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Abstract

Brain-derived neurotrophic factor (BDNF) is one of the most studied neurotrophins in the healthy and diseased brain. As a result, there

is a large body of evidence that associates BDNF with neuronal maintenance, neuronal survival, plasticity, and neurotransmitter

regulation. Patients with psychiatric and neurodegenerative disorders often have reduced BDNF concentrations in their blood and

brain. A current hypothesis suggests that these abnormal BDNF levels might be due to the chronic inflammatory state of the brain in

certain disorders, as neuroinflammation is known to affect several BDNF-related signaling pathways. Activation of glia cells can

induce an increase in the levels of pro- and antiinflammatory cytokines and reactive oxygen species, which can lead to the modulation

of neuronal function and neurotoxicity observed in several brain pathologies. Understanding how neuroinflammation is involved in

disorders of the brain, especially in the disease onset and progression, can be crucial for the development of new strategies of treatment.

Despite the increasing evidence for the involvement of BDNF and neuroinflammation in brain disorders, there is scarce evidence that

addresses the interaction between the neurotrophin and neuroinflammation in psychiatric and neurodegenerative diseases. This review

focuses on the effect of acute and chronic inflammation on BDNF levels in the most common psychiatric and neurodegenerative

disorders and aims to shed some light on the possible biological mechanisms that may influence this effect. In addition, this reviewwill

address the effect of behavior and pharmacological interventions on BDNF levels in these disorders.
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Introduction

Brain disorders are among the major causes of disability and

morbidity worldwide. According to recent projections, the inci-

dence of such diseases will increase in the next decades [1]. The

lack of adequate treatment turns these diseases into a significant

problem worldwide, and the absence of effective treatment can

partly be ascribed to our incomplete knowledge of the etiology of

most brain disorders. Manymental diseases, however, are tightly

associated with environmental stimuli, such as stress [2].

Challenging events can pose a significant burden on individuals,

especially those more sensitive to its effects. Although acute

stress can have benefits (e.g., enhanced attention, memory), it

can also become life threatening when stressful events become

a routine part of the life of individuals. A number of studies have

already shown that stress is associated with metabolic changes,

cardiovascular risk, endocrine abnormalities, mood changes, and

impairment of cognitive functions (i.e., mild cognitive impair-

ment), leading to an increased risk of developing psychiatric and

neurologic disorders [2, 3]. Chronic stress can lead to the activa-

tion of pro-inflammatory microglia, releasing cytokines and pro-

inflammatory substances, and recruitment of peripheral immune

cells to the brain, thus creating the inflammatory environment

that is characteristic for many brain pathologies.

In order to cope with stressful events, brain cells release

several substances that can promote neuronal survival, such as

antiinflammatory cytokines, growth factors and neurotrophic

factors. One of the best-studied neurotrophins is the brain-

derived neurotrophic factor (BDNF). Brain pathologies are

usually associated with a downregulation of BDNF release,

resulting in reduced BDNF levels in the brain and in blood.
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BDNF has been suggested as a candidate biomarker of path-

ological conditions, and therapy efficacy, as most of current

treatments are accompanied by a significant change in blood

BDNF levels. However, there is still a gap in our understand-

ing of the physiological mechanisms that lead to changes in

BDNF levels under pathological conditions.

This review will summarize our current knowledge of

BDNF in the pathophysiology of the most common brain

disorders. Since neuroinflammation has been considered an

important mediator for the onset and progression of many

brain pathologies, this review will also attempt to explore

the interaction between neuroinflammation and BDNF ex-

pression in the brain.

BDNF Expression and Function

BDNF is a member of the neurotrophin family, which also in-

cludes neural growth factor (NGF) and neurotrophins 3 and 4.

The Bdnf gene is comprised of a common 3′-exon that encodes

the pro-BDNF region of the protein, and several species-

dependent 5′-noncoding, promoter-regulated regions, terminat-

ing in a coding 5′-exon that encompasses the gene expression

[4, 5]. Bdnf gene expression is strongly regulated by a wide array

of endogenous and exogenous stimuli (e.g., stress, physical ac-

tivity, brain injury, diet). BDNF is translated as a pro-

neurotrophin (pro-BDNF) that can be cleaved into mature

BDNF in the cytoplasm by endoproteases or in the extracellular

matrix by plasmin or matrix metalloproteinases (MMP). Both

mature BDNF and pro-BDNF can be secreted and bind to the

low affinity p75 neurotrophin receptor (p75NTR), which causes

activation of the apoptosis cascade [6, 7]. On the other hand,

cleaved, mature BDNF binds to its high-affinity receptor tyrosine

kinase B (TrkB), activating several signaling cascades, including

the Ras-mitogen-activated protein kinase (MAPK), the

phosphatidylinositol-3-kinase (PI3K), and the phospholipase

Cγ (PLC-γ) pathway. These signaling cascades induce an in-

crease in Ca2+ intake, phosphorylation of transcription factors,

and de novo expression of the Bdnf gene (Fig. 1) [8]. Although

pro-BDNF can act as a signaling factor for the apoptotic cascade,

it is not yet clear if pro-BDNF is secreted by neurons under

normal conditions as its concentration in presynaptic terminals

is relatively low when compared to mature BDNF. Indeed, in

animal models, the concentration of mature BDNF can be ten

times higher than the concentration of pro-BDNF [9, 10], which

poses a question regarding the efficacy of pro-BDNF as a proper

signaling factor.

BDNF has a wide array of functions within the brain and is

highly abundant in several brain structures. In the brain, BDNF is

involved in plasticity, neuronal survival, formation of new syn-

apses, dendritic branching, and modulation of excitatory and

inhibitory neurotransmitter profiles [11, 12]. BDNF is active at

all stages of development and aging [13]. Knockout mice lacking

BDNF rarely reach adulthood and, when they do, there is a

development of several sensory impairments [14, 15]. BDNF is

also found in peripheral organs, such as the heart, gut, thymus,

and spleen [16, 17]. Around 90% of the BDNF in blood is stored

within platelets [18]. Many brain pathologies cause reduction of

BDNF protein levels both in the brain and serum of patients

[19–22]. Unfortunately, it is still unclear whether BDNF protein

levels measured in serum samples reflect BDNF levels in the

brain, as studies in animal models gave contradictory results so

far [23–25].

BDNF in Neuroinflammation

After inflammatory signaling (e.g., stress, pro-inflammatory

signals), several signaling cascades are changed within the

cell. This signaling generates a sequence of events that may

eventually lead to neuronal malfunction and apoptosis.

Microglia also participate actively in the development of path-

ological neuroinflammatory process by releasing pro-

inflammatory cytokines, which contribute to the neurotoxici-

ty. This cycle is repeated as long as the stressor is present,

which can develop into serious consequences (e.g., cognitive

impairment, behavioral dysfunction, neurological and psychi-

atric disorders). One of the main factors of inflammatory ac-

tivation is the nuclear factor-kappa B (NF-κB), a transcription

factor that induces the expression of several pro- and

antiapoptotic genes, including Bdnf [26]. Interestingly, bind-

ing of BDNF to the TrkB receptor can also induce the expres-

sion of NF-κB, although the pathways for this modulation are

yet unclear (Fig. 2). NF-κB is closely involved in the innate

and adaptive immune response in several psychiatric and neu-

rodegenerative diseases [27]. NF-κB is a regulator of, e.g.,

apoptosis, neuronal survival and proliferation, and migration

and maturation of immune cells [28]. BDNF-induced NF-κB

expression stimulates PLC-γ/PKC signaling through the acti-

vation of the kinases IKKα and IKKβ. These kinases phos-

phorylate the NF-κB inhibitory unit IκBα, resulting in the

binding of ubiquitin and subsequently degradation of IκBα

by proteasomes [29]. IκBα degradation induces the release of

the NF-κB and formation of the p50/p65 dimer, which binds

to the DNA and induces the expression of genes related to

neuronal proliferation, survival, and inflammatory response

[29, 30]. Furthermore, it is known that BDNF can also bind

to the p75NTR. Even though the affinity of BDNF for the

p75NTR receptor is several times lower than for TrkB [31],

a p75NTR-mediated effect on NF-κB expression can be ob-

served. Studies have shown that activation of p75NTR in-

creases apoptotic and inflammatory signaling in neurons and

glial cells by activation of c-Jun N-terminal kinases (JNK) and

NF-κB expression, respectively [32, 33]. However, the effect

the p75NTR has on neurotrophic signaling is still under de-

bate, as there is no clear evidence on how large the role of the

p75NTR is in mediating such processes.
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Thus, the role of BDNF in neuroinflammation is strongly

related to its ability to induce—and being induced by—NF-κB.

However, the exact regulatory mechanisms are not yet clear.

BDNF and Aging

The aging process can lead to the impairment of several brain

functions. Studies have reported a decrease inwhole brain volume

in elderly when compared with young adults, especially in brain

regions related to cognition [34–37]. Upon aging, microglia in-

creasingly adopt a pro-inflammatory state due to a decrease in the

resting signaling by neurons and astrocytes [38, 39]. As a result,

external stimuli (e.g., stress, trauma, infection) can submit the

aged brain more easily into a state of mild chronic neuroinflam-

mation, making the brain more prone to apoptotic signaling [40].

This can lead to volume loss and the associated cognitive impair-

ment [41]. Animal studies in stress models, such as chronic stress,

Fig. 1 BDNF induces survival-related signaling mechanisms: BDNF in-

duces survival-related signaling mechanisms: In physiological condi-

tions, binding of BDNF to TrkB receptor in either paracrine or autocrine

signaling elicits three distinct downstream pathways. BDNF-dependent

phospholipase C-gamma (PLC-γ) can induce short-term signaling by

increasing Ca2+ neuronal response and inhibit inflammatory-dependent

apoptosis cascade (dashed lines) by inhibition of glycogen synthase ki-

nase 3-beta (GSK-3β). Induction of phosphatidylinositol 3-Phosphate

(PI3K) induces transcription of BDNF mRNA by activating mTOR-

dependent translation of BDNF. Additionally, BDNF can modulate gene

regulation by activating NF-κB and CREB transcription factors by induc-

ing Akt and Erk downstream pathways, respectively. Gene modulation

induces neuronal survival, growth, long-term potentiation (LTP), and de

novo expression of BDNF. In addition, BDNF-independent

transactivation of TrkB can also play an important role in the neurotrophic

pathway regulation by factors, such as adenosine, zinc, epidermal growth

factor (EGF), glucocorticoids, and pituitary adenylate-cyclase-activating

polypeptide (PACAP), further enhancing TrkB signaling in the synapse
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maternal separation, and social defeat, have confirmed that stress

is associated with glial activation and that aging decreases cogni-

tive function [42, 43]. The loss of volume is indicative of a reduc-

tion in the global neuronal network, and consequently a dimin-

ished brain plasticity that could support the brain in such events,

thus reducing the cognitive function [44, 45].

It is known that BDNF plays a role in maintaining brain

function by inducing survival signaling and neuroplasticity.

Although the effect ismore visible in younger population, elderly

subjects also benefit from it, especially those cognitively, physi-

cally, and socially active, reducing the risk of age-related comor-

bidities [46]. Studies in animal models report an increase in brain

BDNF levels when aged animals are submitted to protocols such

as long-term environmental enrichment [47–49] or physical

activity [50, 51]. Studies on agedmice demonstrated that animals

heterozygous for BDNF showed decreased fear extinction learn-

ing [52] and conditioned fear learning [53] when compared with

young heterozygousmice, but themechanism responsible for the

behavioral effects is not completely clear yet. Better understand-

ing of the processes that are modulated by BDNF may facilitate

the development of novel therapeutic methods that could help to

prevent or counteract the aging effects on the human brain.

BDNF in Psychiatric Disorders

Whenever the brain is challenged by harmful events, its cop-

ing mechanisms are activated in order to revert the system to

Fig. 2 BDNF response after inflammatory brain pathogenicity. In

chronically stressful situations, such as brain pathologies, there is an

induction of NF-κB-dependent pro-inflammatory activation of microglia

after induction of the pattern recognition receptor (PRR) by the challenge

(e.g., stress or pathology). Pro-inflammatory cytokines, especially IL-1,

can directly bind microglial cells, which result in induction of the expres-

sion and release of several mediators, most of which are neurotoxic,

including reactive oxygen (ROS) and nitrogen species (RNS), pro-

inflammatory cytokines (such as tumor necrosis factor), and chemokines

(such as CC-chemokine ligand 2, CCL2; also known as MCP1).

Additionally, there is a decrease of BDNF signaling in the synaptic cleft,

further reducing BDNF-dependent survival-related signaling (black

dashed lines) and inhibition of apoptotic pathways, such as glycogen

synthase kinase 3-beta (GSK-3: red dashed line). Such factors will lead

to an increase of NF-κB complex binding to genes that express pro-

inflammatory cytokines (e.g., interleukin 1-β, IL-6, IL-8, TNF). The ef-

fect of transactivation factors on the BDNF-independent maintenance of

TrkB is not clear yet
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homeostasis. When these coping mechanisms fail, e.g., due to

excessive damage, enhanced sensitivity, and chronic or recur-

rent exposure to stimuli, a disturbance of normal brain func-

tion may occur that can lead to the onset of neuropsychiatric

disorders (Table 1). Although psychiatric diseases can display

wide spectra of symptoms, common phenomena in these dis-

orders are a disarray of excitatory/inhibitory neurotransmitter

signaling and loss of neuronal function, leading to mood and

behavioral disturbances, and cognitive impairment.

In humans, BDNF is known to be a useful biomarker for

several psychiatric disorders [54]. Most chronic psychiatric

diseases are accompanied by changes in BDNF levels, but it

is still unclear if changes in BDNF levels are the cause or the

result of the disturbances of normal brain function. Therefore,

the effects of BDNF levels have been investigated in animal

models. Heterozygous BDNF mice show increased weight

gain, aggressiveness, anxiety, and contextual memory impair-

ment and therefore have been suggested as an animal model

for mood disorders [55]. These results suggest that BDNF

could be a key player in the development of several symptoms

associated with psychiatric disorders. This hypothesis is sup-

ported by the fact that effective treatment of these symptoms

resulted in normalization of BDNF levels [56]. In this section,

we will further discuss the role of BDNF in the main psychi-

atric disorders: major depressive disorder, bipolar disorder,

and schizophrenia.

Table 1 Effects of BDNF on several neuropsychiatric and neurodegenerative conditions

Condition Peripheral BDNF Brain BDNF References

Major

depressive

disorder

(MDD)

Decreased serum and plasma levels of

BDNF protein; some literature findings

showing no change or increased levels in

MDD patients; euthymic patients have

normalized BDNF levels in serum or

plasma; increased methylation of the

Bdnf gene is associated with a decrease

in mRNA expression; treatment-resistant

patients show lower BDNF levels in se-

rum compared to treatment-responsive

patients

Decreased BDNF and TrkB mRNA

expression in hippocampal slices of

MDD patients; use of antidepressant

medication was associated with

increased Bdnf mRNA expression

Elfving et al. (2012), Karege et al. (2005),

Matrisciano et al. (2009), Pandey et al.

(2008), Thompson Ray et al. (2011),

Hong et al. (2014)

Bipolar

disorder

(BD)

Decreased serum and plasma levels of

BDNF in both manic and depressive

stages of BD; euthymic patients show no

difference from controls

Decreased BDNF mRNA expression in

hippocampus of suicidal BD patients; no

difference in Bdnf expression between

different disease stages (euthymic,

depressive or manic)

Banerjee et al. (2013), Knable et al. (2004),

Monteleone et al. (2008), Sklar et al.

(2002), Ray et al. (2014)

Schizophrenia

(SCZ)

Decreased BDNF protein levels in serum of

SCZ patients; no changes in BDNF

levels after treatment

Decreased expression of Bdnf and Trkb

genes in hippocampus and dorsolateral

prefrontal cortex of SCZ patients;

increased methylation of Bdnf gene in

prefrontal cortex of SCZ patients

Dong et al. (2015), Pillai (2008), Rao et al.

(2015), Reinhart et al. (2015), Rizos et al.

(2008), Weickert et al. (2003), Weickert

et al. (2005), Xiu et al. (2009), Zhang et

al. (2012)

Alzheimer

disease

(AD)

Low serum BDNF levels correlate with

development of dementia—especially

AD; decreased levels of BDNF in serum

of AD patients; BDNF levels are not

related to severity of disease; successful

treatment transiently increases BDNF in

AD

BDNF genotype is related with reduced

Hippocampal activity and cognitive

function in subjects with high levels of

A-β and AD patients; decreased BDNF

mRNA levels in the hippocampus of AD

patients; increase in methylation pattern

of the Bdnf gene in the frontal cortex of

AD patients

Buchman et al. (2016), Honea et al. (2013),

Lee et al. (2005), Lim et al. (2014),

Phillips et al. (1991), Rao et al. (2012),

Weinstein et al. (2014)

Parkinson

disease

(PD)

Serum BDNF levels are directly correlated

with degeneration of striatum in PD; low

serum levels of BDNF is correlated with

decreased cognitive function in early PD

patients; BDNF decrease in serum is

associated with the progression of motor

symptoms

Low BDNF mRNA expression in the

striatum of PD patients; association

between BDNF polymorphism and

disease progression

Cagni et al. (2016), Howells et al. (2000),

Scalzo et al. (2010), Y. Wang et al.

(2016), Ziebell et al. (2012)

Epilepsy BDNF val66met single nucleotide

polymorphism is associated with higher

BDNF protein expression and an

increased risk of developing epilepsy;

increased serum BDNF protein levels

after epileptic seizures are associated

with increased glutamate signaling

Increased mRNA expression of Bdnf exons

in the hippocampus and cortex of

temporal lobe epilepsy patients;

increased BDNF protein expression in

the hippocampus of temporal lobe

epilepsy patients

Brooks-Kayal et al. (2009), Kandratavicius

et al. (2013), Martínez-Levy et al.

(2016), Martínez-Levy et al. (2017), N.

et al. (2016), Warburton et al. (2016)
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Major Depressive Disorder

Major depressive disorder (MDD) is a common psychiatric

disease characterized by abnormal behavior, anhedonia, sleep

and dietary problems, cognitive impairment, and, in more se-

vere cases, suicidal tendencies. Biologically, depression is re-

lated to a decrease of neurotransmitter signaling in the brain,

dysfunction of hypothalamus pituitary adrenal axis (HPA-ax-

is), increase in inflammatory signaling, and reduction in hip-

pocampal volume.

Both MDD patients [57–59] and animal models of depres-

sion [60, 61] show a remarkable reduction in serum BDNF

levels. Karege and colleagues have shown that this decrease is

not related to platelet-associated BDNF release in the blood-

stream [62], suggesting that reduced BDNF levels in the brain

rather than a reduction in the peripheral release of BDNF by

platelets are the cause of altered protein levels in blood. The

magnitude of the decrease in plasma BDNF levels is associ-

ated with disease duration [63], but it is not clear yet whether

the severity of symptoms is related to BDNF levels. BDNF

single nucleotide polymorphism (val66met), however, is as-

sociated with the severity of depression in patients [64].

Successful antidepressant treatment is usually associated with

an increase in BDNF levels in serum and plasma [65, 66],

whereas treatment failure is associated with a lack of response

of plasma BDNF levels. Thus, BDNF seems an important

player in the pathophysiology and might be a biomarker for

monitoring treatment response in depression [65, 67].

Epidemiological studies show that a third of all MDD patients

experience no changes in the symptoms when treated with the

most commonly used antidepressants. Postmortem studies re-

vealed that these treatment-resistant patients have significantly

lower BDNF levels, especially in BDNF-rich brain structures,

such as the hippocampus [68–70]. Treatment with the rapidly

acting antidepressant ketamine was able to increase plasma

BDNF levels to the level of healthy controls [71, 72].

Ketamine is an inhibitor of NMDA receptors, inducing rapid,

glutamate-dependent Ca2+ signaling and activation of cAMP

response element-binding protein (CREB). Clearly, there is a

need to increase our knowledge on the role of BDNF inMDD.

Induction of a pro-inflammatory response by systemic ap-

plication of lipopolysaccharide (LPS) causes depressive-like

symptoms (i.e., sickness behavior) in rodents [73, 74], which

may also affect BDNF levels. Increased pro-inflammatory

signaling leads to a reduction in the mRNA expression of

Bdnf and other neurotrophins in plasticity-related brain struc-

tures, especially cortical regions [75]. The effects of reduced

BDNF expression levels in mice, treated with a systemic LPS

injection, can be counteracted by induction of TrkB-mediated

signaling with the agonist 7,8-dihydroxyflavone, which leads

to a reduction of depressive-like behavior [76]. Gibney and

colleagues have found increased expression of interleukins

IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) and

reduced expression of Bdnf genes in depressive-like rats 6 h

after an inflammatory challenge. In this study, expression of

cytokines returned to baseline levels after 48 h, but Bdnf

mRNA remained low in frontal cortex and hippocampus

[77]. In humans, chronic stress is one of the main precursors

of depressive symptoms [78, 79]. In laboratory stress-condi-

tioning, depressed patients show a higher inflammatory re-

sponse, characterized by increased IL-6 release and NF-κB

DNA binding, than healthy controls [80]. Depressive symp-

toms can also be caused by treatment that stimulate the im-

mune system, such as interferon-α (IFN-α). Patients treated

with IFN-α were shown to have decreased serum BDNF

levels in combination with increased protein levels of the cy-

tokines IL-1 and IL-2 [81, 82]. Interestingly, individuals that

had higher BDNF levels at baseline showed better resilience

to IFN-α-induced MDD.

These preclinical and clinical findings show that long-term

exposure to stress or inflammation leads to a decrease in

BDNF levels, reducing the capacity of the neurons to cope

with further challenges (i.e., neuronal plasticity), and ultimate-

ly leading to a decreased function and neuronal death.

Interestingly, treatment with antidepressants can result in an

antiinflammatory response throughout the brain, mitigating

the inflammatory unbalance to homeostatic levels and normal-

izing BDNF concentrations [83, 84]. However, further re-

search is needed to understand the mechanisms involved in

the regulation of BDNF by neuroinflammation.

Bipolar Disorder

Bipolar disorder (BD) is characterized by fluctuations of

mood throughout lifetime, oscillating between depressive,

euthymic, and manic episodes. BD is associated with cogni-

tive impairment and other comorbidities that affect the quality

of life of the individual [85–87]. BD is characterized by alter-

ations in dopaminergic and glutamatergic neurotransmitter

systems, mitochondrial dysfunction, and increased oxidative

stress, which in turn are related to neuroinflammation, neuro-

toxicity and eventually neuronal death [87]. Two recent meta-

analyses have shown that serum and plasma levels of BDNF

in BD patients during depressive and manic episodes are de-

creased, but no difference in BDNF levels between BD pa-

tients in an euthymic episode and healthy controls was found

[88, 89]. It is known that treatment with mood stabilizers

increases BDNF levels in prefrontal cortex and hippocampus

of animals by inducing promoter IV-driven expression [90,

91]. Also in humans, treatment for the manic or depressive

phases of BD is associated with an increase in serum BDNF

levels [92, 93].

Recent studies have shown an association between in man-

ic and depressive stages of BD and a pro-inflammatory profile

of immune cells [94, 95]. Steiner and colleagues have found

that suicidal mood disorder patients had a significant increase
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of microglial cell density in the dorsolateral prefrontal cortex,

anterior cingulate gyrus, and mediodorsal thalamus compared

to healthy controls and non-suicidal, mood disorder patients

[96]. The presence of immune cells clusters in these brain

regions suggests a strong inflammatory response, which could

trigger the suicidal predisposition of these patients [96].

Although plenty of literature is available on BDNF or neuro-

inflammation in BD, there is a severe lack of studies regarding

the association between both mechanisms on BD. Only two

studies have analyzed both BDNF and cytokine levels in BD

patients, with somewhat different conclusions. Patas and col-

leagues have shown an association between both serum

BDNF and plasma IL-6 levels with a depressive episode as-

sociated with melancholic trait [97], while Wang and col-

leagues have found an association for serum BDNF levels,

but not for IL-1β or IL-6 [98]. Clearly, more studies are need-

ed to elucidate the interaction between neuroinflammation,

BDNF, and disease symptoms in BD.

Interestingly, the most commonly used therapeutic drugs—

lithium and valproate—were able to reverse the inflammatory

state in mood disorders [99–101]. The most common assump-

tion is that lithium and valproate can inhibit glycogen synthase

kinase 3 (GSK-3) and sodium channel function, respectively

[102]. Inhibition of GSK-3 activity by lithium increases cel-

lular levels of BDNF. GSK-3 can inhibit mammalian target-

of-rapamycin (mTOR)—an important modulator of BDNF-

dependent neuronal plasticity and survival—and thus affect

proper BDNF signaling and impair optimal cellular function.

In the manic phase of BD, there is a remarkable increase in

PKC-mediated signaling, which is associated with BDNF-

dependent Ca2+ induction. PKC isozymes are involved in

the pro-inflammatory response mediated by macrophages

[103] and, more recently, microglia [104] through activation

of the NF-κB inflammation pathway. Treatment of BD pa-

tients with lithium or valproate inhibits PKC upregulation,

normalizing its level to that of euthymic subjects, and in-

creases BDNF levels [105]. PKC inhibitor tamoxifen en-

hances the capacity of lithium to reduce symptoms of mania

in BD [105–107]. PKC inhibition probably suppresses the

expression of NF-κB and consequently resolves the NF-κB-

mediated inhibition of Bdnf expression, resulting in an in-

crease in peripheral BDNF levels in BD. However, the mech-

anisms underlying the increase in BDNF levels in response to

treatment should still be further investigated. Yet, current ev-

idence suggest that a decrease in BDNF levels can be consid-

ered as a biomarker for both depressive and manic stages of

BD.

Schizophrenia

Schizophrenia is a disease characterized by disturbances in the

proper perception of a person’s surroundings. Schizophrenia

is associated with a high suicide rate and accounts for a large

number of hospitalizations, causing a significant burden to

healthcare systems worldwide. The symptoms of schizophre-

nia comprise positive (e.g., hallucinations, delusions, con-

fused thoughts, concentration impaired) negative (e.g., de-

pression, anhedonia, self-neglect) and cognitive effects (e.g.,

memory, attention, reason impairments). Schizophrenic pa-

tients exhibit a decreased activation of γ-aminobutyric acid

(GABA) signaling [108], inducing impaired neuronal activa-

tion, especially in dopaminergic neurons [109]. The etiology

of schizophrenia is not fully understood yet and symptoms can

vary between individual patients, making the diagnosis of

schizophrenia challenging.

A recent meta-analysis revealed that serum BDNF levels in

both drug-naïve and medicated schizophrenic patients are re-

duced. Serum BDNF levels in schizophrenic patients decrease

with age but were independent of the dosage of medication

[110]. However, it remains unclear if and how BDNF levels in

the brain are altered in schizophrenic patients. Some studies

report increased BDNF levels in frontal and temporal struc-

tures [111, 112], while others report decreased levels in the

same brain structures [108, 113, 114]. Besides clinical obser-

vations, in vitro studies using the phencyclidine (PCP) psy-

chosis model also give ambiguous results. Adachi and col-

leagues reported that exposure of cortical cultures to the

non-competitive NMDA agonist PCP initially resulted in an

increase in BDNF levels, whereas TrkB, ERK1/2, and Akt

signaling were decreased [115]. In contrast, two other studies

reported decreased BDNFmRNA expression in cortical slices

after exposure to a low dose of PCP [116]. Taken together, in

vitro, in vivo and clinical results seem to indicate that plasma

BDNF levels are decreased in schizophrenic patients, but data

on brain BDNF levels are contradictory.

Schizophrenia is a multifactorial disease, in which both

genetic and environmental factors play a role. It is well

established that physical and mental distresses can trigger psy-

chotic behavior in (genetically) vulnerable patients [117].

These triggers can induce inflammatory changes that are as-

sociated with reduced neurotransmitter signaling, increased

oxidative stress, and reduced synaptic branching [118].

Mondelli and colleagues have shown in leukocytes of first-

episode schizophrenic patients that childhood trauma and the

number recent stressful life events were negatively correlated

with BDNF mRNA levels. BDNF levels were also negatively

correlated with IL-6 expression, suggesting an inflammation

mediated decrease in BDNF expression, or vice versa.

Moreover, BDNF, IL-6, and cortisol levels correlated inverse-

ly with hippocampal volume [119]. A postmortem study dem-

onstrated that schizophrenic patients have an increased in-

flammatory profile in dorsolateral prefrontal cortex. The

group of patients with high levels of neuroinflammation had

lower expression of BDNF [120]. As psychotic episodes are

related with increased neuroinflammation and activated mi-

croglia [120, 121], it can be hypothesized that pro-
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inflammatory cytokines may be modulating BDNF mRNA

expression via interaction of NF-κB or CREB transcription

factors. It is known that schizophrenia patients have upregu-

lated genes for inflammatory cytokines [122, 123], and down-

regu la t ed Bdnf gene t r ansc r ip t i on [124 , 125] .

Neuroinflammation could be the key factor for the decrease

of Bdnf gene expression in schizophrenic patients, as pro-

inflammatory cytokines increase methylation of Bdnf gene,

leading to a decrease of CREB binding to the specific Bdnf

site.

Remarkably, drug treatment that is effective in controlling

disease progression in schizophrenic patients can have diverse

effects on peripheral BDNF protein levels [126–128]. In ad-

dition, some studies suggest that baseline BDNF levels in

schizophrenia patients might reflect the susceptibility towards

available drug therapies [129, 130]. Clearly, the interaction

between neuroinflammation, BDNF levels, and treatment re-

sponse should be better understood, as this could lead to iden-

tification of new targets for improved therapies.

BDNF in Neurodegenerative Disorders

Despite research on neurodegenerative disorders has been in-

creasing exponentially, there are still gaps in our knowledge

on the etiology, onset and progression of most neurodegener-

ative diseases. Treatment is usually restricted to mitigation of

the symptoms, rather than cure or delay of progression.

Diagnosis of neurodegenerative diseases is usually based on

subjective cognitive tests in combination with neuroimaging

[131–133], but the current techniques are not able to success-

fully diagnose these diseases in their earlier stages, when the

pathology is already present but does not cause symptoms yet.

Attempts to discover new biomarkers for the diagnosis of

early stages of the disease are ongoing [134–136]. Possibly,

BDNF could qualify as such a biomarker.

In the following sections, we will discuss the role of BDNF

in neurodegenerative disorders, focusing of Alzheimer’s dis-

ease, Parkinson’s disease, and epilepsy. We will also address

the possible use of BDNF as a biomarker for diagnosis. In

addition, we describe the role of neuroinflammation in the

development of these diseases and explain how BDNF can

help the brain to cope with inflammation.

Alzheimer’s Disease

AD is characterized by a progressive loss of neurons in the

brain, leading to impairment in memory and general cogni-

tion. Hallmarks of AD pathology are deposition of amyloid-β

plaques in the extracellular matrix, formation of tau-

phosphorylated neurofibrillary tangles within the cell and neu-

ritic plaques. Tangles and plaques disrupt the signaling activ-

ity of neurons, eventually leading to neuronal apoptosis. As

the disease progress, the axonal transport is constantly re-

duced, and the general function of neurons is impaired.

These changes decrease BDNF axonal transport, resulting in

reduced availability of BDNF within the synaptic cleft and

consequently diminished signaling through TrkB receptors

[137, 138]. BDNF mRNA and protein levels are also reduced

in cognition-related structures such as hippocampus and fron-

tal cortex, which corroborates BDNF depletion to be involved

in the cognitive deficit leading to AD dementia [139]. BDNF

levels are also reduced in plasma of patients with mild cogni-

tive impairment (MCI) [140] and AD [141]. AD patients with

higher serum concentrations of BDNF showed less cognitive

decline after 1 year; this effect was more pronounced in the

more severe stages of the disease [142, 143]. These studies

suggest that BDNF might be a predictor for the rate of disease

progression in AD.

Neuroinflammation is a key factor in the development and

progression of AD [144, 145]. Amyloid-β deposits induce

pro-inflammatory activation of microglia which might be an

effort of microglia to mitigate the antigen-related damage

[146]. Some studies have reported inflammatory challenges

as an associated risk factor for the development of dementia-

related symptoms, as they show increased pro-inflammatory

cytokines levels [147, 148]. On the other hand, treatment with

antiinflammatory medication tends to mitigate cognitive im-

pairment in animal models of amyloid-β injection [149, 150].

Interestingly, PET imaging studies have shown that subjects

with high amounts of amyloid-β, but no dementia, had de-

creased microglia activation [151–153], indicating a funda-

mental participation of microglia in the development and pro-

gression of AD.

There is no clear evidence on how effective BDNF can be

in controlling neuroinflammation-dependent progression of

the disease. Prakash shows that rats injected with Aβ in the

hippocampus have a remarkable decrease in BDNF and in-

creased TNF-α, IL-6, and caspase-3 protein levels 3 weeks

after intracerebroventricular injection. These changes were as-

sociated with inability lack of memory retention in Morris

Water Maze test [154]. Another study confirmed the increase

in pro-inflammatory cytokines and reduced antiinflammatory

cytokines and BDNF protein levels and gene expression after

Aβ1–42 injection [155]. In humans, two studies have shown an

increase in pro-inflammatory cytokines and a decrease in

BDNF levels in the serum of early- and late-onset AD, al-

though there was no correlation with pro-inflammatory and

neurotrophin results in both studies [141, 156].

It is known, however, that pro-inflammatory cytokines—

especially IL-1β—can cause downregulation of BDNF ex-

pression in cognition-related brain structures, such as the hip-

pocampus [157, 158]. As these cytokines are upregulated in

AD, a decrease of BDNF levels is expected to occur in such

brain structures, leading to a decrease in survival signaling

and, consequently, neuronal death. Moreover, increase in
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hyper-phosphorylated tau impairs anterograde transport of

BDNF to the axon, further decreasing BDNF signaling in

the synaptic cleft. As AD is a disease that inflicts several

different physiological effects in both the internal and external

milieus of the brain, efficient analysis of the role of BDNF in

these processes is challenging and the overall effect of BDNF

on brain function may be variable.

Parkinson’s Disease

PD is characterized by movement impairment (bradykinesia,

tremors, and rigidity), often combined with mild cognitive

symptoms (decreased attention, executive function, memory)

and mood disturbances (apathy, aggressiveness, anhedonia,

depression) [159, 160]. The onset of PD is caused by the

formation of aggregated α-synuclein plaques (i.e., Lewy bod-

ies) in the substantia nigra pars compacta, leading to a pro-

gressive loss of dopaminergic neurons [161]. It is estimated

that clinical symptoms start to appear when more than 50% of

the neurons in the substantia nigra are already lost [162].

Movement symptoms are usually the first signs leading to

the diagnosis of PD. As the disease progresses, more brain

structures become affected by the neuronal loss and non-

motor symptoms become evident [161, 163]. The severity of

symptoms increases as the disease progresses and as a result,

the patient loses gradually independence until patients become

highly dependent on caregiver support in the late stages of the

disease.

PD patients have lower concentrations of BDNF mRNA

and protein in the substantia nigra pars compacta than healthy

controls [164, 165]. Neurons with the lowest BDNF levels

were suggested to be most prone to injury. Porritt and col-

leagues demonstrated that local inhibition of the production

of BDNF with an antisense oligonucleotide leads to a signif-

icant loss of dopaminergic neurons in the substantia nigra pars

compacta of rats, which suggests that BDNF has an important

role in neuronal survival [166]. In contrast to the aforemen-

tioned studies, some reports describe that the BDNF levels in

serum are increased in PD patients, especially in moderate to

severe stages of the disease [167, 168]. This could mean that

the CNS tries to cope with the loss of neurons by increasing

BDNF production, resulting in enhanced serum levels of the

protein. However, there is no direct evidence that supports this

hypothesis.

The onset and progression of PD are also associated with

neuroinflammation. Several studies in animal models of PD

have reported increased microglial activation and pro-

inflammatory cytokines [169, 170]. In humans, PD is associ-

ated with neuroinflammation in both postmortem [171] and in

vivo analysis [172, 173]. Sawada and colleagues have found a

remarkable increase of microglial cells in the hippocampus,

amygdala, and entorhinal cortex of PD patients, which was

associated with a decrease of BDNF mRNA expression and

increased IL-6 in those regions [174]. Nagatsu has shown

increased levels of IL-1β, IL-2, IL-6, and TNF-α in the stria-

tum of PD patients, associated with a decreased BDNF protein

levels in the same structure. Aggregated α-synuclein can in-

duce an acute, local neuroinflammatory process in PD-

associated brain structures, which suppresses BDNF expres-

sion and reduces BDNF protein levels. However, there is no

evidence on how changes in BDNF levels in de brain affect

the progression of PD and further analysis of the interaction

between pro-inflammatory cytokines and BDNF is therefore

necessary.

Epilepsy

Epilepsy patients are affected by seemingly unprovoked sei-

zures but usually also suffer from significant mood and cog-

nitive changes [175]. The symptoms of epilepsy are induced

by a disarray of excitatory neuronal connections, generating

deregulated firing, or lack of inhibition of excitatory neurons.

Although there are several treatment strategies to reduce sei-

zures, 30% of the patients show little to no response to com-

mon antiepileptic drugs.

Seizures have been associated with an increased expression

of several neurotrophic-related genes, including transcription

factors [176], neuropeptides [177], and growth factors [178].

Two recent reports have shown that BDNF gene expression is

increased in the hippocampus and temporal cortex of temporal

lobe epilepsy patients [179, 180]. Seizures also increased hip-

pocampal and cortical BDNF protein levels in animal model

of epilepsy [181–183]. BDNF seems to be involved in

epileptogenesis by regulating several signaling pathways

within excitatory neurons, increasing Ca2+ signaling and glu-

tamate expression [13, 184]. Overexpression of BDNF may

also contribute to the epilepsy-induced cortical network de-

regulation by increasing even further the plasticity and den-

dritic branching signaling and causing an overexcitement state

of glutamatergic neurons, thus reducing seizure threshold

[185]. This creates a positive feedback loop: as upregulated

glutamate neurotransmitter increases BDNF signaling and ex-

pression, it further increases glutamate signaling. Other stud-

ies have shown that transient inhibition of the BDNF receptor

TrkB after seizure induction prevents the development of tem-

poral lobe epilepsy [186, 187]. These findings indicate that

BDNF is intimately related to the pathogenesis of epilepsy,

and new therapeutic methods should take BDNF into consid-

eration. However, it is worth noting that BDNF may also play

a part in protecting neurons against harmful stimuli; therefore,

treatment aiming to reduce BDNF levels as a whole should be

carefully considered.

In epilepsy, chronic seizures lead to excitotoxicity and neu-

ronal apoptosis with associated gliosis [188]. Studies in ani-

mal models have reported that seizures are associated with

increased activation of microglia, especially of the M1
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subtype [189], and an increased release of pro-inflammatory

mediators [190, 191]. Although studies that link BDNF with

neuroinflammation in epilepsy are lacking, a hypothesis for

such a link can be formulated based on existing knowledge. In

healthy conditions, BDNF signaling induces the activation of

transcription factor NF-κB, which in turn induces de novo

expression of the Bdnf gene [26, 192]. It is possible that over-

expression of BDNF leads to an inflammatory response me-

diated by NF-κB, leading to astrocyte activation, increased

production of cytokines and neurotoxic reactive oxygen spe-

cies, and local recruitment of activated microglia [193].

Activated pro-inflammatory microglia are known to elicit ap-

optotic response after chronic stimulation, which causes neu-

rotoxicity and further neuronal death. As BDNF is

overexpressed at the onset of seizures [194], there is also an

increase in BDNF-mediated glutamate signaling, contributing

to the systemic neuronal imbalance. Although there are sever-

al players involved in the development of seizures, BDNF

might be an important factor in modulating the disease.

BDNF inducing, or being induced, by NF-κB also highlights

the importance of neuroinflammation in modulating BDNF-

dependent regulation. However, there is a need for further

researches to better understand the role of BDNF in epilepsy,

especially regarding its role in modulation of inflammatory

processes.

BDNF a Potential Therapy for Brain
Pathologies

BDNF has been regarded as a possible biomarker for moni-

toring the onset, progression, and treatment of brain patholo-

gies. However, recent studies suggest that BDNF may also be

a potential target for new treatment strategies. Some promis-

ing results have been published from studies showing that

therapeutic use of BDNF can, directly or indirectly, modulate

changes within the brain [195]. An important finding is that

peripheral BDNF is able to cross the blood-brain barrier [196],

which is a prerequisite for BDNF-related therapy. However,

the rate at which BDNF is taken up by the brain has not been

quantified yet. Nonetheless, experimental therapy has been

investigated in vivo and in vitro with promising results in

animal models of AD [197], PD [198], and MDD [199] (a

comprehensive review on BDNF drug delivery in brain pa-

thologies and current stage of clinical trial can be found in

[200]). For example, BDNF infusion into the hippocampus

of adult rats was able to increase neurogenesis and regional

neuronal activity [201]. Delivery of the BDNF mimetic 7-8-

dihydroxiflavone is able to revert cognitive deficits in an AD

animal model [202]. Also, gene transfection of BDNF into a

6-hydroxydopamine-induced unilateral lesion in the striatum

was able to revert motor deficits in this animal model of PD

[203].

The current need for improved treatments for brain disor-

ders is pressing, and although large amounts of resources are

spent on new therapies, few have been able to bring the de-

sired results. The initial findings suggest that BDNF may be

more than a biomarker for brain disorders; it may also become

a possible target for the treatment of brain disorders. However,

there is still a need for more information about the pharmaco-

logical features of BDNF-based substances in order to devel-

op new treatments.

BDNF levels are activity-dependent, which means that the

expression of BDNF changes under positive (e.g., physical

activity, cognitive enhancement) and negative (e.g., obesity,

sedentarism) behavioral and environmental stimuli. Several

studies on both humans and animals show that physical activ-

ity, cognitive stimulation, and a balanced diet can stimulate

BDNF expression [204–207]. Physical activity is the best

studied positive factor for stimulation of BDNF expression.

Thus, exercise can act as an inductor of neuronal plasticity,

neurogenesis and neuronal survival [208, 209]. Several stud-

ies in both animals and humans have assessed the effects of

physical activity on BDNF levels in psychiatric [210–213]

and neurodegenerative diseases [214–217]. These studies in-

deed indicated that physical activity augments neuronal pro-

tection in brain disorders by stimulating BDNF expression.

However, there are still some questions regarding the required

time of the physical intervention, the optimal type of exercise

(i.e., strength, endurance, aerobic exercises). Although less

studied, diet can also provoke changes BDNF levels in phys-

iological conditions. BDNF is known to affect the regulation

of feeding and energy metabolism [218–221]. Decreased

levels of BDNF were found in subjects consuming diets with

high sugar and fat [222, 223]. On the other hand, dietary

restriction (i.e., the maintenance of a balanced diet) or addition

of supplementary substances (e.g., omega-3 fatty acids; res-

veratrol) can induce an increase in BDNF levels and reduce

cognitive impairment in animal models [224–226]. It is not

clear yet how large the effect of dietary management on

BDNF protein levels in psychiatric or neurodegenerative dis-

orders, but it is known that BDNF affects—and is affected

by—dietary behavior. More research is needed in order to

better understand the dietary influence on brain disorders.

Lifestyle changes that modulate BDNF levels in the brain

may prove capable to control symptoms and delay progres-

sion in brain pathologies and thus might become cheap and

easily accessible (adjuvant) treatment for these pathologies in

the near future. However, a possible concern about such ther-

apies is the compliance of the patients with the treatment.

Most of behavioral therapies are based on long periods of

treatment with a relatively slow improvement when compared

with medications. This may reduce the motivation of patients

to continue treatment, especially because most psychiatric and

neurodegenerative disorders can be accompanied by mood

symptoms (e.g., anhedonia, hopelessness, aggressiveness).
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Therefore, slow-acting lifestyle therapies could yield better

results if they are combined with fast-acting pharmacological

interventions.

Concluding Remarks

BDNF is involved in several processes that are essential for

the optimal functioning of the brain. Several studies report

altered brain and plasma BDNF levels in patients with various

brain pathologies. However, the pathophysiological mecha-

nisms that underlie these changes are still not fully understood

yet. There is also no conclusive evidence that can discriminate

whether changes in BDNF levels are a causative or the con-

sequence of the disease onset. It is challenging to prove a

causative role of BDNF in psychiatric and neurodegenerative

disorders. Some circumstantial evidence suggest such a caus-

ative role for BDNF. Human populations with a genetic vari-

ant that decreases the BDNF concentration appear to be more

susceptible to psychiatric disorders. However, it should be

noted that BDNF is highly affected by environmental chang-

es, which in turn may affect genetic findings. In animals, in-

jection of BDNF in the hippocampus was shown to cause a

decrease of depressive-like behavior. However, it remains un-

clear how these findings translate to the clinical situation, as

current disease models are not able to properly reproduce

complex human disorders, because they usually only mimic

part of the symptoms (i.e., low predictive validity). Direct

translation of the animal findings to humans would imply an

intervention by intrathecal BDNF injection in the brain or

spinal cord of patients. However, such an intervention would

be highly invasive and the success would depend on the abil-

ity of BDNF to migrate to the target region. Alternatively,

interventions that aim to stimulate the production of BDNF

could be prospectively investigated in patients with low

BDNF levels, either due to a genetic predisposition or envi-

ronmental factors. BDNF levels should be monitored repeti-

tively to determine if changes in BDNF levels precede allevi-

ation of symptoms or vice versa. In a populationwith a genetic

predisposition for low BDNF levels, preventive intervention

with a BDNF stimulating treatment could also be considered,

but this would require a large study population and a long

follow-up time.

Evidence from preclinical studies and clinical trials sug-

gests that treatment strategies aiming to increase brain

BDNF levels could have a beneficial effect on many brain

disorders. In this respect, epilepsy is an exception as it is

associated with increased levels of BDNF. At present, phar-

macological intervention by administration of exogenous

BDNF is still challenging, but lifestyle changes could provoke

the desired effect. Environmental and physiological stimuli,

such as physical activity, social interactions, and sensory and

cognitive stimuli, are powerful modifiers of neurotrophin

levels, including BDNF levels, and have been shown to alle-

viate symptoms of brain pathologies in both humans and an-

imal models. Plasma BDNF can be reliably assayed, and sam-

ples are easily collected and therefore BDNF has been pro-

posed as a potential peripheral biomarker for the assessment

of the status of the brain and the efficacy of treatment.

However, discrepancies between brain and plasma BDNF al-

terations have been observed and need to be further elucidated

before plasma BDNF can qualify as a suitable biomarker.

Neuroinflammation is regulated by factors that are also

involved in modulation of BDNF expression. Both neuroin-

flammation and altered BDNF expression are common phe-

nomena in many brain disorders. Remarkably, there are only

few studies that have investigated the link between BDNF and

neuroinflammation. Better understanding of the interaction

between BDNF and neuroinflammation could open new ways

for therapy management and could facilitate the development

of new therapeutic strategies for brain diseases.
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