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Abstract

Genetic variants that modify brain gene expression may also influence risk for human diseases. We measured expression
levels of 24,526 transcripts in brain samples from the cerebellum and temporal cortex of autopsied subjects with
Alzheimer’s disease (AD, cerebellar n = 197, temporal cortex n = 202) and with other brain pathologies (non–AD, cerebellar
n = 177, temporal cortex n = 197). We conducted an expression genome-wide association study (eGWAS) using 213,528
cisSNPs within 6100 kb of the tested transcripts. We identified 2,980 cerebellar cisSNP/transcript level associations (2,596
unique cisSNPs) significant in both ADs and non–ADs (q,0.05, p = 7.7061025–1.67610282). Of these, 2,089 were also
significant in the temporal cortex (p = 1.8561025–1.706102141). The top cerebellar cisSNPs had 2.4-fold enrichment for
human disease-associated variants (p,1026). We identified novel cisSNP/transcript associations for human disease-
associated variants, including progressive supranuclear palsy SLCO1A2/rs11568563, Parkinson’s disease (PD) MMRN1/
rs6532197, Paget’s disease OPTN/rs1561570; and we confirmed others, including PD MAPT/rs242557, systemic lupus
erythematosus and ulcerative colitis IRF5/rs4728142, and type 1 diabetes mellitus RPS26/rs1701704. In our eGWAS, there
was 2.9–3.3 fold enrichment (p,1026) of significant cisSNPs with suggestive AD–risk association (p,1023) in the
Alzheimer’s Disease Genetics Consortium GWAS. These results demonstrate the significant contributions of genetic factors
to human brain gene expression, which are reliably detected across different brain regions and pathologies. The significant
enrichment of brain cisSNPs among disease-associated variants advocates gene expression changes as a mechanism for
many central nervous system (CNS) and non–CNS diseases. Combined assessment of expression and disease GWAS may
provide complementary information in discovery of human disease variants with functional implications. Our findings have
implications for the design and interpretation of eGWAS in general and the use of brain expression quantitative trait loci in
the study of human disease genetics.
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Introduction

Expression quantitative trait loci (eQTL) are genomic loci that

influence levels of gene transcripts and can be mapped by genetic

linkage in families or eGWAS in unrelated populations [1]. eQTLs

are distinct from other complex trait loci, because they directly

identify the target gene, since the transcript trait is a reflection of the

mRNA level from a single gene. Furthermore, eQTLs imply

regulation of gene expression as the mechanism of action for the

underlying variants. Recently, few studies identified an enrichment of

eQTLs from lymphocytes [2] and lymphoblasts [3] amongst human

complex disease and trait GWAS loci, suggesting that eQTLs may be

useful in mapping human disease-associated variants.

Most human eQTL mapping studies to date assessed immortal-

ized lymphoblastoid cell lines [4,5,6,7,8,9,10,11,12] and family-

based samples from the CEPH [4,5,6,7,8,13] (Centre d’Etude du

polymorphisme humain) or HapMap [10,11,14,15] repositories.

Multiple other small and large scale eQTL studies investigated other

tissues and populations including lymphocytes [16], monocytes [17],

T-cells [18], fibroblasts [18], skin [19], subcutaneous and omental

adipose tissue [20,21], bone [22], liver [23] and brain [24,25].

Despite the assumption that brain eQTLs would also influence

human diseases and traits, there are no systematic gene mapping

studies for human diseases that utilize brain gene expression

phenotypes. Furthermore, the brain region most relevant for such

studies and the influence of brain pathology on eQTL mapping

studies are largely unknown. To address these issues, we

performed an eQTL using cerebellar tissue from 197 subjects

with Alzheimer’s disease (AD) neuropathology and 177 with other

pathologies (non–AD). We validated the results in a different brain

region using temporal cortex samples from 202 ADs and 197 non–

ADs (Supplementary Tables 1 and 2 in Dataset S1), 85% of whom

overlapped with the cerebellar group. We evaluated significant

cisSNPs from our study for association with human diseases/traits

using a GWAS catalog [26]. We also assessed our significant

eGWAS cisSNPs for association with two central nervous system

(CNS) diseases, progressive supranuclear palsy (PSP) [27] and AD

risk [28], using two recent GWAS for these diseases.

Brain eGWAS and Human Disease
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Our results demonstrate the power of the brain eQTL approach

in the identification and characterization of many human CNS

and non–CNS disease-associated variants. This study also

highlights the remarkable reproducibility of human eQTLs across

different brain regions and pathologies, which has implications for

the design of eGWAS in general. Combined assessment of eQTLs

and disease risk loci can be instrumental in mapping disease genes

with regulatory variants.

Results

Brain eGWAS
Levels of 24,526 transcripts for 18,401 genes were measured in

773 brain samples from the cerebellum and temporal cortex of

,200 ADs and ,200 non–ADs, using WG-DASL assays. Nearly

70% of all probes could be detected in .75% of the samples

tested. All autopsied subjects were genotyped for 313,330 single

nucleotide polymorphisms (SNPs) from Illumina HumanHap300-

Duo Genotyping BeadChips, as part of the Mayo AD GWAS [29].

An eGWAS testing association of transcript levels with cisSNPs

was performed using multivariable linear regression correcting for

APOE e4 dosage, age at death, gender and multiple technical

variables. False discovery rate (FDR)-based q values [30] (q) were

used for corrections of multiple testing.

To achieve internal replication, we first analyzed the ADs and

non–ADs separately. In our cerebellar eGWAS, at q,0.05, there

were 5,271 significant cisSNP/transcript associations (1,156 unique

genes) in the AD, 4,450 (1,022 unique genes) in the non–AD and

10,281 (1,875 unique genes) in the combined datasets. Q-Q plots

suggested a clear excess of significant results (Figure 1, Figure S1a–

S1d). 2,980 cisSNP/transcript associations (2,596 unique cisSNPs,

686 unique genes) were significant at q,0.05 in both ADs and non–

ADs (Table 1, Supplementary Table 3 in Dataset S1, Figure S2).

The direction and magnitude of associations in both groups

demonstrate remarkable similarities (Pearson’s correlation coeffi-

cient = 0.98, p,0.0001). The box plots depicted for some of these

top associations (Figure S3a–S3c) demonstrate this replication in

ADs and non–ADs. Most associations have an additive or dominant

pattern with respect to the minor allele.

To assess the genetic component contributing to gene expres-

sion variability, we estimated intraclass correlation coefficients

(ICC) [31] in the 15 samples measured in replicate on 5–6

different plates and 2–3 different days. Between-subject variance

accounted for a median of 60% of total probe expression variance

(Supplementary Table 4 in Dataset S1; Figure S4). The 746 probes

for the top 2,980 cerebellar cisSNP associations had higher

between-subject variance (median = 78%).

Author Summary

Genetic variants that regulate gene expression levels can
also influence human disease risk. Discovery of genomic
loci that alter brain gene expression levels (brain expres-
sion quantitative trait loci = eQTLs) can be instrumental in
the identification of genetic risk underlying both central
nervous system (CNS) and non–CNS diseases. To system-
atically assess the role of brain eQTLs in human disease
and to evaluate the influence of brain region and
pathology in eQTL mapping, we performed an expression
genome-wide association study (eGWAS) in 773 brain
samples from the cerebellum and temporal cortex of ,200
autopsied subjects with Alzheimer’s disease (AD) and
,200 with other brain pathologies (non–AD). We identi-
fied ,3,000 significant associations between cisSNPs near
,700 genes and their cerebellar transcript levels, which
replicate in ADs and non–ADs. More than 2,000 of these
associations were reproducible in the temporal cortex. The
top cisSNPs are enriched for both CNS and non–CNS
disease-associated variants. We identified novel and con-
firmed previous cisSNP/transcript associations for many
disease loci, suggesting gene expression regulation as
their mechanism of action. These findings demonstrate the
reproducibility of the eQTL approach across different brain
regions and pathologies, and advocate the combined use
of gene expression and disease GWAS for identification
and functional characterization of human disease-associ-
ated variants.

Figure 1. Summary of brain eGWAS and human disease associations.
doi:10.1371/journal.pgen.1002707.g001

Brain eGWAS and Human Disease

PLoS Genetics | www.plosgenetics.org 3 June 2012 | Volume 8 | Issue 6 | e1002707



Using multivariable linear regression, we next estimated the

percent variation in cerebellar probe expression levels due to the

‘‘best’’ cisSNP for each transcript after accounting for technical

and biological covariates. We found that the ‘‘best’’ cisSNP

explained a median of ,3% of the expression variation. For the

top 746 probes, the ‘‘best’’ cisSNPs accounted for a median of 18%

of the expression variance (Table 2, Supplementary Table 5 in

Dataset S1).

The top 2,980 cerebellar eGWAS associations were followed up

in the temporal cortex validation study. We found that 2,685 top

cerebellar cisSNP/transcript associations could be tested in the

temporal cortex (2,387 unique cisSNPs, 677 unique probes and

625 unique genes) (Figure 1, Table 3, Supplementary Table 6 in

Dataset S1). A total of 2,089 of these (1,888 unique cisSNPs, 502

unique probes and 471 unique genes) were significant after study-

wide Bonferroni corrections, many of which had effect sizes

showing remarkable similarity to those from the cerebellar

eGWAS (Pearson’s correlation coefficient = 0.94, p,0.0001).

The top cerebellar eGWAS results were also compared to

published liver [23] and brain [24,25] eGWAS and overlap was

identified for 4–11% of the top transcripts from these published

studies (Text S1) Using HapMap2 genotypes, all transcripts and

association threshold p,1.0E-4 in our eGWAS, we determined

that 24–32% of the top transcripts from the published eGWAS

overlapped with ours.

We used the cerebellar eGWAS as the discovery analysis and

the temporal cortex eGWAS as the validation; since our goal is to

identify significant cisSNP associations while minimizing any

confounding factors due to pathology and given the fact that half

of our subjects had pathologic AD, in which cerebellum is

relatively unaffected whereas temporal cortex is one of the first

affected brain regions. Nonetheless, we have also used temporal

cortex as the discovery set and cerebellum as the validation, with

remarkably similar results (Text S1, Supplementary Tables 7 and

8 in Dataset S1).

Enrichment of brain cisSNPs among human disease-
associated SNPs

To examine whether the brain eGWAS approach identified

variants implicated in human diseases/traits, we linked the 2,596

top cerebellar eGWAS cisSNPs to the ‘‘Catalog of Published

GWAS’’ [26], which compiles weekly search results from all

published GWAS of $100,000 SNPs where associations of

p#1.0E-05 are reported. We identified 47 cisSNPs that were also

associated with 36 diseases/traits (Table 4, Supplementary Table 9

in Dataset S1). This represents a 2.4-fold enrichment of significant

cerebellar cisSNPs amongst disease/trait associated SNPs, which is

significant (p,1026) based on simulations adjusted for minor allele

frequencies [3] (Text S1).

Among the 36 diseases/traits associating with top cerebellar

cisSNPs were central nervous system (CNS)-related conditions

including Parkinson’s disease (PD), Moyamoya disease, cognitive

performance and attention-deficit hyperactivity disorder (ADHD). We

both identified novel cisSNP/transcript associations and confirmed

some previously reported ones. We found novel associations between

rs6532197, which confers increased risk of PD [32], and higher brain

levels of MMRN1 (cerebellar eGWAS p = pCer = 4.86610212; tem-

poral cortex eGWAS p = pTCx = 4.5761029). MMRN1 encodes for

multimerin and was found to be in a region of duplication/triplication

with SNCA (encoding a-synuclein), a well-established risk gene in PD

[33]. We found no significant cisSNP/SNCA level associations. These

results suggest that MMRN1 may deserve further investigations as an

additional PD risk gene.

Another example of a cisSNP which associates with human

disease risk is rs8070723, the minor allele of which is associated

with reduced risk of PD [32] and reduced brain MAPT levels

(pCer = 3.3661027–7.02610269; pTCx = 9.0361024–8.61610244).

Rs11012 minor allele, which confers increased risk of PD [34],

showed association with lower brain LRRC37A4 levels

(pCer = 1.69610233; pTCx = 3.378E220). MAPT region variants

were previously identified to associate with brain levels of MAPT

and LRRC37A4 in neurologically normal subjects [27,32], in a

MAPT haplotype H1/H2-dependent manner [27]. Indeed,

rs8070723 is in tight linkage disequilibrium with rs1052553

(r2 = 0.95, D9 = 0.97), the major allele of which marks the

MAPT-H1 haplotype and associates with higher brain MAPT

levels [24].

Many top cerebellar cisSNPs also associate with non–CNS

diseases/traits (Supplementary Table 9 in Dataset S1). IRF5

cisSNP rs4728142 is associated with both cerebellar IRF5 levels

and risk of systemic lupus erythematosus (SLE) [35]. Previously,

IRF variants were shown to influence IRF splicing and expression

as well as SLE risk [36,37]. Interestingly, rs4728142 is also

associated with ulcerative colitis (UC) [38] where both IRF5 and

TNPO3 are reported as candidate genes. Given its influence on

IRF5, but not TNPO3 expression levels, rs4728142 most likely

marks IRF5, but not TNPO3 as the candidate UC risk gene.

Our approach to identify human disease-associated SNPs

amongst the 2,596 top cerebellar eGWAS cisSNPs may be overly

conservative, given our selection criteria to only include transcripts

that are detectable in .75% of the subjects and only those cisSNPs

that are significant in both independent cohorts (ADs and non–

ADs). Furthermore, given that our eGWAS genotyping platform

consisted of ,300 K SNPs, it is plausible that transcript

associations with SNPs from the ‘‘Catalog of Published GWAS’’

[26] may be missed if those SNPs did not exist in our platform. To

address these issues, we repeated the cerebellar and temporal

cortex eGWAS, without restrictions for transcript detection rates

and using genotypes imputed to HapMap2 (.2 million SNPs).

Comparison of the eGWAS associations with p,1.0E-4 to the

‘‘Catalog of Published GWAS’’ identified 392 unique cerebellar

cisSNPs that also associate with 189 human diseases/traits; and

339 such temporal cortex cisSNPs associating with 167 diseases/

traits (Text S1, Supplementary Tables 10 and 11 in Dataset S1).

Amongst the associations identified by this less stringent approach

were those for brain levels of CLU [39,40], CR1 [40] and GAB2

[41] which were identified as risk loci in GWAS of Alzheimer’s

disease.

We also performed comparisons of the eGWAS results from the

ADs and non–ADs separately to determine whether there were

any results unique to these diagnostic groups (Text S1, Supple-

mentary Tables 12, 13, 14, 15 in Dataset S1). Although 13–25% of

the disease/trait associations were with cisSNPs that were unique

to ADs or non–ADs, all but a few of these could also be identified

in the combined analysis of all subjects. There were only 2–7

human diseases/traits with cisSNP associations that were detect-

able just in ADs or non–ADs, but not the combined group.

Of these unique cisSNP, those that associate with cerebellar

levels of C9orf72 in non–ADs are interesting, as these variants were

previously identified in GWAS of amyotrophic lateral sclerosis

(ALS), where C9orf72 was one of the candidate genes at the disease

locus [42,43]. This gene was recently identified as the most

common cause of familial ALS, with a repeat expansion leading to

loss of an alternatively spliced transcript [44,45]. These results

further support the utility of the combined eGWAS and disease

GWAS approaches in the potential identification of disease genes

with modified transcript levels as the plausible disease mechanism.

Brain eGWAS and Human Disease
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Identification of brain cisSNPs among PSP GWAS loci
In a recent PSP GWAS [27], four loci near MAPT, STX6,

EIF2AK3, and MOBP conferred significant risk, in addition to

three suggestive loci at 1q41 intergenic locus, BMS1 and SLCO1A2.

We assessed these seven strongest PSP risk loci in our eGWAS in

the ADs, non–ADs and combined datasets, as well as the PSP

subset of non–ADs (Table 5, Supplementary Table 16 in Dataset

S1). We found novel, significant rs11568563 minor allele associa-

tions with reduced brain SLCO1A2 levels (pCer = 2.3361028;

pTCx = 4.3661022–9.14610218), which confers increased PSP risk

[27]. SLCO1A2 encodes solute carrier organic anion transporter

family member 1a2 and is a drug transporter into the CNS [46].

Table 2. Variance of cerebellar probe expression levels due to technical, biological, and cisSNP effects.

Probe Symbol Raw_Variance R2technical addR2covariates adjR2covariates
addR2best-
SNP

adjR2best-
SNP Best-cis-SNP

ILMN_1651745 TMEM25 1.894 0.08 0.004 0.005 0.784 0.852 rs11552421

ILMN_1718932 MTRR 0.864 0.05 0.004 0.005 0.768 0.809 rs3776455

ILMN_1694711 MAD2L1BP 1.169 0.154 0.007 0.008 0.642 0.763 rs1096699

ILMN_1730477 TAS2R43 1.212 0.372 0.001 0.002 0.477 0.76 rs2708389

ILMN_2345908 DDX11 0.798 0.029 0.003 0.003 0.732 0.755 rs4031375

ILMN_1807798 ATP5G2 0.722 0.156 0.009 0.011 0.61 0.722 rs1971762

ILMN_2052079 ZNF544 0.983 0.055 0.003 0.003 0.675 0.714 rs260462

ILMN_2369018 EVI2A 2.208 0.043 0.005 0.005 0.68 0.711 rs2525574

ILMN_2184966 ZHX2 2.816 0.11 0.012 0.013 0.629 0.706 rs3802266

ILMN_2376667 POFUT2 0.503 0.076 0.032 0.035 0.649 0.703 rs2838859

ILMN_1723984 PILRB 0.671 0.253 0.006 0.008 0.519 0.695 rs6955367

ILMN_2400759 CPVL 0.644 0.062 0.013 0.014 0.631 0.672 rs7313

ILMN_2262288 EEF1G 0.615 0.107 0.025 0.028 0.592 0.663 rs7124057

ILMN_1689177 PPAPDC1A 0.519 0.138 0.006 0.007 0.57 0.661 rs2182513

ILMN_2093720 THG1L 0.621 0.208 0.003 0.004 0.512 0.647 rs11738432

ILMN_1691772 ZSCAN29 0.19 0.14 0.011 0.013 0.548 0.638 rs12912744

ILMN_1809147 FAM118A 0.282 0.07 0.002 0.002 0.589 0.634 rs104664

ILMN_2130441 HLA-H 1.386 0.092 0.033 0.037 0.573 0.628 rs2975033

ILMN_2388272 MED24 3.036 0.043 0.007 0.007 0.597 0.624 rs8070454

ILMN_2064132 NANP 0.283 0.194 0.005 0.006 0.502 0.62 rs2387976

ILMN_1683279 PEX6 0.164 0.245 0.006 0.008 0.46 0.609 rs2395943

ILMN_2312606 IRF5 0.662 0.181 0.005 0.006 0.496 0.606 rs10239340

ILMN_2390162 PHF11 0.117 0.165 0.015 0.018 0.501 0.601 rs1046028

ILMN_1710903 MAPT 0.118 0.052 0.01 0.011 0.552 0.584 rs1981997

ILMN_1811048 GPR107 0.519 0.354 0.002 0.004 0.374 0.58 rs2240913

ILMN_2201966 N4BP1 1.97 0.029 0.005 0.006 0.555 0.572 rs11649236

ILMN_1795336 PTER 0.591 0.143 0.012 0.014 0.486 0.567 rs7909832

ILMN_1789419 EXOC3 0.214 0.097 0.012 0.014 0.508 0.563 rs11134054

ILMN_2364072 CLCNKA 1.356 0.044 0.009 0.01 0.535 0.562 rs1763601

ILMN_2075334 HIST1H4C 0.213 0.296 0.007 0.01 0.395 0.561 rs198834

ILMN_2296011 BRWD1 0.821 0.413 0.005 0.009 0.328 0.559 rs6517526

ILMN_2074477 GPR4 1.342 0.058 0.016 0.017 0.526 0.558 rs10405576

ILMN_1697286 SF3A1 0.168 0.359 0.009 0.014 0.356 0.555 rs737950

ILMN_1765332 TIMM10 0.164 0.079 0.005 0.006 0.507 0.551 rs2848630

ILMN_2401641 ALDH3A2 0.22 0.142 0.012 0.014 0.472 0.543 rs2108971

ILMN_2183938 LEMD3 0.335 0.084 0.026 0.029 0.495 0.541 rs10878255

ILMN_2198408 MFF 0.153 0.26 0.002 0.003 0.399 0.54 rs7560053

ILMN_1728199 POLE 0.113 0.175 0.006 0.007 0.446 0.538 rs4883627

ILMN_1655637 UPK1A 1.044 0.131 0.023 0.026 0.467 0.538 rs4806187

ILMN_2209027 RPS26 0.238 0.146 0.002 0.002 0.457 0.535 rs10876864

Results from some of the top probes are depicted. Only one probe is selected per gene for depiction. R2technical = variance due to technical variables only (i.e. plates,
RIN). addR2covariates = added proportion of variance due to biological covariates (i.e. age, sex, ApoE4 dose), adjR2covariates = addR2covariates adjusted for technical
variance, addR2best-SNP = proportion of variance due to the best cisSNP, adjR2best-SNP = addR2best-SNP adjusted for technical variance.
doi:10.1371/journal.pgen.1002707.t002
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Fine-mapping of the SLCO1A2 region revealed rs11568563 to be

the strongest cisSNP influencing brain levels of this gene (Figure S5).

This SNP was also identified as the top PSP-associating variant at

this locus [27]. All other cisSNPs that associate with brain SLCO1A2

levels have weaker effects that appear to be due to their LD with

s11568563, which is a missense coding mutation within SLCO1A2.

Whether rs11568563 is merely tagging the functional variant(s)

regulating levels of SLCO1A2 or coding changes also influence

expressed transcript levels require further investigations. Addition-

ally, MAPT/rs242557 minor allele increased PSP risk [27] and brain

MAPT levels (pCer = 9.7861023–8.8610213, pTCx = 1.161028).

MAPT/rs8070723 minor allele associated with lower brain MAPT

levels in our eGWAS, decreased PSP risk [27], similar to a PD

GWAS [32]. We also found nominally significant increases in brain

Table 3. Validation of top cerebellar cisSNP/transcript associations in the temporal cortex.

Cerebellar eGWAS Temporal Cortex Validation

CHR SNP PROBE SYMBOL ALL_P ALL_PBonf ALL_Q ALL_BETA ALL_P
ALL_PBonf-

study ALL_BETA

5 rs3776455 ILMN_1718932 MTRR 6.37E-133 2.83E-127 7.34E-120 1.20 5.15E-133 1.38E-129 1.23

12 rs10843881 ILMN_2345908 DDX11 1.48E-112 6.57E-107 2.39E-100 21.06 1.81E-113 4.87E-110 21.16

12 rs1971762 ILMN_1807798 ATP5G2 1.10E-104 4.87E-99 1.64E-93 1.01 7.83E-107 2.10E-103 1.15

21 rs2838859 ILMN_2376667 POFUT2 2.86E-103 1.27E-97 2.73E-92 20.86 4.15E-115 1.11E-111 20.84

8 rs3802266 ILMN_2184966 ZHX2 4.35E-101 1.93E-95 3.06E-90 21.94 1.11E-104 2.97E-101 22.35

19 rs260462 ILMN_2052079 ZNF544 8.26E-101 3.67E-95 4.38E-90 21.16 7.00E-129 1.88E-125 21.30

17 rs2525574 ILMN_2369018 EVI2A 1.52E-99 6.73E-94 4.88E-89 1.81 4.56E-89 1.22E-85 1.67

7 rs6955367 ILMN_1723984 PILRB 4.80E-97 2.13E-91 1.23E-86 1.08 1.70E-141 4.56E-138 1.56

7 rs7313 ILMN_2400759 CPVL 5.00E-92 2.22E-86 5.96E-82 20.96 5.76E-71 1.55E-67 21.34

11 rs7124057 ILMN_2262288 EEF1G 2.64E-91 1.17E-85 2.67E-81 20.90 1.49E-91 4.01E-88 20.70

10 rs2182513 ILMN_1689177 PPAPDC1A 1.08E-87 4.79E-82 6.93E-78 0.84 8.07E-01 NS 0.01

5 rs11738432 ILMN_2093720 THG1L 8.06E-84 3.58E-78 3.49E-74 20.86 1.16E-100 3.12E-97 21.09

15 rs12912744 ILMN_1691772 ZSCAN29 3.47E-83 1.54E-77 1.33E-73 20.56 6.18E-96 1.66E-92 20.63

22 rs136564 ILMN_1809147 FAM118A 8.44E-81 3.74E-75 2.57E-71 0.85 7.87E-57 2.11E-53 0.68

17 rs8070454 ILMN_2388272 MED24 3.51E-80 1.56E-74 9.58E-71 22.03 3.97E-85 1.06E-81 22.16

20 rs2387976 ILMN_2064132 NANP 9.58E-79 4.25E-73 1.93E-69 20.54 1.97E-87 5.29E-84 20.65

7 rs10239340 ILMN_2312606 IRF5 1.52E-76 6.73E-71 2.31E-67 0.81 3.76E-90 1.01E-86 0.92

6 rs2395943 ILMN_1683279 PEX6 3.63E-76 1.61E-70 5.06E-67 20.39 1.64E-69 4.40E-66 20.46

13 rs1046028 ILMN_2390162 PHF11 1.07E-75 4.73E-70 1.36E-66 0.35 5.38E-83 1.44E-79 0.38

17 rs1981997 ILMN_1710903 MAPT 4.16E-71 1.85E-65 3.88E-62 20.48 2.42E-44 6.48E-41 20.51

9 rs2240913 ILMN_1811048 GPR107 2.76E-69 1.23E-63 2.39E-60 0.66 2.11E-80 5.66E-77 0.95

16 rs11649236 ILMN_2201966 N4BP1 5.69E-69 2.53E-63 4.37E-60 21.57 1.95E-85 5.25E-82 21.44

10 rs7909832 ILMN_1795336 PTER 1.70E-68 7.54E-63 1.04E-59 20.75 1.24E-84 3.32E-81 21.00

5 rs11134054 ILMN_1789419 EXOC3 4.40E-68 1.95E-62 2.52E-59 20.57 1.51E-78 4.06E-75 20.60

19 rs10405576 ILMN_2074477 GPR4 5.76E-68 2.56E-62 3.09E-59 21.32 5.20E-62 1.39E-58 21.53

6 rs198834 ILMN_2075334 HIST1H4C 4.76E-67 2.11E-61 2.05E-58 20.43 1.25E-51 3.35E-48 20.52

22 rs737950 ILMN_1697286 SF3A1 2.05E-66 9.11E-61 7.72E-58 0.44 1.01E-71 2.71E-68 0.46

1 rs1763601 ILMN_2364072 CLCNKA 3.49E-66 1.55E-60 1.24E-57 1.22 6.22E-50 1.67E-46 1.02

12 rs10878255 ILMN_2183938 LEMD3 2.61E-65 1.16E-59 7.91E-57 20.62 1.73E-69 4.65E-66 20.78

19 rs4806187 ILMN_1655637 UPK1A 2.82E-65 1.25E-59 8.11E-57 21.04 3.82E-39 1.02E-35 20.72

11 rs2848630 ILMN_1765332 TIMM10 3.40E-65 1.51E-59 9.32E-57 20.53 2.04E-68 5.48E-65 20.45

17 rs962800 ILMN_2401641 ALDH3A2 3.31E-64 1.47E-58 8.21E-56 0.46 4.26E-76 1.14E-72 0.44

2 rs7560053 ILMN_2198408 MFF 6.41E-63 2.85E-57 1.38E-54 0.37 5.20E-71 1.40E-67 0.30

12 rs10876864 ILMN_2209027 RPS26 6.36E-62 2.82E-56 1.06E-53 0.49 3.01E-64 8.07E-61 0.57

12 rs4883627 ILMN_1728199 POLE 8.61E-62 3.82E-56 1.36E-53 0.33 3.95E-19 1.06E-15 0.22

6 rs2191651 ILMN_1694100 PRIM2 1.55E-61 6.88E-56 2.26E-53 20.59 5.06E-57 1.36E-53 20.57

10 rs9527 ILMN_2151056 C10orf32 2.90E-61 1.29E-55 3.90E-53 20.46 1.27E-65 3.42E-62 20.45

Of the 2,980 top cisSNP/transcript associations, 2,685 existed in the temporal cortex replication study. Some of these top associations are shown. Only one cisSNP/
transcript pair is selected for depiction. The chromosome (CHR), SNP, Probe, Gene Symbol (SYMBOL) of these associations are depicted. The uncorrected (P), genome-
wide (PBonf) and study-wide Bonferroni-corrected (PBonf-study) P values, Beta coefficient of association are shown for the combined (All) analyses in the cerebellar eGWAS
and the temporal cortex replication study. Regression coefficients are based on the SNP minor allele using an additive model.
doi:10.1371/journal.pgen.1002707.t003
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MOBP levels (pCer = 2.1361022–1.7161027; pTCx = 1.5561022–

1.5761026) with rs1768208, which increases PSP risk [27].

The recent PSP GWAS by Hoglinger et al. [27] included eQTL

analysis for the significant loci using brain expression levels from

387 subjects without clinical neurologic diseases. In addition to

associations between MAPT locus cisSNPs with brain MAPT and

LRRC37A4 levels, they also detected signals for the nearby

ARL17A and PLEKHM1 genes, neither of which were detectable

in our eGWAS. They also identified cisSNP associations with brain

MOBP levels but even stronger influence on the nearby SLC25A38

levels. We did not identify significant cisSNP/SLC25A38 brain

expression associations. Although some of the significant probes

for MOBP and MAPT harbor variants within their probe sequence,

which may potentially confound associations with expression

levels, these genes had other significant probes without any

sequence variants (Text S1).

Most non–AD subjects in our study had pathologic diagnosis of

PSP (nCer = 98, nTCx = 107, Supplementary Table 2 in Dataset

S1). We assessed the 2,980 top cerebellar cisSNP/transcript

associations in this subset, and found that most results were

consistent with the ADs (Supplementary Tables 17 and 18 in

Dataset S1).

Enrichment of brain cisSNPs in the AD GWAS from ADGC
To investigate whether any of the significant brain cisSNPs may

influence risk of AD, we compared our eGWAS results to the AD

risk associations from the large AD GWAS conducted by ADGC

[28]. We obtained results of meta-analyses for the ADGC Stage

1+2 cohort (11,840 LOAD vs. 10,931 controls) [28] and

investigated those SNPs with suggestive AD risk association in

this dataset (pmeta,1023). To ensure uniform comparison between

our eGWAS and the ADGC GWAS, we assessed results from .2

million SNPs for each study using SNPs genome-wide imputed to

HapMap phase 2 (release 22). There were 77,126 cerebellar

(63,652 unique SNPs, 2,338 unique genes) and 68,172 temporal

cortex (57,922 unique SNPs and 2,201 unique genes) cisSNP/

transcript associations significant at q,0.05 representing a clear

excess (Figure S6). There were 380 cisSNPs that were significant

for the cerebellar transcript associations and also had suggestive

AD risk associations (2.9-fold enrichment), 432 such temporal

cortex cisSNPs (3.3-fold enrichment) and 356 cisSNPs significant in

both the cerebellum and temporal cortex (2.7-fold enrichment,

p,1026 for all three analyses) (Figure 1, Supplementary Tables 19

and 20 in Dataset S1).

MAPT and LRRC37A4 cisSNPs, implicated in PSP [27] and PD

[32] GWAS and which significantly influenced brain levels of

these genes also had suggestive AD risk associations

(pmeta = 8.8261024–1.5361025). CisSNP alleles associating with

lower brain MAPT levels were associated with lower AD risk,

similar to PD [32] and PSP [27] GWAS, which may suggest a

common mechanism for these neurodegenerative diseases. ABCA7,

identified recently as a novel LOAD risk locus [28,47], had

significant cerebellar cisSNPs. Further investigations of the other

genes with evidence of brain transcript and AD risk association is

warranted to understand their role in AD (Text S1).

To ensure that we did not miss any associations due to the

stringent eGWAS criteria that we applied, we repeated the

analyses using no restrictions for transcript detection rates and

eGWAS p value threshold of p,1.0E-4. We also investigated

cisSNPs identified in AD and non–AD brains, both separately, and

jointly, given that some cisSNP associations may be unique to one

group. We compared these eGWAS results to the ADGC GWAS

as described above (Supplementary Tables 21, 22, 23, 24, 25, 26 in

Dataset S1). Using cerebellar and temporal cortex eGWAS from

all subjects, 561 and 488 unique transcripts with cisSNPs that yield

suggestive AD risk associations were identified, respectively. There

were 259–312 such transcripts identified in each AD or non–AD

eGWAS, with .50% overlap between the two diagnostic groups’

results, although many of these results could be identified in the

eGWAS of combined samples. About 7–10% of the transcripts

could only be identified in just ADs or non–ADs, but not the

combined eGWAS. Amongst such unique transcripts were CLU

and BIN1, which reside at the LOAD GWAS loci [39,40,48] and

associate with cisSNPs in the cerebellum of non–ADs. Detailed

analyses of the CLU locus cisSNP/transcript associations are in-

press [49].

Discussion

In a large eQTL study on 773 brain samples from ,400

autopsied subjects, we demonstrate significant contribution of

genetic factors to human brain gene expression, reliably detected

across different brain regions and pathologies. There is significant

enrichment of brain cisSNPs amongst disease-associated variants,

advocating gene expression changes as a mechanism for the first

time for certain genes implicated in human diseases, including PSP

(SLCO1A2), PD (MMRN1), Paget’s disease (OPTN) while replicat-

ing others (e.g. PD/MAPT, SLE/UC/IRF5). MAPT cisSNPs

associating with PSP, PD and AD risk highlight potential common

mechanisms for these neurodegenerative diseases.

The reported results have several important implications for the

genetics of human brain gene expression: First, despite technical

challenges of gene expression measurements in post-mortem brain

tissue [50], ,70% of the transcriptome can be reliably detected in

.75% of the subjects across two brain regions and different

disease pathologies. Second, although there is significant contri-

bution from technical covariates, genetic factors account for a

substantial proportion of the variance in brain gene expression

levels. We estimate that genetic factors explain an average 3%

(range: 0–85%) of the variance in human cerebellar gene

expression overall, and 18% (range: 8–85%) of the variance for

the top cis-regulated transcripts. These estimates show remarkable

similarity to those from other eQTL studies, such as a large,

family-based lymphocyte eQTL, where cis eQTLs had an overall

median effect size of 1.8% and significant eQTLs accounted

for 24.6% of the variance in expression [16]. Similarly, significant

cisSNPs explained 2–90% of expression variance in a liver

eGWAS [23].

Third, there is remarkable replication of significant cisSNP

associations across different brain regions and underlying tissue

pathologies. Indeed, the 2,980 top cerebellar cisSNP/transcript

associations represent 58% and 68%of all significant associations

in the ADs and non–ADs. Since .50% of the non–ADs were

comprised of subjects with PSP, we also conducted a separate

analysis of this pathologically distinct group of non–ADs and again

determined that many of the top cisSNPs were also significant in

the PSPs despite the small sample size (n = 98). Importantly, most

of the cisSNPs had highly similar effect sizes in the ADs, non–ADs

and PSP subset of non–ADs. Furthermore, 78% of the top

cerebellar cis-associations were also significant in the temporal

cortex. Cerebellum is a relatively unaffected region in AD,

whereas temporal cortex is typically one of the first areas to harbor

neuropathology [51]. It is not inherently evident whether the

unaffected or affected tissue regions would be most suitable for

eQTL studies. Whereas unaffected regions would have the

advantage of minimizing confounding on expression measure-

ments from pathology (such as inflammation and cell death),

affected regions may be more relevant for disease-associated

Brain eGWAS and Human Disease
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eQTL mapping. The substantial overlap in significant cisSNP

associations between different brain regions and disease types in

our study implies that sample size may be the most critical element

of successful eQTL mapping. In other words, analysis of

expression data collected in different tissue regions and diseases,

provided there is careful statistical control, could greatly enhance

power to detect eQTLs. Nevertheless, there may be important

eQTLs that are specific to brain region and disease.

It is not obvious whether the cisSNP that display similar effects

in different brain regions and different disease types would have

relevance to human disease. The top 2,596 cerebellar cisSNPs that

are significant in both ADs and non–ADs, and many of which are

also significant in the temporal cortex are also enriched for

variants implicated in human disease, including CNS disease, such

as PD and PSP. Thus, the fourth implication of our study is that it

may be possible to map disease-associated variants using eQTL

studies conducted in unaffected tissue or unaffected subjects. In

addition to providing a general characterization of the genetics of

brain gene expression, this study successfully replicated many

previously published cisSNP associations, such as rs8070723/

MAPT level, rs11012/ LRRC37A4 level associations, both of which

were implicated in PD. We found novel brain expression level

associations for transcripts implicated in disease, including

rs11568563 association with SLCO1A2, recently identified in a

PSP GWAS. The disease-associating cisSNP associations identified

in this study were not restricted to CNS diseases, but also included

non–CNS diseases, such as SLE, where we replicated the

previously published rs4728142/ IRF5 level associations.

These findings imply that many disease-associated cisSNPs can

influence gene expression idependently of tissue/region/pathol-

ogy, and be mapped reliably in tissue which is unaffected, not

disease-related or from unaffected subjects. Indeed, our findings

are consistent with a study of lymphoblastoid cell lines from

subjects affected and unaffected with asthma, where Dixon et al.

[12] found no differences between asthmatics and non-asthmatics.

Furthermore, they detected significant transcript level associations

with SNPs that also associate with asthma. Emilsson et al. [20]

performed eQTL mapping in both blood and adipose tissue and

determined that .50% of significant adipose tissue cisSNPs were

also significant in blood. This is similar to the overlap we detected

for cerebellum and temporal cortex, though two brain regions are

more likely to have similar eQTL profiles than two different

tissues.

Although many cisSNP effects can be detected in many different

tissue types and disease conditions as shown here and by others

[12,20], there conceivably exist expression variants which exert

their effects in a tissue or disease-specific manner. For example in

the eQTL comparing blood and adipose tissue, Emilsson et al.

[20] also found that more transcripts from adipose tissue had

significant correlations with obesity-related traits. In reality, both

scenarios may be at play, such that some expression variants have

more ubiquitous effects, whereas others may need tissue/cell/

region/disease specific factors to exert their influence on gene

expression. Indeed, many of the CNS disease related cisSNP

associations in our brain eGWAS could not be identified in our

comparison to a liver eGWAS [23] or an existing database for a

LCL eGWAS [12], suggesting that disease-relevant tissue may be

necessary to detect effects of certain cisSNPs, and highlighting the

value of this brain eGWAS for CNS traits/conditions.

Despite the enrichment of our samples with tissue from AD

subjects and our use of both cerebellar and temporal cortex tissue,

we did not identify strong transcript associations for some of the

top genes recently implicated in AD risk in large LOAD GWAS

studies [28,39,40,47,48]. This could be because the AD risk

variants in these genes exert their effects via mechanisms other

than influencing transcript levels, namely changes in protein

conformation. If so, even the negative results from an eGWAS

could be informative in guiding the future deep-sequencing efforts

which should focus on coding rather than non-coding, functional

regions. Alternative explanations include technical shortcomings,

such as inability to measure all transcript species, measurements of

global rather than cell-specific gene expression, not including all

tested disease-associated variants in our genotyping platform. We

also need to consider that the top genes nearest the strongest

variants from the LOAD GWAS may not be actual disease genes.

These loci require further investigations to account for this

possibility. Additionally, our criteria for selection of the top

cisSNPs, requiring significance in both ADs and non–ADs, might

be too stringent, thereby leading to some false negative results.

Finally, it may be possible to identify additional disease-related

expression variants by focusing on those that have differential

influence in disease vs. non-disease tissue, although this was not a

focus of analysis in this study. Given that our non–AD tissue also

consisted of subjects with other neurodegenerative diseases, there

may be more similarities with the AD tissue, making it more

difficult to detect variants with differential disease-related expres-

sion-associations in our current study. Nevertheless, we did find

associations with cisSNPs for ABCA7, a novel AD risk locus gene

[28,47] and MAPT [52,53], [24,54] implicated in AD.

It is important to emphasize that although the identification of

transcript level associations provides another layer of confidence

for disease-associating variants and genes, it is entirely possible that

a variant in an LD region encompassing multiple genes, could be

marking a functional disease variant in one gene and an expression

variant in another gene. Thus, although highly useful in

conjunction with disease association studies, eGWAS should be

seen as a guide rather than ultimate evidence in disease-mapping

efforts. Similarly, absence of eGWAS associations for a disease-

associated variant should not be seen as contradictory evidence,

but rather raise the possibility of alternative functional mecha-

nisms for that variant.

Despite the wealth of information our study provides, we

acknowledge several shortcomings. First, our non–ADs were not

normal controls but often had other brain pathologies. It will be

necessary to seek replication of these findings or novel cisSNP/

transcript associations in normal brain tissue, as well. Second, we

only focused on single SNP associations. The preliminary

observations from our eGWAS findings suggest that multiple

independent variants may affect brain expression levels of some

genes, whereas others might be under the influence of a single

strong variant. Finally, like any association study, it is not clear

whether the cisSNPs identified in our eGWAS are themselves the

functional SNPs or simply in LD with un-genotyped regulatory

variants. Future studies focusing on analysis of haplotypes,

SNPxSNP interactions, novel variant discovery and functional

in-vitro studies testing effects of multiple variants are required to

dissect the genetic variation underlying brain gene expression

levels.

In summary, this cerebellar eGWAS study and the temporal

cortex validations provide insight about the genetics of brain gene

expression, a framework to guide future studies with respect to

tissue/region/disease choice in eQTL studies, examples about the

utility of this approach in gene mapping, replication of some

known transcript associations and evidence for novel transcript

associations in human disease. Combined eGWAS-disease GWAS

approach may provide complementary information in mapping

human disease and enable identification of functional variants that

may not be possible by either approach alone.
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The complete set of results from the brain eGWAS can be

accessed at the National Institute on Aging Genetics of

Alzheimer’s Disease Data Storage (NIAGADS) website at

http://alois.med.upenn.edu/niagads/. Questions about the data-

set can be addressed to the corresponding author of this

manuscript (taner.nilufer@mayo.edu).

Methods

Subjects
All subjects were participants in the published Mayo LOAD

GWAS [29] as part of the autopsy-based series (AUT_60–80). All

subjects had neuropathologic evaluation by DWD. All ADs had

definite diagnosis according to the NINCDS-ADRDA criteria [55]

and had Braak scores of $4.0. All non–ADs had Braak scores of

#2.5, and many had brain pathology unrelated to AD (Supple-

mentary Tables 1 and 2 in Dataset S1). Three-hundred forty subjects

had measurements in both cerebellum and temporal cortex. This

study was approved by the appropriate institutional review board.

Expression genome-wide association study (eGWAS)
RNA extraction and gene expression measurements. Total

RNA was extracted from frozen brain samples using the Ambion

RNAqueous kit according to the manufacturer’s instructions. The

quantity and quality of the RNA samples were determined by the

Agilent 2100 Bioanalyzer using the Agilent RNA 6000 Nano Chip.

Transcript levels were measured using the Whole Genome DASL

assay (Illumina, San Diego, CA). Probe annotations were done

based on NCBI Ref Seq, Build 36.2. The RNA samples were

randomized across the chips and plates using a stratified approach

to ensure balance with respect to diagnosis, age, gender, RINs and

APOE genotype. Replicate samples were utilized for QC and also

for intra-class coefficient (ICC) estimations. Raw probe level mRNA

expression data were exported from GenomeStudio software

(Illumina Inc.) for preprocessing with background correction,

variance stabilizing transformation, quantile normalization and

probe filtering using the lumi package of BioConductor [56,57]

(Text S1). A probe with detectable signal in .75% of the samples

was regarded as informative and used in subsequent analyses,

although we also did supplementary analyses without imposing any

restrictions based on probe detection levels. The number of

informative probes differed slightly between the AD, non–AD and

combined groups (Figure S7).

Genome-wide genotyping. Genotypes were generated using

Illumina’s HumanHap300-Duo Genotyping BeadChips and

analyzed with an Illumina BeadLab Station (Illumina, San Diego,

CA) at the Mayo Clinic Genotyping Shared Resource according to

the manufacturer’s protocols. The LOAD GWAS QC methods

were previously published [29] (Text S1).

Statistical methods for eGWAS. Linear regression analysis to

test for cisSNP/transcript associations were done in PLINK [58].

Preprocessed probe transcript levels were utilized as endopheno-

types. Each probe was assessed separately, even though one gene

may have multiple probes. CisSNPs localized to 6100 kb flanking

region of the gene targeted by the probe of interest, mapped

according to NCBI Build 36, were assessed for transcript level

associations, using an additive model, with the minor allele dosage

(0, 1, 2) as the independent variable, and APOE e4 dosage (0, 1, 2),

age at death, gender, PCR plate, RIN, (RIN-RINmean)2 as

covariates. The cerebellum and temporal cortex expression levels

were analyzed separately. The ADs and non–ADs were analyzed

both separately and jointly. The joint analyses included diagnosis as

an additional covariate (AD = 1, non–AD = 0). We also ran analyses

including the top 10 eigenvectors from EIGENSTRAT, and

compared eGWAS results to those excluding the eigenvectors

(Text S1, Figure S8, Supplementary Table 27 in Dataset S1) [59].

Q values used for multiple testing corrections are based on false-

discovery rates [30] and were corrected for genomic inflation of

significance (Text S1). In addition, permutations (pperm-WY) and

Bonferroni adjustment were used for comparison of correction

strategies. Permutation p values were obtained by shuffling the

endophenotype, while maintaining the covariate structure, 10,000

times and applying the Westfall and Young [60] resampling-style

stepdown approach to account for correlations between probes.

Variance of gene expression
To assess the genetic contribution to the variance in human

cerebellar gene expression, we first determined between-subject

variance, as a percentage of the total variance in probe expression,

using ICC [31] for 15 samples measured in replicate on 5–6

different plates and 2–3 different days.

Using multivariable linear regression models, we then calculated

the proportion of variance in cerebellar gene expression levels that

were explained by technical effects (PCR plate, RIN, (RIN-

RINmean)2), biological covariates (APOE e4 dosage, age at death,

gender) and the ‘‘best’’ cisSNP for each probe. These analyses were

carried out on the combined dataset consisting of cerebellar

expression measurements from 374 subjects and 15,283 probes

with at least one cisSNP (Text S1).

Replication of top cerebellar eGWAS hits in the temporal
cortex

We identified 2,980 cisSNP/transcript associations (2,596

unique SNPs, 746 unique probes and 686 unique genes) that

achieved genome-wide significance within both the ADs and non–

ADs analyses with q values,0.05. All 2,980 cisSNP/transcript

associations achieved genome-wide significance with q,0.05 and

pBonf,0.05 in the combined ADs+non–ADs analysis. We sought

validation of these hits in the temporal cortex of 399 subjects who

had WG-DASL whole transcriptome measurements and whole-

genome genotypes. RNA extractions, QC, WG-DASL measure-

ments, transcript level detections and association analyses were

performed for these temporal cortex samples, in the same manner

as that for the cerebellar samples. After appropriate QC, 2,685 of

the 2,980 top cerebellar cisSNP/transcript associations remained

detectable among the temporal cortex results (2,387 unique SNPs,

677 unique probes and 625 unique genes).

Comparison of cerebellar eGWAS results with other
published complex disease and trait GWAS

To determine whether the cerebellar eGWAS captured variants

implicated in complex diseases/traits, we compared the top 2,980

cerebellar eGWAS cisSNPs with the top disease/trait associated

SNPs in the ‘‘Catalog of Published GWAS’’ [26], curated by the

National Human Genome Research Institute (www.genome.gov/

gwastudies). This catalog compiles weekly search results from all

published GWAS of $100,000 SNPs where associations of

p#1.0E-05 are reported. The catalog accessed on 04/23/2011

had 5,272 entries. We restricted our search to those entries where

the ‘‘SNPs’’ column had only one SNP with an rs number. Thus,

haplotypes and variants without rs numbers were excluded. There

were 5,101 entries after this exclusion, comprised of 4,248 unique

SNPs and 433 unique diseases. One SNP may associate with .1

disease/trait and each disease/trait may have $1 associating SNP.

This list was linked to the 2,980 top cerebellar cisSNPs by common

rs numbers.

Brain eGWAS and Human Disease
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To assess whether the number of observed cisSNPs that have

both significant cerebellar eGWAS and disease/trait associations

represent a significant enrichment, we performed simulations

while adjusting for cisSNP minor allele frequencies, as previously

reported [3]. We performed 1 million simulations and adjusted for

the minor allele frequencies of all the tested cisSNPs in 10 bins

from 0–0.05 to 0.45–0.50. Using the total number of cisSNPs that

are both transcript and disease/trait associating for each

simulation, we obtained an empirical p value and an estimate of

fold-enrichment.

Cerebellar eGWAS results were also compared to other

published eGWAS results from a human liver [23] and two

human brain [24,25] studies. The methods and results are

depicted in Text S1.

Alzheimer’s Disease Genetics Consortium (ADGC) meta-
analyses

To determine whether any of the cisSNPs significant at q,0.05

influenced risk of AD, we obtained meta-analyses results from the

ADGC [28]. The cohorts that are assessed by ADGC, as well as

the methodological details of the meta-analyses are described in

detail in a recent publication [28]. Briefly, the meta-analyses of the

ADGC dataset results reported here (Supplementary Tables 17

and 18 in Dataset S1) are generated from the combined analyses of

stage 1 and stage 2 cohorts (Text S1), with detailed descriptions

provided elsewhere [28]. Stage 1 cohorts are comprised of 8,309

LOAD cases and 7,366 cognitively normal elder controls. Stage 2

has 3,531 LOAD vs. 3,565 control subjects. Each cohort was

tested for AD risk association using a logistic regression approach,

assuming an additive model and adjusting for age, sex, APOE e4
dosage and principal components from EIGENSTRAT [59]. The

meta-analyses results were generated using the inverse variance

method implemented in the software package METAL [61].

Supporting Information

Dataset S1 This file includes Supplementary Tables 1–27. The

individual supplementary table legends are included in the first tab

of this file.

(XLS)

Figure S1 Q-Q-Plots: Q-Q plots of observed (y-axis) versus

expected (X-axis) 2log(p) values of association for all cisSNP/

transcript associations in the combined cerebellar 374 samples

obtained before (a,b) and after (c,d) inflation-adjustments. Q-Q

plots for all data points (a, c), as well as those that are in the lower,

left hand corner (b,d) are shown. The data in b and d account

reflect the association results, where there should be no deviations

from the expected (i.e. null hypothesis of no association).

(PDF)

Figure S2 Venn diagram of significant cerebellar cisSNP/

transcript associations: Q values,0.05 in the ADs, non–ADs

and combined (All) analyses. Notably, 2,980 cis-SNP/transcript

associations are significant both in the ADs and non–ADs.

(PDF)

Figure S3 Box Plots of some top cisSNP/transcript associations

in the non–AD (a), AD (b) and combined groups (c): The SNP

genotypes are shown on the X-axis with the genotype counts in

parentheses. Variance stabilizing transformed (VST) expression

levels are on the Y-axis. The bottom and top of a box represent the

lower and upper quartiles, respectively. The band near the middle

of the box is the median. The ends of the whiskers depict the most

extreme observations still within 1.5 inter quartile range of the

corresponding quartile. Any data not included between the

whiskers are plotted as dots.

(PDF)

Figure S4 Histogram of intra-class coefficients (ICC) for the

cerebellar probe expressions. Using 15 replicate samples, ICC,

which is the between-subject variance, as a percentage of the total

variance in probe expression, was estimated for 17,121 probes.

(JPG)

Figure S5 Data plots of SNPs tested for association with

expression levels of SLCO1A2 in the Temporal Cortex and

Cerebellum. Forty-six SNPs were tested for association of

SLCO1A2 levels in the Cerebellum (Blue lines) and Temporal

Cortex (Pink lines). P-values were transformed using 2log10 and

are plotted against the position of each SNP along the

chromosome (Kbp). Genes found within the locus boundaries

are shown from the UCSC genome browser (http://genome.ucsc.

edu/). The LD across the locus is represented by a plot generated

with Haploview, using data from the Mayo GWAS. The top eSNP

in this study, rs11568563, is highlighted on the p-value plot by red

squares and a red box around the SNP in the list of rs numbers.

This is also the top PSP-associating SNP at this locus in Hoglinger

et al. (Nat Genet, 2011) [27].

(PDF)

Figure S6 Q-Q-Plots for cerebellar and temporal cortex

cisSNP/transcript associations with the HapMap phase 2 imputed

genotypes: Q-Q plots of observed (y-axis) versus expected (X-axis)

2log(p) values of association for all cisSNP/transcript associations

in the combined dataset obtained before (a) and after (b) genomic

inflation-adjustments, as discussed in the text. Also shown are the

Q-Q plots for the temporal cortex associations in the combined

dataset obtained obtained before (c) and after (d) inflation-

adjustments.

(PDF)

Figure S7 Venn diagram of detectable cerebellar probes. Venn

diagram of cerebellar probes detectable in $75% of subjects in the

AD (AD), non–AD (CON) and combined (All) analyses. Notably,

13,349 probes were detectable in all 374 subjects.

(PDF)

Figure S8 Scatterplots of 2log10 p values for eGWAS

associations with and without inclusion of eigenvectors. Trans-

formed P-values of a) Cerebellar and b) Temporal Cortex eGWAS

cisSNP/transcript associations from models including (y-axis) and

excluding (x-axis) the top 10 eigenvectors are plotted. A linear line

demonstrating the null hypothesis of no deviation of the results

between the two datasets is also shown. The results are displayed

for those SNPs with a Hardy-Weinberg P-value.1.0E-07 and a

probe detection threshold .75%.

(JPG)

Text S1 Supplementary Results, Methods and References.

(DOC)
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