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Abstract: Depression and suicidal behavior have recently been shown to be associated with 

disturbances in structural and synaptic plasticity. Brain-derived neurotrophic factor (BDNF), 

one of the major neurotrophic factors, plays an important role in the maintenance and survival 

of neurons and in synaptic plasticity. Several lines of evidence suggest that BDNF is involved 

in depression, such that the expression of BDNF is decreased in depressed patients. In addi-

tion, antidepressants up-regulate the expression of BDNF. This has led to the proposal of 

the “neurotrophin hypothesis of depression”. Increasing evidence demonstrates that suicidal 

behavior is also associated with lower expression of BDNF, which may be independent from 

depression. Recent genetic studies also support a link of BDNF to depression/suicidal behavior. 

Not only BDNF, but abnormalities in its cognate receptor tropomycin receptor kinase B (TrkB) 

and its splice variant (TrkB.T1) have also been reported in depressed/suicidal patients. It has 

been suggested that epigenetic modulation of the Bdnf and Trkb genes may contribute to their 

altered expression and functioning. More recently, impairment in the functioning of pan75 

neurotrophin receptor has been reported in suicide brain specimens. pan75 neurotrophin receptor 

is a low-affinity neurotrophin receptor that, when expressed in conjunction with low availability 

of neurotropins/Trks, induces apoptosis. Overall, these studies suggest the possibility that BDNF 

and its mediated signaling may participate in the pathophysiology of depression and suicidal 

behavior. This review focuses on the critical evidence demonstrating the involvement of BDNF 

in depression and suicide.

Keywords: BDNF, neurotrophins, p75NTR, Trk receptor, depression, antidepressants, suicide, 

genetics, epigenetics

Introduction
Depression and suicide are important public health concerns. Depression affects about 

15% of the population at some point in their lives and is the leading cause of disability 

worldwide.1 About 9 million people are diagnosed as having depression each year in 

the United States alone, and the lost productivity and treatment expenses burden the 

US economy by more than US$43 billion per year.2,3 Depression is associated with an 

increased number of suicide attempts and increased lethality4,5 Suicide accounts for 

almost 2% of the world’s deaths.6 In most of the developed world, suicide is among the 

top 10 leading causes of death for individuals of all ages, and is the third leading cause 

of death among adolescents, after motor vehicle accidents and homicide.7–9 Several 

arguments suggest that suicidal behavior is a disorder of its own, although psychiatric 

disturbances, including depression, are major contributing factors.9,10 Autopsy studies 

of suicide victims have identified a high rate of major depressive disorder (MDD) 
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as one of the main causes of increased mortality among 

suicide victims.11 The presence of psychopathology is a 

strong predictor; however, only a minority of people with 

such diagnoses commits suicide, which indicates that there 

is a certain predisposition to suicide that is independent of 

the main psychiatric disorders.9,12–14 Despite the devastating 

impact of depression and suicide on numerous lives, there 

is still a dearth of knowledge concerning the mechanisms 

underlying their pathogenesis.

Overwhelming evidence points to altered synaptic and 

structural plasticity in patients with depression and in suicidal 

patients. In fact, it has been proposed that depression/suicide 

results from an inability of the brain to make appropriate 

adaptive responses to environmental stimuli as a result of 

impaired synaptic plasticity and structural plasticity15–18 

Support for this comes from a variety of studies in major 

depressed/suicidal subjects demonstrating altered brain 

structure, such as reduction in cell number, density, cell 

body size, neuronal and glial density in frontal cortical or 

hippocampal brain areas and decrease in parahippocampal 

cortex cortical/laminar thickness.19–27 In addition, changes 

in synaptic circuitry,28 decreased dorsolateral prefron-

tal cortical activity,29,30 impaired synaptic connectivity 

between the frontal lobe and other brain regions,31,32 changes 

in the number and shape of dendritic spines,33,34 changes in 

the primary location of synapse formation, altered dendritic 

morphology of neurons in the hippocampus, decrease in 

length and number of apical dendrites,35 neuronal atrophy 

and decreased volume of the hippocampus,36–38 decreased 

number of neurons and glia in cortical areas,39 and spatial 

cognition deficits40 have also been reported during stress and 

depression. Furthermore, depression is associated with nega-

tive impact on learning and memory;41–43 and stress, a major 

factor in depression and suicide, hinders performances on 

hippocampal-dependent memory tasks and impairs induction 

of hippocampal long-term potentiation. These studies clearly 

demonstrate impaired structural and functional plasticity in 

depression and suicide; however, the precise molecular and 

cellular nature of events that lead to such altered plasticity 

in these disorders remains unclear.

Survival and development of neurons in the central 

nervous system (CNS) depends on the influence of a variety 

of extracellular signals. One set of signals is provided by 

neurotrophins. The role of neurotrophins in directing brain 

growth and neuronal functioning is being increasingly 

recognized. Neurotrophins not only play an important 

role in cellular proliferation, migration, and phenotypic 

differentiation and/or maintenance in the developing 

CNS,44,45 but their presence is required in the adult CNS 

for maintenance of neuronal functions, structural integrity 

of neurons, and neurogenesis46,47 which suggests that 

neurotrophins are biologically significant over the entire life 

span. In addition, a number of studies have demonstrated 

that neurotrophic factors regulate structural, synaptic, and 

morphological plasticity to modulate the strength or number 

of synaptic connections and neurotransmission.48,49 Thus, 

a pathological alteration of the neurotrophic factor system 

may not only lead to defects in neural maintenance and 

regeneration and, therefore, structural abnormalities in the 

brain, but may also reduce neural plasticity and, therefore, 

impair the individual’s ability to adapt to crisis situations.

Mammalian neurotrophins are homodimeric proteins that 

include nerve growth factor (NGF), brain-derived neurotrophic 

factor (BDNF), neurotrophin (NT) 3, and NT 4/5. Most 

functions of neurotrophins are mediated by the tropomycin 

receptor kinase (Trk) family of tyrosine kinase receptors. 

The interaction of neurotrophins with the Trk receptors is 

specific: NGF binds with TrkA, BDNF and NT 4 both bind 

with TrkB, and NT 3 binds with the highest affinity to TrkC 

but is also capable of signaling through TrkA and TrkB. 

In addition to the full length TrkB receptor, several non-

catalytic truncated TrkB isoforms have also been identified; 

these isoforms lack the signaling domain, preventing the 

induction of a signal transduction mechanism. Binding of 

a neurotrophin to the appropriate Trk receptor leads to the 

dimerization and transphosphorylation of tyrosine residues 

in the intracellular domain of the Trk receptors and subse-

quent activation of cytoplasmic signaling pathways.50,51 All 

neurotrophins can bind to the pan75 neurotrophin receptor 

(p75NTR), which plays a role in neurotrophin transport, ligand 

binding specificity, and Trk functioning.44,52,53

Of various neurotrophins, BDNF has attracted a great 

deal of interest as a functional candidate gene in various 

mental disorders. The Bdnf gene lies on the reverse strand 

of chromosome 11p13 and encodes a precursor peptide 

pro-BDNF.54 In fact, all neurotrophins, including BDNF, 

are synthesized as a pre-pro-neurotrophin precursor that 

undergo posttranslational modifications before giving rise 

to mature homodimeric protein. The pro-BDNF is produced 

in endoplasmic reticulum, which is accumulated in trans-

Golgi network via Golgi apparatus. It has been suggested 

that pro-BDNF binds to sortilin in the Golgi, which facilitates 

the correct folding of the mature domain. The mature domain 

of BDNF binds to carboxypeptidase E, thereby sorting 

BDNF to the regulated secretary pathway.55 A substitu-

tion of valine (Val) to methionine (Met) at codon 66 in the 
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prodomain impairs this sorting of BDNF.56 The pro-BDNF 

is the main form of neurotrophin,57–59 and the mature form 

originates through proteolytic cleaving. Plasmin is the 

major extracellular protease that cleaves pro-BDNF.60,61 The 

expression of the BDNF gene is tightly regulated by neuronal 

activity, through mechanisms dependent on calcium.62 

In addition to BDNF, the function of a receptor for BDNF 

(ie, TrkB) is also regulated in an activity-dependent manner. 

TrkB is primarily localized in the synaptic sites. Further local-

ization of TrkB occurs at the synaptic sites after neuroanal 

activity.55 Neuronal activity, therefore, is critical for synthesis 

and intracellular targeting of TrkB receptors.55 Thus, BDNF 

release and expression of TrkB receptors in a coordinated 

fashion are important for optimal synaptic response.

The role of BDNF in depression has gained broad 

attention because many pre-clinical and clinical studies 

provide direct evidence suggesting that modulation in 

expression of BDNF could be involved in behavioral phe-

nomenon associated with depression. Based on these studies, 

the neurotrophin hypothesis of depression was proposed, 

which suggests that stress and depression is associated with 

decreased expression of BDNF and that antidepressants 

alleviate depressive behavior by increasing its level.15,16 This 

is quite relevant given that BDNF is involved in synaptic 

plasticity and, as earlier mentioned, compromised synaptic 

and structural plasticity have been shown to be associated 

with depression. Because stress and depression are the major 

contributory factors in suicide, recently, a number of studies 

have attempted to investigate the role of BDNF in suicidal 

behavior. These studies, albeit in infancy, provide strong 

support for the idea that abnormalities in BDNF could be 

an important contributory factor in suicidal behavior. This 

review focuses on the critical assessment of the involvement 

of BDNF and its functioning in depression and suicidal 

behavior.

BDNF in stress
Several clinical and epidemiological studies have identified 

stressors as important risk factors in depression and suicide.63–70 

An overactive hypothalamus-pituitary-adrenal axis has been 

well established in stress. On the other hand, there is strong 

evidence for a connection between stress system overactiv-

ity and suicidal behavior. For example, in suicide victims, 

hypothalamus-pituitary-adrenal axis hyperactivity has been 

linked with elevated corticotrophin-releasing hormone 

levels in the cerebrospinal fluid, reduced corticotrophin-

releasing hormone binding sites in the frontal cortex, 

augmented pro-opiate-melanocortic RNA density in the 

pituitary, large corticotrophic cell size, and alterations in the 

mineralocorticoid to glucocorticoid receptor messenger RNA 

(mRNA) ratio in the hippocampus of suicide victims.71–76 

Also, a consistent association has been found between 

subsequently completed suicide and nonsuppression of 

cortisol in the dexamethasone suppression test.77–82

Studies in pre-clinical models have shown stress-induced 

dysregulation of BDNF expression. Several types of stressors 

have been used to examine the role of BDNF in stress-related 

disorders. The very first study that examined the role of 

stress was from Smith and colleagues,83 who demonstrated 

that immobilization stress used for 1 or 7 days (for 2 hours 

per day) significantly decreased BDNF mRNA expression 

in the hippocampus. This decrease was present throughout 

the hippocampus; however, the dentate gyrus showed the 

most significant response. This was later confirmed by other 

investigators.84,85 Similar changes were observed when other 

types of stressors were used. For example, Rasmusson et al86 

demonstrated that exposure to twenty 0.5-second 0.4-mA foot 

shocks coterminating with 70-dB, 5-second-long pure tones 

over 60 minutes decreased dentate gyrus BDNF mRNA. 

Some of the stressors, such as social defeat, decreased BDNF 

not only in hippocampus but also in cortical and subcortical 

areas of mice.87 Interestingly, it has been shown that maternal 

separation led to depression like behavior in adulthood, which 

was correlated with decreased BDNF expression.88 This study 

suggests that early developmental insult causes depression 

in later life, which is mediated through abnormalities in 

BDNF-mediated signaling.

Several studies have shown that exposure of exogenous 

corticosterone (to mimic the stress effect) also reduces BDNF 

expression in rodent hippocampus, similar to that observed 

in various pre-clinical stress models.83,89–91 Recently, we 

examined the effects of corticosterone treatment on BDNF 

expression in detail and found that the mRNA level of 

BDNF was not only decreased in the hippocampus but that 

the frontal cortex also showed significantly reduced expres-

sion of BDNF.92 This suggests that the effects of glucocor-

ticoids on BDNF are not limited to the hippocampus; other 

brain areas are also equally affected. When endogenous 

corticosterone was removed by adrenalectomy, the level 

of BDNF in the hippocampus increased.89,93 On the other 

hand, dexamethasone replacement to adrenalectomized rats 

restored the level of BDNF to control levels.93 These studies 

demonstrate that expression of BDNF expression is regulated 

via glucocorticoids.

On a molecular level, BDNF is highly regulated. The 

rat Bdnf gene contains 4 separate promoters that are linked 
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to 4 main transcript forms.94,95 Each transcript has 4 short 

5’ noncoding exons (I-IV) containing separate promoters 

and 1 shared 3’ exon (exon V) encoding the mature BDNF 

protein. Although the biological significance of these BDNF 

transcripts is not clear, it appears that these transcripts can 

facilitate multi-level regulation of BDNF expression and 

may determine the tissue-specific expression. To examine 

the molecular basis of stress regulation of  BDNF, we deter-

mined mRNA levels of exons I through IV. We observed 

that corticosterone selectively decreased the expression of 

transcripts II and IV, but not transcripts I or III, in both the 

frontal cortex and hippocampus.92 Two other recent studies 

suggest that immobilization stress decreases total BDNF 

expression, along with a specific decrease in exon IV in the 

hippocampus96 and hypothalamus.97 These studies suggest 

that the decrease of BDNF mRNA expression by glucocorti-

coids may be due to a decrease in expression of the specific 

BDNF transcripts that contain exons II and IV.

BDNF in depression
In addition to stress, several lines of evidence point to 

the involvement of BDNF in depression. These include 

indirect evidence demonstrating that antidepressants regu-

late BDNF/TrkB expression and that BDNF itself shows 

antidepressant-like effects. In addition, depressed patients 

show alterations in expression of BDNF both in blood cells 

and in postmortem brain tissues. Genetic studies also link 

BDNF polymorphism to depression. Each of these aspects 

are detailed further.

regulation of BDNF expression  
by antidepressants
The effects of antidepressants on the expression of the Bdnf 

gene have been investigated extensively. In general, it has 

been shown that when given to healthy rodents, several 

classes of antidepressants, including monoamine oxidase 

inhibitors, selective serotonin reuptake inhibitors, tricyclic 

agents, noradrenaline reuptake inhibitors, and noradrenergic 

and specific serotonergic antidepressants, all increase expres-

sion of BDNF in the brain.98–108 In addition, several other 

agents known to have antidepressant properties also increase 

expression of BDNF in rodent brain. These agents include 

α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid 

and N-methyl-D-aspartate antagonists, electroconvulsive 

shock, and transcranial magnetic stimulation.98,109–114 Chronic 

treatment with antidepressants not only increases expres-

sion of BDNF in healthy rodents, but also reverses down-

regulation of BDNF caused by stress.98,115,116 However, these 

effects depend on various factors, including length of 

administration, class of antidepressant, route of administra-

tion, age of animal, and doses of the drugs. In general, an 

increase in BDNF expression occurs only after long-term 

treatment and, in most cases, short-term treatment with 

antidepressants causes no change in the expression of 

BDNF.98,101,106,117,118 However, short-term treatment with 

antidepressants has also been shown to cause an increase in 

BDNF expression in the cortex119,120 and even a decrease in 

the hippocampus.101,119,120

The effects of antidepressants such as desipramine or 

fluoxetine have also been studied in BDNF-deficient mice. 

These studies show that the behavioral effects of antidepres-

sant are abolished in BDNF-deficient mice,121,122 suggesting 

that BDNF plays an important role in the behavioral effects 

of antidepressants.

regulation of BDNF exons  
by antidepressants
To examine how BDNF is regulated in response to 

antidepressants, we administered different classes of 

antidepressants (serotonin uptake blocker, fluoxetine, 

norepinephrine blocker, desipramine, monoamine oxidase 

inhibitor, or phenelzine) to healthy rats and examined 

whether antidepressants regulate the expression of BDNF 

via specific BDNF transcript(s).92 We observed very 

interesting results such that treatment of healthy rats with 

desipramine or phenelzine increased mRNA levels of total 

BDNF in both the frontal cortex and hippocampus, whereas 

fluoxetine increased the mRNA level of BDNF only in the 

hippocampus.92 More interestingly, when we examined the 

effects of antidepressants on the expression of individual 

exons containing BDNF transcripts, we found that desipra-

mine specifically increased exons I and III in both the frontal 

cortex and hippocampus; fluoxetine increased only exon II 

in the hippocampus; and phenelzine effectively increased 

exons I and IV in the hippocampus but only exon I in the fron-

tal cortex. In another study, Dias et al102 examined the effects 

of long-term antidepressants on BDNF transcript levels in 

the rat hippocampus, amygdala, and cortex. They observed 

that desipramine increased exon III in different cortical areas, 

whereas fluoxetine had no significant effects on BDNF exons 

in any of the brain areas studied. Another recent study by 

Altieri et al118 also showed no effect of long-term fluoxetine 

treatment on BDNF transcripts in the hippocampus. Our 

observation of increased exon III by desipramine is similar 

to the findings of Dias et al102 but we also noted an increase 

in the expression of exon I. In addition, contrary to reports 
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by Dais et al102 and Altieri et al118 we found a selective 

increase in exon II by fluoxetine in both the frontal cortex 

and hippocampus. Although some of these discrepancies can 

be attributed to route of administration or doses of drugs, 

these findings suggest that there is no unified mechanism for 

the regulation of BDNF exon(s) by antidepressants and that 

various classes of antidepressants may affect BDNF exon 

expression differently.

We further examined whether antidepressants reverse 

the corticosterone-mediated decrease in BDNF and whether 

similar BDNF exons are involved in this mechanism by which 

antidepressants upregulate BDNF expression.92 We observed 

that long-term treatment with desipramine completely 

reversed the corticosterone-induced decrease in BDNF in 

both the frontal cortex and hippocampus. Fluoxetine was able 

to partially reverse the changes in hippocampal BDNF, but 

did not cause any change in the frontal cortex. Phenelzine, on 

the other hand, reversed the corticosterone-induced decrease 

in BDNF partially in the frontal cortex and completely in the 

hippocampus. Interesting results were noted when individual 

BDNF transcripts were examined after antidepressant treat-

ment of corticosterone-implanted rats: the antidepressants 

were able to increase mRNA levels of only those BDNF 

transcripts that were affected when the respective antidepres-

sant was given to healthy rats without corticosterone pellet 

implantation. Thus, desipramine increased exons I and III 

in the frontal cortex and hippocampus, fluoxetine increased 

exon II in the hippocampus, and phenelzine increased exon I 

in the frontal cortex and exons I and IV in the hippocampus. 

Surprisingly, except for the changes in exon II by fluoxetine 

in the frontal cortex and in exon IV by phenelzine in the hip-

pocampus, the corticosterone-mediated decrease in exons II 

and IV persisted even after antidepressant treatment. How-

ever, the overall observation was that all the antidepressants 

increased the level of total BDNF mRNA in the brain of 

corticosterone-treated rats. Although it is difficult to assess 

the extent of involvement of a particular exon in regulation 

of overall BDNF expression, there is complete reversal by 

desipramine in both the frontal cortex and hippocampus 

because the increase in exon III was very robust in these brain 

areas. On the other hand, in the hippocampus, fluoxetine was 

able to reverse the corticosterone-mediated decrease of only 

exon II, but not exon IV; therefore, the reversal was partial. 

However, no effect of fluoxetine on total BDNF expression 

was observed in the frontal cortex, because fluoxetine was 

not able to increase either exon II or IV in the frontal cortex. 

On the other hand, phenelzine was partially effective in the 

frontal cortex because of its effects on exon II, but complete 

reversal was noted in the hippocampus because phenel-

zine increased the levels of both corticosterone-decreased 

exons II and IV. Thus, it appears that antidepressants are 

effective in causing an increase in total BDNF expression 

in corticosterone-treated rats; however, the mechanisms for 

the down-regulation of BDNF transcripts by corticosterone 

and those that affect their upregulation by antidepressants 

are quite different.

TrkB studies in relation  
to antidepressant treatment
In addition to BDNF, TrkB receptors have also been studied 

in relation to antidepressant treatment. The Trkb gene can 

give rise to at least 2 isoforms of TrkB, encoding the “full-

length,” or catalytic, form of TrkB, the receptor mediating the 

main biological actions of BDNF,123,124 and the “truncated” 

TrkB receptors (TrkB.T1), which lack a large part of the 

intracellular domain and do not display protein–tyrosine 

kinase activity.125 Binding with BDNF leads to activation of 

the full-length TrkB receptors by ligand-induced dimerization 

and autophosphorylation of tyrosine residues in the intracel-

lular region.126 Full-length TrkB receptors also mediate retro-

grade transport of BDNF to neuronal cells.127 The activated 

receptors become able to interact and phosphorylate several 

intracellular targets. Although catalytic TrkB is considered 

as the receptor mediator of the main biological actions of 

BDNF, the truncated TrkB is also a predominant isoform 

in the adult brain,128,129 functioning as a cellular adhesion 

molecule regulating synaptic plasticity and axonal outgrowth, 

modulating signaling by catalytic TrkB through the formation 

of heterodimers, and regulating the extracellular availability 

of its endogenous ligands.125 It has been shown that BDNF 

signaling is impaired as a consequence of the formation of 

receptor heterodimers,130 which suggests that the truncated 

form of TrkB can act as a negative modulator of BDNF 

signaling.

It has been shown that long-term treatment with electro-

convulsive shock, desipramine, fluoxetine, tranylcypromine, 

and sertraline all increased mRNA levels of TrkB in the rat 

brain.98 Recently, Rantamäki et al131,132 reported that not only 

the expression, but TrkB signaling, is rapidly activated by a 

variety of antidepressants in mouse medial prefrontal cortex 

(PFC) and hippocampus. This occurs through antidepressant-

mediated autophosphorylation of TrkB. These studies sug-

gest that the behavioral effect of antidepressants requires 

TrkB activation along with an increase in BDNF expression. 

Interestingly, the TrkB-mutant mice do not exhibit 

depression-like behaviors such as increased “despair” in 
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the forced swim test.133 However, TrkB.T1-overexpressing 

transgenic mice, which show reduced TrkB activation in 

the brain, and heterozygous BDNF null (BDNF+/-) mice 

both are resistant to the effects of antidepressants in the 

forced swim test, indicating that normal TrkB signaling is 

required for the behavioral effects typically produced by 

antidepressants.121

Antidepressant-like effect of BDNF
The role of BDNF in depression also stems from preclinical 

studies demonstrating that BDNF not only regulates expres-

sion of  BDNF but shows antidepressant-like effects in animal 

models. In a learned helplessness model of depression, 

infusion of BDNF reduces escape latencies and failure rates 

in rodents,134,135 suggesting the effectiveness of BDNF in 

reducing inescapable random shock-induced depressive 

behavior. Similarly, intra-midbrain infusion of BDNF in 

rodents produces antidepressant-like effect in the forced 

swim test and learned helpless models of depression.134 

Infusion of BDNF in the dorsal raphe nucleus also resulted 

in antidepressant-like effect in the learned helpless model 

of depression.136 Interestingly, the effects of BDNF on these 

behavioral paradigms were much longer lasting compared 

with classic antidepressants.135,137

Clinical studies of BDNF response  
in depressed patients before  
and after antidepressant treatment
Consistent with animal studies, studies in humans provide 

evidence that BDNF plays an important role in depression. 

Although BDNF is highly expressed in the brain, studies 

regarding the expression level of BDNF in the human brain 

of depressed subjects are limited. In an earlier study, Chen 

et al138 showed that the expression of BDNF is increased 

in the postmortem brain of depressed subjects treated with 

antidepressants compared with those who were untreated. 

Recently, many studies have attempted to examine the level 

of BDNF in serum or platelets of depressed subjects with and 

without antidepressant treatment. Although the significance of 

measurement of BDNF in blood cells is unclear, it was demon-

strated that BDNF may cross the blood-brain barrier and that 

platelet BDNF shows similar changes postnately similar to the 

brain,139 suggesting that there are parallel changes in the blood 

and brain levels of BDNF. Karege and colleagues140 were the 

first to compare BDNF levels in the serum of depressed sub-

jects and healthy controls. In 15 male and 15 female depressed 

patients, they found that BDNF level was significantly lower 

compared with healthy controls. This decrease was negatively 

correlated with the severity of depression. Moreover, they 

found a sex effect such that female depressed patients were 

more severely depressed and released less BDNF than males. 

Recently, the same group of investigators suggested that the 

decrease in serum BDNF in depressed patients is related to 

release mechanisms of BDNF because no change was found 

in the level of BDNF in blood, but serum and platelet BDNF 

were decreased in depressed patients.141 Since then, several 

studies have examined BDNF level in these peripheral tissues 

before and after antidepressant treatment. For example, Gonul 

et al142 and Piccinni et al143 reported decreases in serum BDNF 

level in depressed patients. On the other hand, Matrisciano 

et al144 examined serum BDNF levels in healthy subjects and 

depressed patients at baseline and after 5 weeks and 6 months 

of sertraline, escitalopram, or venalfaxine treatment. They 

found that the BDNF level was lower in depressed patients 

and that sertraline increased BDNF level after 5 weeks and 

6 months, whereas escitalopram increased BDNF level only 

after 6 months. Venalfaxine did not change the level of 

BDNF. There was a negative correlation between increase 

in BDNF level and decrease in Hamilton Depression Rating 

Scale score. On the other hand, Gonul et al142 reported that 

depressed patients show increased BDNF level in serum 

after treatment with a variety of antidepressants for 8 weeks, 

including venalfaxine, sertraline, fluoxetine, paroxetine, and 

citalopram. Similarly, increases in serum BDNF level by 

amitriptyline after 36 days, paroxetine after 4 or 8 weeks, or 

venalfaxine after 12 weeks of treatment to depressed patients 

were reported.145–147 Not only antidepressants but vagus nerve 

stimulation, repetitive transcranial magnetic stimulation,148 

or electroconvulsive therapy149 to depressed patients also 

cause an increase in serum BDNF level in depressed patients. 

In a recent meta-analysis, Brunoni et al150 and Sen et al151 

concluded that BDNF levels are lower in depressed patients 

than healthy controls and that BDNF levels are significantly 

higher after antidepressant treatment. Overall, these findings 

provide strong evidence of modulation in BDNF in depression 

and in response to antidepressants.

role of BDNF in genetic basis  
of depression
The gene encoding human BDNF is localized at chromosome 

11p13. In humans, a common single nucleotide polymorphism 

at nucleotide 196 within the 5’ pro-BDNF sequence encodes 

a variant BDNF at codon 66 (Val66-Met). As mentioned 

earlier, this Met66 variant affects activity-dependent BDNF 

secretion.56,59 This is critical for dendritic trafficking and 

synaptic localization of BDNF. Interestingly, knockout 
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mice carrying the Val66Met polymorphism show reduced 

activity-dependent secretion of BDNF, without any change in 

the level of total BDNF.152 More interestingly, mice carrying 

the BDNF Met/Met or Val/Met allele show a reduced volume 

of hippocampus compared with wild-type mice, and BDNF 

Met/Met knock-in mice have reduced dendritic arbor com-

plexity.152 These studies are quite relevant to depression, 

because structural abnormalities, particularly structural 

abnormalities in the brain, including reduced hippocampal 

volume during stress and in depressed patients, have been 

reported,153,154 which increases the risk for depression. 

Recently, Frodl et al155 examined the effect of the BDNF 

Val66Met polymorphism on hippocampal and amygdala 

volumes in patients with depression and in healthy control 

subjects. They found that depressed patients had significantly 

reduced hippocampal volumes. They also found smaller 

hippocampal volumes for depressed patients and for healthy 

controls carrying the Met-BDNF allele when compared with 

subjects homozygous for the Val-BDNF allele. No significant 

difference in amygdala volume was found between depressed 

patients and healthy controls and no significant main effects 

for the BDNF Val66Met polymorphism were observed. They 

concluded that the Met-BDNF allele carriers might be at risk 

of developing smaller hippocampal volumes and might be 

susceptible to depression. Interestingly, human magnetic 

resonance imaging studies in normal healthy subjects showed 

that Val/Val homozygotes had a larger hippocampal volume 

than Val/Met heterozygotes.156–158

People with the Met allele also have poor hippocampal-

dependent memory function and hippocampal hyperac-

tivation during learning,56,159 which could be associated 

with hippocampal hypersensitivity to stress. On the other 

hand, Kliem et al160 demonstrated that training-dependent 

increases in the amplitude of motor-evoked potentials and 

motor map reorganization are reduced in healthy subjects 

with a Val66Met polymorphism in the Bdnf gene, compared 

with subjects without the polymorphism. These results sug-

gest that BDNF is involved in mediating the experience-

dependent plasticity of the human motor cortex. Furthermore, 

the Val66Met polymorphism in the Bdnf gene modulates 

human cortical plasticity and the response to transcranial 

magnetic stimulation.161

Earlier, Tsai et al162 studied the Bdnf gene Val66Met 

polymorphism in 152 patients with MDD and in 255 healthy 

controls. They also examined the association of this 

polymorphism and fluoxetine therapeutic response in 

110 patients with MDD who received a 4-week fluoxetine 

treatment. They found no significant differences for the 

genotype or allele frequency of the BDNF polymorphism 

comparing the MDD and control groups. Further, no 

significant differences were noted comparing the 3 genotype 

groups for depressive-cluster symptoms. However, a trend 

to improved 4-week fluoxetine antidepressant response 

was demonstrated for heterozygous patients compared with 

homozygous analogs. Similarly, Choi et al163 reported that 

the genotype, allele, and allele-carrier distributions for the 

Val66Met polymorphism did not differ significantly between 

patients with MDD and healthy controls; however, they 

showed that the Val66Met polymorphism of BDNF was 

associated with citalopram efficacy, with Met-allele carriers 

responding better to citalopram treatment.

Very recently, Licinio et al164 studied novel genetic 

polymorphisms in the BDNF gene and assessed their 

frequencies and associations with MDD or antidepressant 

response. They identified 83 novel single-nucleotide poly-

morphisms (SNPs): 30 in untranslated regions, 4 in coding 

sequences, 37 in introns, and 12 in upstream regions; 3 of 

4 rare novel coding SNPs were nonsynonymous. Association 

analyses of patients with MDD and controls showed that 

6 SNPs were associated with MDD (rs12273539, rs11030103, 

rs6265, rs28722151, rs41282918, and rs11030101) and 

2 haplotypes in different blocks (one including Val66, 

another near exon VIIIh) were significantly associated with 

MDD. One recently reported 5’ untranslated region SNP, 

rs61888800, was associated with antidepressant response.

Hwang et al165 reported that the BDNF Val66Met 

genotype distribution was significantly different between 

geriatric depressed patients and healthy subjects and there 

was a significant excess of the Met allele in these patients 

compared with the control group. Very recently, Duncan 

et al166 found that the Val/Val genotype was associated 

with higher scores on the Cognitive-Affective factor of the 

Beck Depression Inventory-II, Cognitive-Affective factor 

scores, and Somatic-Vegetative factor scores, suggesting an 

association between the Val/Val genotype and higher levels 

of depression symptoms. In a similar line of investigation, 

Savitz et al167 showed that bipolar patients, who were metal-

lele carriers, and were exposed to sexual abuse, performed 

more poorly on memory test, suggesting that functional 

BDNF polymorphism and cognition would moderate the 

effect of psychological trauma on memory. Similar findings 

were later reported by other investigators.168,169 Interestingly, 

Childhood adversity per se predict higher levels of adult 

depressive symptoms and BDNF Val66Met polymorphisms 

moderate the effect of childhood sexual abuse on adult 

depressive symptoms.170
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behavior is associated with alterations in BDNF and its 

cognate receptors. It is more interesting to examine whether 

alterations in BDNF in suicidal subjects are independent of 

depression. In this regard, postmortem brain studies in suicide 

subjects with or without depression, levels of BDNF in blood 

cells of suicidal patients, and genetic association studies 

linking BDNF to suicide have been performed. These studies 

indicate a possible role of BDNF to suicidal behavior.

Human postmortem brain studies
To my knowledge, we were the first to examine of the role of 

BDNF in suicide. We determined mRNA and protein expression 

of BDNF in the PFC (Brodmann’s area 9) and hippocampus 

from specimens obtained from 21 fully characterized suicide 

subjects and 27 nonpsychiatric healthy control subjects.181 We 

observed that mRNA level of BDNF was significantly reduced, 

independently and as a ratio to neuron-specific enolase 

(a housekeeping gene), in both the PFC and hippocampus of 

suicide subjects compared with nonpsychiatric healthy control 

subjects. These reductions were associated with a significant 

decrease in the protein level of BDNF. Interestingly, when we 

divided suicide subjects into those who had depression and 

those who had another psychiatric disorder, we found that the 

decrease in expression of BDNF was present in all suicide 

subjects regardless of psychiatric diagnosis. Our findings 

demonstrate that suicidal behavior may be associated with a 

decrease in BDNF functioning. More recently, Karege et al182 

examined the expression of BDNF in the PFC, hippocampus, 

and entorhinal cortex in suicide subjects. Similar to our 

findings, they reported that the level of BDNF was significantly 

decreased in the PFC and hippocampus. No change was 

found in the entorhinal cortex, suggesting that a decrease in 

BDNF may be specific only to certain brain areas. In addition, 

Karege et al182 found that suicide subjects who were receiving 

antidepressant treatment did not show any change in the level 

of BDNF, suggesting that psychotropic drugs normalize the 

decreased level of BDNF in suicide subjects. Interestingly, 

Kozcicz et al183 reported sex-specific changes in the level 

of BDNF in suicide subjects. They found that BDNF level 

was much lower in the midbrain (nonpreganglionic Edinger-

Westphal nucleus) of male suicide subjects, whereas female 

suicide subjects showed an increased level of BDNF in this 

brain area, suggesting a possible sex effect in the regulation of 

BDNF expression in suicide subjects. Although the previous 

studies did not find sex-specific changes in BDNF expression 

in the hippocampus or cortical areasb,181,182 whether sex-

specific effect in BDNF expression is specific to the midbrain 

area needs further studies.

Another piece of evidence demonstrating role of BDNF 

in depression comes from studies showing an association 

of personality traits and BDNF polymorphism.171–174 It is 

pertinent to mention that personality traits have been linked 

to major depression as well as suicide.175

Do epigenetics play any role  
in BDNF modification in depression  
and antidepressant responses?
Recent studies suggest that epigenetic regulation of the gene 

may be crucial in the pathophysiology of depressive behavior.176 

Histone modifications along with DNA methylation play a 

major role in gene silencing through chromatin remodeling. 

Methyl-CpG binding protein MeCP2, which encodes a protein 

that functions as a transcriptional repressor, selectively binds 

to BDNF promoter III and represses expression of the Bdnf 

gene. Membrane depolarization triggers the calcium-dependent 

phosphorylation and release of MeCP2 from BDNF 

promoter III, thereby facilitating transcription.177 On the 

other hand, membrane depolarization causes increased BDNF 

transcription, which involves dissociation of the MeCP2-histone 

deacetylase-mSin3A repression complex from its promoter,177,178 

which suggests that DNA methylation-related chromatin remod-

eling is important for activity-dependent Bdnf gene regulation. 

Recently, Fuchikami et al179 reported that single immobilization 

stress (a model for depression) decreased the levels of BDNF 

mRNA, which was associated with decreased expression of 

exons I and IV. They also reported that the levels of acetylated 

histone H3 were decreased in the promoters of I, IV, and VI 

exons, suggesting that histone acetylation is involved in regula-

tion of the Bdnf gene in the immobilization stress model. Earlier, 

in an important study, Tsankova et al180 found that social defeat 

stress caused down-regulation of BDNF exons III and IV and 

robustly increased histone methylation at their corresponding 

promoters. Long-term imipramine treatment reversed this down-

regulation and increased histone acetylation at these promoters. 

This hyperacetylation by long-term imipramine treatment was 

associated with a selective down-regulation of histone deacety-

lase. Overexpression of HDAC5 blocked the ability to reverse 

depression-like behavior. Altogether, these studies suggest that 

although BDNF expression is repressed or induced by stress or 

antidepressants by different mechanisms, epigenetic regulation 

of the BDNF gene plays an important role in depression and in 

the mechanisms of action of antidepressants.

BDNF in suicide
Because depression is an important causative factor in suicidal 

behavior, it is interesting to examine whether suicidal 
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In addition to adult suicide subjects, we recently 

examined the expression of BDNF in postmortem brain 

samples obtained from teenaged suicide subjects.184 Protein 

and mRNA expression of BDNF was determined in samples 

from the PFC, Brodmann’s area 9, and hippocampus 

obtained from 22 teenaged suicide victims and 22 matched 

nonpsychiatric healthy control subjects. As with adult 

suicide subjects, we found that protein expression of BDNF 

was significantly decreased in the PFC of teenaged suicide 

subjects. Interestingly, no significant change in BDNF pro-

tein expression was observed in the hippocampus. On the 

other hand, a decrease in BDNF mRNA was observed both 

in the PFC and hippocampus of teenaged suicide subjects. 

Whether this subtle difference in the protein expression 

of BDNF represents differences in some characteristics 

between teenage and adult suicide is not clear. Nonetheless, 

this study further suggests that BDNF is involved in suicidal 

behavior.

Blood cell studies
As in depressed patients, the BDNF level in blood cells has 

also been examined in patients with suicidal ideation or in 

those who have attempted suicide. Deveci et al185 investigated 

whether their serum BDNF levels differ among suicide 

attempters without a major psychiatric disorder compared 

with patients with MDD and healthy subjects. Ten suicide 

attempters, 24 patients with MDD, and 26 subjects without 

any psychiatric diagnosis and any psychiatric treatment were 

examined. They found that serum BDNF levels were lower 

in both the attempted suicide group and the MDD group vs 

the control group. In another study, Kim et al186 measured 

plasma BDNF levels in 32 depressed patients who had 

recently attempted suicide, 32 nonsuicidal depressed patients, 

and 30 healthy controls. They found that BDNF levels were 

significantly lower in suicidal depressed patients than non-

suicidal depressed patients or healthy controls. Interestingly, 

BDNF levels were not different between fatal and nonfatal 

suicide attempts. Similarly, Lee et al187 found that plasma 

BDNF level was decreased in depressed suicidal patients vs 

depressed nonsuicidal patients. These studies suggest that 

reduction of plasma BDNF level is related to suicidal behav-

ior in depression and that BDNF level may be a biological 

marker of suicidal depression. However, when BDNF level 

was determined in platelets, it was found that platelet BDNF 

levels were lower in both nonsuicidal and suicidal depressed 

patients compared with healthy controls, whereas no sig-

nificant differences were noted between nonsuicidal and 

suicidal depressed patients.188 Interestingly, Dawood et al189 

used direct internal jugular vein blood sampling methods to 

circumvent the issue of whether BDNF is released from other 

sources than the brain and they examined the relationship 

between brain BDNF production and suicide risk in untreated 

patients with depression. They used veno-arterial BDNF 

plasma concentration gradient as an index of brain BDNF 

production. Of the patients, 11 had low suicide risk and 8 

had a moderate to high suicide risk. The veno-arterial BDNF 

concentration gradient was significantly reduced in patients 

at medium to high suicide risk and there was a significant 

negative correlation between suicide risk and the internal 

jugular venous veno-arterial BDNF concentration gradient. 

This study suggests an association between internal jugular 

venous BDNF overflow and suicide risk.

Genetic studies linking BDNF to suicide
Hong and colleagues190 were the first to study an association 

of BDNF with suicide. They did not find any significant asso-

ciation of Val66Met polyorphism and suicidality in bipolar 

patients of Chinese origin. Recently, Kim et al191 examined 

BDNF Val/Met polymorphism in bipolar disorder in Korean 

subjects and whether clinical features vary according to geno-

type. They found that allelic distributions did not differ signif-

icantly between bipolar patients and healthy normal controls; 

however, the rate of suicide attempts among the Val/Val, 

Val/Met, and Met/Met genotype groups was significantly 

different. Relative to patients with the Val/Val genotype, 

those with the Met/Met genotype had a 4.9-fold higher 

risk of suicide attempts, suggesting that BDNF Val/Met is 

related to the suicidal behavior in bipolar patients. On the 

other hand, Sarchiapone et al192 genotyped 170 depressed 

patients for their history of suicide attempts and BDNF 

Val/Met polymorphism. Depressed patients who carried the 

BDNF Val/Met polymorphism variant (GA + AA) showed 

significantly increased risk of suicidal behavior. The risk of 

a suicide attempt was also significantly higher among those 

reporting higher levels of childhood emotional, physical, and 

sexual abuse. Secondary analyses suggested that depression 

severity was a significant risk factor only in the wild-type 

BDNF genotype, and that the risk of suicide attempts was 

more predictable within the wild-type group. The same group 

of investigators extended this study in postmortem samples 

of subjects who completed suicide and healthy controls.193 

They did not find a significant association of BDNF Val/Met 

polymorphism with suicide. They argued that even if family 

studies showed a shared inheritability of suicidal tendencies 

between suicide attempters and completers, completed sui-

cide and attempted suicide may have two distinct phenomena 
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and different molecular genetic components may be involved. 

They also analyzed two other polymorphisms in the Bdnf 

gene, -270C  T and -281C  A, and found their occur-

rence as less than 5%. Interestingly, Perroud et al194 examined 

whether a Val/Met BDNF polymorphism could moderate 

the effect of childhood maltreatment on the onset, number, 

and violence of suicidal behavior in suicide attempters. They 

reported that childhood sexual abuse was associated with 

violent suicide attempts in adulthood only among Val/Val 

individuals and not among Val/Met or Met/Met individuals. 

The severity of childhood maltreatment was significantly 

associated with a higher number of suicide attempts and 

with a younger age at onset of suicide attempt. This result 

suggests that Val/Met modulates the effect of childhood 

sexual abuse on the violence of suicidal behavior and that 

BDNF dysfunction may enhance the risk of violent suicidal 

behavior in adulthood. Altogether, these studies clearly link 

BDNF polymorphisms to suicidal behavior.

TrkB studies in suicide
Apart from BDNF, TrkB receptors have also been studied in 

relation to suicidal behavior. We examined the expression 

levels of TrkB in the same postmortem brain samples in 

which we determined the expression levels of BDNF. We 

found that the expression of full-length TrkB was significantly 

decreased in the PFC and hippocampus of suicide subjects 

compared with nonpsychiatric healthy controls. Interestingly, 

we did not find changes in expression of truncated isoform 

of TrkB (TrkB.T1). We found similar changes in PFC and 

hippocampus of teenaged suicide subjects.184 Our finding of 

decreased full-length TrkB expression in the suicide brain 

specimen may have serious implications. The decrease 

in full-length TrkB would not only affect BDNF-induced 

signaling but also the supply of BDNF to neurons and, thus, 

the loss of trophic maintenance of a variety of neuronal 

types, because the catalytically active full-length TrkB is 

present predominantly within neuronal axons, cell soma, 

and dendrites.195 In addition, the undiminished numbers of 

truncated TrkB would only exacerbate any effects as a result 

of the loss of catalytically active full-length TrkB, because 

truncated TrkB inhibits BDNF-mediated neurite outgrowth 

via the internalization of BDNF. More recently, we examined 

the functionality of full-length TrkB. We found that tyrosine 

phophorylation of TrkB was significantly compromised in 

the brain specimens of suicide subjects.196 These studies 

suggest that not only BDNF and TrkB are less expressed, 

but the functioning of TrkB is also impaired, in suicide brain 

specimens.

In a recent study, Ernst et al197 studied truncated TrkB 

(TrkB.T1) in frontal cortical regions and the cerebellum 

of suicide subjects. They found that about 36% of suicide 

completers had significant decreases in different probe sets 

specific to TrkB.T1 in frontal cortical areas but not the cer-

ebellum. The decrease in TrkB expression was specific to the 

T1 splice variant. There was no effect of genetic variation in 

a 2500-base pair promoter region or at relevant splice junc-

tions; however, an effect of methylation state at particular 

CpG dinucleotides on TrkB.T1 expression was noted. These 

results suggested a reduction in TrkB.T1 expression in 

suicide subjects, which was associated with the epigenetic 

modification of the TrkB.T1 promoter region.

p75NTr studies in suicide
p75NTR, initially discovered as a low-affinity receptor for 

NGF, is now known as a class of receptor that can bind to 

all neurotrophins with equivalent nanomolar affinities.198 

The 3.8-kb mRNA for p75NTR encodes a 427-amino acid 

protein containing a 28-amino acid single peptide, a single 

transmembrane domain, and a 55-amino acid cytoplasmic 

domain.199 Although p75NTR receptors do not contain a 

catalytic motif, they interact with several proteins, includ-

ing Trk receptors, which causes enhancement of ligand 

specificity and ligand affinities for Trk receptors.200–202 

Functionally, in contrast to Trk receptors, which contain 

autophosphorylation sites and are involved in cell survival, 

p75NTR lacks intrinsic enzymatic activity and can transmit 

both positive and negative signals.203 It has been shown that 

p75NTR can mediate neuronal apoptosis when the cognate Trk 

receptor is less activated or not activated.204 Similarly, p75NTR 

can cause developing hippocampal neuronal death induced 

by neurotrophins in the absence of a Trk receptor.205–207 In 

the adult CNS, it has been shown that excitotoxin-induced 

neuronal apoptosis is accompanied by the induction of p75NTR 

in the dying neurons,208 which suggests that p75NTR may 

represent a general stress-induced apoptotic mechanism.209 

However, the apoptotic mechanisms of p75NTR are active 

only when Trk receptors are less expressed or less active. 

Moreover, ectopic expression of the appropriate Trk receptor 

can convert a proapoptotic neurotrophin to a prosurvival 

neurotrophin. Thus, it appears that the ratio of expression 

levels and/or activation states of Trk receptors and p75NTR is 

quite relevant in neurotrophin-mediated functions. Recently, 

we observed that the expression ratio of p75NTR to Trk 

receptors is increased in the postmortem brain specimens of 

suicide subjects. Reduced expression of neurotrophins181,210 

together with reduced expression and activation of Trk and 
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concomitant increased expression of p75NTR indicate that 

the possible consequence is a tipping of the balance away 

from cell survival, which could be associated with structural 

abnormalities and reduced neuronal plasticity in suicide 

brain specimens.

The two major signaling pathways activated by Trks are 

Ras-Raf extracellular signal–regulated kinase (ERK) and 

phosphoinositide 3-kinase (PI3-kinase)-Akt. In addition, phos-

pholipase Cγ binds to activated Trk receptors and initiates an 

intracellular signaling cascade that results in the activation of 

protein kinase C. On the other hand, p75NTR stimulates several 

proapoptotic pathways, which include C-Jun kinase signaling, 

sphingolipid turnover, and association with adaptor proteins, 

such as neurotrophin receptor–interacting MAGE homolog 

(NRAGE) and p75NTR-associated cell death executor (NADE), 

that directly promote cell cycle arrest and apoptosis.211–214 Trk 

receptors suppress the major proapoptotic signaling pathway, 

c-Jun kinase, initiated by p75NTR.215 In sympathetic neurons, 

Ras-mediated activation of PI3-kinase is required to sup-

press this signaling pathway.216 Activation of Trk receptors 

completely suppresses the activation by p75NTR of sphingomy-

elinase through the association of activated PI3-kinase with 

acidic sphingomyelinase.217,218 Sphingomyelinase activation 

results in generation of ceramide, which promotes apop-

tosis by inactivating ERK and PI3-kinase pathways.219–221 

Interestingly, we have reported less-activated ERK1/2222,223 

and PI-3 kinase224 in both the PFC and the hippocampus of 

suicide subjects. These findings could be associated with less 

activation/expression of Trks. These findings also indicate 

suboptimal activation of prosurvival pathways. Conversely, 

if p75NTR is more abundantly expressed, this may lead to 

proapoptotic signaling. Further studies are required to 

determine whether proapoptotic pathways are activated in 

the brain specimens of suicide subjects and how Trk- and 

p75NTR-mediated signal transduction pathways interplay in 

the pathophysiology of suicide.

Recently, it has been shown that pro-BDNF binds 

preferentially to p75NTR and elicits apoptosis as opposed 

to mature BDNF, which binds weakly with p75NTR but 

with high affinity to TrkB, where it exerts neuroprotective 

activity.60,225 Thus, pro-BDNF and mature BDNF cause 

opposite physiological actions through binding to p75NTR 

and TrkB receptors, respectively.55 In fact, it has been shown 

that pro-BDNF facilitates long-term depression via activation 

of p75NTR.226 On the other hand, TrkB plays a critical role 

in early-phase long-term potentiation227 and conversion of 

pro-BDNF to mature BDNF is essential for TrkB-mediated 

late-phase long-term potentiation.61 In a recent preliminary 

study, we observed that the level of pro-BDNF is increased 

PFC and hippocampus of suicide subjects (unpublished 

observation), whereas a recent genetic study suggests that 

the S205L polymorphism, which substitutes a serine with 

a leucine residue, of the p75NTR gene is associated with 

attempted suicide.228 These studies reveal the crucial roles 

of pro-BDNF and p75NTR in suicidal behavior.

Conclusion and future studies
Several preclinical and clinical observations indicate that 

depression may be associated with the inability of neural 

systems to exhibit adaptive plasticity. Given the role of 

BDNF and its cognate receptors in neural and structural 

plasticity, and that depression and antidepressants exert 

opposite actions on BDNF and TrkB expression and 

functions, it is apparent that BDNF signaling may be crucial 

in the pathophysiology of depression and in the mechanism 

of action of antidepressants. It is still unclear how a decrease 

in BDNF expression leads to depression. Genetic BDNF 

knock-in and knock-out models could possibly answer this 

question. However, recent studies suggest that a reduction 

in BDNF level in BDNF heterozygous knockout mice 

does not produce depression-like symptoms,229 although 

overexpression of TrkB reduces anxiety and depressive 

behavior in mice.230,231 On the other hand, overexpression 

of TrkB.T1 fails to induce a depression-like effect in the 

forced swim test.121 Thus, more in-depth studies are required 

to answer this question.

For suicidal behavior, the studies showing abnormalities in 

BDNF signaling in suicide are compelling. Many postmortem 

brain studies in patients who complete suicide and in those 

with suicidal ideation or attempted suicide show decreased 

BDNF expression and abnormalities in its cognate TrkB/

TrkB.T1 receptor. Although depression is an important factor 

in suicide, some studies were able to differentiate suicidal 

behavior vs depressive behavior in terms of decreased level 

of BDNF. Genetic studies also indicate an association of 

BDNF to suicidal behavior. Not only BDNF, but signaling 

mechanisms to which BDNF mediates its functions are also 

impaired in the brain specimens of suicide subjects. From 

these studies, it can be assumed that a decrease in BDNF 

in suicide subjects is independent of psychiatric illness and 

stress diathesis; however, further studies will be required to 

answer this complex question.

There are many avenues in BDNF research in depression/

suicide that need further attention. For example, what role 

does dendritic localization of BDNF/TrkB play in altered plas-

ticity in these disorders? What is the significance of enhanced 
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expression of pro-BDNF and p75NTR in the development of 

depressive/suicidal behavior? Recently, it has been shown 

that BDNF and TrkB regulate translational machinery in 

dendrites.232 Moreover, BDNF induces the expression of 

Lim kinase 1, a protein kinase whose mRNA translation 

is inhibited by brain-specific microRNA-134. microRNA 

134 is localized in dendrites and its overexpression leads to 

a decrease in spine size through repression of Lim kinase 

1 mRNA translation.233 Thus, studying BDNF/TrkB and other 

interacting proteins in dendrites will further reveal their novel 

mechanistic roles in the development of depression/suicidal 

behavior.
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