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It has been hypothesized that these neurochemical changes 
contribute to the enduring synaptic plasticity that underlies 
sensitized responses to psychostimulants and drug-condi-
tioned memories leading to compulsive drug use and fre-
quent relapse after withdrawal. Nevertheless, increased 
BDNF levels could also have a role as a protection factor in 
addiction. The inhibition of the intracellular pathways, ERK 
and PI3K, leads to a disruption in sensitized responses and 
conditioned memories associated with cocaine addiction 
and suggests new, potential therapeutic strategies to ex-
plore in the dependence on psychostimulants. 

 Copyright © 2007 S. Karger AG, Basel 

 Introduction 

 Cocaine consumption continues to be an important 
public health hazard, increasing in prevalence and use in 
western countries. Addiction to psychostimulants is a 
chronic disorder, characterized by craving, an intense de-
sire to experience the effects of a psychoactive substance 
and frequent relapse, even after prolonged drug-free pe-
riods, when all withdrawal symptoms have receded  [1–3] . 
Despite various strategies for treatment that include an-
tidepressant pharmacotherapy, dopaminergic agonists, 
antiepileptics or lithium, one of the main problems re-
lated to psychostimulant addiction is the absence of an 
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 Abstract 
 Cocaine addiction is one of the severest health problems 
faced by western countries, where there is an increasing 
prevalence of lifelong abuse. The most challenging aspects 
in the treatment of cocaine addiction are craving and re-
lapse, especially in view of the fact that, at present, there is a 
lack of effective pharmacological treatment for the disorder. 
What is required are new pharmacological approaches 
based on our current understanding of the neurobiological 
bases of drug addiction. Within the context of the behav-
ioral and neurochemical actions of cocaine, this paper con-
siders the contribution of brain-derived neurotrophic factor 
(BDNF) and its main intracellular signaling mechanisms, in-
cluding mitogen-activated protein kinase/extracellular sig-
nal-regulated protein kinase (MAPK/ERK) and phosphati-
dylinositol 3-kinase (PI3K), in psychostimulant addiction. 
Repeated cocaine administration leads to an increase in 
BDNF levels and enhanced activity in the intracellular path-
ways (PI3K and MAPK/ERK) in the reward-related brain areas, 
which applies especially several days following withdrawal. 
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effective pharmacotherapeutic agent for its treatment  [4] . 
Thus, new therapeutic approaches, based on our current 
understanding of the neurobiological bases of drug ad-
diction, are required. 

 Over the last few years, several lines of research have 
suggested that chronic drug exposure causes long-lasting 
neurochemical and cellular adaptations that result in en-
during neuroplastic changes in brain circuitry, and which 
underlie compulsive drug consumption and relapse, even 
after long periods of abstinence  [5–7] . Attention has 
mainly been focused on the effects of various drugs of 
abuse on cortical and subcortical areas, including the me-
solimbic and mesocortical systems, comprising dopa-
mine neurons in the ventral tegmental area (VTA), their 
projection to the nucleus accumbens (NAc), amygdala 
and other forebrain regions  [8, 9] . Dopamine-dependent 
synaptic plasticity in the dorsal striatum has also been 
involved mostly in the late stages of addiction  [8, 10] . The 
role of glutamatergic neurotransmitter systems and in-
teraction between dopamine and glutamate in determin-
ing the neuroplastic changes related to psychostimulant 
consumption warrant attention  [11, 12] . At the molecular 
level, the effects induced by chronic drug consumption 
also involve several intracellular signaling pathways  [13, 
14]  that lead to sensitization to drug effects  [9]  and mod-
ification in the learning and memory circuitry related to 
addiction  [8] . Despite recent advances, however, the mo-
lecular bases of cocaine addiction have been only par-
tially elucidated. 

 Recent evidence suggests that neurotrophins, such as 
brain-derived neurotrophic factor (BDNF) and its intra-
cellular signaling pathways, are also involved in neuro-
adaptive changes in the dopaminergic or glutamate sys-
tems that underlie psychostimulant abuse and depen-
dence  [15–21] . BDNF is a member of the nerve growth 
factor family, a group of secreted homodimeric proteins, 
isolated and characterized for the first time in 1982  [22] . 
The BDNF signal transduction is mediated by binding to 
two different transmembrane receptors: the high-affinity 
tyrosine kinase receptor B (Ntrk2 or TrkB) which spe-
cifically recognizes BDNF  [23] , and the low-affinity p75 
neurotrophin receptor  [24] . Both of these colocalize and 
modulate the neuron response to this neurotrophin. The 
BDNF binding to the TrkB-specific receptor triggers a 
ligand-dependent dimerization of the receptor, the auto-
phosphorylation of specific intracellular tyrosine resi-
dues, and the activation of three different signal trans-
duction cascades. These include the phosphatidylinositol 
3-kinase (PI3K), the mitogen-activated protein kinase/
extracellular signal-regulated protein kinase (MAPK/

ERK), and the phospholipase C �  cascades  [25–27] . Some 
of these intracellular signaling mechanisms can also be 
activated through stimulation of dopamine and gluta-
mate neurotransmission  [21, 28] , and there is evidence 
that cross-talk between those pathways may potentiate 
synaptic plasticity in drug addiction. 

 BDNF is expressed in several areas of the central ner-
vous system, including the amygdala  [29, 30] , the stria-
tum  [31] , the prefrontal cortex  [32] , and its specific recep-
tor TrkB is expressed in all mesencephalic dopaminergic 
neurons  [33] . All these regions are involved in drug-in-
duced neuronal responses. BDNF is a key element in the 
survival and differentiation of the dopaminergic system 
 [34] . In the mature central nervous system, BDNF  [35–
38]  and its intracellular pathways, MAPK/ERK  [39–42]  
and PI3K  [43, 44] , play an essential role in modulating 
activity-dependent neuronal plasticity. In fact, these neu-
rochemical systems are required to induce long-term po-
tentiation (LTP), the basic mechanism of learning and 
memory that allows the external world to become encod-
ed and stored as persistent molecular and structural 
modifications. 

 The aim of the present review is to examine the evi-
dence supporting the involvement of the BDNF and its 
intracellular pathways in the neural mechanisms that un-
derlie the development of psychostimulant addiction, 
that is to say, sensitization and conditioned drug respons-
es, craving during withdrawal and subsequent relapse. 
The identification of new neurobiological substrates in 
cocaine addiction is of considerable interest as it could 
provide new targets for the treatment of drug addiction. 

 BDNF and Acute Psychostimulant Effects 

 Several studies developed in the early 1990s tried to 
assess the behavioral and neurochemical effects of exog-
enous BDNF in different dopaminergic regions, and its 
interaction with a posterior single dose of psychostimu-
lants. In adult rats, repeated BDNF infusions into the pars 
compacta of the substantia nigra (SN) potentiated the 
contraversive rotation behavior induced by posterior psy-
chostimulant (amphetamine) administration. At the 
same time, neostriatal levels of dopamine metabolites, 
homovanillic acid and 3,4-dihydroxyphenylacetic acid, 
were found to be increased in the BDNF-infused brain 
hemisphere. These behavioral and neurochemical effects 
suggested that BDNF is able to act on adult dopamine 
neurons in vivo, enhancing activity of nigrostriatal cir-
cuits and dopamine release  [15, 45] . Some years later, oth-
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er studies assessed the effect of exogenous BDNF admin-
istration into two different regions of the mesolimbic do-
paminergic system, the NAc and VTA, and its influence 
on locomotor activity induced by posterior cocaine ad-
ministration. The results showed that cocaine challenge 
induced a significant enhancement of locomotor activity 
in mice when administered the day after repeated intra-
NAc and intra-VTA BDNF treatment. Therefore, BDNF 
enhanced the initial stimulant effect of cocaine  [19] . In 
contrast, other authors have reported that although 
BDNF induced an increased behavioral activity when ad-
ministered repeatedly into the VTA, no further increased 
activity was seen after subsequent cocaine injection  [16] . 
Collectively, these data showed that administration of 
BDNF in nigrostriatal and mesolimbic dopamine path-
ways potentiates psychostimulant effects, increasing ana-
tomically specific dopamine-dependent behavior and 
neurochemical turnover in those brain regions. 

 Based on the fact that the sole use of psychostimulants 
is able to enhance dopamine transmission in the meso-
corticolimbic regions, various experimental studies have 
assessed the effect of cocaine on BDNF expression in 
these areas of the brain. Although an early study reported 
no effect of acute cocaine on BDNF levels in the VTA, SN 
and hippocampus  [16] , a recent report revealed an en-
hancement in the expression of mRNA encoding BDNF 
in the rat NAc shell, but not in the core, induced by acute 
cocaine administration  [18] . The enhanced BDNF in this 
specific striatal area is consistent with the role of the 
medioventral NAc compartment, the shell, the site of ac-
tion for natural rewards such as food  [46]  and psychoac-
tive drugs  [47] . In the prefrontal and frontal cortices, a 
transient increase in the BDNF mRNA expression 2–4 h 
after a single cocaine injection was also reported  [48] . 
The increased expression of BDNF in some brain areas 
after acute psychostimulant administration is in accor-
dance with the ability of cocaine to induce activity-de-
pendent changes in the expression of BDNF as an imme-
diate early gene  [49] . The role of psychostimulants on 
BDNF expression has been confirmed using heterozy-
gous BDNF+/– knockout mice, which display half of the 
wild-type BDNF levels and provide a good model where-
in to study the lifelong variation at the BDNF locus. De-
spite the fact that heterozygous BDNF+/– mice showed 
results in locomotor activity equivalent to wild-type 
BDNF+/+  [50] , BDNF heterozygous animals displayed 
less locomotion than the wild-type animals after a single 
cocaine injection  [51] . 

 BDNF and Cocaine-Induced Sensitization 

 It is now well established that some drugs of abuse, 
such as cocaine, administrated intermittently and repeat-
edly, can produce an enhancement of some drug-related 
responses, defined as sensitization  [52] . In animal mod-
els, sensitization can be measured by assessing the in-
crease in locomotor behavior after repeated cocaine or 
amphetamine administration. The effects of a well-estab-
lished sensitization are long-lasting, and can be observed 
several weeks, or even 1 year, after the last exposure to the 
drug  [9, 53] . As Robinson and Berridge  [9, 53]  hypothe-
sized in their incentive sensitization theory, sensitization 
is thought to underlie important aspects of vulnerability 
to drug addiction, the craving during withdrawal and re-
lapse in humans. In rodents, sensitization was shown to 
enhance predisposition to psychostimulant self-adminis-
tration  [54]  and facilitate the reinstatement of drugs after 
extinguished self-administration  [55] . Moreover, there is 
a possibility that sensitization could contribute to psy-
chotic symptomatology (e.g. drug-induced paranoia) 
among psychostimulant abusers and addicts, and even to 
the risk of schizophrenia in vulnerable individuals  [56] . 
Recent research has suggested that BDNF could play 
some part in the neuronal changes that underlie sensiti-
zation following repeated psychostimulant administra-
tion. 

 In an early study, BDNF was infused for 2 weeks into 
two brain areas, the NAc and VTA, before the rats under-
went a treatment of cocaine sensitization. BDNF-treated 
animals showed a progressive increase in locomotor 
 activity after repeated intra-NAc and intra-VTA cocaine 
 injections, suggesting that BDNF into mesolimbic 
 dopamine areas may facilitate the development of sensi-
tization to subsequent cocaine doses  [19] . Recent experi-
mental designs have studied the neurochemical changes 
underlying the behavioral effects of repeated cocaine 
treatment. The increase in locomotor activity and sensi-
tization induced by repeated doses of cocaine was associ-
ated with enhanced levels of mRNA encoding BDNF in 
the rat NAc shell, but not in the core, nor in the hippo-
campus  [18] . These results were in agreement with the 
discrete roles of the NAc shell and core and the preferen-
tial involvement of the shell in the expression of cocaine 
sensitization  [57] . Locomotor sensitization to repeated 
cocaine administration was also studied in heterozygous 
BDNF knockout mice compared with their wild-type lit-
termates. Although there were no differences in locomo-
tor activity between groups at baseline, BDNF knockout 
mice were less sensitive to the locomotor stimulant effects 
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of cocaine and showed a delay in the development of sen-
sitization  [19] . Together, these results suggest that the 
changes in BDNF expression, after repeated cocaine ad-
ministration, especially in two areas of the reward cir-
cuitry, the VTA and NAc shell, could play a role in the 
development of sensitizing effects of this drug of abuse 
( fig. 1 ). 

 It has been suggested that the increase in BDNF ex-
pression induced by cocaine is mediated through dopa-
mine D 1  receptor activation  [58] . In turn, it seems that 
BDNF can strengthen cocaine-induced behavioral sensi-
tization by controlling the expression of specific genes, 
such as the D 3  dopamine receptor. One of the functions 
of D 3  receptor is to modulate the actions of D 1  and D 2  
postsynaptic dopamine receptors  [59] . D 3  expression is 
elevated in the striatum in chronic cocaine abuse  [60] . 
Using lesions or mice lacking BDNF, it has been shown 
that BDNF from dopamine neurons is crucial in trigger-
ing dopamine D 3  receptor expression  [48, 61, 62] , and the 
induction of D 3  occurs mostly in the core of the NAc and 
in the dorsal striatum, two areas where D 3  is normally 
almost totally absent  [61, 62] . Pharmacological treatment 
using highly selective D 3  ligands specifically reduces re-
sponses associated with cocaine consumption  [63, 64] . 
These findings suggest that BDNF may have a role in de-
termining some pathophysiological conditions such as 
drug addiction  [60, 65] . 

 On the other hand, BDNF can also act as a neuropro-
tection factor in drug addiction activating some homeo-
static mechanisms that can counteract the effects of the 
chronic drug use. In fact, BDNF is able to induce the ex-
pression of neuropeptide Y and preprodynorphin in the 
striatum and NAc  [62, 66]  and their increase may attenu-
ate the effects of addictive drugs, whereas a decrease po-
tentiates the effects of the drugs  [14] . It is well known that 
BDNF  [67]  has a role in neuronal survival by providing 
the necessary neuronal trophic support and having a neu-
roprotective effect on pathological conditions, such as 
mood disorder  [68, 69] . According to these data, the in-
creased expression of BDNF in cocaine addiction can en-
hance neuronal resilience, especially in reward-related ar-
eas, thus counteracting the pathological effects of the re-
peated drug consumption. 

 BDNF and Conditioned Responses to Cocaine 

 Environmental stimuli that are closely associated in 
time and space with the effects of drugs of abuse can ac-
quire secondary reinforcing properties through a process 

of Pavlovian conditioning. The conditioned stimuli have 
in themselves the ability to elicit the emotional responses 
that were induced by the drug during active consump-
tion, and maintain drug-seeking behavior and relapse, 
even after long-term abstinence  [70] . BDNF is a growth 
factor involved in synaptic plasticity  [36, 37, 71, 72]  and 
in cellular events, such as LTP  [35, 38] , thought to under-
lie contextual learning in the hippocampus  [73]  and con-
ditioned responses in the amygdala  [30, 74] . Based on its 
functional ability, it has been suggested that the increased 
BDNF released during repeated psychostimulant intake 
might also have a role in the neuronal mechanism that 
underlies the conditioned responses to psychostimu-
lants. 

 In an early study, Horger et al.  [19]  assessed the ability 
of BDNF to modify the reward-related properties of the 
cocaine-associated stimuli in rodents. Intra-NAc BDNF 
infusions strengthened the ability of a stimulus to act as 
a conditioned reinforcer and also increased the cocaine-
induced response to the conditioned reinforcer. The in-
creased cocaine effects in BDNF-treated rats persisted for 
more than a month after the BDNF infusions had fin-
ished. This report supports the hypothesis that BDNF 
promotes long-lasting changes in the mesolimbic dopa-
mine system, activating mechanisms of associative learn-
ing that underlie the persistent addictive behavior that 
endures long after withdrawal. These results were later 
confirmed by a classic Pavlovian procedure that showed 
that mice repeatedly receiving cocaine in a particular en-
vironment showed hyperactivity after subsequent expo-
sure to the drug-paired environment. The increased con-
ditioned responses were associated with enhanced mRNA 
BDNF expression in the VTA which, in turn, modulates 
the expression of D 3  receptor in the NAc. Hyperactivity 
was not elicited by repeated cocaine administration or 
exposure to a new place, and it was assumed that the con-
ditioned stimuli progressively acquired an emotional 
component associated with incentive and motivational 
properties  [75] . The role of BDNF in drug-associated 
stimuli was further confirmed in heterozygous knockout 
mice using a conditioned place preference (CPP) para-
digm. BDNF+/– mice showed attenuated effects of co-
caine reward and a decreased ability to learn a new asso-
ciation between the drug and the place where it was ad-
ministered  [51] . Overall, these results suggest that BDNF 
modulates synaptic morphology and plasticity underly-
ing the learning processes  [36, 37, 71, 72]  that strengthen 
conditioned responses to cocaine. Moreover, the decrease 
in the effects of cocaine on behavior and reward in BDNF-
deficient mice suggests that the human BDNF allelic vari-
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ant underlying individual variability in BDNF expression 
can contribute to differences in human vulnerability to 
cocaine addiction  [76] . 

 BDNF, Craving and Relapse in Cocaine Addiction 

 One of the major clinical problems in cocaine addic-
tion is relapse. This is often triggered by the subjective 
state of craving that appears during withdrawal, and pre-
cedes and accompanies drug-seeking behavior. Clinical 
evidence has shown that withdrawal is a critical period in 
addiction, during which sensitization to drug-associated 
environmental cues increases, triggering craving and 
heightening vulnerability and the risk of relapse  [2] . Dur-
ing withdrawal, significant neuroadaptation occurs in 
the reward circuitry, including the molecular and cellular 
 [5, 8, 14, 77, 78]  and morphological synaptic changes  [8, 
13]  that have been associated with behavioral sensitiza-
tion  [79]  and mechanisms of learning and memory  [10, 
80] . Recent experimental studies have suggested that 
changes in BDNF expression during withdrawal may me-
diate some of the synaptic modifications underlying the 
incubation of craving and subsequent relapse into drug 
consumption. 

 In experimental models of craving and relapse, re-
sponsiveness to cocaine cues increases progressively dur-
ing withdrawal. In one of these studies, rats were trained 
to self-administer cocaine or sucrose for several days dur-
ing which each reward was paired with a cue. After co-
caine withdrawal, behavioral measures of lever pressing 
during extinction and cue-induced reinstatement of re-
ward seeking, two different tests of cocaine craving, were 
progressively increased over 90 days or longer. It was 
found that BDNF levels rose significantly and progres-
sively in the VTA, the NAc and the amygdala during 
withdrawal from cocaine, but not from sucrose. It has 
been suggested that increased BDNF during psychostim-
ulant withdrawal may mediate neuronal plasticity lead-
ing to synaptic modifications that underlie enhanced re-
sponsiveness to cocaine cues and compulsive drug seek-
ing in addicts  [17] . Based on these data, the role of BDNF 
in cocaine withdrawal was further studied by the same 
laboratory in a later work using the same animal model 
but including an exogenous BDNF infusion into the VTA 
and the SN, after the training period. Intra-VTA, but not 
intra-SN infusions of BDNF, progressively enhanced co-
caine seeking after withdrawal. This resulted in the re-
sponse to cocaine cues being higher 30 days following 
withdrawal from cocaine than after 3 days  [20] . It is well 

established that the VTA is the site of action of the pri-
mary excitatory inputs, which come from the prefrontal 
cortex and the amygdala ( fig. 1 ), two regions of the brain 
activated by drug-associated cues  [81] . The rise in BDNF 
levels during withdrawal may facilitate synaptic plastic-
ity in the VTA dopamine neurons during withdrawal, 
which, in turn, facilitates drug-associated memory and 
responses to conditioned cues leading to compulsive drug 
seeking and relapse. 

 The role of BDNF in synaptic plasticity of the mid-
brain VTA dopamine neurons during cocaine withdraw-
al   has been further confirmed using a neurophysiological 
model. In VTA slices, obtained from rats after withdraw-
al, weak presynaptic stimuli administered on dopamine 
neurons resulted in a persistent increase in excitatory 
postsynaptic potentials. The enhanced VTA neuronal re-
sponses were found 10–15 days after cocaine withdrawal; 
however, they were not detected after 1 day. This shows 
that, during withdrawal, VTA dopamine neurons be-
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  Fig. 1.  Basic circuitry expressing changes in BDNF levels in co-
caine addiction. It includes the primary neurotransmitters, the 
topographic organization and interconnections between the re-
ward-related pathways, learning and memory pathways and cir-
cuits involved in cocaine seeking. The mesencephalic VTA pro-
jects its dopaminergic (DA) efferents to the limbic nuclei, the NAc 
core and shell, amygdala and hippocampus, and the dorsolateral 
prefrontal cortex (DLPF) and ventral prefrontal cortex (VPF). 
The hippocampus and amygdala, the latter through its BLA, and 
the DLPF and VPF project their glutamatergic (GLU) efferents to 
the shell and core of the NAc, respectively. The figure also in-
cludes the dorsal striatum (DSTM) and its connexions with the 
SN. 
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come increasingly susceptible to the induction of LTP. At 
the same time, BDNF levels were found to be increased 
in VTA tissues after 10–15 days of withdrawal, but were 
not detected 1 day after withdrawal. Moreover, when ex-
ogenous BDNF was applied to the VTA before, persistent 
potentiation was observed both in naïve rats and after 1 
day of withdrawal, suggesting that BDNF may act as a 
permissive factor for the induction, expression and main-
tenance of LTP in VTA synapses  [82] . It is well estab-
lished that LTP is a basic model for cellular processes that 
underlie information storage with the neural systems 
through the formation of new synapses and remodeling 
of the existing ones  [83] . BDNF plays a critical role in 
modulating synaptic plasticity in learning and memory 
processes  [36, 37, 71, 72] . Collectively, these data suggest 
that increased BDNF levels in VTA neurons during with-
drawal may result in synaptic remodeling and sensitiza-
tion which, in turn, enhance cue-associated excitatory 
inputs in this region of the brain contributing to compul-
sive drug seeking and relapse ( fig. 1 ). 

 The amygdala expresses high levels of BDNF  [29, 30]  
and repeated injections of psychostimulants, such as co-
caine  [17]  or amphetamine  [84] , induce upregulation of 
BDNF expression in the basolateral nucleus of the amyg-
dala (BLA), the medial NAc and small zones in the dorsal 
striatum. It is well established that the amygdala, a key 
structure involved in cocaine withdrawal, is a limbic nu-
cleus which plays an important role in regulating moti-
vational states, including those associated with addic-
tion. Different amygdala subnuclei mediate different 
learning and emotional processing, and, in particular, 
the central nucleus of the amygdala (CeA) and the BLA 
have different roles in conditioned learning in drug ad-
diction  [85] . The BLA has reciprocal projections to the 
NAc core enabling it to influence reward-related behav-
ior. It is accepted that the BLA is responsible for emotion-
al Pavlovian conditioning and mediates reward-related 
learning, the motivational effects of emotionally signifi-
cant stimuli and cue-elicited drug-seeking behavior  [97] . 
Stimulation of the BLA can modulate the induction and 
maintenance of hippocampal LTP, the essential mecha-
nism in learning and memory  [86] . Taken together, these 
data suggest that enhanced BDNF activity following 
long-term abuse or dependence on psychostimulants can 
play an essential role in determining enduring neuroplas-
ticity in these limbic structures ( fig. 1 ). Such neuronal 
changes can account for emotional and environmental 
conditioned learning related to psychostimulant con-
sumption, which can trigger a relapse even after long-
term abstinence. 

 In humans, BDNF levels can be assessed in serum and 
there is evidence that serum BDNF levels correlate with 
levels of BDNF in the central nervous system  [87] . To our 
knowledge, there is only one study reporting the effects 
of withdrawal from stimulant abuse on BDNF levels in 
humans. This study found significantly elevated plasma 
BDNF concentration in patients having a history of 
chronic methamphetamine abuse. These results cannot 
be related to the history of comorbid psychiatric illness, 
addiction to drugs or other organic diseases which can 
modify BDNF expression, because patients with such 
conditions were excluded. The study suggests that BDNF 
may play a role in the effects of methamphetamine abuse 
in humans  [88] . 

 Intracellular Signaling Pathways of BDNF 

 Through its high-affinity TrkB receptor, BDNF leads 
to the activation of three intracellular signal transduction 
systems, including the MAPK signal transduction cas-
cade (MAPK/ERK), PI3K pathway and phospholipase 
 [25–27]  ( fig. 2 ). It has been suggested that the role of 
BDNF in cocaine addiction is mediated, at least in part, 
through these intracellular signaling pathways. 

 MAPK Cascade, Cocaine Addiction and Relapse 
 Recent studies have demonstrated that ERK, the major 

effector of BDNF, is also activated by dopaminergic ago-
nistic activity through D 1  receptor  [21, 58, 59] , interact-
ing with NMDA glutamate receptors, and with a partial 
contribution of D 2  dopamine receptors  [21, 41, 89] . Since 
ERK is a common element for BDNF, dopamine and glu-
tamate intracellular pathways, there appears to be a large 
degree of cross-talk between the signaling mechanisms 
and this might play a crucial role in drug addiction 
( fig. 2 ). 

 Acute cocaine administration induces a rapid and 
time-dependent increase in ERK phosphorylation (acti-
vation) in the dorsal striatum, in addition to the NAc core 
and shell  [58, 89, 90] . Recent studies have shown that 
acute cocaine administration also activates ERK in other 
regions of the reward circuitry, including the NAc shell 
and core, the bed nucleus of the stria terminalis, the CeA 
 [91, 92] , the basolateral, basomedial and medial pos-
terodorsal amygdala  [92] , as well as in the prefrontal cor-
tex  [92] . In addition, inhibition of ERK activity impairs 
the rewarding properties of acute cocaine administration 
 [89] . 
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 Chronic cocaine treatment (twice daily via intraperi-
toneal injection for 10 days) leads to a sustained increase 
in ERK activity in the VTA; however, this change was not 
observed in the SN, frontal cortex and NAc. Nevertheless, 
the increase in ERK activity in response to chronic co-
caine administration was attributable to an enhanced 
phosphorylation state with no change in total ERK im-
munoreactivity. In addition, repeated BDNF infusions 
into the VTA induce a decrease in ERK levels with no 
change in ERK activity. This suggests that BDNF is able 
to elicit a homeostatic response in VTA cells that prevents 
any additional increase in ERK with repeated cocaine ad-

ministration and returns ERK activity to control levels 
 [28, 92] . These findings support the hypothesis that 
BDNF, but not ERK, is also able to act as a neuroprotec-
tion factor, attenuating chronic cocaine effects by reduc-
ing the capacity of VTA neurons to respond to repeated 
drug exposure  [28] . 

 Based on the acute and chronic effects of cocaine on 
ERK activity, several authors have studied the possible 
role of ERK in different models of cocaine addiction. 
PD98059, an MAPK/ERK kinase (MEK) inhibitor, 
through microinjection into the VTA before repeated co-
caine exposure, was used to assess the role of ERK in be-
havioral sensitization. Although PD98059 had no effect 
on the acute behavioral response, it impaired the devel-
opment of behavioral sensitization after chronic cocaine 
administration  [16] . In agreement with these results, lat-
er studies reported that SL327, another inhibitor of ERK 
phosphorylation, prevented locomotor sensitization and 
had a limited effect on the acute locomotor responses to 
cocaine. These reports suggested that ERK contributes 
only in a minor way to acute locomotor effects or to the 
expression of sensitized responses to psychostimulants, 
whereas it is crucial for the acquisition of sensitized re-
sponses  [93, 94] . Considering the role of the Ras/MAPK 
signal transduction cascade in neuroplasticity  [95] , it is 
possible that ERK could contribute to the neuronal chang-
es in the NAc and VTA that are responsible for the acqui-
sition of sensitized responses that underlies cocaine ad-
diction in humans  [94] . It is also important to consider 
the role of the two predominant ERK isoforms, ERK1 and 
ERK2, when studying the transition to cocaine addiction. 
Elimination of ERK1 leads to an increase in ERK2 and 
facilitates cocaine-induced psychomotor sensitization 
 [93] , suggesting that genetic variants that may affect the 
expression of these isoforms could lead to vulnerability 
to cocaine addiction. 

 During the protocol used by Valjent et al.  [94]  in 2006 
to study cocaine sensitization, mice developed an asso-
ciation between the context and the effects of the drug. 
Animals displayed conditioned locomotor responses in 
the environment previously paired with cocaine, even in 
the absence of the drug. These conditioned locomotor re-
sponses have many similarities with Pavlovian condi-
tioning, by which environmental cues become associated 
with the effects of the drug. The conditioned responses 
were completely abolished in mice pretreated with SL327 
before each injection with cocaine, suggesting a crucial 
role for ERK in these responses. A CPP paradigm was 
used for a more detailed study of the role of ERK in the 
association between environmental stimuli and drug 

Cocaine
Synaptic activity

Neuroplasticity

Raf Ras

U0126
PD98059
SL327

BDNF

Shc-Grb2-Sos

TrkB

MEK

ERK

CREB

Activation
(PKA, Ca2+)

NMDA D1R

  Fig. 2.  BDNF and the ERK intracellular signaling pathway. The 
figure includes the one of the two BDNF signaling cascades in-
volved in cocaine addiction and its interaction with dopamine 
and glutamate intracellular messengers. The BDNF signaling 
pathway is initiated by the binding of BDNF with the receptor 
TrkB. Once activated, the TrkB receptor autophosphorylates spe-
cific tyrosine residues within the intracellular domains. The 
phosphorylated tyrosines serve as protein interaction sites for Shc 
(SH2-containing adapter protein). Tyrosine phosphorylation of 
SHC subsequently triggers phosphorylation reactions that in-
clude Raf, MEK and MAPK/ERK. The cyclic AMP response ele-
ment-binding protein (CREB) is an important downstream me-
diator for BDNF function which triggers neuronal changes and 
neuroplasticity. There is a cross-talk between the BDNF intracel-
lular signaling mechanism and those of the glutamate and dopa-
mine transmission, possibly between protein kinases (PKA) and 
Ca 2+ . U0126, PD98059 and SL327 are inhibitors of the Ras/ERK 
signal transduction cascade. 
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abuse. After behavioral conditioning was established, 
there was also a significant increase in ERK activity in 
some reward-related areas, i.e. the NAc core but not in the 
NAc shell  [96] . The selective increase of ERK in the NAc 
core is consistent with the involvement of this reward re-
gion in conditioned emotional responses and in cue-elic-
ited drug seeking  [97, 98] , while the NAc shell is involved 
in the unconditioned effects of cocaine  [47] . The admin-
istration of intra-NAc infusions of U0126, an ERK kinase 
inhibitor, blocked the expression of the preference for the 
environment previously paired with cocaine without af-
fecting measures of locomotion, and prevented the acti-
vation of the ERK signaling pathway. Blockade of the 
place preference conditioning lasted for 14 days after the 
injection of different MEK inhibitors  [96] . Disruption of 
CPP induced by ERK cascade inhibitors was also report-
ed after repeated administration of amphetamine  [99]  
and MDMA  [100] . Taken together, these findings sug-
gested that ERK intracellular cascade in the NAc core is 
part of the molecular mechanisms for drug-paired con-
textual cue memories, by which environmental stimuli 
exert a motivational influence on drug-seeking behav-
ior. 

 ERK is also involved in the neurobiological and behav-
ioral changes during cocaine withdrawal, mediating the 
BDNF-induced potentiation of cocaine seeking in re-
sponse to conditioned stimuli  [20] . Inhibition of ERK 
phosphorylation in the CeA after 30 days of withdrawal 
decreased cocaine seeking in response to drug cues, while 
stimulation of ERK activity enhanced cocaine seeking 
induced by cues  [101] . It has been hypothesized that the 
increase in ERK phosphorylation in the CeA from expo-
sure to cocaine cues during withdrawal may be mediated 
by an increase in glutamate activity through the NMDA 
receptor  [41] . These findings suggest that activation of 
the ERK pathway during withdrawal, in response to co-
caine-conditioned cues, is involved in synaptic plasticity 
underlying learning and memory that results in craving 
and subsequent relapse. Pharmacological intervention 
that prevents the effects of cocaine on ERK activity should 
be considered in the treatment of cocaine addiction 
 [102] . 

 It has been hypothesized that mechanisms similar to 
memory reconsolidation are operating during repeated 
drug administration and withdrawal, and the molecular 
mechanism of drug-conditioned effects has been evalu-
ated on this basis. Valjent et al.  [103]  reported that sup-
pression of cocaine-induced CPP by SL327, an MEK in-
hibitor, required the combination of cocaine administra-
tion and the drug-associated environment and did not 

result from extinction. According to these results, the re-
activation of drug-related memories appears to need the 
association of a drug injection and the conditioned drug-
paired environment, in contrast to reconsolidation of 
other types of memories achieved by exposure to the con-
ditioned stimulus alone. In the same study, mice were 
also treated with anisomycin, a protein synthesis inhibi-
tor, after being reexposed to cocaine in the drug-paired 
compartment. Anisomycin abolished cocaine-induced 
CPP suggesting that ERK exerts its effect through protein 
synthesis regulation  [103] . In addition, cocaine-induced 
locomotor sensitization cannot be reversed by cocaine re-
exposure in the presence of anisomycin, supporting the 
fact that cocaine conditioning and cocaine sensitization 
are two discrete behavioral responses that depend on dif-
ferent neurochemical mechanisms and even on different 
neuronal pathways  [103] . 

 PI3K Cascade and Cocaine Addiction 
 PI3K is a lipid kinase and a second messenger for 

BDNF which plays a crucial role in the cellular mecha-
nism of LTP, being necessary for the expression of LTP, 
although not for its induction and maintenance  [43, 44] . 
PI3K can be a common pathway for the expression of 
multiple forms of synaptic plasticity such as dynamic 
modification of dendritic spines  [44]  and plays an impor-
tant role in learning and memory  [72, 104] . Recently, 
there has also been evidence implicating PI3K in cocaine 
addiction. 

 Cocaine-sensitized rats, treated with the reversible in-
hibitor of PI3K LY294002 on the challenge dose day, did 
not show an increase in locomotor activity. Conversely, 
when rats were treated with LY294002 during the initial 
phase of repeated cocaine administration, they showed a 
significant increase in locomotor activity during the co-
caine challenge. These results suggested that PI3K is nec-
essary for the expression of behavioral sensitization to 
cocaine but not for the induction and persistence of the 
sensitized behavior  [105] . This is in contrast to the ERK 
signal transduction cascade involved in the induction of 
behavioral sensitization, but not in its expression  [16, 94] , 
suggesting that these two intracellular signaling mecha-
nisms may play complementary roles in cocaine addic-
tion. 

 Recently, the differential involvement of different 
brain structures in PI3K-dependent cocaine sensitization 
and its subsequent reversal has been evaluated. After 
 repeated cocaine administration and withdrawal, rats 
showed an increase in locomotor behavior associated 
with enhanced p85 � /p110 PI3K activity in the NAc shell, 
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measured after 23 days of withdrawal. Administration of 
pergolide (a mixed D 1 /D 2  agonist)/ondansetron (a 5-HT3 
selective antagonist) after withdrawal reversed behavior-
al sensitization and normalized the enhanced PI3K activ-
ity. At the same time, a PI3K downregulation and upreg-
ulation in the NAc core and prefrontal cortex, respec-
tively, was reported. However, in these two regions of the 
brain, PI3K activity was not normalized following the re-
versal of cocaine sensitization. These results suggest that 
PI3K in the NAc shell may be one of the key alterations 
underlying the establishment and long-term mainte-
nance of cocaine sensitization  [106] . The discrete expres-
sion of PI3K in the NAc shell in response to cocaine sen-
sitization and withdrawal further supports the differen-
tial roles of the NAc shell and core, with the former being 
involved in the expression of the sensitizing effects of co-
caine  [57] . 

 Conclusions 

 Cocaine consumption leads to an increase in BDNF 
levels and enhanced activity in their intracellular path-
ways, ERK and PI3K, in the reward-related brain areas, 
including the NAc shell and core, the VTA, the CeA and 
BLA and even in the prefrontal cortex. These effects are 

especially important after several days of abstinence. 
BDNF, ERK and PI3K can be activated by cocaine con-
sumption, through dopaminergic and glutamatergic 
stimulation, together leading to increased gene expres-
sion which plays an essential role in synaptic plasticity. 
The increase induced by cocaine in BDNF and its intra-
cellular signaling mechanisms, ERK and PI3K, in the 
VTA, NAc shell and the prefrontal cortex may underlie 
sensitized responses to psychostimulants and cocaine-
seeking behavior after withdrawal. In the NAc core and 
the amygdala, the enhanced BDNF levels and ERK ac-
tivity might be part of the molecular mechanisms un-
derlying drug-paired contextual and cue memories in 
the context of drug-seeking behavior. All these neuro-
chemical mechanisms could contribute to the transition 
from sporadic cocaine consumption to addiction and 
relapse even after long-term abstinence. In addition, the 
neurotrophin BDNF could also have some role as a pro-
tection factor in drug addiction. Finally, sensitization 
and memories associated with addiction to psychostim-
ulants can be disrupted by administration of Ras/ERK 
and PI3K cascade inhibitors which decrease cocaine 
seeking after withdrawal. These results suggest poten-
tial therapeutic strategies to be explored in the context 
of addiction. 
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