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implications
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A b s t r a c t

Brain-derived neurotrophic factor (BDNF) plays an important role in neuro-
nal survival and growth, serves as a neurotransmitter modulator, and par-
ticipates in neuronal plasticity, which is essential for learning and memory. 
It is widely expressed in the CNS, gut and other tissues. BDNF binds to its 
high affinity receptor TrkB (tyrosine kinase B) and activates signal transduc-
tion cascades (IRS1/2, PI3K, Akt), crucial for CREB and CBP production, that 
encode proteins involved in β cell survival. BDNF and insulin-like growth 
factor-1 have similar downstream signaling mechanisms incorporating 
both p-CAMK and MAPK that increase the expression of pro-survival genes. 
Brain-derived neurotrophic factor regulates glucose and energy metabolism 
and prevents exhaustion of β cells. Decreased levels of BDNF are associated 
with neurodegenerative diseases with neuronal loss, such as Parkinson’s 
disease, Alzheimer’s disease, multiple sclerosis and Huntington’s disease. 
Thus, BDNF may be useful in the prevention and management of several 
diseases including diabetes mellitus.

Key words: brain-derived neurotrophic factor, β cell, signal transduction, 
diabetes mellitus, Alzheimer’s disease, neurotransmission.

Introduction

Brain-derived neurotrophic factor (BDNF) is one of the neurotrophic 
factors that support differentiation [1], maturation [2], and survival of 
neurons in the nervous system [3] and shows a neuroprotective effect 
under adverse conditions, such as glutamatergic stimulation, cerebral 
ischemia, hypoglycemia, and neurotoxicity [4]. BDNF stimulates and 
controls growth of new neurons from neural stem cells (neurogenesis) 
[5, 6], and BDNF protein and mRNA have been identified in most brain 
areas including the olfactory bulb, cortex, hippocampus, basal forebrain, 
mesencephalon, hypothalamus, brainstem and spinal cord. The levels of 
BDNF are decreased in many neurodegenerative diseases such as Par-
kinson’s disease (PD) [7], multiple sclerosis (MS) [8] and Huntington’s 
disease [9]. Besides the neuroprotective effect, BDNF plays a major role 
in energy homeostasis. The BDNF administration peripherally or intra-
cerebroventricularly (ICV) suppresses energy intake and reduces body 
weight [10].
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Origin of BDNF 

BDNF is a member of the neurotrophin family 
of growth factors along with nerve growth factor 
(NGF); neurotrophins-3 (NT-3), NT4/5 and NT-6. 
BDNF is synthesized in the endoplasmic reticu-
lum (ER) as a  32–35  kDa precursor protein (pro 
BDNF) that moves through the Golgi apparatus 
and trans-Golgi network (TGN). In the presence of 
lipid raft associated sorting receptor carboxy pep-
tidase E (CPE), pro-BDNF is sorted by vesicles and 
subsequently transported into activity-dependent 
secretion by post-synaptic dendrites (Figure 1).  
The terminal domain of pro-BDNF is cleaved by 
a  distinct protein convertase enzyme to form 
13 kDa biologically active mature BDNF (mBDNF) 
[10–12].

Structure of BDNF

BDNF has close structural homology to NGF 
and shares about 50% amino acid identity with 
NGF, NT-3 and NT-4/5. Each neurotrophin con-
sists of a non-covalently linked homodimer with 
a  signal peptide following the initiation codon 
and pro-region containing an N-linked glycosyla-
tion site [10–12]. In rats, the BDNF gene is located 
on chromosome 11 and is controlled by multiple 
activity-dependent and tissue-specific promoters 
I, II, III, IV; cAMP response-element binding pro-
tein (CREB) and upstream stimulatory factor-1/2 
(USF-1/2) regulate promoters I  and III, and cal-
cium responsive transcription factor (CaRF) me-
diates transcription by binding to promoter III. 
All exons that have been defined in humans are 
also expressed in mouse and rat, except for hu-

man exons VIIB and VIII. The rat BDNF gene has 
been suggested to undergo cryptic splicing with-
in exon II to form IIA, IIB and IIC genes [13–15]. 
The mouse BDNF gene has eight exons containing 
separate promoters upstream of each exon and 
one 3' exon encodes the mature BDNF protein. 
Multiple promoters determine tissue-specific ex-
pression of the BDNF transcript [16]. Human BDNF 
structure is closely related to rat and mouse BDNF 
(Figure 2). Eight distinct mRNAs are transcribed, 
with transcripts containing exons I–III expressed 
predominantly in brain and exon IV found in lung 
and heart. In situ hybridization experiments have 
revealed that BDNF mRNA is strongly expressed 
in the brain. The BDNF expression levels are low 
during fetal development, markedly increase after 
birth, and then decrease in adults [17–19].

Mechanism of action

BDNF receptors

The high affinity receptor for BDNF and NT-4/5 
is tropomyosin receptor kinase B (TrkB), for NGF it 
is TrkA, and for NT-3 it is TrkC. TrkB exists in two 
isoforms: 
–  The full length receptor glycoprotein (gp145TrkB) 

(M. Wt 145 kDa) and
–  Truncated form gp95TrkB (M. Wt 95 kDa) lacking 

tyrosine kinase domain and the LNGFR (low af-
finity nerve growth factor receptor, also known 
as p75 NTR). 
p75 NTR has been implicated in both pro- and 

anti-trophic processes such as neurite growth and 
apoptosis. BDNF and gp145TrkB are widely and 
abundantly expressed in the brain. The receptors 

 Pro-BDNF         Mature BDNF         CPE 

Figure 1. The above figure illustrates the fact of origin of pro-BDNF in endoplasmic reticulum (ER), which is later 
transported to the Golgi complex (GC) and then to the trans-Golgi network (TGN). From here in the regulated 
pathway, by the action of CPE and convertase, 13 KDa mature BDNF (mBDNF) is formed and released outside the 
plasma membrane. This figure is adapted from ref. [13]
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for BDNF are present in cells of the spinal cord and 
grey matter of the spinal cord [20]. 

Activation of TrkB 

Neurotrophin signaling regulates cell survival, 
proliferation, the fate of neural precursors, and 
axon and dendrite growth through TrkB receptors. 
Neurotrophic tyrosine kinase in humans is encod-
ed by the NTRK2 gene. TrkB has an extracellular 
domain with many sites of glycosylation, a unique 
transmembrane segment and an intracellular do-
main characterized by Trk activity. Upon activation 
several small G proteins, including Ras as well as 
MAP kinase, PI3-kinase and phospholipase-C-γ 
(PLC-γ) pathways are regulated. The activation of 
TrkB is the quickest event (2 min), and deactiva-
tion occurs within 30 min after activation in the 
spinal cord [20]. Trk receptor-mediated signaling 
is controlled through expression of intermediates 
in these signaling pathways that regulate localiza-
tion of different signaling constituents [21–23].

Activation of secondary messengers

The cellular actions of neurotrophins are mediated 
through the activation of the Trk family of receptors 
TrkA-C and the p75 neurotrophin receptor. The large 
pre-synaptic p75 NTR has the dual role of modulating 
Trk receptor binding, Ras-mediated activation of ERK 
and neurite outgrowth and activating c-jun N-termi-
nal kinase (JNK), leading to apoptosis in a variety of 
neurons. The secondary messengers which are acti-
vated in the spinal cord by BDNF signaling include 
the MAP/ERK pathway, proto-oncogene c-fos and ni-
tric oxide (NO)-producing neurons [24–26]. 

Signaling cascade in BDNF

BDNF (ligand) activation of tyrosine residues 
results in activation of different intracellular 

pathways, as shown in Figure 3, leading to neu-
ral plasticity, neurogenesis, stress resistance and 
survival of the cell. This suggests comparative 
flexibility of Trk receptors in terms of pro-survival 
function. Thus, BDNF signaling pathways activate 
one or both of the transcription factors CREB and 
CREB-binding protein (CBP) that regulate expres-
sion of genes encoding proteins involved in neu-
ral plasticity, stress resistance and cell survival 
[27–30].

Ras/MAPK/ERK pathway

When a ligand (BDNF) binds to the TrkB recep-
tor, it results in dimerization and auto-phosphor-
ylation of tyrosine residues to form a docking site 
for src-homology 2-domain containing adaptor 
protein (Shc) and phospholipase C (PLC). Once Shc 
is docked with the receptor and bound to adapt-
er protein Grb2 by guanine nucleotide-releasing 
factor SOS, Ras activates the following signaling 
pathways: Ras/MAPK-ERK pathway, PI3-K path-
way and PLC pathway. Ras is linked to Grb2 by the 
guanine nucleotide-releasing factor SOS. MAPK/
ERK is essential for neurogenesis and promotes 
survival in two ways: by induction of prosurvival 
genes and inhibition of proapoptotic (BAD) pro-
teins [31, 32].

IRS-1/PI3K/AKT pathway

As shown in Figure 3, other pathways involved 
in the action of BDNF include activation of insulin 
receptor substrate-1 (IRS-1/2), PI-3K and protein 
kinase B (Akt). Ras suppresses apoptosis via PI3K; 
PI3K activates Akt, which sequesters pro-apoptotic 
proteins in the cytoplasm away from their tran-
scriptional targets [33]. It is known that inhibition 
of any portion of the Ras-PI3K-Akt pathway signifi-
cantly reduces survival of sympathetic neurons in 

Figure 2. Gene structure of BDNF. Note the presence of four promoters in rat and 9 promoters in mouse. Each of 
the driving transcripts of BDNF mRNAs containing one of the four 5′ non-coding exons (I, II, III, IV) in promoters is 
later spliced to the common 3′ protein coding exon. Human BDNF structure and its splicing variant are seen above 
with arrows indicating alternative polyadenylation sites (PolyA) in the 3′-UTR and internal alternative splice sites 
in exons 2, 6, 7 and 9a (letters a, b, c and d) [18]. Arrangement of introns and exons on BDNF genes is determined 
by analyzing genomic and mRNA sequence using bioinformatics, RACE, and RT-PCR [17]
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culture in the presence of NGF, implying that the 

PI3K pathway plays a crucial role in activation of 

pro-survival genes responsible for cell survival [34].

 

PLC/DAG/IP3 pathway

The adapter protein PLC-γ is phosphorylated 

once BDNF docks with the Trk receptor and this 

leads to breakdown of membrane lipids to inosi-

tol 1,4,5 triphosphate (IP3), which promotes an 

increase in intracellular calcium concentration and 

diacylglycerol (DAG) [35, 36]. DAG, in turn, regulates 

protein kinase C, which is required for the MAPK/

ERK signal implicated in neurite outgrowth [37–39].

Agonism of BDNF action

BDNF mRNA expression is regulated by neu-

ronal activity since epileptogenic activation of 

glutamatergic synapses increased the expression  

of BDNF mRNA in slices of rat hippocampus [40, 

41]. Increase in synaptic activity induced by AMPA 

(α-amino-3-hydroxy-5-methyl-4-isoxazolepropi-

onic acid) receptor agonists produced a transient 

elevation in mRNA levels encoding BDNF and TrkB 

in the hippocampus and cortex [42]. Light stimu-

lation increased BDNF mRNA in the visual cortex, 

osmotic stimulation enhanced BDNF mRNA in the 

hypothalamus, and whisker stimulation increas-

es BDNF mRNA expression in the somatosensory 

barrel cortex [43, 44]. Electrical stimuli that induce 

long-term potentiation (LTP) in the hippocam-

pus, a cellular model of learning and memory, in-

creased BDNF and NGF expression [45]. Physical 

exercise increases NGF and BDNF expression in 

the hippocampus [46], which may explain its ben-

eficial action in improving memory and prevent 

Figure 3. Signaling pathway of BDNF. BDNF binds to its high-affinity receptor tyrosine kinase B (TrkB), resulting 
in the recruitment of proteins that activate three different signal transduction cascades. One cascade involves 
sequential activation of insulin receptor substrate-1 (IRS-1/2), phosphatidylinositol-3-kinase (PI-3K) and pro-
tein kinase B (Akt). The second is the activation of Shc/Grb2, Ras, Raf, mitogen-activated protein kinase kinases 
(MEKs) and extracellular signal regulated kinases (ERKs). The third cascade involves phospholipase C (PLC), inositol 
(1,4,5)-trisphosphate [Ins(1,4,5)P3], diacylglycerol (DAG) and protein kinase C (PKC). BDNF signaling pathways acti-
vate one or more transcription factors (cAMP-response-element-binding protein (CREB) and CREB-binding protein 
(CBP) that regulate expression of genes encoding proteins involved in neural plasticity, stress resistance and cell 
survival. This figure is adapted and modified from refs. [32] and [33]
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the development of Alzheimer’s disease. BDNF 
interacts with estrogen to induce neuropeptide-Y 
(NPY) and together the trio (BDNF-NPY-estrogen) 
regulates the function of the hippocampus [47]. 

Antagonism of BDNF action

Blockade of glutamate receptors or stimulation 
of the GABAergic (gamma-amino butyric acid) sys-
tem reduced BDNF mRNA level in the hippocam-
pus [48, 49]. Bozzi et al. [50] demonstrated that 
an increase or a decrease of neuronal activity can 
enhance or reduce BDNF expression. Consistent 
with these observations, light-induced physio-
logical activity enhanced the expression of BDNF 
mRNA in the visual cortex and monocular depri-
vation elicited a striking decrease in BDNF mRNA 
in the visual cortex corresponding to the deprived 
eye. Anti-BDNF antiserum and the TrkB-IgG con-
struct have been successful to antagonize the ac-
tion of BDNF in neuropathic pain and inflamma-
tory hypersensitivity models [51]. These findings 
demonstrate the potential for antibody-mediated 
TrkB agonism as a potential therapeutic approach 
to enhance retinal ganglion cells’ (RGC) survival 
after optic nerve injury. Eibl et al. [52] reported 
that Y1036, a potential multipotent neurotrophin 
antagonist, altered molecular topology (surface 
charge density) and acted against BDNF and NGF 

by preventing NT-induced receptor activation and 
downstream signaling via the p44/42 MAPK path-
way. Furthermore, endogenous production of ni-
tric oxide (NO) downregulated BDNF secretion in 
hippocampal neurons by activating a  cyclic gua-
nosine monophosphate (cGMP)-dependent signal 
transduction pathway leading to downregulation 
of Ca2+ release from IP3-sensitive intracellular 
stores by protein kinase G [53].

Plasma levels of BDNF

In healthy volunteers, mean plasma BDNF level 
was found to be ~92.5 pg/ml (8.0–927.0 pg/ml). 
It was higher in women, and decreased with ad-
vancing age in both genders [54]. BDNF is widely 
distributed in various regions of the brain, and 
aids in survival, support and function of neurons. 
Other sources of BDNF include the lungs, heart, 
spleen, gastrointestinal tract and liver. Apart from 
these, BDNF was found to be expressed in fibro-
blasts, vascular smooth muscle cells, and thymic 
stroma [55]. Studies of Lommatzsch et al. [56] 
confirmed that levels of BDNF in the urinary blad-
der, lung, and colon were higher than those found 
in the brain or skin. A positive correlation between 
blood levels of BDNF and diastolic blood pressure, 
total cholesterol, low-density lipoprotein (LDL) 
cholesterol, adipose tissue mass, body mass index 
and triglyceride was reported. It was suggested 

that women with low plasma BDNF levels have 
increased mortality risk [54–57]. This is supported 
by the observation that a significant reduction in 
plasma levels of BDNF in females correlated with 
advancing age and body weight [58, 59]. 

Functions of BDNF

Neurogenesis

One of the earliest identified in vivo functions 
of BDNF is its role to promote survival of periph-
eral sensory neurons during development of the 
brain. It was reported that exogenous application 
of BDNF resulted in increased dendritic length and 
complexity of pyramidal neurons in the developing 
visual cortex in a  layer-specific manner, suggest-
ing that BDNF not only enhanced neuronal growth 
but also modulated a specific pattern in dendritic 
growth. Furthermore, inhibition of spontaneous 
electrical activity, synaptic transmission, or L-type 
calcium channels prevented increase in dendrit-
ic growth elicited by exogenous BDNF, indicating 
that neurons must be active enough to respond to 
growth-promoting action of BDNF [60–62]. 

In a central nervous system trauma model, us-
ing adult rat retinal ganglion cells (RGC), it was 
observed that in vivo injection of BDNF enhanced 
neuronal survival by activating the TrkB, MAPK 
and PI3K-PKB pathways and inhibited caspase-3-
induced apoptosis. Neurogenesis in the hypothal-
amus was enhanced by continuous application of 
BDNF for 12 days. Dietary restriction enhanced 
neuronal growth in the adult mouse hippocampus, 
indicating that energy balance is an important 
factor that can modulate neural growth [63–66].

Synaptic plasticity 

BDNF is involved in the regulation of activity-de-
pendent synaptic plasticity by pre- and post-syn-
aptic mechanisms [67, 68]. BDNF is essential for 
pre-synaptic vesicle cycling, which is dependent on 
NMDA (N-methyl D-aspartate) receptor activation 
in cultured neocortical neurons of BDNF-knockout 
mice [69]. This paracrine (retrograde messenger) 
role of BDNF was later confirmed, and it was shown 
that application of BDNF to hippocampal sections 
restored spine actin polymerization and LTP (long-
term potentiation) stability in rats [70]. Further-
more, BDNF levels not only increased NMDA levels 
and intracellular calcium concentrations [71] but 
also relieved Mg2+ block of NMDA receptors [72], 
promoting long-term changes to synaptic activity. 
Reduction of TrkB and BDNF secretion reduced LTP 
induction [73]. Thus, BDNF is involved in NMDA re-
ceptor trafficking by increasing calcium influx [74], 
which leads to post-synaptic BDNF release that, in 
turn, increases pre-synaptic vesicle cycling, which 
enhances LTP and synaptic plasticity [75].
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Actions on cardiac and endothelial cells

Neurotrophins promote angiogenesis and con-
trol survival of adult endothelial cells (EC), vascular 
smooth muscle cells (VSMC) and cardiomyocytes. 
It was reported that BDNF promoted therapeutic 
neovascularization via the TrkB receptor, whereas 
low-affinity receptor p75 NTR not only induced 
apoptosis of endothelial cells and vascular smooth 
muscles but also impaired angiogenesis. Studies 
performed in a murine BDNF knockout model re-
vealed that NT-3 and BDNF are involved in the for-
mation of heart and myocardial vasculature. TrkB 
receptors expressed on endothelial cells activate 
two major signaling pathways, ERK/MAPK and 
PI3-kinase/AKT, to promote EC survival [76–79]. 
In addition, AKT activated endothelial nitric oxide 
(NO) synthase, which contributes to vascular re-
laxation; this may account for its cardiovascular 
protective action [78, 80, 81].

Role in inflammation and immunity 

Elevated levels of neurotrophins (NTs) may 
contribute to the development of bronchial hy-

perreactivity (BHR), a hallmark of allergic asthma, 
which is confirmed from the observation that re-
lease of NTs occurred from immune cells including 
B-lymphocytes, eosinophils, mast cells and mac-
rophages [82]. It is likely that upon stimulation 
with antigen (Ag), CD4+ T cells produce BDNF by 
truncated gp95TrkB (expressed in non-neuronal 
tissues). BDNF may act as a mediator between air-
way inflammatory events and neuronal changes 
that occur during the induction of allergic asthma 
by enhancing airway smooth muscle contraction 
and mucus hypersecretion by facilitating the re-
lease of acetyl choline and plasma extravasation 
(Figure 4). On the other hand, in neuro-inflamma-
tory diseases such as multiple sclerosis, there may 
occur enhanced production of BDNF, which may 
show neuro-protective activity due to its immu-
nomodulatory action. Thus, BDNF can be used as 
a therapeutic strategy in detection and prevention 
of neurological inflammatory disorders [82–84].

Lipid metabolism

In 1995, it was reported that BDNF affects en-
ergy metabolism following intracerebroventricular 

Figure 4. Role of BDNF in neural degeneration diseases such as multiple sclerosis. The antigen once it crosses the 
blood-brain barrier stimulates the production of T cells, which, in turn, activate B cells and macrophages. Damage 
to nerve fibers may result from either complement fixation or antibody-dependent cell-mediated immunity, result-
ing in multiple sclerosis. Neuroinflammatory reactions may also trigger neuroprotective events such as secretion 
of BDNF and anti-apoptotic Bcl2 that may explain the therapeutic role of BDNF in multiple sclerosis. This figure is 
adapted from refs. [82–84]
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(ICV) administration, which leads to decreased 
energy intake and body weight loss in rats. This 
action of BDNF was found to be associated with 
a dose-dependent increase in serotonin turnover, 
nerve cell survival and adaptive plasticity [85]. 

BDNF showed a  positive correlation with 
low-density lipid (LDL) cholesterol, total cholesterol 
and triglycerides [86]. BDNF treatment of diabetic 
animals resulted in a decrease of plasma glucose, 
non-esterified fat, phospholipids and liver weight, 
along with an increase in β-oxidation, peroxisome 
proliferator activator receptor (PPAR-α) activation 
and level of fibroblast growth factor [87]. TrkB acti-
vation is essential for appetite regulation and ener-
gy homeostasis. It was reported that dietary ome-
ga-3 fatty acids normalize BDNF levels (Figure 5),  
reduce oxidative damage and improve learning 
ability after traumatic brain injury [88]. 

These results emphasize the possible interac-
tion between dietary polyunsaturated fatty acids 
and brain BDNF that may be relevant to energy 
homeostasis. Exposure to cytotoxic agents acti-
vates phospholipid-hydrolase enzymes PLA2 and 

PLC that cause damage to membrane phospholi-
pases, which, in turn, results in cumulative oxida-
tive stress and subsequent neuronal dysfunction. 
BDNF facilitates synaptic transmission and regu-
lates gene expression by increasing levels of syn-
apsin I [89] and CREB release, which helps in the 
maintenance of synaptic plasticity. Docosahexae-
noic acid (DHA) has been shown to have anti-oxi-
dant activity and enhance LTP, which may account 
for its ability to improve learning and memory. 
Molecular docking studies using a  bioinformat-
ics approach revealed that polyunsaturated fatty 
acids (PUFAs) and their metabolites bind to BDNF 
and exert an allosteric effect on the TrkB binding 
pocket, thereby promoting the neurotrophic ac-
tivity cascade. Furthermore, BDNF interacts with 
several other neuropeptides, including melanocor-
tin [90, 91], leptin [92], corticotrophin-releasing 
hormone (CRH) [93, 94] and thyrotropin-releasing 
hormone (TRH) [95] to maintain synergistic action 
in collaboration with them. Reduced BDNF levels 
in either conditionally homozygous or heterozy-
gous gene knockout mice were found to develop 
hyperphagia, obesity and resistance to insulin and 
leptin [96, 97]. These studies suggest that inter-
action between BDNF and PUFAs may play an im-
portant role in the pathogenesis of obesity, type 2 
diabetes mellitus and metabolic syndrome.

BDNF in type-2 diabetes mellitus

BDNF has been implicated in the regulation of 
food intake and body weight both in experimental 
animals and humans. For instance, systemic ad-
ministration of BDNF decreased non-fasted blood 
glucose in obese, non-insulin-dependent diabet-
ic C57BLKS-Lepr(db)/lepr(db) (db/db) mice, with 
a concomitant decrease in body weight [98]. The 
effect of BDNF on non-fasted blood glucose levels 
is not caused by decreased food intake but was 
found to be due to improvement in blood glucose 
control, an effect that persisted for weeks after 
cessation of BDNF treatment. BDNF reduced hep-
atomegaly present in db/db mice, reduced liver 
glycogen and reduced liver enzyme activity in se-
rum, supporting the involvement of liver tissue in 
the mechanism of action of BDNF [99, 100].

Further support for the role of BDNF in diabetes 
mellitus is evident from the observation that once 
or twice per week administration (70 mg/kg/wk) to 
db/db mice for 3 weeks significantly reduced blood 
glucose concentrations and hemoglobin A

1c
 (HbA

1c
) 

compared to controls. These results suggest that 
BDNF not only reduced blood glucose concentra-
tions but also restored systemic glucose balance, 
indicating the possibility that BDNF could be a nov-
el hypoglycemic agent even with treatment as in-
frequently as once per week [101]. Furthermore, in-
tracerebroventricular (ICV) administration of BDNF 

Figure 5. Interaction between omega 3-fatty acids 
and BDNF that may underlie their cytoprotective 
actions. Mechanism of cytoprotection may involve: 
a) prevention of degradation of membrane phos-
pholipids; b) reduction of oxidative stress that 
helps maintain synaptic plasticity; and c) normal-
ization of levels of BDNF and its downstream ef-
fectors synapsin I and CREB, which are important 
in learning, memory and LTP. This figure is adapted 

and modified from refs. [89–91]
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lowered blood glucose, increased pancreatic insulin 
content, enhanced thermogenesis and norepineph-
rine turnover, and increased uncoupling protein-1 
mRNA expression in the interscapular brown adi-
pose tissue of db/db mice. This evidence indicates 
that BDNF activates the sympathetic nervous 
system and thus regulates energy expenditure in 
obese diabetic animals [102].

The role of BDNF in type 2 diabetes mellitus is 
further supported by the observation that plas-
ma levels of BDNF were decreased in humans 
with type 2 diabetes mellitus independently of 
obesity, and inversely associated with fasting 
plasma glucose, but not with insulin [103]. When 
output of BDNF from the human brain was stud-
ied, output was inhibited when blood glucose 
levels were elevated, whereas when plasma in-
sulin was increased while maintaining normal 
blood glucose, the cerebral output of BDNF was 
not inhibited. These results indicate that high 
levels of glucose, but not insulin, inhibited the 
output of BDNF from the human brain. These 
results emphasize that low levels of BDNF ac-
company impaired glucose metabolism, and de-
creased BDNF may be a factor involved in type 2 
diabetes mellitus [104].

Mechanism(s) involved in the cytoprotective 
action of BDNF in type 2 diabetes mellitus

BDNF not only regulated glucose and energy 
metabolism but also prevented exhaustion of the 
pancreas in diabetic mice by maintaining the his-
tologic cellular organization of β cells and non-β 
cells in pancreatic islets and restoring the level 
of insulin-secreting granules in β cells [105] and 
thus ameliorated diabetes in experimental ani-
mals [106]. These actions of BDNF suggest that 
it could protect pancreatic β cells. The possible 
mechanism(s) involved in this cytoprotective ac-
tion of BDNF could be attributed to its binding 
to the high-affinity receptor TrkB, resulting in the 
recruitment of proteins that activate IRS-1/2, 
PI-3K and protein kinase B (Akt). These actions 
result in activation of one or more transcription 
factors (CREB and CBP) that regulate expression 
of genes encoding proteins involved in neural 
plasticity, stress resistance and cell survival. Fur-
thermore, BDNF and IGF-I  have similar down-
stream signaling mechanisms, incorporating both 
p-CAMKII (calcium/calmodulin protein kinase II) 
and p-MAPKII (phosphorylated mitogen-activated 
protein kinase II) signaling cascades [107, 108], 
which promote cell survival by a dual mechanism 
consisting of posttranslational modification and 
inactivation of a component of the cell death ma-
chinery and increased transcription of pro-surviv-
al genes [109]. In an extension of this study, it 
was noted that two chemically distinct inhibitors 

of PI-3K, wortmannin and LY294002, reduced 
PI-3K activation by IGF-1 and inhibited its sur-
vival-promoting activity, suggesting that PI-3K is 
necessary for IGF-1-mediated survival. Ultimately 
death resulting from PI 3-kinase blockade is ac-
companied by DNA fragmentation, a hallmark of 
apoptosis [110]. It is likely that BDNF may have 
actions similar to IGF-1 in producing its cytopro-
tective actions on pancreatic β cells (Figure 6).

BDNF seems to be involved in the beneficial 
action of exercise, which is known to be of use in 
the prevention and management of obesity, type 2 
diabetes mellitus and other features of metabolic 
syndrome. It was found that moderate exercise in-
creased both basal and end exercise plasma BDNF 
levels in young healthy men, which was found to 
be associated with a decrease in insulin resistance 
[111]. It was reported that the common variation 
of  BDNF (rs4074134) is associated with type 2 
diabetes mellitus independently of obesity in the 
Chinese Han population and the same variant also 
showed an effect on plasma glucose concentra-
tion, body mass index (BMI) and insulin sensitivity 
[112]. This was further supported by the observa-
tion that decreased serum BDNF was decreased 
in Chinese patients with type 2 diabetes mellitus 
[113]. Thus, exercise seems to have the ability to 
enhance circulating levels of BDNF, which are de-
creased in obesity and type 2 diabetes mellitus, 
and thus exert beneficial actions. Since BDNF is 
present in both the gut and the brain, it is likely 
that increased serum BDNF levels reported after 
exercise are derived from the brain and gut. Our 
recent studies revealed that BDNF is not only able 
to prevent cytotoxic action of chemicals such as 
alloxan and streptozotocin against pancreatic β 
cells but is also able to enhance their proliferation 
(unpublished data). Thus, increased BDNF likely to 
be secreted by the gut during exercise may actu-
ally act on pancreatic β cells not only to improve 
their survival but also to enhance their prolifera-
tion.

BDNF in neurological disorders

The ability of BDNF to augment neurogenesis 
[60–66] and improve synaptic plasticity [67–75], 
as discussed above, implies that it may have a role 
in some neurological conditions such as Alzhei-
mer’s disease, dementia and autism. In fact, it has 
been suggested that decreased serum BDNF lev-
els may have a role in the pathophysiology of cog-
nitive deficits noted in patients with type 2 diabe-
tes mellitus [114]. BDNF levels were significantly 
lower in  patients  with schizophrenia who had 
lower cognitive scores than controls, suggesting 
that BDNF may be involved in the pathophysiol-
ogy of schizophrenia, and its associated cognitive 
impairment, especially immediate memory [115]. 
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In fact, it has been suggested that the connecting 
link between depression and type 2 diabetes mel-
litus could be BDNF [116]. It is known that depres-
sion is a risk factor for the development of type 2 
diabetes mellitus, while most patients with type 2 
diabetes mellitus also have depression. This led to 
the suggestion that BDNF may play an important 
role linking depression and type 2 diabetes mellitus 
[116]. In this context, it is interesting to note that 
chronic alcohol ingestion may aggravate type 2  
diabetes mellitus and lower BDNF level [117], im-
plying that alcohol-induced peripheral neuropa-
thy, dementia and decrease in cognitive function 
may also be due to low BDNF levels.

Decreased GABAergic (gamma-aminobutyric  
acid) neurons in the rat substantia nigra are ob-
served in  Huntington’s disease, and may also 
occur in Parkinson’s  disease. BDNF is known to 
prevent excitotoxic killing of cultured GABA neu-
rons. A  continuous, 3-week supranigral infusion 
of  BDNF prevented the loss of nigral neurons 
caused by the ibotenic acid-induced destruction 

of the caudate-putamen and globus pallidus, 
and  BDNF increased nigral neuron size by 25%. 
These effects were found to be specific to the TrkB 
tyrosine kinase receptor that mediates BDNF ac-
tions. These results suggest that exogenously ad-
ministered BDNF can prevent neuronal loss, and 
diminish nigral neuron susceptibility to glutamate 
inputs [118], and thus may be of benefit in Hun-
tington’s and Parkinson’s diseases. In this context, 
it is noteworthy that Huntingtin, a 350-kilodalton 
protein, is mutated in Huntington’s disease. The 
mutant protein is presumed to acquire a  tox-
ic gain of function that is detrimental to striatal 
neurons in the brain. Loss of a beneficial activity 
of wild-type huntingtin may also cause the death 
of striatal neurons, leading to the development of 
Huntington’s disease. It was reported [119] that 
wild-type huntingtin up-regulates transcription 
of BDNF, a pro-survival  factor produced by corti-
cal neurons that is necessary for survival of stri-
atal neurons in the brain. This beneficial activity 
of huntingtin is lost when the protein becomes 

Figure 6. Possible mechanism(s) involved in cytoprotective action of BDNF. Sequential activation of insulin re-
ceptor substrate-1 (IRS-1/2), phosphatidylinositol-3-kinase (PI-3K) and protein kinase B (Akt) result in activation 
of pro-survival genes. IGF-1 and BDNF were shown to have similar downstream mechanisms, incorporating both 
CAMK and MAPK, which inactivate cell death machinery (Bad, BAX and FasL) and promote cell survival (Bcl2), 
neurogenesis and plasticity. Both BDNF and IGF mRNA are re-synthesized to form respective molecules which not 
only enhance insulin production but also inhibit apoptosis of β cell machinery. This figure is adapted from refs. 
[108–110]
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mutated, resulting in  decreased  production of 
cortical  BDNF. This leads to insufficient  neuro-
trophic  support for striatal neurons, which then 
die. These results indicate that restoring wild-type 
huntingtin activity to increase BDNF  production 
and/or direct delivery of BDNF to the site of neu-
ronal loss may be of therapeutic values in treat-
ing Huntington’s disease and also in Parkinson’s 
disease. Furthermore, it was noted that decreased 
BDNF expression observed in Huntington’s dis-
ease exacerbates dopaminergic neuronal dysfunc-
tion [120], which may participate in the motor dis-
turbances associated with this neurodegenerative 
disorder. These results were further supported by 
a report that reduced expression of the TrkB recep-
tor occurs in Huntington’s disease mouse models 
and in post-mortem human brain of patients who 
died from this disease [121].

3-Nitropropionic acid (3NP), when given over  
5 days by constant systemic infusion using os-
motic mini-pumps, produces striatal lesions that 
closely mimic some of the neuropathological fea-
tures of  Huntington’s disease. Administration of 
sildenafil, a nitric oxide enhancer, improved neuro-
logic scores, reduced neuronal loss and enhanced 
the expression of BDNF [122]. These data suggest 
that there is a close interaction between nitric ox-
ide and BDNF and both these molecules protect 
neuronal loss and their enhancement could be of 
benefit in preventing Huntington’s disease. These 
results coupled with the observation that BDNF 
overexpression in the forebrain rescues  Hunting-
ton’s disease phenotypes in YAC128 mice [123] in-
dicates that attempts to restore striatal BDNF level 
may be of therapeutic benefit in Huntington’s dis-
ease. 

Clinical significance of BDNF 

It is evident from the preceding discussion that 
BDNF has several important actions that could 
have significant clinical implications. Decrease 
in the expression of BDNF is seen in many neu-
rological diseases such as Alzheimer’s disease, 
Parkinson’s disease, Huntington’s disease and 
bipolar disease [124–133], as detailed above. 
Physical exercise enhances brain BDNF levels 
and thus improve in depression [134]. Lithium, 
which is used in bipolar disorder, is known to 
enhance TrkB activation and expression of BDNF 
mRNA [135], which supports the role of BDNF in 
bipolar disorder. Interestingly, overexpression of 
BDNF in the hippocampus was found to occur in 
spontaneous seizures, leading to temporal lobe 
epilepsy [136]. Furthermore, BDNF is synthe-
sized and released in rabbit intestinal smooth 
muscle cells (SMCs) [137], which is influenced 
by release of calcium levels that, in turn, activate  
substance-P (SP) along with pituitary adenylate 

cyclase activating peptide (PACAP) [138]. BDNF 
can modulate gut function by activating the PLC 
pathway and hence could have therapeutic po-
tential in the treatment of irritable bowel syn-
drome and functional dyspepsia [139, 140]. A sig-
nificant decrease in the levels of BDNF-BCl2-Akt 
(genes involved in anti-apoptotic signaling path-
ways of BDNF) was observed in autism disorder 
[141]. Thus, plasma levels of BDNF may be used 
as a  bio-marker for detection of autism disor-
der during early stages [142–145]. As already 
discussed above, BDNF has an important role in 
energy homeostasis that accounts for its role in 
obesity, type 2 diabetes mellitus and metabolic 
syndrome. BDNF, both by its peripheral and cen-
tral actions, seems to be capable of preventing 
type 2 diabetes mellitus. It remains to be seen 
whether administration of BDNF could constitute 
a new therapeutic approach in the management 
of obesity, type 2 diabetes mellitus and metabolic 
syndrome, in both their prevention and manage-
ment. 

Conclusions and future perspectives

BDNF receptor activity not only enhanced neu-
rogenesis but also suppressed apoptosis along 
with modulation in synaptic activity by a  vari-
ety of signaling cascades. The participation of 
BDNF in the pathogenesis of cardiovascular dis-
eases and diabetes mellitus by its critical role in 
inflammation, glucose and lipid metabolism is 
rather interesting. BDNF deficiency is associated 
with increased weight in mice and humans, and 
BDNF administration can reduce food intake and 
increase energy expenditure. Thus, BDNF seems 
to have an important role in several neurological 
diseases and type 2 diabetes mellitus. 

The central role of BDNF as a  cytoprotective 
molecule may explain why it is involved in neu-
rological disorders and type 2 diabetes mellitus. 
In both instances, the ability of BDNF to protect 
neuronal cells and pancreatic β cells seems to be 
the fundamental mechanism of its action. Yet, 
its precise role in brain development, physiology 
and pathology of neurological disorders is still 
not clear. Studies that investigate in depth the 
vascular and metabolic effects of BDNF and oth-
er neurotrophins in neural plasticity and survival 
may be crucial to understand the physiology of 
BDNF. In this context, it is noteworthy that BDNF 
is secreted by the gut and several other tissues, 
which suggests that it may have a  role in sever-
al diseases including those of the gut. In future, 
attempts to increase local or systemic BDNF pro-
duction by the use of co-factors such as vitamin 
B

12
 and dexamethasone, which are known to up-

regulate its expression [146], may be attempted 
while evaluating the clinical applications of BDNF 
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in some of the clinical conditions in which it is 
likely to play a major role. A better understanding 
of the role of this endogenous peptide in health 
and disease may pave the way to exploit BDNF as 
a novel therapeutic agent for neurodegenerative 
and metabolic diseases.
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