regarding depression,

there are three main supportive evidences: first, depressed subjects

exhibit increased levels of inflammatory markers both in the

periphery and in brain (Howren et al., 2009; Dowlati et al., 2010);

second: several pathologies associated with moderate inflamma-

tory grade present high depression comorbidity (Benton et al.,

2007); third: a high percentage of patients with cancer or hep-

atitis C treated with interferon-alpha develop major depression

(Valentine and Meyers, 2005; Udina et al., 2012). In addition,

it has to be noted that animals exposed to immune challenges
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FIGURE 1 | Immune/inflammatory alterations and changes in BDNF expression and function are characteristic of the same pathologies, for example

major depression, suggesting a cross-talk between the two systems.

display depressive-like behaviors (Yirmiya, 1996; Frenois et al.,

2007) that can be normalized, or at least limited, by antidepressant

treatment (Yirmiya et al., 2001). In contrast, mice that lack IL-6

are stress resistant and have a reduced disposition for depressive-

like behaviors (Chourbaji et al., 2006). The mechanism under-

lying the anti-inflammatory properties of antidepressant is still

unknown and is beyond the aim of our mini-review. However,

the results of several in vitro and in vivo studies indicate that

these drugs are able to modulate cytokine functioning through

their effects on intracellular cyclic adenosyl monophosphate,

serotonin metabolism, the hypothalamo-pituitary-adrenocortical

axis (Janssen et al., 2010; Walker, 2013; Leonard, 2014).

It is important to consider that the immune/inflammatory

alterations previously described are actually in parallel with

changes on BDNF expression and function (Figure 1). Indeed,

BDNF has a well recognized role in the etiology as well as in the

treatment response of patients affected by different psychiatric

disorders including major depression (Pezet and Malcangio, 2004;

Duman and Monteggia, 2006). For example, decreased expression

of the neurotrophin has been found in the hippocampus and pre-

frontal cortex of postmortem brains from depressed and suicide

victims (Dwivedi et al., 2003). Moreover, BDNF mRNA levels are

reduced in the brain of genetic animal models of depression (Rid-

der et al., 2005; Calabrese et al., 2010; Molteni et al., 2010a,c) as

well as in animal models based on the environmental component

of the disease (Duman and Monteggia, 2006; Tsankova et al., 2006;

Chourbaji et al., 2012).

All these findings support the possibility that inflammation

contributes to the development of depression by compromising

neuroplasticity via reduction of BDNF. In agreement with this

line of thinking, it has been recently reported that intranigral

LPS infusion induced an anxious and depressive phenotype in the

rat that was associated with decreased hippocampal expression of

BDNF (Hritcu and Gorgan, 2014).

In order to have a unequivocal proof for causality,

inflammation-dependent decrease of BDNF should be

normalized or at least attenuated by antidepressant treatment,

as occurs in experimental models where BDNF expression is

up-regulated in response to prolonged treatment with different

antidepressant drugs (Schmidt and Duman, 2007; Calabrese

et al., 2010; Molteni et al., 2010b; Park et al., 2011).

FIGURE 2 | Detrimental effect of pro-inflammatory cytokines on

neuroplasticity may be mediated by BDNF.

Although there are only few data on this issue, it has been

demonstrated that the incubation of rat neural stem cells with

the antidepressant imipramine inhibits the production of pro-

inflammatory cytokines, whereas stimulates the expression of

BDNF (Peng et al., 2008), nevertheless, further studies are

demanded to clarify this issue in order to provide unequivocal

proof for causality.

CONCLUDING REMARKS

In conclusion, we attempted to provide evidence on the possibility

that one of the mechanisms underlying the negative impact of

pro-inflammatory cytokines on neuroplasticity is the reduction

of BDNF expression and function (Figure 2).

Although several data support this hypothesis, further studies

are demanded to better clarify how it occurs. A number of result

points out a key role for the pro-inflammatory cytokine IL-1β as

it has been shown that the inhibitory effect of stress paradigms on

cerebral BDNF expression may be attenuated by intracerebroven-

tricular injection of IL-1 receptor antagonist (Barrientos et al.,

2003). However, how this -or others- pro-inflammatory cytokine

affects the neurotrophin is still not well understood. Since in

vitro and in vivo studies indicate that glucocorticoids decrease

the neurotrophin (Hansson et al., 2003; Gubba et al., 2004;
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Hansson and Fuxe, 2008), one possibility is the involvement of the

Hypotalamus-Pituitary-Axis (HPA), which is strongly stimulated

by pro-inflammatory cytokines (Rivest, 2010). However, we have

to be aware that pro-inflammatory cytokines act on a plethora

of different targets, for example the neurotransmitters glutamate

(Viviani et al., 2007; Di Filippo et al., 2013) and GABA (Galic

et al., 2012), both able to modulate BDNF. In this context, it

is feasible that the effect of the immune/inflammatory system

on BDNF results from the integration of multiple mechanisms.

A better knowledge of these events may be useful to develop new

therapeutic strategies aimed to normalize, or at least ameliorate,

the pathological consequences of the negative impact of inflam-

mation on brain structure and function.
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