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Abstract

Although COVID-19 largely causes respiratory complications, it can also lead to various extrapulmonary manifestations

resulting in higher mortality and these comorbidities are posing a challenge to the health care system. Reports indicate that

30–60% of patients with COVID-19 suffer from neurological symptoms. To understand the molecular basis of the neurologic

comorbidity in COVID-19 patients, we have investigated the genetic association between COVID-19 and various brain disorders

through a systems biology-based network approach and observed a remarkable resemblance. Our results showed 123 brain-

related disorders associated with COVID-19 and form a high-density disease-disease network. The brain-disease-gene network

revealed five highly clusteredmodules demonstrating a greater complexity of COVID-19 infection.Moreover, we have identified

35 hub proteins of the network which were largely involved in the protein catabolic process, cell cycle, RNA metabolic process,

and nuclear transport. Perturbing these hub proteins by drug repurposing will improve the clinical conditions in comorbidity. In

the near future, we assumed that in COVID-19 patients, many other neurological manifestations will likely surface. Thus,

understanding the infection mechanisms of SARS-CoV-2 and associated comorbidity is a high priority to contain its short-

and long-term effects on human health. Our network-based analysis strengthens the understanding of the molecular basis of the

neurological manifestations observed in COVID-19 and also suggests drug for repurposing.
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Introduction

As of the end of October 2020, the novel Coronavirus Disease

2019 (COVID-19) caused by severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2) has crossed over 50 mil-

lion cases globally with more than 1 million deaths. While

SARS-CoV-2 is known to cause substantial complications in

respiratory and pulmonary systems, causing pneumonia and

acute respiratory distress syndrome (ARDS), several COVID-

19 cases present various extrapulmonary manifestations of

COVID-19. These include manifestations of cardiovascular,

renal, hematologic, gastrointestinal, hepatobiliary, endocrino-

logical, ophthalmological dermatological, and neurological

systems [1–4]. To date, increasing evidences are indicating

the neurological manifestations of the central and peripheral

nervous system in COVID-19 [5]. These neurological compli-

cations include headaches, dizziness, nausea, loss of con-

sciousness, seizures, anorexia, anosmia, ageusia, encephalop-

athy, and meningo-encephalitis [6–11]. In addition, ischemic

stroke [12], acute necrotizing encephalopathy (ANE) [8], and

acute inflammatory demyelinating polyneuropathy (Guillain-

Barré syndrome, GBS) [13] have also been reported to be

associated with COVID-19. Moreover, COVID-19 patient au-

topsy studies have also identified viral RNA transcripts and

viral proteins in brain tissues [14, 15].

The potential mechanisms underpinning the various neuro-

logical syndromes include direct or indirect viral neuronal

injury [16], a secondary hyperinflammation syndrome related
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to cytokine storm [17], post-infectious immune-mediated dis-

orders, or the effects of a severe systemic disorder with the

neurological consequences of sepsis, hyperpyrexia, hypoxia,

vasculopathy, and/or coagulopathy.

Recently, two studies utilized the 3D human brain

organoids to study the neuroinvasive potentials of SARS-

CoV-2. Ramani et al. [18] have revealed that SARS-CoV-2

readily targets cortical neuronal cells and induces tauopathies

and neuronal cell death. The other study by Song et al. [19]

models the SARS-CoV-2 infection of neuronal cells in hiPSC-

derived brain 3D organoids. These comorbidities thus lead to

higher risk of disease development and higher mortality asso-

ciated with COVID-19. It is largely assumed that other neu-

rological manifestations will likely surface in the near future.

Thus, understanding the infection mechanisms of SARS-

CoV-2 and associated comorbidity is a high priority to contain

its short- and long-term effects on human health.

SARS-CoV-2 causes the disease by hijacking the host cell

machinery and perturbs the highly organized cellular net-

works. Moreover, the highly coordinated interactions between

molecules observed in a healthy cell are also gets altered in a

disease condition [20]. This suggests that SARS-CoV-2 inter-

action with host human cells will be different in healthy and

diseased cells, and thus could lead to different impacts of

COVID-19 infection. Therefore, pre-existing clinical condi-

tions can facilitate the appearance of another disease if they

share the same or functionally related genes [21]. As SARS-

CoV-2 has been shown to be associated with several neuro-

logical manifestations, we here predicted the risk of COVID-

19 infection in patients with various neurological disorders.

Over the last 20 years, numerous human-viral interactomes

have been constructed to understand the mechanisms of viral

entry, infection, and disease progression [22–26].

Investigating such interactomes has led to the discovery of

shared and distinct molecular pathways associated with viral

pathogenicity. In the present work, we have utilized a

network-based system biological framework (Fig. 1) to inves-

tigate the molecular interplay between COVID-19 and various

human neurological disorders. Here, we have constructed a

brain-specific protein-protein interaction network of the 332

genes of human’s targeted by SARS-CoV-2 reported by

Gordon et al. [27], with their neighboring genes and named

the network as COVID-19 target network (CTN). The genes

in the network were then further used to identify the neuro-

logical disease associated with them. Based on the shared

genes, we have integrated the CTN with brain diseases and

generated a disease-gene network of the brain (BDGN). This

human brain disease-gene network consists of a total of 123

various brain disorders including COVID-19 interacting with

653 genes of CTN. Out of these 123 diseases, 28 diseases

were directly linked with the COVID-19, indicating the co-

morbidity and complexity of COVID-19. Next, we have iden-

tified the functional modules and hub genes of the CTN

network that can be considered as the hotspot for comorbidity

and could be the target for drug repurposing. We therefore

emphasized that targeting these functional modules will inhib-

it the viral replication and growth and thus will improve the

medical conditions in comorbidity associated with COVID-

19.

Material and Methods

Brain-Specific Protein-Protein Interaction (PPI)
Network for COVID-19 Target Genes

Interactome data of the human brain was retrieved from the

TissueNet v.2 database with 165,240 interactions [28].

Quantitative tissue association for human PPI is provided by

TissueNet. TissueNet gathers RNA-Seq and protein-based as-

say profiles from the genotype-tissue expression project

(GTEX) and human protein atlas (HPA) for preparing exten-

sive interaction networks. Experimentally validated protein

interaction information extracted from four major databases

(DIP, BioGrid, MINT, and IntAct) was also included for pre-

paring PPI networks. A list of 332 genes of humans known to

interact with COVID-19 was obtained from Gordon et.al [27]

and was used for creating a subnetwork having interaction

between the COVID-19 target genes and their neighboring

genes. The subnetwork was called the COVID-19 target net-

work (CTN). Out of 332 genes, 4 genes (GDF15, INHBE,

SBNO1, and CEP43) did not show any interactions in the

brain.

Assembling Brain-Specific Disease-Gene and Disease-
Disease Interaction Network

After obtaining the list of COVID-19 target genes and their

neighboring genes from CTN, Gene ORGANizer [29] tool

was used to identify the brain-related disorders linked with

these genes. Gene ORGANizer database allows us to analyze

the relationship between the query genes and the organs af-

fected by them. The database provides organ-specific disease-

gene relation from highly curated DisGeNET and human phe-

notype ontology (HPO) tools. Disease-gene interactions hav-

ing valid HPO identifiers were considered for further study. A

total of 2002 disease-gene interactions related to brain disor-

der was obtained, which included 127 various brain disorders

interacting with 653 genes. Forty-three out of 653 genes were

the direct target of the COVID-19. Finally, a disease-gene

interaction network was prepared which consists of 780 nodes

(i.e., diseases/genes) and 2046 interactions. Disease-Disease

interaction network was then prepared using the disease-gene

interaction network in which two diseases are considered to be

associated only if they share a common gene known to cause

those diseases. A network of 123 diseases connected with
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each other was prepared, in which 28 diseases were directly

connected to the COVID-19. The calculation of the topolog-

ical coefficient of the disease-gene interaction network also

indicated the tendency of nodes in the network to have shared

neighbors [30]. The values of topological coefficient also sug-

gest that CTN may have functional modules within the net-

work, as the genes in the modules are more connected in-

between rather than the genes present outside the module [31].

Identification of Functional Protein Modules of CTN

Organization of biological function is believed to be in a mod-

ular and hierarchal manner [32]. It is believed that cellular func-

tion modular organization is reflected as modular structure in

molecular network [33]. Protein modules are groups of highly

connected proteins that tend to be co-localized and co-

expressed. Proteins in protein-modules form a single multimo-

lecular machine by interacting with each other at the same time

and place [34, 35]. The MCODE plugin of the Cytoscape tool

was used for identifying protein modules in CTN with degree

cut-off value equals to 2, node score cut-off value equals to 0.2

and k-core value equals to 2. MCODE algorithm operates on

three stages, i.e., vertex weighing, complex prediction, and op-

tionally post-processing step, for identifying the locally highly

connected region in the interaction network [36]. A total of 32

modules were obtained, from which the five largest modules in

terms of their sizes have been selected for further studies. These

selected five modules have the maximum number of genes and

also have multiple COVID-19 target genes in it. These five

functional modules thus cover a major part of the COVID-19

target network and most likely will play an important role in the

progression of the disease. The functional modules identified in

CTN are large, so it is important to identify which genes in each

module best explains its behavior. A widely used approach is to

identify highly connected genes (also known as hub genes) in

the modules [37].

Identification of Hub Genes of CTN

Hub genes in the network are the genes that are highly con-

nected with other genes in the network on a direct basis. Any

change in the expression or activity of the hub gene has the

potential to influence the working of the network. Hubs are

frequently more relevant to the functionality of the network

than other genes. We calculated the topological properties like

the degree of connectivity (K), betweenness centrality value,

and closeness centrality for all the 5 functional modules, sim-

ilar to our previous study [26]. All these network topology

parameters were calculated using the network analyzer plugin

of the Cytoscape tool [38]. Briefly, degree (k) signifies the

number of interactions made by nodes in a network and is

expressed as:

Degree of connectivity kð Þ ¼ ∑vεKu
w u; vð Þ

where Ku is the node-set containing all the neighbors of

node u, and w(u,v) is the edge weight connecting node u with

node v.

Fig. 1 A strategic workflow adopted in this study with self-explained legends
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Betweenness centrality (Cb) represents the degree to which

nodes stand between each other based on the shortest paths. A

node with higher betweenness centrality represents more con-

trol over the network. It is expressed as:

Cb uð Þ ¼ ∑k≠u≠ f

p k; u; fð Þ

p k; fð Þ

where p(k,u,f) is the number of interactions from k to f that

passes through u, and p(k,f) denotes the total number of

shortest interactions between node k and f.

Closeness centrality (Cc) is a measure of how fast

information is traveled from one node to other nodes in

the network. Closeness centrality value ranges from 0 to

1, and isolated genes have closeness centrality value

equal to zero.

Cc zð Þ ¼
1

avg L z;mð Þð Þ

where z is the node for which the closeness value is calcu-

lated and L(z,m) is the length of the shortest path between two

nodes z and m. It has been seen that genes having a high

degree of connectivity also have high closeness centrality

score.

Eccentricity (eG) is defined as shortest distance between

one node from all the other nodes present in the network.

The shortest the distance between the nodes, the faster the

travel of information among them. If a node is an isolated

node, its eccentricity value will be zero.

eG vð Þ ¼ max distG v; uð Þ : u ϵ V Gð Þf g

where v is the central node in a connected network G for

which we are calculating the eccentricity and u are the nodes

presented in the network.

Topological coefficients (Tf) indicate the tendency of the

nodes in the network to have shared neighbors. Nodes having

no or one neighbor are assigned a topological coefficient of

zero. The topological coefficient of a node, nwith kf neighbors

is computed as:

T f ¼
avg j f ; pð Þð Þ

k f

where j(f,p) is the number of shared neighbors between f

and p, plus 1 if there is an edge between f and p.

The top 35 genes having a high degree of connectivity

and betweenness values were considered as hub genes of

the CTN. Apart from topological parameters, we have

also calculated the Dyadicity, which measures the con-

nectedness of the nodes belonging to the same groups,

and the Jaccard similarity coefficient to check the extent

of molecular overlapping among COVID-19 and other

neurological disorders.

Identification of Key Genes and Key Regulators of the
Protein Modules

After identifying the hub genes of the CTN network, we have

identified one key gene in each of the functional modules. A

key gene is among the hub genes of the modules which also

plays role in connecting the functional modules with each

other and provides the idea about how these modules shares

information with each other. Furthermore, for identifying the

key regulator or driver genes which control the regulation of

the modules, tracing of hub genes of each module up to motif

level was performed. Key regulators are the genes that are

highly connected in the network not only when seen from

the top of the network but its connection reaches the lower

levels in the network making the gene an important and influ-

ential part of the network. Apart from identifying the impor-

tant genes in the modules, it is equally important to identify

the processes and the pathways in which these modules play

role, to better understand how the alterations in the function of

these modules affects the host condition.

Gene Ontology and Pathway Enrichment Analysis

For enrichment analysis of protein-modules, Database for

Annotation Visualization and Integrated Discovery (David

v.6.7) tool was used [39]. Gene Ontology (GO) enrichment

analysis includes annotation at biological, cellular, and at mo-

lecular levels. DAVID uses the GO and Kyoto encyclopaedia

of genes and genomes (KEGG) database for the enrichment

analysis of the genes. Pathways and functions having P value

less than 0.05 were considered significantly enriched.

Network-Based Drug Repurposing

For identifying the drug targets for hub genes, key genes, and

key regulators, databases such as DrugBank, Clue.io [40],

ChemblInteraction [41], and DGIdb [42] were screened out.

A final drug-gene interaction network was prepared using the

STITCH database [43]. STITCH is a database known to pre-

dict the physical and functional interaction between the query

genes and drugs. The interactions in the STITCH database are

derived from five sources namely, automated text mining,

high throughput lab experiment data, co-expression interac-

tion data, interaction prediction by genomic context, and by

previous knowledge from other databases. For each interac-

tion, STITCH calculated a combined score. A combined score

is calculated by combining the corrected probability of ob-

serving an interaction randomly and probabilities of interac-

tion from different evidence channels. The drug-gene interac-

tions having a combined score value > 0.7 were considered

high confidence interactions.

Apart from chemical molecules as drugs, we also identified

the microRNAs (miRNAs) as a potential drug candidate, the

Mol Neurobiol (2021) 58:1875–18931878



miRNAs interacting with the 35 hub genes were retrieved

from the miRTarBase database [44]. mirTarBase database

provides miRNA interaction with several hosts organism in-

cluding humans. This database uses several validation

methods such as reporter assay, western blot, qPCR, microar-

ray, NGS, and pSILAC to validate the interaction between

host genes and miRNAs. For 35 hub genes, 1997 miRNA-

gene interactions were retrieved. Interactions having at least

one strong evidence of validation methods were used for fur-

ther analysis.

Results

Protein-Protein Interaction Network Between COVID-
19 and Human Host in the Brain

For constructing COVID-19 and its human interaction

network, we retrieved the protein-protein interaction net-

work of the brain from TissuevNet2.0 [28] database. A

network consisting of 12,968 number of nodes and

165,241 number of edges was constructed using the

brain’s PPI data (Supplementary Fig. 1). A list of 332

human target genes of COVID-19 was retrieved from

Gordan et.al [27]. A subnetwork of these 332 genes with

their neighboring genes was constructed from the brain’s

PPI network and was named as the COVID-19 target

network (CTN) (Fig. 2a, Supplementary Table 1). Out

of the 332 COVID-19 target genes, 327 genes were part

of the subnetwork. The subnetwork has 5061 number of

nodes and 95,802 number of edges. More than 50% of

interactions from the main network become the part of a

subnetwork which clearly depicts how deeply the

COVID-19 target genes are connected in the brain. The

degree distribution of CTN indicates that the network has

a scale-free property (Fig. 2b). A scale-free network is

one that follows a power-law distribution and is indepen-

dent of the size of the network (i.e., the number of nodes

in the network), which means the basic structural foun-

dation of the network remains the same even when the

network grows [45, 46]. Next, we also calculated the

dyadicity (D) between the COVID-19 target genes in

CTN and obtain a dyadicity value as 24.2. Dyadicity

refers to the connectedness of the nodes belonging to

the same group in a network. In a dyadic network, nodes

belonging to the same group are more connected with

each other than in a random network. A network is

called dyadic when D > 1 [47, 48]. A value of 24.2 in

our analysis indicates that COVID-19 target genes are

very well connected and making a complex in the net-

work, which can hijack the host cellular machinery. The

complexes in a network are likely to contribute to the

progression of disease and comorbidity at the molecular

level [49]. Proteins present in a community have a higher

probability to play role in comorbidity as compared to

the other proteins which are not part of the complex.

Therefore, to understand the high risks of comorbidities

associated with covid19, we have prepared and briefly

Fig. 2 a COVID-19 target genes (in red) interaction network in the brain with neighboring genes (in green). b Scatter plot showing the distribution of

degree (k) in the COVID-19 target network (CTN)
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analyzed the disease-gene and disease-disease interaction

network of CTN.

Disease-Gene and Disease-Disease Interaction
Network in the Brain

A disease-gene interaction network and disease-disease inter-

action network from CTN were prepared to understand the

links of COVID-19 with neurological comorbidities. A

disease-gene interaction map of CTN was constructed from

the disease-gene interaction data of the brain obtained from

the Gene ORGANizer database. A total of 313 brain diseases,

715 genes, and 2965 disease-gene pairs were considered for

network construction. The disease-gene association map in

CTN will then be constructed by connecting the associated

node (genes) and brain disorder. The resulting network re-

vealed 653 genes linked to a total of 127 disorders, which also

includes COVID-19 (Fig. 3a, Supplementary Table 2).

Figure 3a represents the disease-gene network map compris-

ing of 780 nodes and 2002 disease-gene interactions and is

termed as the brain disease-gene network (BDGN).

The disease-gene interaction network showed that several

disorders were connected with more than one gene in the

network such as ataxia (k = 245), dementia (k = 91), autism

(k = 69), and COVID-19 (k = 43) (Fig. 3b). Similarly, the

disease-gene interaction network also showed that many of

the disorder share the common genotype. For example,

SARS-CoV-2 targets, TBK1 (k = 16), BCS1L (k = 7),

DNMT1 (k = 7), FBN1 (k = 7), WFS1 (k = 7) and neighbor-

hood nodes, CDKL5 (k = 17), MECP2 (k = 16), VCP (k = 16),

TARDBP (k = 14), and ATXN2 (k = 12) are linked to multiple

disorders (Fig. 3c, Supplementary Table 3). Also, the calcula-

tion of the topological coefficient of the BDGN network indi-

cated that several nodes in the network have shared neighbors

(Supplementary Fig. 2). Thus, the resulting BDGN reveals the

molecular connection of COVID-19 with various brain disor-

ders and also the close association of COVID-19 targets with

the genes causing the brain disorders (Supplementary Fig. 3).

To further demonstrate the association between COVID-19

and brain disorders, a disease-disease association network was

then constructed, where two diseases were considered to be

related if they share one common gene. The resulting disease-

disease interaction network contains a total of 123 diseases

(nodes) and 436 edges, representing a higher clustering be-

tween diseases (Fig. 3d and Supplementary Table 4). Out of

123 disease nodes in the network, 28 nodes (in red) were

directly linked with COVID-19 (yellow node) (Fig. 3d).

Jackard similarity coefficient was also calculated to check

Fig. 3 a Disease gene interaction network: the figure represents the

interaction of CTN network genes with their related brain disorder.

COVID-19 target genes are represented in red, neighboring genes of

COVID-19 target genes are represented in green, diseases are represented

by blue color, and COVID-19 disease is represented by yellow color. b

Dot plot of highly connected diseases and the number of genes associated

with disease in the brain’s gene-disease interaction network. c Bar plot of

genes highly connected to multiple diseases in the brain’s gene-disease

interaction network. d Brain’s disease-disease interaction network. Red

color nodes represent the disease directly connected to COVID-19
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the extent of molecular overlapping between COVID-19 and

other brain-related disorders. Several diseases like ataxia, dys-

arthria, spasticity, cerebral atrophy, autism, dementia, and

stroke were closely related to the COVID-19 and are also

connected with multiple genes in the brain (Supplementary

Fig. 4A and 4B). Thus, because of these molecular overlap-

ping, patients having these diseases are more prone to

COVID-19 and vice-versa. The higher molecular similarities

between brain diseases create a highly complex high-density

comorbidity cluster which contributes to higher mortality in

COVID-19 patients.

To further strengthen the above statement of the high-

density comorbidity, we calculated the eccentricity value of

the network. The eccentricity of a node in a biological network

can be interpreted as the easiness of the node to be function-

ally reached by all other nodes in the network [50]. A node

with a high eccentricity value compared to the average eccen-

tricity value of the network will be more easily influenced by

the activity of the other nodes and conversely could also easily

influence the other nodes in the network by its activity. We

observed that more than 80% of the nodes in the disease-

disease network shows the eccentricity value greater than or

equal to the network’s average eccentricity value (i.e., 4),

which represents that the functionality of the nodes in the

network is highly linked to each other making the network a

highly complex cluster (Supplementary Table 5).

Recent studies evidently showed the extra pulmonary as-

sociations in COVID-19 that contribute to higher mortality in

COVID-19 patients. Thus, it is of utmost necessity to develop

effective drugs to target the patient-specific risks of comorbid-

ity during COVID-19 infection. However, presence of several

overlapping molecular connection makes it difficult to identi-

fy and prioritize the targets for the treatment of the COVID-19

infection. We therefore focused next to target the host func-

tional protein modules linked with diverse brain diseases.

A Broad Range of Disorders Are Linked to Functional
Protein-Modules of Host Interaction Network

It is generally accepted that biological networks are not ran-

domly connected and follow a structural pattern which gives

rise to the modular structure and hierarchical organization.

Modularity suggests nodes that are highly connected in a com-

munity are most likely to have the same biological functions

and play a role in similar pathways [51]. Many complex net-

works exhibit modular structures, where in-between modules

interactions are less dense as compared to interaction within

modules. These modules reflect the organization of the func-

tional unit in a network with relative independence [52].

Generally, diseases sharing similar genes are more

predisposed to form disease modules and comorbidity.

Similarly, genes related to similar diseases are likely to highly

interact with each other [53]. For identifying protein modules,

we used the MCODEmodule of the Cytoscape tool. A total of

32 protein modules in CTN were identified by MCODE. The

top 5 modules having a larger number of nodes and edges

were selected for further studies (Supplementary Table 6).

Module-1 (Fig. 4a) had 257 nodes and 1542 edges including

15 COVID-19 target genes (in red). Module-2 (Fig. 5a) had

253 nodes and 921 edges including 17 COVID-19 target

genes. Module-3 (Fig. 6a) had 183 nodes and 619 edges in-

cluding 14 COVID-19 target genes. Module-4 (Fig. 7a) had

175 nodes and 899 edges including 10 COVID-19 target

genes and module-5 (Fig. 8a) had 155 nodes and 340 edges

including 5 COVID-19 target genes. The presence of a high

number of COVID-19 target genes in these protein modules

indicated that during the infection, these modules might be

hijacked and strongly altered as compared to other modules

in the network and will eventually disrupt the majority of the

network function. DAVID tool was used for gene ontology

analysis and KEGG pathway analysis.

Biological functional enrichment analysis of module-1 re-

vealed its role in RNA splicing, mRNA processing, protein

complex biogenesis and assembly, regulation of programmed

cell death and pathway analysis reveal module-1 role in pro-

teolysis, ribosome pathway, spliceosome pathway, in

Huntington’s disease pathway, and cancer pathways (Fig.

4b). The nodes of module1 were associated with disorders like

ataxia, dysarthria, spasticity, encephalopathy, coma, and de-

layed speech and language development along with many

other disorders (Fig. 4c).

Similarly, biological functional analysis indicates that

module-2 plays a role in macromolecular complex assembly,

negative regulation of gene expression, RNA transport, and

localization, and play role in pathways like spliceosome, ribo-

some, cell cycle, gliomas, pathways in cancer, and RIG-I like

receptor signaling pathways (Fig. 5b). The nodes are associ-

ated with disorders like hydrocephalus, dementia, autism,

muscula r dys t rophy, language impai rment , and

frontotemporal dementia (Fig. 5c).

Enrichment analysis of module-3 reveals its role in RNA

splicing, cell division, mRNA processing, spindle assembly,

and nuclear division-related biological process, whereas path-

way analysis reveals roles in Notch signaling pathways, Toll-

like receptor signaling pathways, and SNARE interaction in

vesicular transport (Fig. 6b). Nodes of the module-3 are asso-

ciated with diseases like ataxia, sleep apnea, leukodystrophy,

cerebral ataxia, and Joubert syndrome (Fig. 6c).

Module-4 plays a role in biological functions like RNA

processing, translational elongation, ncRNA processing, and

in the viral infection cycle, and also plays a role in pathways

like NOD-like receptor signaling pathways, Parkinson’s dis-

ease, Huntington’s disease, and Cytosolic DNA sensing path-

ways (Fig. 7b).Module-4 is associated with diseases like atax-

ia, spasticity, amyotrophic lateral sclerosis, chorea, and audi-

tory neuropathy (Fig. 7c).
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Module-5 biological functional analysis reveals its role in

the regulation of transcription from RNA polymerase II

promoter, chromatin modification, regulation of transcription,

and in cellular protein catabolic process, pathways enrichment

Fig. 4 aModule1 with COVID-19 target genes (in red). bBiological functions and KEGG pathways related to module-1. cDot plot of module-1 related

disease with their gene counts

Fig. 5 aModule-2 with COVID-19 target genes (in red). bBiological functions and KEGG pathways related to module-2. cDot plot of module-2 related

disease with their gene counts
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analysis reveal a role in Wnt signaling pathways, viral repro-

duction, MAPK signaling pathway, neurotrophin signaling

pathway, TGF-beta signaling pathway, and ErbB signaling

pathway (Fig. 8b). Module 5 is associated with diseases such

Fig. 6 a Module-3 with COVID-19 target genes (in red). b Biological functions and KEGG pathways related to module-3. c Dot plot of module-3-

related disease with their gene counts

Fig. 7 aModule4 with COVID-19 target genes (in red). bBiological functions andKEGG pathways related to module-4. cDot plot of module-4-related

disease with their gene counts
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as ataxia, myopathy, Chiari malformation, GAIT ataxia, limb

ataxia, and febrile seizures (Fig. 8c).

Interestingly, during the early stage of infection, SARS-

CoV-2 hijack these modules and the concerned biological

processes and synthesize its RNA. Many clinical conditions

such as ataxia, spasticity, encephalopathy, and dementia are

associated with all modules, revealing a greater risk of the

severe illness of COVID-19 patients. The presence of com-

mon disease, the pathway, and the biological functions in the

modules indicated that these modules are connected with each

other to some extent (Supplementary Table 7). Besides, we

also observed a different spectrum of disorders like cancer,

myopia, dysarthria, sleep apnea, and thromboembolic stroke

that were associated with these modules. Therefore, besides

neurologic comorbidity, disorders in various other organs can

also be a potential threat for COVID-19 patients as also dem-

onstrated by Gysi et al. [54]. Our network-based results will

thus add to strengthen these observations.

Core Regulatory Hubs of the Protein Network

Several virus-host network studies have indicated that viral

proteins target the hub proteins which have a high degree of

connectivity in the network [22, 24–26, 55]. Here, we have

identified 35 candidate hub proteins that exhibit a high degree

of connectivity and betweenness value, using the Cytoscape’s

Network analyzer tool (Supplementary Table 8). Out of these

35 hub proteins, 16 proteins bind to SARS-CoV-2 [27].

Biological process enrichment analysis of these 35 hub pro-

teins using GeneMania webserver and GO biological process

analysis indicated their role in proteasome-mediated ubiqui-

tin-dependent protein catabolic process, G1/S transition of the

mitotic cell cycle, Notch signaling pathway, ERBB signaling

pathway, and response to hypoxia (Fig. 9 and Supplementary

Table 9). The GO function analysis reveals the roles of hub

proteins in nitric-oxide synthase regulator activity, ubiquitin-

protein ligase binding, transcription regulator activity, RNA

binding, and cytoskeletal protein binding (Supplementary

Table 9).

Strikingly, 26 of the SARS-COV-2 viral proteins inter-

act with the above-identified 16 hub genes (Table 1). As

can be seen, SARS-CoV-2’s NSP8, NSP13, ORF3a, and

ORF9c target the most of these hub proteins (i.e., eight in

total), SARS-CoV-2 NSP2 and ORF7a targets seven hub

proteins, while SARS-CoV-2 N, M, NSP6, and NSP7 have

six hub protein targets (Table S3). Other SARS-CoV-2

proteins like NSP’s (4, 9, 12) and SARS-CoV-2 ORFs’

(3b, 8, 10) have five targets. Intriguingly, all the 16 hub

genes are targets of more than one SARS-CoV-2 protein

(Table 1) , ou t of which NPM1, SNW1, GRB2,

HSP90AA1, and ELAVL1 are the target of several

SARS-CoV-2 proteins. These findings are consistent with

previous findings which indicates that an individual viral

protein can target multiple host proteins and several viral

Fig. 8 a Module-5 with COVID-19 target genes (in red). b Biological functions and KEGG pathways related to module-5. c Dot plot of module-5-

related disease with their gene counts
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proteins can interact with the same host protein [25, 26,

55–57].

Moreover, the spatio-temporal expression analysis of these

35 hub genes was studied through the BEST (Brain

Expression Spatio-Temporal) webserver (http://best.psych.

ac.cn/#) [58]. This server utilizes eight human brain

expression datasets obtained from BrainSpan Atlas, Allen

brainmap, GTEx, and other sources. The expression pattern

of selected genes in different brain regions (spatial pattern)

and age stages (temporal pattern) were analyzed using RNA-

seq Data from Brainspan and RNA-seq Data from GTEx and

has been shown in Supplementary Fig. 5. As can be seen in the

figure that most of the genes were upregulated from the neo-

natal stages to adulthood, these genes were downregulated in

the hypothalamus, olfactory bulb, substantia nigra, insula, and

parahippocampal region (Supplementary Fig. 5A). However,

in older age, the genes were moderately upregulated in the

hypothalamus and substantia nigra, whereas they largely get

downregulated in the olfactory bulb, thalamus, and in the cor-

tical region (Supplementary Fig. 5B). The downregulation of

these genes in the olfactory bulb, thalamus, substantia nigra,

and the cortical regions of the brain indicates the impairment

of sensory systems, memory, and cognition.

Network-Based Drug Repurposing

Because of high connectivity and the ability to rapidly transfer

information in the network, hub genes could be the most ap-

propriate target in any network for drug identification [26].

We propose to target these hub proteins, hijacked by SARS-

CoV-2, through drug repositioning. Initially, we identified

drugs for the 35 hub genes by screening multiple databases

related to drug-genes interaction [42, 59, 60]. A total of 3286

drug-gene interactions for 35 hub genes were identified

(Supplementary Table 10). For 16 hub genes showing inter-

action with COVID-19 viral protein, 1477 drug-gene interac-

tions were identified. Out of these 16 genes, 12 genes showed

significant interactions with 41 drugs having a combined

score > 0.7 in the STITCH database (Supplementary Fig. 6).

Considering the severity and complexity of COVID-19, we

also target key genes connecting the functional modules using

drug repurposing. Targeting these key genes makes much

more sense, as information transmitted by these key genes will

further provide instructions to other modules controlling the

network. We have identified five key genes (ESR1, TP53,

UBC, HSP90AA1, and MYC) that were linking the modules

in-between and can act as a suitable candidate for drug

Fig. 9 Protein-protein interaction network of 35 hub genes derived from GeneMANIA along with functional enrichment
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repurposing (Supplementary Fig. 7A). A total of 138 number

of FDA approved drugs were identified for the 5 key genes. A

drug-gene interaction network was prepared, and the STITCH

database was used for the final categorization of interactions.

Interactions having a combined score value > 0.7 were con-

sidered as high confidence interactions (Supplementary

Fig. 7B). Moreover, earlier clinical studies indicated that

many of the drugs used for the treatment of viral CNS infec-

tions have poor CNS penetration abilities and thus were un-

able to inhibit viral RNA replication [61]. These drugs were

shown to have lower log P values (CNS penetration ability)

and hence were unable to cross the blood-brain barrier.

Ideally, according to Lipinski’s rule of 5, a log P value less

than 5 has been considered as a pharmacologically effective

drug [62]. The log P value of the identified drugs has been

shown in parentheses and this information would be highly

useful for selecting the drugs for drug repurposing against

COVID-19 induced CNS infection.

ESR1 gene showed high confidence interactions with FDA

approved drugs, fulvestrant (logP, 6.54), tamoxifen (logP,

5.93), raloxifene (logP, 5.45), estradiol (logP, 3.57), and

ethinylestradiol (logP, 3.63). TP53 gene showed interaction

with etoposide (logP, 0.73), 5-fluorouracil (logP, − 0.89),

mitomycin-c (logP, − 0.40), bortezomib (logP, 0.89), and

doxorubicin (logP, 1.41) drugs. MYC gene showed interac-

tion with imatinib (logP, 3.47), calcitriol (logP, 5.51), and

amifostine (logP, − 1.4) drugs and HSP90AA1 gene showed

interaction with rifabutin (logP, 4.25) drug.

Key regulators in a network are the proteins that are deeply

rooted in the network/modules and serve as the backbone of

the network. Since networks serve as hierarchical characteris-

tics, removal of key regulators from the network may cause

alarming changes in the whole network and especially in the

deeper levels of the network [63]. Thus, these key regulators

will be proved as a good target gene in the modules. A total of

12 key regulators in 5 modules were identified by tracing the

hub proteins of each module up to the motif level (Fig. 10 a).

For module 1, YWHAQ, CUL4B, CUL2, and HSPA8 genes

were identified as key regulators. Similarly, for module 2, the

HDAC1 gene was identified, for module 3, the KAT2B gene,

for module 4, theMYH9 gene, and for module 5, SMARCA4,

SMARCC2,MYC, H2AX, and GAN genes were identified as

Table 1 Interaction of 16 hub

genes of the CTN with SARS-

CoV-2 proteins

Proteins The hub genes of the CTN

SARS-COV2 NSP1 NPM1, SNW1

SARS-COV2 NSP9 ELAVL1, HSP90AA1, NPM1, SNW1, TP53

SARS-COV2 NSP4 HSP90AA1, NPM1, SNW1, VCP, XPO1

SARS-COV2 SPIKE GRB2, NPM1, SNW1

SARS-COV2 ORF6 CDK2, ELAVL1, NPM1, SNW1, VCP

SARS-COV2 NSP14 GRB2, SNW1

SARS-COV2 NSP7 CAND1, CDK2, GRB2, HSP90AA1, NPM1, XPO1

SARS-COV2 ORF9C CAND1, CCDC8, ELAVL1, GRB2, HSP90AA1, NPM1, VCP, XPO1

SARS-COV2 ORF9B ELAVL1, NPM1, SNW1, XPO1

SARS-COV2 ORF3B ELAVL1, GRB2, HSP90AA1, NPM1, SNW1

SARS-COV2 M CAND1, CDK2, HSP90AA1, NPM1, SNW1, XPO1

SARS-COV2 ORF10 CUL2, NPM1, SNW1, VCP, XPO1

SARS-COV2 ORF8 APP, CCDC8, NPM1, SNW1, XPO1

SARS-COV2 N CDC5L, ELAVL1, HSP90AA1, MOV10, NPM1, VCP

SARS-COV2 NSP11 CUL2, ELAVL1, HSP90AA1, NPM1, SNW1

SARS-COV2 NSP15 NPM1, SNW1

SARS-COV2 NSP2 CDC5L, CDK2, ELAVL1, GRB2, HSP90AA1, NPM1, SNW1

SARS-COV2 NSP5 GRB2, NPM1, SNW1

SARS-COV2 NSP8 CCDC8, CDC5L, ELAVL1, GRB2, MOV10, NPM1, RNF2, SNW1

SARS-COV2 NSP13 CDC5L, CDK2, GRB2, HSP90AA1, NPM1, SNW1, TP53, VCP

SARS-COV2 E CDC5L, ELAVL1, NPM1, SNW1

SARS-COV2 NSP6 CAND1, GRB2, NPM1, SNW1, VCP, XPO1

SARS-COV2 ORF7A CAND1, CDC5L, HSP90AA1, NPM1, SNW1, VCP, XPO1

SARS-COV2 NSP12 APP, GRB2, HSP90AA1, NPM1, SNW1

SARS-COV2 NSP10 ELAVL1, NPM1, SNW1

SARS-COV2 ORF3A CDC5L, ELAVL1, GRB2, HSP90AA1, NPM1, RNF2, SNW1, TP53
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key regulators. Drug targets against these key regulators were

identified. A total of 107 FDA approved drugs were identified

for these key regulators. Out of these 12 key regulators, 6 key

genes showed significant interaction with drugs (combined

value of > 0.7) using the STITCH database (Fig. 10b). For

the HSPA8 protein of module-1, significant interactions were

obtained with compounds such as hydrogen peroxide (logP, −

0.45), ibuprofen (logP, 3.97), arsenite, and DB07045 (logP,

1.39). Similarly, the HDAC1 protein of module-2 showed

interactions with trapoxin B (logP, 3.1), trichostatin A (logP,

2.36), and vorinostat (logP, 1.88) drug molecules. Module-3

protein, KAT2B showed interaction with R4368 (N-(3-

AMINOPROPYL)-N-(2-NITROPHENYL)) (logP, 1.6) drug

molecule. MYH9 protein of module-4 showed interaction

with blebbistatin (logP, 2) and module 5 protein, MYC

showed interactions with trichostatin A (logP, 2.36),

troglitazone, tamoxifen, etoposide, doxorubicin, and arsenite.

Another protein of module-5, H2AX showed interaction with

vorinostat, etoposide, and doxorubicin. Many of the drugs

targeting these key regulators can be used either individually

or in combination.

Finally, we searched the miRNAs target for the 35 hub

proteins that may be considered as a potential drug to target

the comorbidity. Among these 35 proteins, 19 proteins were

targeted by 157 miRNAs. Of which, 11 miRNAs including,

miR-125a-5p, miR-125b-5p, let-7a-5p, miR-130a-3p, miR-

34a-5p, miR-29b-3p, miR-27a-3p, miR-24-3p, miR-145-5p,

miR-200a-3p, and miR-200c-3p were noticed to target more

than three interconnected proteins (Fig. 11). These miRNAs

thus may show its utility as a drug for therapeutic intervention.

Discussion

The most alarming situation in COVID-19 infection is the

associated comorbidity in the aged patients which increases

the severe health risks worldwide. The present work has

shown the risk of COVID-19 infection on the onset of various

neurological disorders and the molecular basis of this comor-

bidity through the principle of system-based network biology.

We here showed the complexity of COVID-19 and wide

range of SARS-CoV-2 targets in the host cell, which estab-

lishes the molecular connection with various brain-related dis-

orders. The disease-gene and disease-disease network map

has revealed the overlapping molecular connections and high

clustering of diseases within the vicinity of the same network,

thus demonstrating a close pathobiological similarity.

Moreover, the formation of a scale-free network among brain

disorders and COVID-19 indicates the presence of a high-

density comorbidity cluster. These results increase our under-

standing of the molecular basis of the neurological comorbid-

ity associated with COVID-19 patients.

Another significant finding is the existence of functional

modules that exhibit greater connectivity among nodes within

a module (Figs. 4, 5, 6, 7, 8). Therefore, targeting the func-

tional protein modules which are primarily hijacked by

SARS-CoV-2 and are the origin of many brain disorders will

prevent the virus replication and growth. The most highly

connected module relates to the ubiquitin-proteasome system

(UPS), ribosomal proteins, cell signaling, and cellular export

proteins that can be considered as critical targets for reducing

the SARS-CoV-2 infection. Furthermore, in-depth network

analyses revealed 35 hub proteins present in different func-

tional modules and are involved in more than one function

(Supplementary Table 8). To provide the system-wide impor-

tance of these hub proteins in COVID-19 and associated co-

morbidity, we categorized these hub proteins into three groups

based on their functionality. The proteins in the first group

have been largely relevant to the UPS, cell cycle, and cell

death. Similarly, the proteins in the other two groups are in-

volved in transcription regulator activity, RNA metabolic

pathway, signaling pathway, nuclear transport, and cytoskel-

etal protein binding.

The group 1 proteins are generally multifunctional and

contain genes responsible for highly represented UPS. These

are CUL1, CUL2, CUL3, CUL7, CAND1, OBSL1, VCP,

FBXO6, UBC, and RNF2. Four of these genes (CUL1,

CUL2, CUL3, and CUL7) belong to the core component of

E3 ubiquitin-protein ligase complexes, which mediate the

ubiquitination of target proteins. Three other UPS-related pro-

teins, VCP, FBXO6, and UBC are the key mediators of the

ER-associated degradation (ERAD) pathway. The UPS is

largely involved in the maintenance of cellular homeostasis

and plays a fundamental role in viral replication [64, 65].

Several viruses, including coronaviruses, often modulate

ubiquitin and ubiquitin-related pathways for their survival

[66, 67]. In this study, we find that module 1 and module 2

includes several members of ubiquitin-ligase and ER-

associated proteins (Fig. 4a and 5a). Since the loss of

ubiquitin-proteasome activity results in aggregation of pro-

teins and disturbs cellular functions, we suggested that

SARS-CoV-2 targets these modules to hinder the UPS-

mediated cellular responses. The other genes of this group

are involved in the regulation of cell cycle and cell death. It

was recently suggested that COVID-19 infection may cause

neurodegenerative disease and leads to neuronal death. The

study revealed that SARS-CoV-2 infection-induced patholog-

ical effects closely resembling tauopathies and neuronal cell

death [18]. In our study, we found genes like APP, TP53,

MYC1, VCP, and UBC as hub genes that are involved in

protein misfolding and aggregation, which ultimately leads

to cell death.

Moreover, the second largest group of hub genes is in-

volved in transcription regulation and RNA binding. The

genes in this group include MOV10, XPO1, ESR1, SIRT7,
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NPM1, ELAVL1, NXF1, TP53, CDC5L, SNW1, RNF2, and

COPS5. A recent network study identified XPO1, NPM1,

HNRNPA1, and JUN, as “hub proteins” with the highest

number of functional connections within 119 host proteins

that interact with the human SARS-CoV-2 [56]. Of note, both

NPM1 and HNRNPA1 interact directly with XPO1 in normal

cells, and JUN is involved in inflammatory responses, includ-

ing those associated with viral infections.

A recent single-cell RNA sequencing of the SARS-CoV-2

infected human brain organoid showed that SARS-CoV-2 in-

fection induces a locally hypoxic environment in neurons

[19]. Also, post-mortem studies of the brain of COVID-19

patients indicated the acute hypoxic-ischemic damage in the

brain [14]. Consistent with these results, our findings indicate

the enrichment of the hypoxia-inducing genes in the BDGN,

including CUL2, TP53, UBC, and MDM2, suggesting a pos-

sible mechanism of SARS-CoV-2 induced neuropathology.

We then mapped the known drug-target network to search

for druggable, cellular targets. We identified 41 approved tar-

gets for the 16 hub genes. For example, TP53, CDK2,

HSP90AA, HDAC1, NPM1, and ESR1 were the most target-

able proteins. One of the important drug targets is the export

protein, XPO1, which enables the transport of viral proteins

from the nucleus to the cytoplasm. The FDA-approved drug,

Selinexor (logP, 2.85), (Fig. 12a) is a selective inhibitor of

nuclear export (SINE) compound which blocks the cellular

protein XPO1 and is now entered into a randomized clinical

trial in COVID-19 patients as announced by Karyopharm

Therapeutics Inc. [68]. Selinexor is FDA-approved drug

against multiple myeloma. SINE compounds have been used

to block the replication of several viruses and act as anti-

inflammatory drugs [69]. In a study, verdinexor (logP, 3.7),

which is highly similar in structure and biological activity to

selinexor, was identified as a candidate drug inhibiting the

interactions of several of the SARS-CoV-2 proteins to their

�Fig. 10 Identification of key regulators of CTN. a Tracing of hub genes

through different levels in the modules. The red arrow represents the

transfer of hub genes to the next level. b Interaction network of key

regulators with FDA-approved drugs. The green color interaction be-

tween the drug and genes was a significant interaction with a combined

score > 0.7

Fig. 11 miRNA network. The network shows the miRNA (red node) targeted 19 hub genes (green node). The miRNA (yellow highlighted node) that

binds to three or more than three hub genes are shown only
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human targets and was recommended for further evaluation to

target COVID-19 [27].

The other key drug target gene is MYH9 which has been

traced to a candidate gene of module- 4 largely involved in viral

infection. TheMYH9 gene is involved in synthesizing a protein

calledmyosin-9 which is one subunit of themyosin IIA protein.

The MYH9-related disorder includes thrombocytopenia, hear-

ing loss, kidney disease, and cataracts [70]. Mutations in the

MYH9 gene lead to a genetic condition known as MYH9-

related thrombocytopenia (MYH9RD) which is characterized

by the presence of large but lesser platelets, results in bleeding

in the body or the skin [71]. Thrombocytopenia is now consid-

ered as a risk factor for increased morbidity and mortality in

COVID-19 patients. According to a recent study, COVID-19

patients showed blood clots in small vessels, clots in the lungs,

and stroke-causing clots in cerebral arteries [72]. In some cases,

a stroke may also lead to a ruptured blood vessel, and cause

bleeding in the brain [73]. We here found that the chemical

compounds bind to MYH9 includes guanosine triphosphate,

MgADP, MgATP, and blebbistatin (logP, 2) (Fig. 12 b). The

drug blebbistatin is a myosin-2 inhibitor and has been common-

ly used drugs in several research disciplines including neuro-

science, muscle physiology, cell migration, cell differentiation,

cell death, and cancer research [74]. It has also been shown to

reduce the viral infection in many of the viruses by inhibiting its

entry [75] and reducing the viral loads [76].Here, we also sug-

gests eleven micro-RNAs (miRNAs) which shows the binding

with hub proteins and also regulates hub proteins. The miRNA

has been considered as drug molecules for targeting the SARS-

CoV-2 proteins [77]. It is largely accepted that host cellular

miRNA can directly target both the coding region of the viral

genome and 3’UTR to induce the antiviral effect. Very recently,

Fulzele et al. [78] identified over 800 miRNAs that target the

COVID-19 genome. Interestingly, many of the miRNAs iden-

tified in this study (e.g., miR-130a-3p, miR-29b-3p, miR-27a-

3p, miR-145-5p, and miR-200a-3p) are found to be unique to

the SARS-CoV-2 genome according to the results of the

Fulzele et al. [78]. Moreover, miRNAs including miR-34a-5p,

miR-200a-3p, and let-7a-5p have been shown to strongly inter-

act with the SARS-CoV-2 [79]. Besides, polyphenols are also

considered as a potential and valuable natural compound for

designing new drugs that could be used effectively in the com-

bat against COVID-19 [80–82]. Overall, our BDGN analysis

opens up avenues for multiple candidate repurposable drugs

that target diverse cellular pathways involved in COVID-19

and associated neurologic comorbidity.

Conclusions

In conclusion, we constructed a human-SARS-CoV-2 BDGN

interactome, demonstrating the risk of COVID-19 infection

on multiple brain-related disorders. The study of disease-

gene and disease-disease association networks reveals

COVID-19-related structural and functional modules that es-

tablish the molecular connection with brain disorders. Also,

Fig. 12 Drug-gene interaction network of two important key genes and

its drugs using the STITCH database. a The network shows selinexor,

verdinexor, and guanosine triphosphate as drug candidates for XPO1. b

The network shows blebbistatin as a candidate drug that binds to MYH9

and could be considered for drug repurposing
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the highly clustered network of the diseases suggests close

pathobiological similarity and large comorbidity. We also

identified crucial functional hubs in the network that showed

close links with brain-related disorders including dementia,

ataxia, encephalopathy, stroke, and many other disorders that

indicate a high degree of comorbidity and the severity of

COVID-19. We here also propose candidate drugs and

miRNAs, targeting the hub proteins interconnecting the mo-

lecular pathways linked to virus infection that can be used to

treat SARS-CoV-2 infection. We believe our results will help

to understand the molecular pathobiology of neurological co-

morbidities linked to COVID-19. Given the severity and com-

plexity of SARS-CoV-2 infection, we further suggest that

drugs in combinations or drugs targetingmultiple proteins will

be the choice to improve clinical outcomes.

Supplementary Information The online version contains supplementary

material available at https://doi.org/10.1007/s12035-020-02266-w.
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