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Abstract  

The brain requires a continuous supply of energy in the form of ATP, most of which is produced 

from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis 

in the cytoplasm. When glucose is limiting, ketone bodies generated in the liver and lactate 

derived from exercising skeletal muscle can become important compliments to glucose as energy 

substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism 

deteriorates in a progressive, region-specific and disease-specific manner. This brain glucose 

problem is best characterized in Alzheimer disease where it begins pre-symptomatically. This 

Review discusses the status and prospects of therapeutic strategies for countering 

neurodegenerative disorders of ageing by rescuing, protecting, or normalizing brain energetics. 

Approaches described include restoring oxidative phosphorylation and glycolysis, improving 

insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via 

hormones that modulate cerebral energetics, RNA therapeutics, and complimentary multi-modal 

lifestyle changes. 

[H1] Introduction 
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Increased longevity over the past 50 years has contributed to a rising prevalence of 

neurodegenerative disorders of ageing (NDAs), particularly Alzheimer disease (AD) and Parkinson 

disease (PD). These disorders are a major socioeconomic and medical challenge with little 

prospect of a solution so far. Some drugs provide a degree of symptomatic relief, but disease-

modifying treatments for NDAs remain elusive despite concerted attempts to counter the 

pathological processes of neurotoxic protein accumulation, neuroinflammation [G], axonal or 

synaptic dysfunction and neuronal death1,2.  

 Since the concept was first reported 40 years ago, evidence has been accumulating that 

impaired brain energetics is involved in the aetiology and progression of NDAs, especially AD3-7. 

Brain energy metabolism declines subtly during ageing and is frequently present before diagnosis 

of NDA; it both drives and is driven by functional impairment and neurodegeneration in a 

destructive cycle3,6. 

Accordingly, a broad range ‘brain energy rescue’ strategies has recently been explored and is 

the focus of this Review.  These strategies aim to impede the onset and progress of NDAs by 

improving, preserving and/or restoring brain energy status. We first summarize how fuel is 

supplied and used across various cell types in the brain, including central, peripheral and 

endocrine mechanisms that modulate brain energy homeostasis as well as cognitive and neuronal 

function. The core features of disrupted brain energetics in the five main NDAs — AD, PD, 

Huntington disease (HD), frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) 

— are then outlined. This forms the basis for a range of brain energy rescue strategies reported 

in preclinical and clinical studies, including promoting mitochondrial function, alternative fuel 

sources such as ketones [G], hormonal interventions to improve insulin sensitivity and brain 

glucose metabolism, and complementary lifestyle approaches. Finally, we highlight genetic and 

other emerging approaches to enhance and restore brain energetics and we consider the 

challenges of translating promising preclinical results towards the dual goals of symptom relief 

and disease modification in NDAs. 

 

[H1] Brain energetics 

Despite representing just over 2% of adult body weight, the human brain accounts for 20% of the 

body’s total energy requirement8. The brain’s main competitors for energy are the liver, kidneys 

and heart, which have as high or higher rates of energy consumption per gram, but their overall 

energy consumption is lower than the brain’s. The immune system also consumes considerable 
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energy, especially when activated in NDAs9. Brain energy metabolism is influenced by the 

endocrine modulation of appetite and whole-body energetics, processes compromised during 

healthy ageing and in NDAs (Supplementary Table 1)10. Food intake, glucose-sensing mechanisms 

and energy homeostasis are themselves regulated by a complex set of neural networks that in 

turn modulate autonomic function, appetite, reward and executive functioning. These 

downstream circuits are beyond the scope of this Review, and have been reviewed elsewhere11,12.  

 

[H2] ATP 

ATP is the main currency of brain energy metabolism. Most ATP is used by Na+/K+-ATPase and 

Ca2+-ATPase, the cell membrane pumps that reset ion gradients during neuronal signaling8,13,14. 

Excitatory (glutamatergic) neurons consume 80–85% of the brain’s ATP, with inhibitory neurons 

and glial cells accounting for the remainder15-17. Although non-signalling pathways and cellular 

processes, including axonal transport, maintenance of cytoskeletal architecture, proton leakage, 

microglial motility, DNA repair, RNA translation and phospholipid remodelling consume less 

energy than neurotransmission, the energetic requirements of these processes remain hard to 

define13,16. ATP is also a neurotransmitter released from neurons, astrocytes and microglia [G]18. 

 

[H2] Glucose 

Glucose accounts for ≥95% of ATP production in the brain8. Within the brain, glucose uptake is 

orchestrated across several cell types collectively known as the neurovascular unit: brain capillary 

endothelial cells, pericytes, astrocytes, oligodendrocytes [G], microglia and neurons — the final 

beneficiary of glucose uptake (Figure 1)19,20. The normally tight spatial and temporal association 

of local blood flow, oxygen consumption and glucose consumption in the brain is termed 

neurovascular coupling [G], and is the basis for functional magnetic resonance imaging20.  

Brain uptake of glucose from the circulation is driven by the energy demand of activated 

neurons not by the level of circulating glucose. Indeed, under normal conditions, the capacity to 

transport glucose into the brain exceeds the brain’s energy requirement by 2–3-fold15. Simply put, 

glucose is actively ‘pulled’ into an area of the brain in response to increased local neuronal activity. 

Glucose transport is achieved by the coordinated activity of glucose transporters on the capillary 

endothelium (GLUT1) and plasma membrane of astrocytes (GLUT1, GLUT2, GLUT7), 

oligodendrocytes (GLUT1) and neurons (GLUT3 as well as GLUT4) in the cortex, hippocampus and 

cerebellum10,17,21. Only GLUT4 is mobilized as a direct response to sustained synaptic activity; its 
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membrane insertion is stimulated by the metabolic sensor, AMP-activated protein kinase 

(AMPK)17. Membrane translocation of GLUT4 is insulin-dependent in muscle and adipose tissue 

and probably also in neurons so insulin resistance [G], as occurs in NDAs, is characterised by 

reduced neuronal glucose uptake17,22.  

To reach neurons from capillaries, blood glucose either diffuses directly through the 

extracellular space or is channeled through astrocytes via their end-feet, which surround the 

capillary walls. It is taken up by astrocytic GLUT1 and exits through GLUT1 on perisynaptic 

processes adjacent to neurons and oligodendrocytes (Figure 1). Some glucose that enters 

astrocytes is metabolized to ATP and some is converted to lactate, which can act both as a 

neurotransmitter (discussed below) and as an alternative energy source18. 

 

[H2] Energy use by brain cells 

The ATP required by neurons is predominantly generated within mitochondria by oxidative 

phosphorylation [G] of glucose via the tricarboxylic acid cycle [G] (TCA cycle; also known as the 

citric acid or Krebs cycle; Box 1)14. Additional ATP is generated by aerobic glycolysis [G] in the 

cytoplasm, which is required to support the high energy demands of synaptic transmission17. 

Glutamate is the neurotransmitter in most excitatory neurons and is recycled by astrocytes and 

delivered back to neurons as glutamine for reconversion into glutamate or (to a lesser degree) for 

use in energy generation by the TCA cycle13,23. Compared to astrocytes, neurons favour oxidative 

phosphorylation over aerobic glycolysis, have more-rapid TCA cycling and contain less 

phosphorylated pyruvate dehydrogenase. In contrast, the energy requirements of astrocytes are 

predominantly met by aerobic glycolysis, so some microdomains in astrocytes contain relatively 

few mitochondria23. 

Neuronal activation transiently triggers aerobic glycolysis in astrocytes thereby generating 

lactate. The astrocyte–neuron lactate shuttle [G] hypothesis proposes that neuronal release of 

glutamate during neural transmission stimulates glucose uptake, glycogen catabolism, aerobic 

glycolysis and lactate production in neighboring astrocytes8,24. The lactate produced by astrocytes 

is posited to support neuroplasticity, although its precise contribution and conditions of lactate 

exploitation remain unclear8,10,15,23 (Box 2).  

 Oligodendrocytes obtain ATP primarily by aerobic glycolysis. They use lactate for their own 

energy needs and also supply neighbouring axons with lactate, a process modulated locally by 

glutamate release from neurons (Figure 1). This metabolic support of neuronal function by 
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oligodendrocytes is important for effective spatial and temporal information processing in 

neuronal networks25. Oligodendrocytes are responsible for myelination of axons, which speeds 

up action potential conduction. However, the insulating myelin sheath restricts access of axons 

to glucose and other metabolites that would otherwise diffuse across the extracellular space25. 

The intermittent pattern of axonal myelination in cortical grey matter helps maintain access to 

extracellular nutrients26. Therefore, the supply of glucose and lactate to myelinated axons by 

oligodendrocytes requires a highly specialized architecture of the myelin sheath, including a 

continuum of nanometer-wide cytosolic channels that flank compacted, mature myelin25 (Figure 

1). These channels connect the oligodendrocyte soma with the periaxonal space. Interestingly, 

neurons also deliver N-acetyl-aspartate to the oligodendrocytes soma via these channels; this N-

acetyl-aspartate (as part of the aspartate–oxaloaspartate–malate shuttle) stimulates the TCA 

cycle and mitochondrial ATP production and is used to generate lipids and myelin27. 
Axons also transport mitochondria, RNA, proteins, vesicles and other cargo to presynaptic 

terminals. This transport is an ATP-dependent process regulated by calcium and involves motor 

proteins and microtubules. Retrograde transport of vesicles to the cell body for lysosomal 

degradation is ATP-driven2. Fast-conducting axons release trace amounts of glutamate, which 

stimulates local N-methyl-D-aspartate (NMDA) receptors in oligodendrocytes, promoting surface 

expression of GLUT1 on axonal myelin sheaths and thereby increasing glucose uptake and the rate 

of aerobic glycolysis. This in turn increases local provision of lactate to axons for ATP generation 

(Figure 1)21,28. In addition, the molecular motors driving fast axonal transport [G] are equipped 

with glycolytic enzymes allowing them to generate their own energy “onboard”29 (Figure 1).  

Unlike astrocytes and oligodendrocytes, microglia do not directly provide energy to neurons, 

but the high amounts of lactate released by activated microglia may well be retrieved by local 

neurons23. Microglia are predominantly fueled by oxidative phosphorylation, but are 

metabolically reprogrammed by neuroinflammation in NDAs, to an aerobic-glycolysis-

predominant phenotype associated with upregulation of GLUT1 and GLUT41,2. In parallel with this 

energetic shift, microglia transition from a protective to a disease-driving role in NDAs. When 

brain glucose supply is chronically suboptimal, the high energy demands of activated microglia 

further limit energy availability to neurons1,30.  

 

[H2] Neuronal networks and energy use  
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The provision of energy substrates from astrocytes to synapses, and from oligodendrocytes to 

axons is critical for communication both within and between brain networks25. Brain regions are 

connected by tracts of myelinated axons, which are adversely affected by NDAs. For example, 

corticocortical loops are disrupted in AD and FTD, cortico-striatal pathways in HD, corticospinal 

tracts in ALS and nigrostriatal projections in PD. These tracts consist mainly of long-range 

excitatory neurons. Inhibitory interneurons, such as fast-spiking interneurons, are mostly present 

within local networks, such as the CA3 region of the hippocampus and frontal cortex. Local 

interneuron dysfunction disrupts synchronization between remote neuronal networks and across 

brain regions31,32. 

Gamma-oscillations (30–100 Hz) are fast brain rhythms synchronizing the activity of excitatory 

principal neurons and neuronal networks31. Fast-spiking GABAergic interneurons generating 

gamma oscillations have a high density of mitochondria in their axons and specialised myelination 

that facilitates provision of energy by oligodendrocytes33. The high metabolic needs of fast-spiking 

interneurons are supported primarily by oxidative phosphorylation. Parvalbumin-positive, 

GABAergic interneurons are particularly sensitive to deficits in energy and oxygen supply13,34. The 

decreased ability of oligodendrocytes to provide lactate to axons probably aggravates the decline 

in fast-spiking interneuron activity observed in NDAs.  

Rhythmically firing, highly branched, nigrostriatal dopaminergic neurons in the substantia 

nigra pars compacta are especially vulnerable to mitochondrial failure and oxidative stress, 

features characteristic of PD (Supplementary Table 1)13,35. 

 

[H2] Neuroendocrine mechanisms 

As demonstrated in diverse cellular and animal models, insulin has a globally positive influence 

on cerebral energy balance and function. It reinforces neuronal energy supply by increasing 

neuronal glucose uptake by GLUT4 in the hippocampus and cortex (Supplementary Table 2)17,22. 

Insulin and activation of insulin-like growth factor (IGF)-1 receptors also promote synaptic 

plasticity and cognitive processes36. Nevertheless, normal insulin sensitivity is paramount; insulin 

resistance is a major risk factor for AD because it disrupts both the modulation of energy 

availability by insulin and insulin signalling pathways in the brain37,38. 

Other hormones including ghrelin, incretins [G], leptin, amylin and adiponectin modulate both 

appetite and energy homoeostasis and influence numerous aspects of brain function that are 

compromised in NDAs.  The neurobiology of these hormones and their synthetic agonists in 
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relation to food intake and energy homeostasis, brain energy balance, mitochondrial function, 

cognition, motor function, neurogenesis, synaptic integrity and neuronal integrity in animal 

models of NDAs are documented in Supplementary Table 2, with their clinical effects reported in 

Tables 1-3 and in the section – Therapies based on brain energy rescue.  

 

[H2] Brain use of ketones and lactate  

Glucose (and glycogen) reserves within the brain can supply its ATP needs for only a few 

minutes24,39. Much of the brain’s resilience in the face of energetic challenge therefore depends 

on opportunistic use of alternative fuels sourced from outside the brain. Ketones and lactate are 

the main alternative fuels to glucose and are delivered to the brain by monocarboxylic acid 

transporters [G] on astrocytes and on the capillary endothelium (Figure 1). The two principal 

ketone bodies (ketones, acetoacetate and D-β-hydroxybutyrate [BHB]), are the main alternative 

brain fuels to glucose in adults under conditions of dietary carbohydrate or energy restriction. In 

infants, however, ketones are not only an essential brain fuel but also the main substrate for brain 

lipid synthesis40.  

 Acetoacetate and BHB are both in equilibrium in the blood, but only acetoacetate is 

metabolized to acetyl coenzyme A (acetyl CoA) which then enters the TCA cycle to generate ATP. 

After an overnight fast, plasma ketones are usually 0.1–0.2 mM and they supply 3–5% of brain 

energy requirements. However, during a 3-4 day fast, plasma ketone concentrations can reach 5–

6 mM and provide ≥50% of brain energy requirements3. Unlike glucose, which enters the brain in 

response to brain cell activity, the rate of ketone entry to the brain is directly related to their 

plasma concentration3, which explains the glucose-sparing effect of increased ketone levels41. 

Unlike glucose, ketones do not undergo aerobic glycolysis and cannot be metabolized to lactate, 

so only contribute to ATP production via oxidative phosphorylation.  

 

[H2] The gut–brain axis  

The gut microbiome is involved in bidirectional communication between the gastrointestinal tract 

and the brain. The intestinal microbiome generates nutrients and modulates overall energy 

homeostasis42. Disruption of the gut microbiome (dysbiosis) is implicated in the pathogenesis of 

NDAs43. Dietary fibre is an important substrate for generation of short chain fatty acids [G] by the 

gut microbiota; dietary fibre also slows down glucose absorption, which improves insulin 

sensitivity. These effects of dietary fibre are partly mediated by short-chain fatty acids, which are 
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ligands for G-protein-coupled hydroxycarboxylic acid receptors (i.e. HCAR2) in enterocytes42,44. 

Short chain fatty acids produced by gut bacteria, particularly butyrate, are key fuels for intestinal 

cells. Propionate, butyrate and succinate (a precursor of propionate) generated by microbiota 

also improve control of peripheral glucose metabolism, adiposity and body weight44. In pre-clinical 

studies, exogenous butyrate promotes the development of dendritic spines, long-term 

potentiation, myelination and memory formation45. However, butyrate levels produced 

endogenously are usually low so would at best be expected to be minor energy substrates for the 

brain.  

 The beneficial effect of intestinal gluconeogenesis on insulin sensitivity and systemic energy 

metabolism is mediated in part by glucose-sensing in the portal vein. This information is relayed 

via portal sensory nerves to the brain, which suppresses appetite and reduces hepatic 

gluconeogenesis44,46. Short chain fatty acids also modulate the immune system, stimulate the 

release of hormones such as glucagon-like peptide-1 (GLP1) from the gut (Supplementary Table 

2) and inhibit histone deacetylases.  

 

[H1] Impaired brain energetics 

Impaired brain glucose metabolism compromises transmembrane ion transport, vesicle 

recycling and synaptic signaling17,31,34. Less-effective maintenance of transmembrane ion 

gradients and transmitter release, especially in fast-spiking interneurons, leads to 

hyperexcitability, excitatory/inhibitory imbalance and functional impairment of cortical networks 

which further compromises the brain’s energy efficiency. These changes are exacerbated by 

disrupted glutamatergic transmission and abnormal astrocyte and oligodendrocyte 

function13,34,47,48, as well as impaired autophagy which, in turn, decreases nutrient recycling2. 

Furthermore, fuelling the neuroinflammation common in NDAs is energetically expensive1,2,49.  

The pattern of brain energetic disruption depends on the NDA and its pathophysiological 

phenotype (Supplementary Table 1). Indeed, brain glucose hypometabolism in NDAs has no single 

cause; reduction in neuronal glucose uptake, impairment in aerobic glycolysis and the TCA cycle, 

failure of axonal transport, and the loss of glial energetic support to neurons are all implicated. 

Supplementary Box 1 outlines how induced pluripotent stem cells (iPSCs) and organoids are 

illuminating the cellular substrates of energy dysregulation, and Supplementary Box 2 summarizes 

how disruption of the cerebral microvasculature exacerbates the disruption of brain energy 

supply in NDAs.  
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[H2] Alzheimer disease. AD is the most common NDA. It is associated with weight loss and 

poor appetite but also type 2 diabetes (T2D), all of which contribute to lower brain energy 

availability, uptake of glucose, TCA activity, mitochondrial function, astrocyte and 

oligodendrocyte energetic support of neurons, as well as microglial consumption of glucose due 

to neuroinflammation (see Supplementary Table 1)1,4,50-52. 

Even before diagnosis of AD, a characteristic regional disruption of glucose metabolism is 

linked to neuropathology and reduced cerebral blood flow in the brain. Nevertheless, the brain in 

AD still has normal or near-normal oxygen, lactate and ketone metabolism3,52-54. Many positron 

emission tomography (PET) studies confirm that the entorhinal cortex and parietal lobes including 

the precuneus have a 10–12% deficit in glucose uptake in mild cognitive impairment [G] (MCI), a 

deficit that becomes anatomically more widespread with the onset of AD and worsens during its 

progression (Box 4; Supplementary Table 1). The regional pattern of the brain glucose deficit 

distinguishes AD from FTD, PD, Lewy body disease and other disorders associated with 

dementia3,4,6.  

White matter atrophy in AD impairs neuronal network operation and axonal mitochondrial 

transport. Especially in women, white matter loss reflects reduced maintenance and synthesis of 

myelin (energy-intensive processes) and catabolism of myelin to provide energy in the face of 

glucose scarcity37,55,56. However, as with impaired glucose uptake in grey matter, white matter 

ketone uptake remains normal in AD57. 

 

[H2] Parkinson disease. In idiopathic PD, weight loss and low body mass index are common 

despite increased visceral fat. A decline in glucose metabolism is seen in the striatum (caudate), 

the frontal cortex and several other cortical regions but not in the cerebellum: this 

hypometabolism correlates with specific patterns of motor and cognitive dysfunction and is 

predictive of disease progression4,58,59. Although PET imaging cannot resolve the substantia nigra 

pars compacta where dopaminergic cell bodies degenerate in PD, mitochondrial fragmentation 

and dysfunction including decreased glycolysis and reduced complex 1 activity, is pronounced in 

this brain region50,60. Energetic deficits have been reproduced in PD-derived iPSCs over-expressing 

the gene encoding α-synuclein61. There is evidence that neuroinflammation further compromises 

neuronal fuel supply in PD1.  
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[H2] Huntington disease. HD patients characteristically lose weight, even when increasing their 

calorie intake. In pre-symptomatic HD, brain glucose hypometabolism is seen the striatum, frontal 

and temporal cortex, and is linked to impaired neurotransmission in cortico-striatal tracts62. 

Glucose uptake, ATP generation by aerobic glycolysis, mitochondrial function and oxidative 

phosphorylation are all decreased in HD35,63,64. Astrocytes in the striatum may oxidize fatty acids 

as an alternative source of energy but reactive oxygen species (ROS) contribute to further tissue 

damage65. The cerebellum is less severely affected by impaired glucose metabolism than the basal 

ganglia, perhaps because it uses amino acids for gluconeogenesis65. HD neurons show disrupted 

glycolysis66 and impaired axonal transport of vesicles owing to the interference of mutant 

huntingtin protein with molecular motors35 67. 

 

[H2] ALS and FTD. FTD and ALS have overlapping genetic risk factors and clinical and 

pathophysiological features6,68-70. Both are characterized by increased energy expenditure, yet 

only in FTD is there a distinctive carbohydrate/sweetness preference and gain weight. In contrast, 

ALS patients lose weight eventually due to insufficient nutrient and energy intake (Supplementary 

Table 1)68,71. Brain energetics also deteriorate differently in ALS and FTD. FTD is associated with 

declining glucose metabolism and cerebral blood flow, especially in the frontal lobes, striatum 

and thalamus where mitochondrial function is disrupted with reduced signalling to the 

endoplasmic reticulum and aberrant mitophagy6,68,69,72. Conversely, ALS is associated with a 

regionally complex pattern of lower and higher brain glucose metabolism: of particular note are 

reductions in mitochondrial function and glycolysis in the cortex, spinal cord and motor neurons, 

and at neuromuscular junctions in muscle68,70,73. In the Superoxidase Dismutase 1 mouse (SOD1) 

model of ALS, the pentose phosphate pathway is also impaired71. Further, a loss of mitochondrial 

energetics and impaired glycolysis in astrocytes is linked to disruption of C9orf72, a genetic risk 

factor for ALS associated with failure of energetic support of neurons by astrocytes and 

oligodendrocytes74,75. 

 

[H2] Energy deficits and neurotoxic proteins   

Brain glucose hypometabolism contributes to synapse loss and neuronal death in AD, with 

energetic deficits and neurotoxic protein accumulation mutually aggravating one another in a 

vicious cycle (Figure 2A)3,52,76,77. Insufficient neuronal glucose and mitochondrial energy 

generation compromise the clearance of amyloid-β (Aβ) 42 and tau proteins from the brain. 
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Conversely, accumulation of Aβ 42 and tau trigger mitochondrial damage, impair energy 

production and increase oxidative stress77,78. These neurotoxic proteins also inhibit GLUT451 and 

phosphofructokinase, thereby blocking glucose uptake aerobic glycolysis and ATP synthesis79. 

Mitochondria accumulate in axonal swellings and are no longer replaced in presynaptic 

terminals80. Failure to clear dysfunctional mitochondria by mitophagy further compromises the 

bioenergetics of vulnerable neuronal circuits in AD, PD and other NDAs2. Excitation/inhibition 

balance is crucial for network operation at optimal energetic efficicency48 and, at the circuit level, 

an early, neurotoxic protein-driven feature of AD is the energetically expensive hyperexcitability 

of glutamatergic neurons34,81 which is associated with an imbalance between excitation and 

inhibition in local cortical and hippocampal networks32,47. 

Interestingly, Aβ is involved in a healthy neuronal response to damage and/or infection82 but 

this protective function is lost when Aβ aggregates into plaques. As mentioned above, Aβ 

exacerbates brain glucose hypometabolism, both in foci of Aβ accumulation and in remote 

regions, possibly due to a pericyte-mediated constriction of capillary blood flow. In turn, this 

hypometabolism triggers cellular damage and neuroinflammation77,83. Perturbed astrocytic and 

oligodendrocyte function, together with accumulation of phosphorylated tau (pTau), exacerbates 

aging32 and Aβ/Tau-induced network hyperexcitability, thereby perpetuating a cycle of 

neurodegeneration and declining brain glucose metabolism (Figure 2A)13,47. This vicious cycle 

driven by energy-failure in AD has similarities with the neural circuit disruption seen in 

schizophrenia84 and in epilepsy4 and contributes not only to deterioration of memory and 

cognition but also to abnormal behaviour in affected patients.  

 

[H2] Energetics and endocrine dysregulation  

Insulin resistance is a common feature of AD, PD, FTD, ALS and probably also HD with reduced 

signalling at central insulin and IGF-1 receptors contributing to deficits in neural function, synaptic 

plasticity and cellular integrity (Table 1, Supplementary Table 1)36,37,85. Even though insulin itself 

does not globally promote brain glucose uptake, insulin resistance reduces glucose uptake by 

cortico-hippocampal neurons expressing GLUT417,22.  

NDAs are associated with numerous changes in hormones that modulate brain energetics and 

neuroplasticity (Supplementary Table 2). The following observations may be highlighted:  First, 

plasma leptin and hippocampal leptin signaling are reduced in AD, resulting in a state of leptin 

resistance mirroring insulin resistance86. This decline in leptin is superimposed on a background 
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of declining plasma leptin with ageing and is linked to impaired learning, memory and long-term 

potentiation87. Second, an age-related reduction in ghrelin signalling in the temporal cortex may 

be related to neuronal damage and cognitive deficits in AD88. Circulating ghrelin is reduced in PD 

and the loss of its neuroprotective properties is linked to dopaminergic neuron degeneration and 

motor dysfunction88,89. In addition to blunted neuroprotective properties, anti-

neuroinflammatory effects of ghrelin involving astrocytes and microglia may be diminished in AD 

and PD88,90. Third, amylin oligomers and aggregates are suspected to damage neurons and the 

microvasculature in AD, though amylin has a Janus-faced role as further discussed below91-93. 

Fourth, an increase in circulating adiponectin has been reported in AD and ALS: if centrally 

expressed, this increase might counter cognitive deficits and exert neuroprotective properties but 

this awaits confirmation86,94 95,96. In contrast to the above-mentioned hormones, there are very 

few data on the relationship between GLP1 and glucose-dependent insulinotropic polypeptide 

(GIP) and NDAs (Supplementary Table 1)97. Brain hormone levels are challenging to measure, and 

cause-effect relationships hard to disentangle but changes in the secretion and central actions of 

these hormones are implicated in the energy imbalance, pathophysiology and functional deficits 

can still be inferred in NDAs (Supplementary Table 2). 

 

[H2] Energetics and disease risk factors 

[H3] Age. Ageing is the main risk factor for NDAs but there is an important distinction between 

the cognitive, structural and neurometabolic changes associated with healthy ageing versus those 

occurring in NDAs. During healthy ageing, some cognitive domains such as episodic and working 

memory and processing speed show a modest decline, whereas others (such as semantic 

memory) change relatively little98. Although the decline in brain volume and cortical thickness 

forms a continuum between cognitively healthy ageing, MCI and AD, regional changes in brain 

glucose metabolism seen during healthy ageing are quantitatively and qualitatively different to 

those in MCI and AD99,100. In healthy ageing, the main decrease in brain glucose metabolism is in 

the frontal cortex, whereas in MCI and AD, the parietal lobe and precuneus are the most markedly 

affected [Box 4]. Decreased aerobic glycolysis101, loss of myelination, network perturbation and 

attenuation of neurovascular coupling are integral features of the ageing brain that might provide 

a template for the onset of the more severe brain energetic deficits in NDAs32,56,102,103. 

Mitochondrial proteins are expressed at lower levels in brains of older people experiencing 

accelerated cognitive decline104. 
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[H3] Metabolic dysregulation. The risk of NDAs is substantially higher in conditions of metabolic 

dysregulation, including insulin resistance, obesity and T2D (Table 3)105. Most strikingly, poorly 

controlled type 1 diabetes (T1D) or T2D is associated with increased risk of cognitive impairment 

and AD106. Intriguingly, similarities exist between AD and T2D with respect to the disruptive effects 

of amyloidogenic proteins in the AD brain and amylin in the pancreas and brain in T2D, as well as 

their peripheral metabolic and vascular abnormalities107. In young women with polycystic ovary 

syndrome, mild insulin resistance is associated with a pattern of glucose-specific brain 

hypometabolism similar to that seen in elderly people108, suggesting that the adverse effect of 

insulin resistance on brain energy metabolism is independent of age.  

T2D doubles the risk of developing PD, possibly owing to increased expression of α-synuclein85. 

Interestingly, while the risk of ALS is increased in T1D, obesity and T2D are associated with 

decreased risk of ALS2,74. The metabolic syndrome associated with insulin resistance and weight 

gain is also present in “atypical” major depression, itself often co-morbid with NDAs, especially 

AD and PD109. Effective treatment of T2D, metabolic syndrome and depression would be expected 

to reduce the risk of developing AD and other NDAs110. 

Despite the chronic deficit in brain glucose uptake and utilization in, the normal ketogenic 

response to low plasma glucose levels is not stimulated because the main drivers of endogenous 

ketone production – low blood glucose and low insulin – are absent. Chronic mild hyperglycemia 

and mild insulin resistance commonly develop as people age, so plasma insulin rarely drop for 

long enough to release the insulin-mediated inhibition of lipolysis in adipose tissue, the source of 

the endogenous free fatty acids needed for ketogenesis. This metabolic deterioration continues 

as AD develops, so the brain experiences a chronic, progressive glucose-specific brain energy gap 

[G]3 (Figure 2A) that is not corrected by ketone production as it would be if insulin sensitivity was 

normal and plasma glucose was decreased by a period of carbohydrate or caloric restriction [G].  

 

[H3] Oestrogen. Menopause is associated with deteriorating systemic and brain glucose 

metabolism, weight gain, insulin resistance and loss of mitochondrial efficiency111. 

Ovariectomized rodent models of menopause show metabolic responses similar to fasting, 

including increased oxidation of long chain fatty acids and elevated plasma ketones, as well as 

white matter and myelin degeneration, changes that in part reflect the use of brain lipids as a 

source of fatty acids for ATP generation56,112. In fact, oestrogen modulates many facets of brain 
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glucose metabolism, including uptake, aerobic glycolysis and oxidative phosphorylation37. 

Oestrogen also stimulates the catabolism and clearance of Aβ, in part by upregulating insulin-

degrading enzyme, so the loss of oestrogen after menopause could directly favour pathological 

processes leading to AD56,112. Accordingly, declining plasma oestrogen is associated with increased 

incidence of AD in women, although this relationship remains controversial37,112. 

 

[H3] Genetic risk factors. Possession of two APOE-ε4 alleles (encoding the ApoE4 polymorphism 

of apolipoprotein E) confers the highest genetic risk of sporadic AD. In APOE-ε4 carriers the brain 

is hyperexcitable113, has reduced glucose utilization in regions affected by glucose 

hypometabolism in AD114, and accumulates more aggregated Aβ. Regardless of age, the following 

all decline in APOE-ε4 carriers in response to a high fat diet - brain insulin signaling115, expression 

of glucose-regulating enzymes and glucose transporters114, mitochondrial function in the cortex, 

and cognitive function 104,116. These effects of ApoE4 on brain energetics are additive to the 

adverse effects of Aβ77. 

Some of the adverse effects of ApoE4 may result from production of a C-terminal fragment of 

the ApoE4 protein, which inhibits the electron transport chain [G]117,118, increases generation of 

ROS and forces neurons to increase their reliance on aerobic glycolysis or alternative energy 

substrates118. Whether or not ApoE4 affects ketone metabolism in individuals with MCI or AD is 

controversial. In one AD study, a ketogenic supplement did not raise plasma ketones or improve 

cognitive outcomes as much in APOE-ε4 carriers as it did in non-carriers119. A clinical trial of 

medium-chain triglycerides [G] in AD who were specifically selected noncarriers of APOE-ε4 

showed beneficial cognitive outcomes after 1 month120. However, in transgenic mice expressing 

human APOE-ε4, the presence of ApoE4 did not significantly affect brain ketone uptake versus 

that is wild-type controls114.  

Polymorphisms in major risk genes for PD, including PINK1 (encoding PTEN-induced putative 

kinase protein 1) and PRKN (encoding E3 ubiquitin-protein ligase parkin) are closely linked to 

impaired brain ATP production50,121. Phosphorylation of the endocytic sorting protein Rab10 by 

leucine-rich repeat serine/threonine-protein kinase 2 (LRRK2) is essential for GLUT4 translocation 

to the neuronal plasma membrane and is defective in PD patients possessing the LRRK2 G2019S 

mutation122. In HD, axonal transport of mitochondria and glycolytic proteins to the synapse is 

hindered by mutant huntingtin protein29. In ALS and FTD, the proteins encoded by risk genes such 

as TARDBP (encoding TAR DNA-binding protein [TDP]-43) interfere with mitochondrial function 

https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:14581
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and quality control, thereby compromising ATP production123. Furthermore, the most prominent 

risk gene for ALS and FTD, C9orf72, encodes part of a complex with guanine nucleotide exchange 

factor activity that is linked to decreased autophagic lysosome-driven nutrient recycling, leading 

to frontal and thalamic glucose hypometabolism and aberrant lipogenesis2,124. Indeed, many 

products of risk genes associated with NDAs interfere with autophagic lysosomal clearance which 

has a doubly disabling effect because the metabolic end-products of carbohydrates, fats and 

proteins are then lost to energy generation pathways2. 

 

[H1] Therapies based on brain energy rescue  

As outlined above, the prevailing notion that impaired brain glucose metabolism in NDAs is simply 

a consequence of neuronal dysfunction is being re-evaluated. The progressive decline in brain 

glucose uptake and metabolism creates a chronic brain energy gap that contributes to brain cell 

dysfunction even before onset of neuropathology and symptomatic cognitive deficits3 (Figure 2B). 

Once glycolysis is impaired and neuronal function starts to decline, the brain energy deficit cannot 

be corrected by simply increasing blood glucose; indeed, additional dietary glucose aggravates 

the insulin resistance already commonly present in older people10. Furthermore, brain glucose 

uptake is driven by neuronal activity not by circulating glucose level3. Conversely, ketones and 

lactate are an alternative brain energy source41, brain uptake of which is driven by their availability 

in the circulation. 

Because no single common pathway causes brain energy deficits in NDAs, brain energy rescue 

strategies may need to target different metabolic pathways and processes depending on the 

disease in question3,4,125 (Figure 3B). Some of these strategies focus on a single enzyme, 

transporter or metabolite, but others are broader (Tables 1-3). The following discussion first 

addresses the energetic dimension of mitochondrial dysfunction in NDAs. Strategies that have 

broader effects such as modulating redox status and ketone-based approaches are described 

next, then hormone-based approaches to brain energy rescue, following a suite of novel 

strategies currently under exploration. These strategies could all act synergistically with 

preventive lifestyle changes, i.e. increased exercise, dietary improvements and a reduction of 

insulin resistance126,127 (Table 3, Box 3). For links between mitochondrial dysfunction, oxidative 

stress and neurodegeneration, see two recent reviews60,78. 

 

[H2] Support of mitochondrial function 
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Despite continued uncertainty about the extent to which mitochondrial damage is a consequence 

versus cause of the onset or progression of NDAs65, considerable research focuses on improving 

mitochondrial function by protecting the electron transport chain, promoting mitochondrial 

biogenesis [G] and/or reducing oxidative damage to mitochondria125. Assessment of 

mitochondrial integrity is mostly indirect but histochemical evidence of decreased cytochrome C 

activity in post-mortem brain samples from young adult APOE-ε4 carriers118 demonstrates that 

impaired mitochondrial function can be present in pre-symptomatic individuals at risk of AD.  

CP2, a proprietary tricyclic pyrone, improves cognitive and behavioural phenotypes in 

transgenic AD mice, in part by binding to and partially inhibiting the flavin mononucleotide 

subunit of complex 1. This improves mitochondrial bioenergetics and overall brain energy status, 

possibly because of increased mitochondrial biogenesis128. CP2 also stimulates AMPK, promotes 

neuronal resistance to oxidative stress, reduces brain levels of pTau and Aβ, improves axonal 

trafficking, and increases brain-derived neurotrophic factor (BDNF) and synaptic proteins in       

vivo 128,129. Controlling the activity of complex 1 specifically seems to underpin this beneficial 

effect130 because mutations that inhibit both complexes 1 and 3 or both complexes 1 and 5 are 

detrimental to brain energetics131. 

The mitochondria-targeted antioxidant, Mito-Q, reduces oxidative stress in mitochondria and 

is neuroprotective in several NDA models (Table 1). Resveratrol stimulates mitochondrial 

biogenesis through the sirtuin 1 (SIRT1)/AMPK/peroxisome proliferator-activated receptor 

(PPAR)γ coactivator 1α (PGC1α) pathway. Resveratrol also recruits AMPK to enhance autophagy, 

which removes damaged organelles (including mitochondria) and misfolded proteins and 

recycling their components, thereby promoting ATP generation2,132. Replacement of old and/or 

damaged mitochondria starts in the neuronal cell body with new mitochondria being transported 

along axons to presynaptic terminals15. Both ageing and NDAs increase mitochondrial division in 

a manner decoupled from normal fission–fusion cycle, suggesting that mitochondrial 

fragmentation could be beneficial in NDAs133. Quinazolinone or its derivatives such as 

mitochondrial division inhibitor 1 (Mdivi-1) were originally described as selective inhibitors of 

mitochondrial fission, but their neuroprotective effects in both in vitro and in vivo models of AD, 

PD and traumatic brain injury are now thought to reflect impaired mitochondrial fusion and 

biogenesis134-136, and possibly improved function of complex 1. 

A pilot clinical study showed that S-equol, a selective oestrogen receptor-β agonist, improves 

cytochrome C oxidase activity in AD137, so treatments that improve mitochondrial function by 
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selective partial inhibition of complex 1, target mitochondrial uncoupling proteins or increase 

mitochondrial biogenesis may result in clinical improvement in NDAs (Table 2). Mitochondrial 

uncoupling proteins could help cells to resist oxidative and metabolic stress98. Low doses of the 

uncoupling agent, dinitrophenol, had a neuroprotective effect in preclinical models of AD, PD and 

HD138. In a mouse model of HD, mitochondrial respiration was improved by bexarotene, a retinoid 

X receptor agonist and PPARδ activator139.  

 

[H2] Redox state, glycolysis and the TCA cycle 

The redox state [G] of a cell is typically measured by the ratio of oxidized to reduced nicotinamide 

adenine dinucleotide (the NAD+:NADH ratio), which is a non-invasive marker of global brain 

energy status5,78,140. In general, nutrients and metabolites that raise either blood NAD+ levels or 

the blood NAD+:NADH ratio improve the energetic status of the brain141. The NAD+ precursor, 

nicotinamide riboside, mitigates cognitive impairment, synaptic degeneration and neuronal death 

in transgenic mouse models of AD78,98,142. Nicotinamide riboside also improves mitochondrial 

function in PD neurons and reduces age-related loss of dopaminergic neurons and associated 

motor deficits in an animal model of PD143. Another potential approach to raising the NAD+:NADH 

ratio is dietary supplementation of oxaloacetate144. In several in vitro and animal models of PD, 

terazocin (a drug approved for benign prostatic hypertrophy) stimulated phosphoglycerate 

kinase-1 activity, aerobic glycolysis and ATP production145. Patients taking terazocin to treat other 

conditions had a decreased risk of developing PD and slower PD progression, so its repurposing 

to treat PD seems promising.  

Supplementation with pyruvate could potentially improve brain energetics by stimulating 

pyruvate dehydrogenase146,147, a possibility supported by the rescue of defective aerobic 

glycolysis by pyruvate in HD-derived hIPSC66. Treatments that improve mitochondrial function 

have had mixed success in preclinical models of ALS and these approaches remain largely untested 

in humans70,74. 

Interventions that raise circulating ketones also increase acetyl CoA which fuels the TCA cycle 

independently of aerobic glycolysis. Preclinical studies show that supplementation with BHB, 

caprylic acid (an 8-carbon saturated fatty acid), oxaloacetic acid, capric acid (a 10-carbon 

saturated fatty acid), as well as a ketogenic diet [G] or caloric restriction (Box 3), all contribute to 

increased TCA cycle activity within the brain144,148 (Figure 3B). In humans, plasma medium-chain 

fatty acids increase long enough after oral ingestion to be transported into and metabolized by 
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the brain149. TCA cycle intermediates also give rise to bioactive molecules such as the 

neurotransmitter, acetylcholine, that are decreased in AD. These responses are generally 

reversible and therefore transformation of glutamate into α-ketoglutarate (which enters the TCA) 

generates ATP in neurons and glia98.  

Triheptanoin, a triglyceride of heptanoic acid, delays motor symptoms and is neuroprotective 

in animal models of ALS74, epilepsy and ischemic stroke150,151. Triheptanoin also reduces the effort 

needed to undertake exercise in HD, a beneficial effect associated with increased creatine 

phosphate in the brain152. Triheptanoin appears to substitute for the branched-chain amino acids 

that are an endogenous substrate of anaplerosis [G] and are decreased in HD152,153. 

 

[H2] Ketone-based strategies 

Several clinical trials show that ketogenic interventions result in cognitive and/or functional 

improvements in MCI154-156, AD119,120,157-159 and PD160,161. These interventions fall into two 

categories: ketogenic dietary supplements containing medium-chain triglycerides (either caprylic 

acid (C8) alone or caprylic acid plus capric acid (C8C10); and the very low carbohydrate ketogenic 

diet (Table 2; Box 4). In the phase 1119 and phase 2154 placebo-controlled studies of C8 and C8C10 

supplementation, the interventions lasted from 12 weeks119 to 6 months154, respectively. Two 

subsequent feasibility studies of ketogenic diets in AD showed improved global cognitive scores 

in the most compliant patients but did not have control groups157,162.  

A recent 6 month study of C8C10 supplementation in MCI showed a direct and statistically 

significant dose–response relationship between brain uptake of ketones and/or plasma ketone 

and executive function, verbal fluency and language, strongly implying that ketones were directly 

and mechanistically linked to cognitive improvement via brain energy rescue154. Because of the 

short half-life of ketones in the body, however, the main challenge with ketogenic interventions 

is to achieve a sustained therapeutic level of ketosis. In two studies of ketogenic supplements that 

had a sample size large enough to provide adequate statistical power to assess cognitive 

outcomes, the 24-h average plasma ketone level was ≤0.2 mM for C8119 and ≤0.4 mM for C8C10154; 

these ketone levels would only have partially corrected the brain energy deficit in MCI and less so 

in AD (Figure 2B, Box 4). In other clinical trials with a ketogenic diet in AD157,162, MCI155,156 or 

PD160,161, higher plasma ketone were directly related to improved clinical outcomes, but sample 

size and patient adherence were inadequate to produce definitive evidence of a cognitive benefit. 



[REV] Cunnane NRDD-19-256 v3 (May 11, 2020) Main text, tables, boxes, fig legends, glossary, references 
 

20 
 

In PD, consuming a ketogenic diet for 8 weeks led to substantial reduction in urinary problems, 

pain and fatigue scores versus those in a control group consuming a low-fat diet160,161. The 

ketogenic diet group also showed a trend towards improved motor scores versus the control 

group. Ketogenic interventions are being explored with some success in animal models of PD163, 

ALS164 and HD165 (Table 1), but randomized, controlled clinical trials of this approach yet to be 

reported. A ketogenic diet promotes neurovascular function and metabolic status in mice along 

with a healthier profile of intestinal microbiome166.  

Studies in which a single dose of a ketogenic supplement transiently improved cognition in 

AD167 and in cognitively normal older people (66 years old)158 suggest that ketones reduce the 

brain energy gap by bypassing glycolysis and providing acetyl CoA to enter the TCA cycle directly 

(Figure 3B). This interpretation is supported by reports that mild-to-moderate ketosis lasting <4 h 

prevents the autonomic, cognitive and behavioural symptoms of acute insulin-induced 

hypoglycemia in T1D168. In turn, mild ketosis probably spares some glucose to be used by 

pathways other than glycolysis and oxidative phosphorylation41, i.e. the pentose phosphate 

pathway generates NADPH and anaplerosis for the TCA cycle (Figure 3). Whether glucose-sparing 

is central to the therapeutic effect of ketone supplementation remains to be determined. 

Metabolism of ketones in the brain not only generates fuel, but also provides an important 

substrate for the synthesis of brain lipids, including myelin40. Ketones are also substrates for post-

translational protein modification and activate cell signaling125. The density and activation of 

HCAR2 is increased in the substantia nigra in PD169 and is neuroprotective in an animal model of 

PD170. Reducing neuronal hyperexcitability by raising GABAergic tone may contribute to the 

efficacy of ketone supplementation in individuals with NDAs as it does in epilepsy13,148,171.  

Disease modification, i.e. retardation or reversal of neuropathology, is a crucial goal in the 

treatment of NDAs. Studies in transgenic AD mice show that ketones decrease Aβ deposition in 

the brain172 and reduce the excitatory effect of Aβ42 on neurons146. These preclinical studies have 

been confirmed in a pilot clinical study in MCI156, suggesting that in addition to providing an 

alternative brain energy substrate that bypasses the brain glucose deficit, ketogenic interventions 

could potentially improve cognitive outcomes in MCI and AD by slowing pathological processes 

resulting in Aβ accumulation. 

High-fat diets are commonly perceived to increase the risk of cardiovascular disease so it is 

important to consider their potential risks. Very-high-fat ketogenic diets have been assessed in 

five clinical trials of durations ranging from 6 to 12 weeks. Three of these trials were conducted 
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in MCI or AD155,157,162 and the other two in PD160,161. In none of these trials were common 

biomarkers of cardiovascular risk increased, including body weight or plasma LDL cholesterol or 

triglycerides. However, no standard definition of a ketogenic diet exists and some ‘high-fat’ diets 

used experimentally (and possibly also clinically) might indeed adversely affect cardiovascular 

health outcomes because they contain an excess of refined carbohydrate. In clinical trials, 

ketogenic medium-chain triglycerides were not associated with increased cardiovascular or 

metabolic risk (Table 2); indeed, like the very high fat ketogenic diet, medium-chain triglycerides 

are commonly used to treat obesity and T2D, which are risk factors for NDAs. 

 

[H2] Increasing insulin sensitivity 

Brain energy homeostasis is closely linked to peripheral insulin sensitivity, both of which depend 

on the balance between global energy intake and use. The two main determinants of peripheral 

insulin sensitivity are exercise and intake of refined carbohydrate173. When lifestyle changes are 

ineffective or difficult to implement, peripheral injections of insulin are commonly used to treat 

T2D, but the challenge is to avoid episodes of hypoglycemia and exacerbation of insulin resistance 

which increase morbidity168.  

 

[H3] Intranasal insulin and insulin sensitizers. Intranasal insulin and intranasal insulin sensitizers 

could potentially mitigate the deleterious effects of insulin resistance and a glucose deficit (Figure 

3, Tables 1-3). Intranasal insulin enters the brain directly via olfactory neurons, which enables 

treatment of CNS insulin resistance while minimizing systemic hypoglycemia. Short-term studies 

show that intranasal insulin enhances cognitive function in healthy young adults, MCI and mild-

moderate AD, in part by stimulating brain glucose metabnolism38,174. Little or no intranasally 

administered insulin enters the peripheral circulation but intranasal insulin delivery still needs to 

be optimized to achieve a more consistent increase in brain insulin before its efficacy for cognitive 

improvement can fully be assessed38. 

Metformin decreases hepatic glucose production which improves insulin sensitivity in T2D so 

it is being investigated for therapeutic use in NDAs175. Metformin reduces neuropathology and 

corrects memory deficit in AD mice176 and normalizes cortical network disruption and anxious 

behaviour in HD mice177. Within the brain, metformin also stimulates autophagy, improves 

synaptic function and reduces neuroinflammation, effects that mimic those of caloric restriction 

and exercise2,178. Metformin suppresses coupling of the redox and proton transfer domains of 
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complex 1, but its overall mechanism of action remains unclear 179,180. Recent data suggest that 

growth/differentiation factor 15 and its receptor GDNF family receptor α-like may mediate the 

influence of Metformin on metabolism, suggesting they could be novel therapeutic targets for 

safely combating brain energetic deficits associated with NDAs181, but it may also exacerbate Aβ 

accumulation182. Indeed, Metformin is potentially protective against cognitive decline in MCI or 

AD183,184 and cognitive impairment due to stroke185. However, adverse effects of Metformin have 

been linked to over-activation of AMPK and vitamin B12 deficiency132, so additional studies are 

needed175,186.  

Impaired brain glucose uptake and insulin receptor desensitization could potentially be 

corrected by targeting nuclear hormone receptors that suppress neuroinflammation by activating 

insulin-regulated and IGF-regulated pathways. For example, thiazolidinediones are PPARγ 

agonists that potentially reduce brain insulin resistance associated with AD and other NDAs36. In 

contrast, PPARγ agonists, including pioglitazone and rosiglitazone, has produced no cognitive 

benefit in clinical trials in AD. Inhibitors of sodium–glucose co-transporter 2 such as dapagliflozin 

increase glucose excretion, improve cardiovascular outcomes and reduce mortality in T2D187. In 

addition, these agents induce mild ketonemia188 suggesting that they should be tested in NDAs, 

perhaps in combination with ketogenic interventions.  

 

[H3] Incretin hormones. GLP1 receptor agonists such as Liraglutide are approved to treat insulin 

resistance, obesity and T2D189,190. Based on encouraging findings in animal models of AD, PD, HD 

and ALS (Table 1, Supplementary Table 2), they are also being assessed for treatment of 

NDAs97,191,192. For example, Liraglutide and Exenatide reduced neuropathology, 

neuroinflammation and microvascular pathology and improved cognitive outcomes in a 

transgenic mouse model of AD (Table 2)192. A GLP1 receptor agonist reduced Aβ accumulation and 

reduced mitochondrial pro-apoptotic signaling, while increasing anti-apoptotic signaling and 

BDNF192. Semaglutide, a long-acting GLP1 analogue, was more neuroprotective than Liraglutide in 

an animal model of PD, a beneficial effect related to improved mitochondrial function and lower 

oxidative stress, apoptosis and neuroinflammation97. Inhibitors of GLP-1 breakdown are now in 

clinical trials to treat NDAs193. 

In mild-to-moderate AD, Liraglutide for 6 months attenuated the decline in brain glucose 

uptake but had no effect on brain Aβ load or cognitive outcomes194. Exenatide reduced symptoms 

of PD in a phase II trial195. Interestingly, Metformin might exert its actions partly via GLP136. Some 
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dipeptidyl peptidase 4 (DPP4) inhibitors (gliptins) approved to treat T2D are known to prolong the 

activation of GLP1 196; one such agent, Sitagliptin, improved cognition in elderly diabetic 

individuals with or without AD197. 

GIP agonists have shown similar benefits to GLP1 agonists in mouse models of PD198,199. GIP 

agonists  closely mimic GLP1 agonists in animal models of AD200,201. Dual agonists of both GLP1 

and GIP were more effective in rodent models of PD than GLP1 agonists alone200,201. A triple 

agonist of GLP1, GIP and glucagon receptors had broad neuroprotective activity in a mouse model 

of AD202. Clinical data are eagerly awaited for these multitarget agents. 

 

[H3] Ghrelin. Ghrelin is neuroprotective and improves cognition in animal models of AD, PD and 

HD (Supplementary Table 2)203-205. The beneficial effects of ghrelin involve promotion of neuronal 

glucose uptake, increased expression of uncoupling protein 2, improved mitochondrial function, 

and enhanced mitophagy88,205. AMPK activation in dopaminergic neurons of the substantia nigra 

may also contribute to the beneficial effects of ghrelin in PD: AMPK activates PGC1α to induce 

mitochondrial biogenesis and increase ATP production, as well as stimulating autophagy to 

eliminate α-synuclein2,205,206. Since ghrelin counters gastrointestinal dysfunction in PD, 

Relamorelin, a centrally-penetrant and selective agonist of the ghrelin receptor (also known as 

growth hormone secretagogue receptor type 1), is being assessed to treat constipation in PD and 

T2D. The effects of Relamorelin on motor function, neuronal survival and bioenergetics are being 

assessed in PD207. 

 

[H3] Leptin and adiponectin. Leptin promotes mitochondrial function, has neuroprotective 

properties and mitigates the neurotoxic effects of Aβ accumulation in animal models of AD and 

PD86,87,208. Synergistic beneficial effects on mitochondrial function have been reported for leptin 

in combination with PPARα agonists209. The risk of ALS is reduced in people with T2D, so it is 

interesting that knocking out the gene encoding leptin (Lep), which suppresses appetite in a 

mouse model of ALS, slowed the progression of ALS symptoms while decreasing energy 

expenditure and increasing in body weight210. This suggests that leptin antagonists should be 

evaluated as a potential treatment in ALS. Data on adiponectin are currently limited to mouse 

models of AD in which adiponectin agonists had neuroprotective properties associated with 

reduced loads of Aβ and pTau and improved cognitive performance, benefits that were related to 

increased glucose uptake in the hippocampus and, possibly, to improved insulin sensitivity86,211. 

https://en.wikipedia.org/wiki/Growth_hormone_secretagogue_receptor
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[H3] Amylin. The status of amylin as a potential target for treating NDAs is controversial92 because 

native amylin itself is amyloidogenic and aggregated amylin has pro-apoptotic and 

neuroinflammatory effects and may seed Aβ aggregation91,93. Moreover, Aβ binds to amylin 

receptors and its neurotoxic actions and interference with cognition were blunted by an amylin 

antagonist91,212. Nevertheless, amylin itself could have potential beneficial properties as a leptin 

sensitizer, including leptin resistance in AD213. The satiety-stimulating effects of amylin may help 

to control weight gain as well as improve insulin sensitivity and brain glucose metabolism; 

treatment with human amylin or a non-aggregating amylin analogue, Pramlintide, has shown both 

cognitive benefits and reductions in Aβ pathology in animal models of AD214. Amylin and 

Pramlintide also promote Aβ efflux from the brain, regulate synaptic proteins, reduce oxidative 

stress and inflammation and improve mitochondrial function214,215. Pramlintide protects against 

the neurotoxic and memory-disrupting actions of Aβ91. However, whether amylin-related 

mechanisms can be harnessed in the treatment of AD and other NDAs remains to be seen.  

 

[H2] Restoration of downstream signalling 

An important fate of glucose distinct from its use as an energy substrate is its utilization to 

generate O-linked β-N-acetylglucosamine (O-GlcNAc) which is post-translationally and reversibly 

added to serine and threonine residues of numerous proteins. O-GlcNAcylation occurs via O-

GlcNAc transferase whereas O-GlcNAcase removes O-GlcNAc residues: both of these enzymes are 

therapeutically targetable in NDA216. O-GlcNAcylation is important for axonal stability and 

synaptic plasticity and for the local and dynamic coupling of glucose utilization to glycolysis and 

mitochondrial function at both pre-synaptic and post-synaptic sites216. In primary cell culture 

models of PD, O-GlcNAcylation of α-synuclein reduced its aggregation and toxicity217. In addition, 

in transgenic mouse models of AD, downregulation of O-GlcNAcylation is implicated in the 

production of Aβ and pTau218. Novel therapeutic agents that aim to restore O-GlcNAcylation are 

currently under investigation in experimental models of NDAs216-218. 

 

[H2] Epigenetic interventions 

In addition to driving the TCA cycle, acetyl-CoA is a precursor of brain lipids and a substrate for 

generation of acetylcholine. Acetyl-CoA is also the source of the acetyl moiety used to acetylate 

several enzymes that modulate glycolysis, gluconeogenesis and the TCA cycle, tau (acetylation of 
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which promotes its aggregation); and histones219. Acetylation is a core component of histone 

modification, which regulates gene expression, so cellular energetics are affected by the 

availability of acetyl-CoA for histone acetyl transferases220,221. Therefore, acetyl-CoA provides a 

direct link between brain energy balance and the epigenetic control of gene expression, a link 

reinforced by other components of the TCA cycle, including the intermediates, succinate and 

citrate219. Furthermore, increased activity of the deacetylating enzyme, sirtuin 1, promotes 

mitochondrial function98 and is implicated in the positive influence of the exercise-induced 

increase in brain lactate on cognition222. Specific histone deacetylases in the hippocampus may 

contribute to the improved resilience to stress by lactate in mice223. 

Short-chain fatty acids produced by the intestinal microbiome also influence the activity of 

histone deacetylases44. For example, BHB modulates the β−hydroxybutyrylation of histones at 

lysine residues, which couples metabolic status to the control of gene expression224. Post-

translational histone modifications and DNA methylation influence bioenergetic processes that 

are disrupted in NDA, so pharmacological modulation of these epigenetic mechanisms could 

improve brain energy status in NDAs220,221. 

 

[H2] RNA-based and DNA-based therapies 

Diverse techniques are being developed to alter the level of mRNA encoding proteins that are 

anomalously expressed in NDAs. These strategies could suppress neurotoxic effects or 

compensate for a loss of physiological function, thereby improving the energetic status of the 

brain. Targeting specific classes of microRNAs and long noncoding RNAs that control the 

translation of dysregulated glycolytic and ATP-generating mitochondrial proteins should also be 

feasible.  

 Recent clinical success with oligonucleotide-based therapies in CNS disorders such as spinal 

muscular atrophy225,226, together with advances in the manipulation of oligonucleotides, such as 

antagomirs [G] and locked nucleic acids [G], make this approach increasingly relevant to NDAs, 

even for hitherto ‘undruggable’ targets227-229. In HD, clinical trials of Antisense oligomers directed 

against mutant huntingtin mRNA are underway to prevent its interference with mitochondrial 

transport and function230. In addition, allele-specific strategies that specifically decrease mutant 

huntingtin mRNA while preserving normal huntingtin mRNA are under investigation. Some of 

these interventions use zinc finger nucleases (which act as transcription factors) whereas others 

rely on small molecules that promote clearance specifically of the mutant proteins231. Antisense 
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oligomers and similar approaches could also be used to target genes containing mutations that 

disrupt mitochondrial energetics in PD and ALS with FTD (Supplementary Table 1)232,233. 

Oligonucleotides and siRNAs that modulate pre-mRNA splicing or neutralize mRNA-directed 

miRNAs preferentially increase the expression of the intact allele of energy-generating genes 

down-regulated in NDAs226,234. A more direct mode of gene therapy that aims to restore 

abnormally low or absent gene expression is to transfer copies of the intact gene into the brain 

using an adeno-associated virus vector. For example, the approved gene therapy onasemnogene 

abeparvovec employs an adeno-associated virus vector to deliver intact SMN1 gene copies to 

motor neurons to treat spinal muscular atrophy235. An adeno-associated virus vector loaded with 

the human GLUT1 promoter injected directly into the brains of GLUT1-deficient mice led to robust 

GLUT1 expression in cortico-limbic regions, together with increased CSF glucose and improved 

motor function236. A similar strategy that targeted dysfunctional PGC1α helped to restore 

mitochondrial function in dopaminergic pathways in mouse models of PD237.  

DNA and RNA editing might also become options for the treatment of NDAs, for example, using 

zinc finger nucleases or CRISPR/Cas9 technologies. One specific approach to improve brain 

energetics in AD is the conversion of the ApoE4 isoform into ApoE3 as shown in a neuronal cell 

line234,238,239. Gene editing of APOE has not yet been achieved in vivo but progress is rapid in this 

field and a broad range of options for improving glucose metabolism and other abnormalities 

associated with AD based on neutralization of ApoE4 is being investigated240. 

Finally, mitochondrial dysfunction and other disturbances associated with HD may also be 

linked to excessive translation of mRNAs and overproduction of proteins resulting from 

inactivation of the eukaryotic translation initiation factor 4E (EIF4E) translational repressor 

complex. Rapamycin and other repressors of this complex or its components should therefore be 

assessed to restore mitochondrial energetics and integrity in NDAs241.  

 

[H2] Photobiomodulation therapy 

Low wavelengths of light penetrate brain tissue to a considerable depth and transcranial 

(intracranial, intra-aural or intranasal) application of near-infrared light is under study as a 

treatment for various brain disorders242,243. The mechanisms underlying the positive effects of 

photobiomodulation therapy await further elucidation but increased brain perfusion, energy 

availability and oxygen supply have been proposed, in addition to neuronal actions implicating 

light-absorbing cytochrome C and increased ATP production242-244. The use of 
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photobiomodulation to improve brain energetics has received initial support from small-scale 

clinical trials242,243,245, but rigorous controlled studies with larger sample sizes are needed. An 

alternative strategy to improve the energy status of the brain could be non-invasive light and/or 

auditory stimulation regimes. In a mouse model of AD, this approach improved pathology and 

reduced neurotoxic proteins, in part by improving neurovascular coupling and, by inference, brain 

energetic status246.  

 

[H1] Conclusions and Outlook  

Impaired brain energy metabolism is now recognised in NDAs and, at least in AD, clearly precedes 

the onset of clinical symptoms. The metabolic defects occur at multiple levels including reduced 

neuronal glucose uptake, impaired glycolysis and suboptimal function of the TCA cycle, all of 

which adversely impact axonal transport, mitochondrial function and ATP production (Figure 3A). 

The multiple faces of brain glucose hypometabolism present challenges for drug development in 

NDAs. Indeed, in view of the multiple brain energetic pathways affected, a fundamental question 

is whether pharmacological approaches that target a single enzyme, receptor or protein could 

ever be truly clinically effective. By analogy to other multifactorial disorders associated with an 

increased risk of NDAs, like depression and T2D247 where multi-modal interventions are the most 

effective, the same could turn out to be true for brain energetic rescue in NDAs. An example would 

be use of agents that simultaneously clear aggregated toxic proteins and/or suppress ROS and 

neuroinflammation248,249.  

The efficacy of a multi-modal approach depends on a better understanding of the cause and 

effect relationships between the brain glucose deficit and pathophysiological processes1,2,103. In 

any event, attempting to promote energetically expensive processes such as microglial clearance, 

synaptic remodeling, myelin regeneration or axonal transport seems questionable unless the 

brain has adequate energy resources to fuel the additional work. Therefore, optimization of brain 

energetics should become a core component of future clinical trials of potential therapies for 

NDAs, irrespective of their mechanisms of action, because unless the brain can close the brain 

energy gap (Figure 3), potential benefits of new medications may well be missed. Furthermore, a 

multi-pronged approach embracing both targeted pharmaceutical treatments and broad 

improvement in diet and lifestyle is emerging as a viable way to improve both prognosis and 

clinical symptoms of NDAs2,5,248,250. Insights could also be garnered by considering brain energetics 

in other neurological diseases (Box 5).  
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Preclinical studies have demonstrated that brain energy rescue can delay the onset and/or 

progression of NDAs at two levels – (i) by improving in neuronal integrity, synaptic plasticity and 

neuronal–glial interactions linked to cognitive and functional deficits, and (ii) by disease 

modification, at least for Metformin176 and certain ketone-based interventions146,172. The benefit 

of ketone-based interventions in NDAs resembles that seen in other brain disorders including 

schizophrenia84 and epilepsy4,251. It is interesting that ketones and another traditional black sheep 

of energy metabolism —lactate — which have complementary roles both as signaling and 

neuroprotective molecules in brain energetics, have much to offer in developing therapeutic 

strategies for brain energetic rescue strategies in NDAs3,8,252,253. Hormone-based interventions 

that modulate appetite and energy expenditure should also be able to contribute to both an early 

preventive influence by delaying the onset of neuropathology and symptoms and a later benefit 

by delaying further decline in cognitive function or other functional outcomes. Genetic, epigenetic 

and other novel strategies are also showing promise for improving brain energetics in NDAs. 

Being able to link clinical symptomatic improvement to a clinical read-out or a measurable 

biomarker, i.e. imaging, metabolite or hormone76,254, would accelerate validation of clinical 

effectiveness and product development. In addition, an ideal biomarker would be able to predict 

disease-modification by an intervention. Ketone PET imaging is a biomarker of brain energy status 

linked to cognitive outcomes in MCI (Box 4) but it does not demonstrate whether disease 

modification took place. Given the probable need for a long-term multi-modal strategy including 

lifestyle intervention, successful compliance and retention is ultimately likely to depend on the 

intervention being personalized, i.e. exercise or insulin sensitizers only for those who are insulin 

resistant, etc.255. 

 In conclusion, just as normal neurocognitive development during infancy depends on 

adequate brain energy supply, the maintenance of cognitive performance and cerebral function 

during ageing is contingent on the brain continuing to meet its energy needs. Guaranteeing the 

energy status of the brain should become a cornerstone for trials attempting to delay the onset 

and progression of NDAs. The observations discussed herein should help us move towards this 

important goal. 
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Table 1 | Treatments that improve brain energetics and/or function in preclinical models of 

neurodegenerative disorders.   

Study characteristics Primary end points: results References 

Mitochondrial function   

AD mice (3xTg) receiving MitoQ (100 
µM in drinking water) for 5 months 

Mitochondrial function:  cognitive decline,  oxidative 
stress,  Aβ accumulation,  astrogliosis,  synaptic loss, 
 caspase activation,  neuropathology,  mitochondrial 
function 

256 

AD mice (APP/PS1) receiving 25 
mg/kg/day CP2 for 14 months 

Mitochondrial function: complex 1 activity,  AMPK,  
 mitochondrial bioenergetics. 

128 

AD mice (APP/PS1) receiving 25-250 
µM AP39 in neurons in culture; 100 
nM/kg body weight AP39 for 6 weeks 

Brain energy status and mitochondrial function:  brain 
ATP, protected mitochondrial DNA,  ROS,  brain atrophy 

257 

AD mice (APP/PS1) receiving 10 mg/kg 
or 40 mg/kg mdivi-1 by gavage for 1 
month 

Mitochondrial dynamics:  mitochondrial fragmentation, 
 loss of mitochondrial membrane potential,  ROS,  
and synaptic dysfunction.  ATP,  learning and memory, 
mitochondrial function 

136 

AD mice (APP/PS1) receiving  
400 mg/kg/day nicotinamide riboside 
for 10 weeks 

Mitochondrial function and proteostasis:  Aβ 
accumulation.  cognitive function,  oxidative 
phosphorylation activity 

258 

PD rats (hA53T-α-syn) receiving 
20 mg/kg mdivi-1 by i.p. injection for 8 
weeks 

Mitochondrial dynamics:  mitochondrial fragmentation, 
mitochondrial dysfunction, oxidative stress, 
neurodegeneration and α-syn aggregates;  motor 
function 

135 

HD mice (HD R6/2 and YAC128) 
receiving DA1 peptides (1 mg/kg/day) 
via osmotic pump for 2-3 months 

Mitochondrial dynamics and function:  mitochondrial 
biogenesis and bioenergetics;  inflammation and 
neuropathology 

259 

ALS mice (SOD1G93A) receiving MitoQ 
(500 µM in drinking water) for 30-40 
days 

Mitochondrial function:  nitroxidative stress, 
neuropathology.  mitochondrial function and life span 

260 

SCA1 mice (Sca1154Q/2Q) receiving 
MitoQ (500 µM in drinking water) for 
16 weeks 

Mitochondrial function:  neuropathology, oxidative 
stress, DNA damage, neuronal loss.  mitochondrial 
function 

261 

Seizure model (risk of AD) In vivo 
study: CD1 mice; 35 energy % C10 in 
regular diet. In vitro study: astrocytes 
exposed to 200 mM C8 or C10 for 10 
days 

Seizures: In vivo study:  seizures after C10 but not C8; No 
change in glycolytic enzymes; In vitro study: C8 and C10  
basal respiration and mitochondrial leak;  ATP synthesis, 
antioxidant capacity by C10 but not C8 

150 

Insulin sensitizers   

AD mice (APP/PS1) receiving 200 
mg/kg i.p. metformin for 14 days 

Cognitive performance, neuropathology:  cognitive 
performance (Morris water maze)  hippocampal neuron 
loss,  Aβ, neuroinflammation 

176 

HD mice (Hdh150 knock-in) receiving 5 
mg/ml metformin in drinking water for 
3 weeks 

Early network hyperactivation in visual cortex, behaviour:  
hyperactive neurons,  normal network patterns,  green 
fluorescent protein-hht protein synthesis,  anxiolytic 
behaviour 

177 

Ketogenic molecules   
AD mice (APP/PS1) receiving 26 
mg/kg/day BHB and pyruvate for 5 
weeks 

Brain redox status:  brain nicotinamide adenine 
dinucleotide phosphate (reduced);  network hyperactivity 
(epileptiform discharges) 

146 

AD mice (3xTgAD) receiving 125 g 
ketone ester/kg in diet for 8 months 

Brain TCA cycle activity, mitochondrial function: BHB  
fivefold; 30-40%  brain TCA cycle and glycolytic 
intermediates;  mitochondrial redox potential;  oxidized 
lipids/proteins in hippocampus 

262 
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AD mice (Sirt3+/-/AppPs1); receiving 
ketone ester added at 22% of dietary 
energy for 20 weeks 

Neurodegeneration, neuronal network hyperexcitability:  
cortical SIRT3 expression,  loss of GABAergic neurons,  
seizures and prevented death of Sirt3+/- /AppPs1 mice 

263 

PD mice (MPTP, 18 mg/kg four times 
over 2 h; 40 mg/kg, 80 mg/kg or 160 
mg/kg per day BHB for 7 days 

Mitochondrial function:  mitochondrial respiration and 
ATP at Complex 2;  dopamine neurodegeneration and 
motor deficit 

264 

ALS mice (SOD1-G93A) receiving 10% 
of calories as C8 for 10 weeks (7–17 
weeks old) 

Physical symptoms: Mitochondrial function  spinal cord 
motor neuron loss,  mitochondrial O2 consumption, no 
change in survival 

265 

Nutrients and metabolites   
AD mice (Tg2576) receiving 250 
mg/kg/day nicotinamide riboside for 3 
months 

Brain redox status, cognitive performance,  cortical redox 
status; attenuated cognitive decline 

266 

AD mice (3xTgAD/Polβ+/-) receiving 3 
g/L (12 mM) nicotinamide riboside in 
drinking water for 6 months 

Brain redox status: normalized cortical NAD+/NADH; 
nicotinamide riboside  cognitive function and restored 
hippocampal synaptic plasticity 

142 

AD mice (treated with streptozotocin) 
receiving 50 mg/kg N-acetyl cysteine 
for 9 days 

Brain glucose uptake, cognitive performance: normalized 
glucose uptake in hippocampus after streptozotocin; 
prevented spatial/non-spatial learning and memory 
impairment 

267 

ALS mice (SOD1-G93A) receiving 35% 
of calories as triheptanoin for 5 weeks 
(35–70 days old) 

Physical performance, TCA cycle activity, brain glucose 
uptake, cognitive performance:  hind limb grip strength 
by 2.8 weeks,  time to loss of balance on rotarod,  time 
before weight loss,  TCA cycle 

268 

Reports shown here exclude those involving the ketogenic diet and lifestyle interventions (see Box 3); 

studies involving antioxidants are documented in other reviews60. Triheptanoin268 is a seven-carbon 

triglyceride. The APP/PS1 AD mice bear the APP-Swedish mutation plus the PS1-L166P mutation. 3XTgAD 

mice express three mutations (APP-Swedish, PS1-M146L and tau-P301L). Abbreviations not in main text: 

AP39, proprietary mitochondrial-targeted H2S donor; GSK3β, glycogen synthase kinase 3 beta; mutUNG1, 

mutated mitochondrial DNA repair enzyme; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; SCA1, 

Spinocerebellar ataxia type 1; TBI, traumatic brain injury; YAC, yeast artificial chromosome.    
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Table 2 | Clinical trials reporting improved brain function and/or energetics in 

neurodegenerative disorders. 

Disorder Study details Results and comments Reference
s 

AD 
Single blind RCT of S-equol (n=15) or 
placebo (n=15) for 2 weeks (NCT 
02142777) 

Well-tolerated. More participants showed↑
cytochrome oxidase activity on S-equol than on 
placebo; No cognitive change. First study of a 
mitochondrial intervention as a direct biomarker of 
mitochondrial engagement in AD. 

137 

Mild-
moderat
e AD and 
MCI 

RCT in AD (n=21) or MCI (n=39) 
receiving long-acting intranasal 
insulin (20 IU or 40 IU) or placebo for 
4 months (NCT01595646) 

Dose-dependent ↑ memory composite score in 
ApoE4+. No change in functional autonomy or 
executive function. 

38 

AD RCT of liraglutide (n=14) or placebo 
(n=20) for 26 weeks (NCT01469351) 

No change in Aβ load or cognitive scores. ↓ Brain 
glucose uptake over 26 wk only on placebo. 
Underpowered for cognitive outcomes. Liraglutide 
may delay metabolic decline in brain. 

194 

AD or 
MCI 

RCT (n=20) of metformin 500 mg or 
placebo for 8 weeks (NCT01965756) 

↑ Executive function. No change in cerebral blood 
flow. 

183 

PD 

RCT of exenatide 2 mg once per 
weekk (n=31) or placebo (n=29) for 
48 weeks plus 12 week washout 
(NCT 01971242) 

UPDRS motor subscale at 60 weeks ↑ 1.0 points on 
drug and ↓ by 2.1 points on placebo ↓ motor 
symptoms. 

97 

AD 
Double-blind RCT of C8 20 g per day 
(n=77) or placebo (n=63) for 90 days 
(NCT00142805) 

ADAS-Cog ↑ by 3.4 points in ApoE4–. Cognitive 
score varied directly as Ketones ↑ cognition in 
mild-to-moderate AD. 

119 

Mild-
moderat
e AD 

Open label (n=10) receiving KD ± 
C8C10 for 12 weeks (NCT03690193) 

↑ ADAS-Cog score; no cardiovascular safety or other 
metabolic concerns. First reported clinical use of 
ketogenic diet in AD including medium chain 
triglyceride supplementation. 

157 

AD and 
MCI 

RCT of KD (n=9) or NIA low-fat diet 
(n=5) for 12 weeks (NCT02521818) 

↑ Composite cognitive score, particularly memory 
domain, only in compliant participants and only on 
KD. First reported clinical use of a KD without 
medium chain triglyceride supplementation. 
Feasibility is very challenging but beneficial effects of 
ketones are clearly present. 

162 

Mild-
moderat
e AD 

Open label study of C8C10 (n=11) or 
C8 (n=6) 30 g per day for 4 weeks 
(NCT02709356) 

↑ ketones 2-fold. Brain ketone uptake ↑ in direct 
proportion to ↑ ketone and brain glucose 
utilization. In AD, the brain can utilize additional 
ketones provided as C8C10. 

269 

Mild-to-
moderat
e ApoE4– 

AD 

Crossover RCT of MCT 17.3g (n=24) 
or placebo [canola] (n=25) for 30 
days (ChiCTRIOR6009737) 

2.62 point improvement on ADAS-Cog (Chinese 
version) on MCT, 2.57 worsening on placebo. Study 
restricted to ApoE4(–) patients. Inverse correlation 
between cognitive changes and plasma 
lysophosphatidylcholine species. 

120 

PD 
RCT of KD (n=20) or low-fat diet 
(n=20) for 8 weeks (ACTRN 
12617000027314) 

↑ UPDRS in both groups, but 41% more on the KD. 
86% compliance; tremor ± rigidity intermittently ↑ 
on KD. First RCT of KD in PD. KD and low-fat diets are 
safe in PD. 

160 

HD 
Open label study in HD (n=10) and 
CTL (n=13) receiving triheptanoin 1 
g/kg for 1 month (NCT01696708) 

MRS ↑ brain high-energy phosphates including ↓ 
inorganic phosphate/phosphocreatine during visual 
stimulation 

270 

 

These studies reported statistically significant improvements in primary or secondary endpoints with 

novel treatments or drugs approved for other indications and repurposed for treatment of 
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neurodegenerative disorders of ageing. The low-fat diet162 diet was a modified Atkins diet. The three KD 

trials were all principally feasibility studies not powered for cognitive or metabolic outcomes157,160,162. 

Abbreviations not in main text:  ADAS-Cog, Alzheimer Disease Assessment Scale - Cognitive Subscale; 

AHAD – American Heart Association diet; ALSFRS-R, ALS functional rating scale –revised; MMKD – 

modified Mediterranean ketogenic diet; MRS – magnetic resonance spectroscopy; NIA, National Institutes 

of Aging; OAA, oxaloacetic acid; RCT, randomized controlled trial; SMC – subjective memory complaints; 

UPDRS; Unified Parkinson disease rating scale. 
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Table 3 | Clinical trials reporting improved brain function and/or energetics in major risk 

conditions for neurodegenerative disorders of ageing. 

 
Disorder Study details Results and comments 

 
Refere
nces 

T2D ± 
cognitive 
impairment 

Open label (n=205) DPP4I 
(sitagliptin) 100 mg per day ± 
metformin ± insulin (n=101) vs 
metformin ± insulin only 
(n=104) for 6 months 

↑ MMSE on DPP4I; similar glycemic control in both groups; 
↓ insulin on DPP4I arm; RCT needed. 

197 

MCI or mild 
AD (non-
diabetic) 

Placebo-controlled, parallel-
group cross-over study (n=10 
per group) of metformin, 2 g 
per day for 8 weeks 
(NCT01965756) 

CSFβ, pTau; CBF; ADAS-Cog and CANTAB® cognitive 
batteries: metformin measurable in CSF; no change in CSF 
Aβ42, pTau; ↑ CBF in two brain regions at 8 wk; trend to ↑ 
executive function, memory and attention. 
Metformin penetrates brain; underpowered for cognitive 
outcomes. 

186 

MCI 
RCT of high carbohydrate 
(n=11) or high fat KD (n=12) 
for 6 weeks (NCT00777010) 

Feasibility study; Cognitive outcomes (executive function, 
long-term memory), mood: on KD, ↑ memory (paired 
associate learning); no change in executive function or 
depression score. 
Metabolic improvement on KD: ↓ weight, waist 
circumference, fasting glucose, fasting insulin. 

155 

MCI 

RCT of C8C10 30 g per day 
(n=19) or energy-matched 
non-ketogenic placebo (n=20) 
for 6 months (NCT02551419) 

Brain glucose and ketone status: ↑ Brain ketone uptake 2-
fold. ↑ executive function, episodic memory, language and 
processing speed. Several cognitive outcomes improved in 
direct proportion to [ketone] and/or brain ketone uptake. 

154 

SMC and 
MCI 

Cross-over RCT with 6 week 
washout in between 6 weeks 
of AHAD and 6 weeks of 
MMKD interventions, in 
patients wiht SMC (n=11) or 
MCI (n=9) (NCT2984540) 

CSF AD markers, neuroimaging markers, peripheral 
metabolic status, cognition: In MMKD only: ↑ CSF Ab42, ↓ 
CSF tau, ↑ brain ketone ↑ brain perfusion. In both groups: 
↑ metabolic markers, ↑ memory. Compliance ≥90% in both 
groups; MMKD feasible, acceptable and has prevention 
effect on AD CSF biomarkers. 

156 

 

Abbreviations no tin main text: ADAS-Cog, Alzheimer Disease Assessment Scale - Cognitive Subscale; 

AHAD – American Heart Association diet; ALSFRS-R, ALS functional rating scale –revised; MMKD – 

modified Mediterranean ketogenic diet; MMSE, Mini-mental state examination; MRS – magnetic 

resonance spectroscopy; OAA, oxaloacetic acid; RCT, randomized controlled trial; SMC – subjective 

memory complaints; UPDRS; Unified Parkinson disease rating scale. 
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Box 1 | Generating ATP in the brain 

Glucose entering brain cells is phosphorylated to glucose-6-phospate and then enters one of 

two pathways14: generation of ATP via aerobic glycolysis and the mitochondrial tricarboxylic acid 

(TCA) cycle or the pentose phosphate pathway which generates riboses, nucleic acids and NADPH 

for antioxidant defence and anabolic reactions (Figures 1, 3). The final step in aerobic glycolysis is 

generation of pyruvate, converted either to acetyl-CoA via pyruvate dehydrogenase for entry into 

the TCA cycle or to lactate via lactate dehydrogenase (Figures 1, 3). The acetyl CoA pathway 

predominates in neurons and the lactate pathway in astrocytes, but this is not an absolute 

distinction. The TCA cycle takes place in the mitochondrial matrix, with oxidative phosphorylation 

in the inner mitochondrial membrane. Several TCA cycle steps generate NADH and flavin adenine 

dinucleotide hydride, which are oxidized and donate high-energy electrons to the mitochondrial 

electron transport chain, which in turn drives conversion of ADP to ATP by oxidative 

phosphorylation. More than 90% of brain ATP is generated in mitochondria by oxidative 

phosphorylation. Each molecule of glucose consumed during oxidative phosphorylation generates 

about 33 ATP molecules271, compared to 2 molecules of ATP produced by aerobic glycolysis. 

However, oxidative phosphorylation is slower than aerobic glycolysis and occurs at the price of 

generating ROS60. 

The TCA cycle not only feeds the mitochondrial electron transport chain but also provides 

carbon for synthesis of glutamate and acetylcholine, a process called cataplerosis [G]. Carbon 

exiting the TCA cycle needs to be replaced in order to maintain TCA cycle activity, a process called 

anaplerosis. Via pyruvate, glucose is an important contributor to anaplerosis, such that when 

brain glucose uptake is impaired, not only ATP production but also anaplerosis are both adversely 

affected. Pyruvate carboxylase generates oxaloacetate, mostly in astrocytes but also 

oligodendrocytes27. Certain branched chain amino acids and odd-chain fatty acids (such as 

heptanoate) are anaplerotic272. Ketones can replace glucose as a source of acetyl CoA but they 

are not anaplerotic. 

The astrocyte–neuron lactate shuttle hypothesis postulates that activated glutamatergic 

neurons stimulate astrocytes to increase their supply of lactate to neurons8. Astrocytes release 

lactate through the low affinity perisynaptic monocarboxylic acid transporters (MCTs) 1 and 418. 

Lactate it is taken up by high-affinity neuronal MCT2 and transformed into ATP in neurons by 

oxidative phosphorylation (Figure 1). ATP produced by metabolism of glucose or glycogen to 

lactate does not require oxygen, so this route reduces net brain oxygen consumption in cells or 
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organelles with a high level of aerobic glycolysis, such as hippocampal synapses15. Lactate derived 

from glycogen in astrocytes can stimulate neuronal plasticity and learning, but this effect may 

only occur at relatively high plasma lactates (2–5 mM)8. Moreover, some types of neurons, 

including inhibitory GABAergic interneurons, do not necessarily depend on lactate8. Hence, the 

functional importance of the astrocyte–lactate shuttle in vivo requires additional study15,273,274. 

 Lactate may act as a paracrine regulator through the lactate receptor, hydroxyl carboxylic acid 

receptor (HCAR) 1 (also known as GPR81). During intense exercise, plasma lactate increases and 

lactate enters the brain through MCTs at the blood–brain barrier (Figure 3), activating HCAR1 and 

promoting angiogenesis in the hippocampus and neocortex252,253. Exogenously administered 

lactate enhances hippocampal synaptic plasticity, neurogenesis and memory formation in 

rodents8. 
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Box 2 | Measuring brain energy metabolism   

In vitro models   

To measure brain high energy phosphates, fresh mitochondria are fixed and visualized by electron 

microscopy, and adenine nucleotides are measured by high-performance liquid chromatography. 

Frozen mitochondria can be used to evaluate antioxidants, oxidative damage and the activity of 

respiratory chain complexes. Frozen brain homogenates are used to determine the activity of 

glycolytic, tricarboxylic acid (TCA) cycle and electron transport chain complexes, and markers of 

mitochondrial biogenesis, dynamics and autophagy.  

Regulatory mechanisms of energy homeostasis can be studied in single neurons and glia using 

nanosensors based on fluorescence resonance energy transfer which detects changes in 

intracellular concentrations of cyclic AMP, protein kinase A, glucose and lactate in response to 

activation of G-protein coupled receptors275. Intact brain cell respiration can be studied using an 

extracellular flux analyzer to establish rates of oxygen consumption, glycolysis, proton leakage, 

mitochondrial reserve and other bioenergetic parameters129. The use of reprogrammed human 

cells and brain organoids for advancing bioenergetic drug discovery is considered in 

Supplementary Box 1.  

Fluorescence lifetime imaging microscopy of cells or brain slices measures mitochondrial 

NADH production in real time and reveals a role for astrocytes in the glycolytic deficits of a mouse 

model of HD expressing mutant huntingtin65. This technique identifies defective glycolysis as 

leading to mitochondrial dysfunction in AD neurons and supports the potential of pyruvate to 

bypass impaired glycolysis and maintain mitochondrial respiration147. The energetics of neuronal 

network activity can also be studied in cortical slices34. Gamma oscillations have high energy 

expenditure34, in which pyruvate and BHB can partially replace glucose276. 

 

Brain imaging in vivo 

In living organisms, brain energy metabolism is usually evaluated by positron emission 

tomography (PET) in which the glucose analogue, deoxyglucose, is labelled with 18F to make 18F-

fluorodeoxyglucose (FDG). To quantify brain uptake of FDG (or ketones or oxygen) by PET, i.e. 

cerebral metabolic rate [G] (µmol/100 g/min), blood samples to measure the tracer must be 

obtained as near to the brain as possible. Cerebral metabolic rates obtained by PET reflect values 

obtained by arteriovenous difference across the brain3, but PET provides a visual image of both 

global and regional brain energy metabolism. A new PET tracer of mitochondrial complex 1 
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function, 18F-2-tert-butyl-4-chloro-5-2H pyridazin-3-one277, has been proposed as a marker of 

mitochondria-specific energy failure arising before the onset of impaired glycolysis in AD, and 

could be used to validate new therapeutics aiming to correct mitochondrial function.  

In healthy ageing individuals, the brain glucose deficit (energy gap; Figure 3) is about 8% and 

occurs mostly in the frontal cortex whereas in AD the parietal and temporal lobes are most deeply 

affected269. A glucose-specific brain energy deficit is also present in young adults with insulin 

resistance278. Indeed, FDG uptake might be a better marker of declining cognitive function in MCI 

and AD than the Aβ−PET marker, 18F-florbetapir279. 

Metabolism of multiple energy substrates has been assessed in humans and animals by in vivo 
13C-magnetic resonance spectroscopy, including brain uptake of 13C-labeled glucose and 

ketones280, medium chain fatty acids153, and non-invasive assessment of mitochondrial redox 

status in the rat281. 
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Box 3 | Complimentary multi-modal lifestyle strategies 

Lifestyle interventions may delay the onset of NDAs, as exemplified by the ‘Finger’ trial which 

reduced the risk of AD in a typical elderly population126,250. Two lifestyle approaches that improve 

brain energetics and insulin sensitivity are garnering considerable attention: caloric restriction 

(and the variant - intermittent fasting)5 and physical exercise127. Both approaches are 

neuroprotective and improve cognitive and motor function in pre-clinical models of AD and PD by 

increasing synaptic spine density98, mitochondrial biogenesis282, neurogenesis in the 

hippocampus, autophagy of neurotoxic proteins, mitophagy of dysfunctional mitochondria98,283, 

and activation of ghrelin signalling206. Nutritional ketosis is a feature common to caloric 

restriction, intermittent fasting and other ketogenic interventions3,98,284.  

Exercise helps regulate glucose metabolism and reduces two important risk factors for NDAs: 

obesity and T2D. Exercise also improves executive function, attention and processing speed in 

NDAs, effects related to enhanced cerebral blood perfusion notably in the hippocampal dentate 

gyrus. Exercise increases angiogenesis in several brain regions253 and mitigates the age- and NDA-

related decline in cerebral blood flow98 which, in turn, may improve synaptic function by providing 

ketones and lactate5,98,285,286. A three-month exercise regimen increased brain ketone transport 

by 30% in AD108, so the improvement in brain energetics by ketones is one possible link between 

exercise, BDNF, neurogenesis and cognitive gains in NDAs286.  

The angiogenic effect of exercise is partly mediated by vascular endothelial growth factor252,253. 

Lactate liberated from skeletal muscle during exercise can also be used by the brain5,286 (Box 1). 

Exogenous lactate mimicked exercise in inducing brain vascular endothelial growth factor and 

increasing capillary density, actions dependent on hydroxycarboxylic acid 1 (HCAR1) receptors253. 

The hippocampal myokine, irisin, may also be involved; both irisin and its precursor, fibronectin 

domain 5, contribute to metabolic homeostasis and neuroprotection286. Lactate recruitment of 

BDNF is dependent on fibronectin domain 5, thereby interlinking the actions of lactate to irisin in 

the beneficial effect of exercise on the brain222,286,287.  

The goal of mimicking the gains of exercise and fasting in a broadly accessible manner by an 

appropriate pharmacological intervention (exercise in a pill) is analogous to using lactate252 or a 

ketogenic supplement to mimic and/or augment endogenous ketone production without severely 

limiting dietary carbohydrate or food intake156,157. Exercise mimetics could include agents acting 

via myokines, cathepsin B, AMPK or adiponectin98,132,286,288. 
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Cognitive reserve is the capacity or resilience of the ageing brain to resist functional decline 

and is directly correlated with higher education and intellectual occupation both early and later 

in life. Whether improved cognitive reserve can stall AD is currently under exploration289. FDG-

PET suggests that cognitive reserve reflects in part the capacity of the brain to maintain normal 

function in the face of bioenergetic or other deficits290,291. Maintaining and improving cognitive 

reserve in individuals with NDAs could potentially be enhanced by the brain energy rescue 

strategies discussed herein. 
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Box 4 | Deteriorating brain glucose but not brain ketone uptake: an opportunity for brain 

energy rescue  

The decline in brain glucose metabolism associated with NDAs has traditionally been assumed to 

be a consequence of the disease process. The development of PET tracers for assessing ketone 

uptake (Box 2) provided an opportunity to assess whether brain ketone metabolism was also 

disrupted. Dual-tracer PET studies of brain glucose (18F-FDG tracer) and ketone (11C-acetoacetate 

tracer) uptake show that whereas brain glucose utilization is impaired, brain ketone metabolism 

is still normal in AD and MCI (see figure, panel a). These PET images show the rate constant (min-

1) for brain glucose uptake (KGlc; left) and brain acetoacetate uptake (KAcAc; right) in cognitively 

healthy, older controls (CTL, n=24), mild cognitive impairment (MCI; n=20) and mild-moderate AD 

(n=19). The images are paired, i.e. one for FDG and one for 11C-acetoacetate obtained from each 

participant on the same afternoon. Unlike the cerebral metabolic rate (CMR), which is partly 

dependent on plasma concentrations of the substrate in question, the rate constant (K) for uptake 

of ketones is largely independent of plasma levels of glucose or ketones, so it is a better measure 

of the brain’s capacity to take up these energy substrates. K (glucose) is significantly lower in the 

parietal and temporal cortex as MCI develops and progresses to AD, but K (acetoacetate) does 

not decrease in MCI or AD compared to cognitively unimpaired age-matched controls292. The CMR 

of acetoacetate increases in direct proportion to plasma ketone levels in AD after one month of 

receiving a supplement of 30 g per day of a ketogenic medium chain triglyceride (C8C10 or C8; 

see figure, panel b). However, there was no change in the CMR of glucose269. 

Mitochondrial oxidative phosphorylation is the only way of generating ATP from ketones, i.e. 

there is no extra-mitochondrial pathway for ketones as there is for glucose to lactate. Accordingly, 

the fact that brain ketone metabolism is normal in MCI and AD indirectly implies that 

mitochondrial respiration is relatively normal in a significant proportion of brain mitochondria in 

order for them to be able to generate ATP. Hence, comparisons of brain glucose and brain ketone 

metabolism offer an opportunity to determine whether mitochondrial function is markedly 

impaired (in which case both glucose and ketone metabolism would be decreased, regionally or 

globally) or whether the defect is more at the level of glycolysis or glucose transport (in which 

case glucose but not ketone metabolism would be impaired). This PET comparison of brain energy 

substrate uptake could help to clarify whether the onset of mitochondrial dysfunction is an early 

event in NDAs, whether such dysfunction occurs in the brain regions most affected65, and whether 
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a therapeutic agent being tested corrects the dysfunction or promotes mitochondrial biogenesis 

or other aspects of mitochondrial health. 
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BOX 5 | Brain energy rescue in other CNS disorders.  

Owing to the success of “combined anti-retroviral therapy”, patients infected with human 

immunodeficiency virus-1 are living longer. However, reflecting persistent neurological sequelae 

of the virus, about half of them develop cognitive deficits involving impaired glucose metabolism, 

mitochondrial dysfunction and reduced glial support of neurons. Brain energy rescue therefore 

might be useful to treat cognitive decline in these patients293. Prions are infectious particles that 

lack DNA or RNA and, in Creutzfeldt–Jacob disease, brain glucose hypometabolism is seen in 

frontal and parietal regions and is related to sensory and motor dysfunction294. Lower brain 

perfusion and mitochondrial dysfunction are also observed102. Mouse models of prion diseases 

mimic clinical cases in displaying altered metabolism of glucose and fatty acids295. Interestingly, 

by binding to oligomeric Aβ, prion antagonists suppress synaptic pathology and cognitive deficits 

in mouse models of AD, underpinning the pertinence of prion disorders to NDAs296.  

Both ischemic stroke (caused by blood vessel occlusion) and haemorrhagic stroke (caused by 

blood vessel rupture) involve an abrupt interruption of the supply of energy and oxygen to 

neurons, triggering neurodegeneration, acute brain energetic failure and functional deficits. 

Stroke management is driven by the twin goals of restoring blood flow and protecting 

mitochondrial function60,297 in which brain energetic rescue with ketones is being assessed298. 

Like stroke, traumatic brain injury is associated not only with tissue damage but also with focal 

interruption of brain nutrient and energy supply. Strategies to restore mitochondrial function are 

under investigation in traumatic brain injury299. Clinical and pre-clinical studies suggest that 

ketogenic interventions might be therapeutically beneficial140,300. Furthermore, hypertonic 

sodium lactate reduces intracranial pressure and compensates for the acute neuronal energetic 

crisis in traumatic brain injury301. 

Inherited GLUT1 deficiencies (de Vivo disease) are associated with neurodevelopmental delay, 

motor symptoms and seizures during infancy302. Seizures consume considerable energy, and 

adult-onset epilepsy is characterized by focal brain hypometabolism, decreased glucose uptake, 

defective TCA cycling and mitochondrial dysfunction34,298. Seizures also occur with greater 

frequency in AD, so drugs that reinforce the GABAergic inhibition of hyperactive (energetically 

costly) networks47 warrant assessment in AD. In MCI, task-induced hyperexcitability in the 

temporal lobe responded favourably to levetiracetam303, an anti-epileptic drug that promotes 

vesicular release of GABA. In a mouse model of AD that overexpresses amyloid precursor protein, 

the addition of pyruvate and BHB to the diet reduced neuronal hyperexcitation and the incidence 
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of epileptiform activity146. Ketone-based interventions are also under study as a treatment for 

seizure-related disorders in adults because ketogenic diets are a well-established therapy for 

treating de Vivo disease and intractable epilepsy in children4,251,302.  

Glucose metabolism and the function of mitochondria and GABAergic interneurons are all 

impaired in the cortex, basal ganglia and other brain structures in schizophrenia34,227,304. As in 

epilepsy, ketone-based interventions have been proposed as a treatment for schizophrenia305,306 

and have shown encouraging results in two clinical case reports307. Migraine is a highly debilitating 

and widespread form of headache. Energy deficits and/or excessive oxidative stress within the 

brain are attracting attention as possible triggers and, hence, as targets for metabolically focused 

therapeutic interventions308. 

 Finally, the retina is an outpost of the brain, and considerable progress has been made in 

understanding and potentially treating energetic disorders of the eye, such as age-related macular 

degeneration309 (see also Supplementary Box 3). 
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FIGURE LEGENDS  

Figure 1 | Energy supply and use by neurons and other brain cells.  a | Overview of the 

neurovascular unit. b | Astrocytes provide energy to neurons and oligodendrocytes as lactate 

(Lac) via aerobic glycolysis (AG), but they also use mitochondrial oxidative phosphorylation. 

Astrocytes can also synthetize and store glycogen. Astrocytes take up glutamate (Glu) released 

from synapses and convert it to glutamine (Gln), which is sent back to neurons. Some Glu and Gln 

contribute carbon to the tricarboxylic acid cycle (TCA) by anaplerosis via α-ketoglutarate (αKG). 

Astrocytes also generate ketones from acetyl coenzyme A (AcCoA). c | Oligodendrocytes insulate 

axons with myelin and deliver lactate to axons which is transformed into pyruvate and then ATP 

by mitochondria. Axons promote their own energy supply by releasing Glu to stimulate NMDA 

receptors on oligodendrocytes. In addition to the energetic support provided by 

oligodendrocytes, axonal transport is aided by ATP produced locally. d | Microglial energy needs 

are mainly met by glucose but possibly also, under certain conditions, by free fatty acids and 

glutamine. They support neurons by clearing pathogens, waste and toxic proteins. e | Short chain 

fatty acids (SCFA) from gut microbiota and triglycerides (TG) from adipose tissue and food are 

transformed by the liver into ketones (β-hydroxybutyrate [BHB] and acetoacetate [AcAc]). See 

Supplementary Figure 1 for metabolite flow across the neurovascular unit in more detail. 

Abbreviations: AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; EAAT, excitatory 

amino acid transporter; FABP, fatty acid binding protein; LDH1 – lactate dehydrogenase 1; LPL, 

lipoprotein lipase; MCT, monocarboxylate transporter; MGluR, metabotropic receptor; NAA, N-

acetyl-aspartate; PPP, pentose phosphate pathway; Rib5P, ribonucleoside 5 phosphate; SLC, 

solute carrier; SNAT, sodium-coupled neutral amino acid transporter. 

 

Figure 2 | Causes and consequences of the brain energy gap in neurodegenerative disorders.  

a | Brain glucose hypometabolism occurs in conditions that increase the risk of AD. The chronic 

brain energy gap and the neuropathological processes (dashed red arrow) both contribute to a 

vicious cycle leading to brain energy exhaustion and dysfunction. Brain energy rescue strategies 

(Figure 3, Tables 1-3) attempt to inhibit the positive feedback between the brain energy gap and 

neuropathology involving Aβ and pTau. Hormones (principally insulin, adipokines, incretins, 

synthetic agonists and insulin sensitizers) influence brain energy rescue and inhibit the onset of 

neuropathology. b | Glucose contributes to about 95% of total brain fuel supply (      ) in 

cognitively healthy young adults (HY), and ketones supply the remaining 5% (        ). In cognitively 
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healthy older adults (HO), brain glucose uptake is decreased by about 9%, in MCI by about 12% 

and in mild-moderate by about 18%. The magnitude of the brain energy gap is the difference in 

total brain fuel uptake (glucose and ketones combined) between HY and mild-to-moderate AD, 

i.e. the therapeutic target for brain energy rescue in MCI and AD. The brain energy gap has not 

been rigorously quantified in NDAs other than AD.  

 

Figure 3 | Brain energy disruption and rescue strategies. a | Several pathways of brain energy 

metabolism in the neuron are disrupted in NDAs (dashed black arrows with disorders in red). 

Increased ROS production and neuroinflammation negatively impacting on brain energy levels 

are shown with a thick black arrow. The combination of impaired ATP production and increased 

ROS contribute to declining brain function. b | Molecules or treatments implicated in brain 

energy rescue strategies target six broad pathways: ATP and redox state, brain glucose 

transport and/or aerobic glycolysis (* intra-nasal insulin, adiponectin, ghrelin, insulin [GLUT4 

only], nicotinamide riboside, dichloroacetate, N-acetyl-cysteine, oxaloacetate, GLP-1, GIP, leptin, 

amylin, Metformin, Liguride, Sitagliptin), anaplerosis and the TCA cycle (C3, C7, C8, BHB, KE), 

mitochondrial transport and biogenesis, ketogenesis (** BHB, C8, C10, KE) or protection 

against ROS and inflammation (*** ghrelin, GLP-1, GIP, leptin, adiponectin, Metformin, AP-39, 

mdivi-1, mitoQ, BHB, KD and ketone esters). Details of the molecules or treatments are in Table 

1 (pre-clinical studies) and Tables 2 and 3 (clinical studies). Complementary interventions are 

not shown (caloric restriction, ketogenic diet, exercise). Neurons take up lactate generated by 

astrocytes and oligodendrocytes (not shown). MCFAs such as decanoic and octanoic acid in the 

circulation can enter astrocytes and produce ketones and acetyl CoA. Abbreviations: ANA – 

anaplerosis, ATP Syn – ATP synthase, C3 – propionic acid, ETC – electron transport chain; MCT – 

monocarboxylate transporter, PPP – pentose phosphate pathway. 
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Glossary  

 

Neuroinflammation 

An inflammatory response or state in the brain that involves functional, morphological and 

energetic shifts in microglia and “reactive” astrocytes, as well as macrophages that migrate into 

the brain from the periphery. Characteristic of neurodegenerative disorders and brain response 

to infectious agents or injury. 

 

Ketone bodies  

(Ketones), β-Hydroxybutyrate and acetoacetate. Produced by fatty acid β−oxidation during 

caloric or severe carbohydrate restriction, and from medium chain fatty acids. Exogenous 

ketones are mostly salts or esters of β-hydroxybutyrate. Acetone is a breakdown product of 

acetoacetate measurable in plasma and on breath.  

 

Microglia  

Resident brain macrophages of mesodermal origin that clear neurotoxic proteins and protect 

neurons from damaging exogenous molecules, toxins, infectious agents or pathogens. Excess 

and persistent microglial activation is associated with neuroinflammation, energetic shifts and 

progression of neurodegenerative diseases of ageing.  

 

Oligodendrocytes 

Cells producing myelin to insulate the axon and increase the speed of action potential 

propagation. Energetically support and communicate with neurons and astrocytes. 

 

Neurovascular coupling 

Coordinated response to brain activation involving local capillary dilation and a transitory surge 

in the flow of oxygenated, glucose-containing blood across the neurovascular unit (Fig 1), 

thereby replenishing ATP used in neurotransmission.  

 

Insulin resistance 

Insulin that is ineffective in stimulating glucose use by peripheral tissues and certain populations 

of neurons in the brain due mainly to receptor-signalling desensitization.  Associated with 
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glucose intolerance and type 2 diabetes. Increases risk of neurodegenerative disorders, 

particularly Alzheimer disease. 

 

Oxidative phosphorylation 

Process by which mitochondria generate ATP by conveying electrons through enzyme 

complexes (I to IV), thereby creating a proton gradient that powers phosphorylation of ADP to 

ATP by ATP synthase (see Box 1). 

 

Tricarboxylic acid cycle 

(TCA cycle) Process by which acetyl CoA is oxidized to form GTP, FADH2 and NADH. NADH and 

FADH2 feed electrons to the electron transport chain to produce ATP by oxidative 

phosphorylation. Several neurotransmitters (acetylcholine, glutamate, GABA) are produced by 

carbon leaving the TCA cycle. 

 

Aerobic glycolysis 

Conversion of glucose to pyruvate by the “Emden-Meyerhoff pathway”. Pyruvate is either 

converted to acetyl-CoA and enters the TCA cycle or is reduced to lactate by NADH, a pathway 

prominent in glia to produce ATP without oxygen. May also occur in neurons.  

 

Astrocyte–neuron lactate shuttle 

Hypothesis that lactate produced in astrocytes is delivered to neurons to support the energy 

requirements of neurotransmission. 

 

Fast axonal transport 

Rapid transport of vesicles, mitochondria and other cargo along axonal microtubules. Vesicles 

are equipped with molecular motors (kinesin and dynein) and glycolytic enzymes permitting 

rapid, local ATP production by aerobic glycolysis. 

 

Incretins 

Peptide hormones produced by small intestine that stimulate pancreatic insulin secretion, 

regulate glucose metabolism and influence cognition. Include glucagon-like peptide 1 and 

glucose-dependent insulinotropic polypeptide. 
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Monocarboxylic acid transporters 

Transporters in the cell membrane that facilitate unidirectional, proton-linked transport 

(uptake) of small monocarboxylic acids such as lactate and ketones. 

 

Short chain fatty acids 

Acetate (2 carbons), propionate (3 carbons), and butyrate (4 carbons). End-products of microbial 

fermentation of dietary polysaccharides (soluble fiber). Butyrate is ketogenic and propionate is 

anaplerotic. 

 

Mild cognitive impairment 

(MCI) Condition prodromal to Alzheimer disease characterized by a subjective memory 

complaint and modest, deficits in at least one of the five main cognitive domains (executive 

function, memory, language, processing speed or attention). About 50% of cases progress to 

Alzheimer disease within 5 years. 

 

Caloric restriction 

Limiting food intake to a level that does not permit full satiety. Can be self-determined (usually 

the case in human studies) or imposed relative to the food consumed by a matched group fed 

ad libitum (usually only in animal studies). 

 

Electron transport chain 

A series of enzymatic protein complexes in the inner mitochondrial membrane that transfer 

electrons donated from NADH (complex 1) or fatty acid dehydrogenase (complex 2) to oxygen 

(complex 4). 

 

Medium chain triglycerides 

Edible oils comprised of saturated fatty acids of 6-14 carbons in length. Long been used in 

clinical nutrition to support energy needs in diseases or conditions involving malabsorption. 

Eight carbon medium chain triglycerides are more ketogenic than those of 10 or 12 carbons.  

 

Mitochondrial biogenesis 
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Renewal of mitochondria. In neurons, mitochondrial biogenesis occurs in the cell body with 

newly formed mitochondria being transported along the axon to synaptic dendrites. 

 

Redox state 

Capacity of a molecule to be ‘reduced’ or acquire electrons. Opposite of oxidation. Many 

biological reactions involve the reduction of one molecular species while another is being 

simultaneously oxidized. Energy metabolism is highly dependent on the redox state of the cell. 

 

Ketogenic diet 

A very low carbohydrate, very high fat diet inciting the liver to produce ketones from free fatty 

acids because there is minimal insulin production. The stricter, medical form of the ketogenic 

diet developed to treat intractable epilepsy usually also limits dietary protein. 

 

Anaplerosis 

Process by which 4 or 5 carbon units enter the TCA cycle independently of acetyl CoA to 

replenish intermediates used in the synthesis of acetylcholine or lipids (from citrate) or amino 

acids (from alpha-ketoglutarate and oxaloacetate). Opposite of cataplerosis. 

 

Brain energy gap 

Deficit in brain energy metabolism on the order of 10% in mild cognitive impairment, and 18-

20% in Alzheimer disease. Also present in other NDA. Appears to be specific to glucose, i.e. 

currently no studies have shown that brain ketone metabolism is affected.  

 

Antagomirs 

Also known as anti-microRNAs or blockmirs. Synthetic oligonucleotides engineered to silence 

endogenous microRNAs or prevent other molecules from binding to a specific mRNA.  

 

Locked nucleic acids 

RNAs in which the flexibility of the ribose ring has been restrained by adding a methylene bridge 

connecting the 2ʹoxygen and 4ʹ carbon. Oligonucleotides containing locked nucleic acids have 

improved specificity, sensitivity and hybridization stability.  

 

https://en.wikipedia.org/wiki/RNA
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Cataplerosis 

Process by which intermediates (carbon) leave the TCA cycle to support biochemical reactions, 

i.e.  acetylcholine and lipid synthesis from citrate, or amino acid synthesis from α ketoglutarate 

and oxaloacetate. Opposite of anaplerosis.  

 

Cerebral metabolic rate 

Quantity of energy substrate consumed by the brain (µmol/100 g/min). Typically refers to 

glucose but also used for brain consumption of oxygen, lactate and ketones. 
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