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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A new two-stage approach for brain image registration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

is proposed. In the first stage, an active contour algo- 
rithm is used to establish a length-preserving, one-to-one 
mapping between the cortical and the ventricular bound- 
aries in the two images to be registered. This mapping 
is used in the second step by a two-dimensional trans- 
formation which is based on an elastic body deformation. 
This method was tested by registering magnetic resonance 
images to both photographic pathology images and atlas 
images. 

I. Introduction 

Registration of both intra-subject and inter-subject 
images has been the subject of extensive study in the 
medical imaging literature. It is important for several 
reasons. First, images obtained through different modal- 
ities can be properly superposed only after accurate reg- 
istration. Visualization and quantitative analysis can 
be improved by such superposition. Second, atlas im- 
ages accurately registered to patient data can be used 
for automatic identification of brain anatomy and for le- 
sion localization. Third, image registration can assist in 
monitoring treatment by, for example, allowing accurate 
comparison ofbrain tumor size and position during treat- 
ment over time. Finally, i t  is  hypothesized that proper 
statistical study of the morphology of both normal and 
diseased brains can be conducted only with good regis- 
tration across diverse populations. This research con- 
tributes to the field of automated brain image registra- 
tion by introducing the use of a length-preserving active 
contour algorithm and a new nonlinear registration al- 
gorithm. 

Various techniques for image registration have been 
proposed, each having its own advantages and disadvan- 
tages, which are briefly summarized in Section 11. The 
approach we propose in this paper has two main advan- 
tages over existing registration methods: i t  can describe 
large, nonlinear deformations, and i t  requires minimal 

human intervention. In our approach, we decompose the 
registration problem into two steps. In the first step, we 
apply an active contour algorithm [l] to each of the two 
images to be registered in  order to obtain a one-to-one 
mapping between a set of curves that sit on the bound- 
aries of brain regions, which can be segmented based 
on their intensity values. In the second step, we use 
this point-to-point correspondence to obtain a full 2-D 
transformation, allowing either image to be geometri- 
cally warped into correspondence with the other. Gray- 
scale information is only required by the active contour 
algorithm, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso our registration approach is  not based on 
image similarity measures. 

The 2-D transformation we propose for the second step 
is termed the elastic deformation transformation or ED". 
It is based on the premise that the geometric deformation 
between the two brains is adequately described as a rigid 
body motion followed by an elastic deformation. ED" 
describes a large class of deformations and can easily 
accommodate manually defined landmark points. More- 
over, because the images are modeled as elastic sheets, 
they maintain their major geometric features after the 
warping procedure, which is a desired characteristic for 
the application considered in this paper, since the brains 
of different individuals tend to have a similar zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgross struc- 
ture. 

11. Registration Algorithms 

Let I l (x )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIl(z, y) and Zz(u) = ZZ(U, v )  be the image 
intensity functions of a pair of images to be registered. 
Here, x = (z, y) and U = (U, U)  denote pixel coordinates 
in the image domains V1 and Vz, respectively, which we 
take to be the rectangularimage frames (expanded if nec- 
essary to accommodate an expansion of one domain into 
the other). Image registrationis defined as the problem of 
finding a transformation U(x) = ( V ( z ,  y), V(z, y)) that 
maps V1 into 'Dz, so that the resulting image & ( U ( x ) )  
is in geometric correspondence with Zz(u). We note that 
the actual image values corresponding to registered co- 
ordinates need not be similar. The various image reg- 
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istration techniques that have been proposed in the lit- 
erature can be classified into three major categories zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 
polynomial transformations, similarity-based methods, 
and boundary-based method* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas briefly described in 
the remainder of this section. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPolynomial Transformation Methods 

Polynomial transformations are based on the assump- 
tion that the that brings zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV I  and D2 into geometric cor- 
respondence is sufficiently described by a polynomial of 
degree n. The coefficients of this polynomial are com- 
puted using linear regression, if at least zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ( n  + l)(n + 2) 
landmark points are defined in  the two images. Although 
any transformation can be described by a polynomial 
through a Taylor series expansion, in practice the nu- 
merical instabilities that are typically present in higher 
degree polynomial interpolation and the requirement for 
many landmark points - usually manually provided - 
limit these methods to the use oflow degree polynomials. 

In particular, the most popular technique in this class 
of methods is the linear transformation [2, 3, 4, 51. In 
general, linear transformation methods can provide ac- 
curate registration only under the assumption that the 
objects appearing in II(.) and Iz(.) differ only by a rota- 
tion, translation, and scalingin both axes. This is  true in 
intra-subject registration problems; but in inter-subject 
registration problems, highly nonlinear deformations are 
usually present. An example of this is the registration of 
atlas images to scanned images, an important problem 
in brain-mapping applications. 

Piecewise polynomial transformations have also been 
proposed. In particular, Bookstein describes a spline in- 
terpolation approach for registering two brain images 
from a set of landmark pairs [6]. Although spline in- 
terpolation methods avoid, in general, the problem of 
non-realistic oscillations caused by polynomial interpo- 
lation, they also depend on the availability of a large set 
of landmark points. 

B. Similarity-Based Methods 
These methods use the similarity between two images 

as a criterion for correct registration. In [7, 81 an elas- 
tic deformation, based on the cross-correlation coefficient 
between the images, is iteratively applied to one of the 
images until it matches the other. This method assumes 
that a rough initial registration is provided and the two 
images are very similar to each other. Since this assump- 
tion is not always satisfied in practice, this approach can 
yield false matches that correspond to local minima of 
the energy function defined in [7]. 

A new similarity techniquehasbeen proposedrecently 
by Miller et al. [91. “his method assumes a known 
map between the image intensities (assuming correct 
registration) and allows for a visco-elastic deformation 
in a probabilistic formulation. Although this approach is 
promising, it currently has two main limitations. First, 
there is typically no known intensity correspondence be- 
tween different imaging modalities; and second, because 
of heavy computational demands, acceptable solutions 

are found only when the deformation is very small. 

C. Boundary-Based Methods 

Boundary-based methods use information about the 
registration of object boundaries in  order to derive a 
full 2-D registration. Moshfeghi has proposed a method 
based on a n  iterative deformation of boundaries [lo]. 
This method is computationally very expensive and is 
very sensitive to errors in the initial registration of the 
objects. Specifically, if a small rotational error is intro- 
duced during the initialization of the algorithm, the con- 
tour of the first image will deform towards the wrong con- 
figuration, and this error will propagate to the remaining 
image points. 

Methods based on boundary registration have also 
been formulated in three dimensions, but are mostly 
based on rigid body transformations. Pelizzari et al. [ l l ]  
developed a popular method based on a n  iterative search 
in the parametric space. Thirion et al. [123 proposed a 
similar technique based on matching points of high cur- 
vature on the skull. Approaches based on rigid body 
motion are valid only for same-patient imaging, but are 
not generally applicable to atlas matching. 

111. Nonlinear Registration Using an 
Active Contour Algorithm 

In this section we present a new two-step approach 
to image registration. The first step creates a one-to-one 
mapping between a set of curves that can be identified 
in the two images to be registered using an active con- 
tour algorithm which is described below (although the 
only type of images that we consider in this paper is 
brain images, our approach applies to other problems 
also). The boundary of the brain constitutes an example 
of a curve that we commonly identify in brain images. 
A fundamental assumption required by this step is that 
the curves that are identified in one of the images can 
be transformed into their corresponding curves in the 
other image by uniformly scaling their length and bend- 
ing them like a string into conformation. If they must be 
locally stretched in order to conform, then our approach 
is not valid. A simple modification, however, in which 
manually provided (or otherwise detected) points of cor- 
respondence on these curves are given can be made to 
allow nonuniform curve scaling. 

The second step in our registration algorithm uses 
the point-to-point curve correspondence established in 
the first step to prescribe a transformation for each point 
in the image domain. Specifically, we deform the images 
elastically under the presence of external forces that are 
defined on the sets of curves identified in the images. 
The magnitude of these forces becomes zero when the 
curve-to-curve correspondences obtained through our ac- 
tive contour algorithm in the first step are satisfied. We 
begin this section by reviewing the active contour algo- 
rithm. 
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A. Active Contour Algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In [I] we presented a n  algorithm that reconstructs the 

spine of uniform thickness ribbons (see also zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 13, 14,151). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This reconstruction comprises a map from the unit in- 
terval to the spine that is nearly isometric - that is, 
length-preserving - up to a single length scaling fac- 
tor. In brain image analysis, we use ribbons to model 
the cortical cross-sections (which have a fairly uniform 
thickness), and boundaries of brain regions (which have 
infinitesimal thickness). Since our active contour algo- 
rithmis useddirectlyin step one, we give a brief overview 
and discussion of its key properties. 

Active contours were introduced in [16], and since 
then they have been extensively in image analysis and 
computer vision. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn active contour is an elastic curve 
that deforms under the presence of internal and exter- 
nal forces. The internal forces maintain its connectiv- 
ity and are responsible for its elastic behavior, while 
the external forces provide a mechanism for matching 
the elastic curve to the data. An active contour can be 
viewed as a set of M + l  points, with Cartesian coordinates 
xi = (zi, yi), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 0, ..., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM ,  connected to each other with 
springs, as shown in Fig. 1. The internal forces exerted 
on the point at xi originate from the two springs that 
connect the point to its neighboring active contour points 
located at xi-1 and x,+l. The external force exerted on 
the point at xi is a n  attractive force originating from a 
point c, = c(x,) within the ribbon (as in [I]). This point 
is located at the center of mass of the area defined by the 
intersection of the ribbon with a circular neighborhood 
around xi. Under the presence of these internal and 
external forces, the active contour undergoes a series of 
elastic deformations eventually balancing near the spine 
of the ribbon. 

Our active contour algorithm finds a solution to the 
following set of nonlinear equations: 

c(xi)-xi+h~0M~(x~+~+x~~~-2xi) = 0 ,  i = 1, ..., M-1, 

subject to the boundary conditions 
(1) 

XO = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a,7) XM = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p ,  6 ) .  (2) 

These equations correspond to a force balance condition 
in which each active contour point xi balances under 
the three forces described above. The following iterative 
algorithm is used to solve (1) 

c(x!) + KoM2 (xftl + xf-1) . 
,;+I = , 1=1, ..., M - 1 .  

2KoM2 + 1 
(3) 

where superscripts give the iteration count. 
It was shown in [ l ]  that the M - 1 equations in (1) are 

satisfied by the active contour that minimizes the energy 
function 

where 

(5) 
i = O  

M-I 

i = O  

The function P(x,) in (5) is a potential function which is 
zero if xi belongs to the spine and rapidly increases as xi 
moves away from the spine (see [ 1 3  for details). 

B. Cortical and Ventricular Contour Ex- 
traction and Mapping 

Given two images to be registered, our first step is to 
extract a set of curves sitting on the boundaries of a cor- 
responding set of regions that can be segmented based 
on their intensity values. In this paper we will only con- 
sider the cortical and the ventricular boundaries. Each 
of these curves is mapped onto the unit interval using 
the active contour algorithm of the previous section. To 
do this, we first identify a set of boundary points for each 
of these brain regions, as indicated in the block diagram 
of Fig. 2. We use a two-dimensional region growing algo- 
rithm and one manually provided seed point for each of 
these brain regions. The points where the growingregion 
terminates are the boundaries of each of these regions, 
and they are used as the umassn by our active contour al- 
gorithm. We then initialize the active contour algorithm 
selecting the endpoints for each image and for each curve 
manually. The remaining points of the active contour are 
initialized at a circular configuration surrounding each 
region. Solvingtheequationsin (1)for eachimage andfor 
eachcurveseparatelyyieldsaset ofpointsx,k,xg, ..., xh, 
k = 1, ..., K, whichdefine K curvesinthe firstimage, and 
a set of points U;, U;, ..., uk which define K curves in 
the second image. These points are nearly equidistantly 
distributed along the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK curves in each image; therefore 
there exists a one-to-one isometric mapping of each curve 
to the unit interval. Consequently, there exists a one-to- 
one isometric mapping between the corresponding curves 
themselves. This mapping provides a correspondence be- 
tween the point xf of the k-th curve of the first image 
and the point U! of the k-th curve of the second image, 
for i = 0, ..., M, and for k = 1,. . . , h'. This collection 
of landmark points is used in the transformations of the 
following two sections. 

C. Elastic Deformation Transformation 
(EDTI 

In this section we describe a new full two-dimensional 
transformation based on the active contour algorithm re- 
sults. This method, which we call the e k t i c  &formation 
transformation (EDT), assumes that the pixels in V1 are 
connected by springs. Those points in D1 that are part of 
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the K curves that were determined by the active contour 
algorithm have external forces encouraging them to de- 
form to the coordinatesofthe corresponding points on the 
K curves in  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAED" determines the elastic deformation 
caused by the combination of these external forces, the 
internal spring forces, and boundary conditions. If ad- 
ditional points of correspondence are provided, external 
forces are also exerted on those points. 

Mathematically, EDT is based on the minimization 
of an energy function E, which we now define. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(zo,~,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA yo,^) through zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( Z N , N ,  Y N , N )  be the pixel locations 
in V1 and ( W O , ~ ,  &,o) through ( U N , N ,  VN,N) be their de- 
formed coordinates in V2. Let also T,,3 be an indicator 
function definedfor each pixel in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVI such that TI, is unity 
when the point ( z , , ~ ,  y:,,) has a point of correspondence, 
say (f!", fT3)., i n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVz and is zero otherwise. Points of cor- 
respondence in V I  are given by $, . . . , x&, k = 1, .  . . , K, 
together with any manually provided landmarks. We 
then define the points ( U O , ~ ,  &,o) through ( U N , N ,  VN,N)  
to be those that jointly minimize 

E = XEE + EF , (7) 

where 

N-1  N-1  

3=1 

subject to the boundary conditions 

(UO,~ ,  VO,,) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( a ,  i )  , ( u N , : , V N , s )  = ( b , i ) ,  

(us,o, % , I )  = ( i ,  C) , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( u : , ~ ,  K,N) = (4 d ) ,  (10) 

for i = 0 , .  . . , N .  The boundary conditions set the coor- 
dinates of the transformed image frame. The four con- 
stants a, b, c, d are chosen so that the distance ofthe outer 
cortex from the boundaries of V I  and V2 is  the same for 
both images. They are determined automatically from 
the outer cortical contours. 

By taking derivatives of (7) one can show the neces- 
sary conditions 

X(4u1,j -ul+l ,J - u l - l , J  - u s , ~ + l  - ~ : , J - ~ ) + ~ : J ( ~ I , J  - fG) 
=0, 

= 0, (11) 

x(4KJ - K t l ~  - K - ~ J  - K,j+l  - v,3-1) + z:,j(K,j - fc) 
which must be satisfied for 1 2 i ,  j 2 N - 1. These 
equations give a force balance condition which is satisfied 
by a dynamic system in equilibrium-i.e., the sum ofthe 
forces exerted on each deformed pixel must be zero. We 
solve Equations (11) iteratively using the Gauss-Seidel 
method. 

There is a certain similarity between the ED" trans- 
formation and the spline interpolation approach pro- 
posed by Booksteinin [17]. There are two key differences, 
however. First, ED" does not force a n  absolute matching 
of the landmark points as in [17]. Instead, it merely pe- 
nalizes deformations that do not maintain the specified 
correspondence. This difference is important when the 
location of the landmarks are in error, a condition that 
can be expected to some degree from our active contour 
algorithm. Second, ED" is formulated as a boundary- 
value problem rather than an interpolation problem as 
in [171. Boundary-value problems eliminate the large 
fluctuations one may see when far from the landmark 
points using spline interpolation methods. 

Iv. Experimental Results 

In this section we demonstrate the performance of our 
registration approach using three different data sets. 

1. Baboon Images. 
Fig. 3 shows two images of approximately the same 

mid-brain coronal section of a baboon brain, to which 
a stroke was introduced. Fig 3b shows a TI-weighted 
magnetic resonance image, while Fig. 3a shows a pho- 
tographic image taken after the animal was sacrificed 
and its brain was dissected. Registration ofthese images 
allows post-mortem analysis of the tissue at the stroke 
area to be correlated to the MR image. 

Although the images in Figs. 3a and 3b represent the 
same coronal cross-section (to good approximation), sev- 
eral gross morphological differences between the two are 
apparent. First, the overall shape of the brain is differ- 
ent. In particular, the post-mortem image is squashed 
vertically. This effect is  largely the result of gravity act- 
ing on the brain during fixation. Second, the sulci are 
more pronounced in the post-mortem photograph. This 
is the result of brain matter shrinkage, again due to the 
fixing process. Third, there is a tear in the gray matter 
at the upper right of the post-mortem image caused by 
the cutting procedure. Finally, the temporal lobes are 
pushed farther apart from the brain stem in comparison 
to the MR image. This again is due to the settlingthat oc- 
curred during fixation. These differences are highlighted 
in Fig. 3b, which overlays the boundary of the cortex in 
Fig. 3a onto the MR image. 

We next applied the active contour algorithm de- 
scribed in Section I11 to the images in Fig. 3. In both 
cases a histogram-based region growing algorithm was 
used to segment the parenchyma (white and grey mat- 
ter). A separate threshold and one seed point was se- 
lected manually for each image. M e r  determining the 
parenchyma, two landmark points per image, sitting on 
the temporal lobes, were designated manually as the end- 
points of each active contour. The remaining points on 
the active contour were initialized to the rectangular im- 



age frames, and the active contour algorithm was run t o  
convergence. 

The final active contours are shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 super- 
posed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a sequence of white dots on the original images. 
To give a visual indication of how well the active con- 
tour algorithm provided point correspondence, in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 
we highlighted some key points on the post-mortem im- 
age and their corresponding points on the MR image. We 
note that the points on the left and right Sylvian fissures, 
the points on the left and right superior temporal sulci, 
and the points on the superior frontal gyri near the mid- 
line are very close t o  where one would manually place 
them. This confirms that the isometric transformation of 
the active contours provides good landmark points, auto- 
matically. 

We next applied EDT using the active contours shown 
in Fig. 4. The result is shown in Fig. 6, where Fig. 6a 
shows the transformed post-mortem image and Fig. 6b 
shows the cortical outline of the transformed image su- 
perposed on the MR image. The superposed cortical out- 
line shown in Fig. 6b is extremely close t o  the MR outline 
at  all regions including the temporal lobes. Visual com- 
parison of Fig. 6a with the original MR image (e.g., Fig. 3b 
or the underlyingimage in Fig.6b) shows that the shapes 
of many of the cortical gyrations are now quite similar t o  
each other. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. Registration of atlas and MR images. 

This experiment demonstrates the registration of two 
different brains imaged with two different modalities. 
The first image, shown in Fig. 7a, is an atlas image show- 
ing the human brain cortex within the left hemisphere 
of a horizontal (relative t o  the AC-PC line) brain sec- 
tion. The atlas image corresponds to  Fig. 119 in [18]. 
The second image, shown in Fig. 7b, is an MR image of 
the corresponding cross-section of a patient brain. This 
image pair presents a problem for all similarity-based 
image registration methods since there is no model for 
how the brightness of one image is related to  the other. 
The problem must be solved using either landmark point 
methods or boundary methods. Our approach provides a 
flavor of both approaches with significant automation. 

Using the frontal and occipital poles as endpoints, we 
applied our active contour algorithm t o  each image in 
Fig. 7. EDT was applied using the cortical contours as 
landmark points. The transformed atlas image is shown 
in Fig. 7c, and its outline is shown in Fig. 7d superposed 
on the original MR image. We see that a good registration 
of the general shape of the cortical contours was obtained. 
The registration error for this data set, however, is larger 
than that of the baboon data. We must expect this t o  some 
extent since these images represent different brains. 

3. Ventricular Registration. 

For our final experiment we considered a set of three 
images obtainedfrom human subjects with enlargedven- 
tricles (Figs. 8a-c). Each of these images was obtained 
at  the same orientation and level of the brain, and ap- 

proximately a t  the same orientation and level of the atlas 
image shown in Fig. 8d. In these images, because of the 
large differences in the size and shape of the ventricles, 
we used three curves in the registration process: the 
cortical boundary, and the upper and lower ventricular 
boundaries. These three boundaries, obtained through 
three region growing procedures for each patient image, 
are shown in Fig. 9 superimposed on the atlas image. 
Fig. 9 reveals a large misregistration, despite the simi- 
larity in the acquisition procedure of these images. 

m e r  mapping the three types of curves mentioned 
above of each of the patient images onto their counter- 
parts of the atlas image, we selected 15 of the resulting 
1067 points of correspondence determined automatically 
through the active contour algorithm. These points are 
shown in Fig. 10 for the three MR images and the atlas 
image. Figure 10 reveals a good correspondence. 

We then applied E m ,  mapping the atlas image onto 
each of the patient images. The resulting warped atlas 
image for each patientimage is shown in Fig. 11 superim- 
posed on the same boundaries as the ones in Fig. 9. From 
Fig. 11 we see that the atlas image was adapted to the 
shape of each patient image yielding a good registration. 

V. CONCLUSION 

We have presented a new two-step approach for brain 
image registration which accounts for highly nonlinear 
deformations. In the first step we obtain a one-to-one 
mapping between a set of curves that can be identifiedin 
the two brain images, using an active contour algorithm. 
This step establishes the correspondence of a large num- 
ber of points with minimal human intervention. The sec- 
ond step transforms the coordinate space of one image to 
the other using these points of correspondence. An elastic 
transformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- EDT - was proposed. This transfor- 
mation modeled the images as elastic sheets that deform 
under a set of external forces defined on the curves for 
which a mapping was obtained in the first step .of the 
algorithm. 

The overall approach was verified qualitatively using 
three cases: a post-mortem photograph and MRI pair, 
and two atlas and MRI registration problems. In the 
first pair, our active contour algorithm was shown to pro- 
vide a good estimate of the outer cortical boundaries with 
superb point-to-point correspondence. The only manual 
intervention required was the specification of two seed 
points for region growing and four endpoints for the ac- 
tive contours. In the second stage of the registration 
procedure, EDT provided excellent maps of the cortical 
boundaries and of the brain interior. In the second and 
third image pairs (MRI and atlas) we demonstrated a 
good matching using E m .  A remarkably good matching 
was obtained in the third experiment, despite the highly 
nonlinear deformation that was present in the ventricu- 
lar area. 
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Improvement in the performance of the active contour 
algorithm might be obtained by incorporating landmark 
points through the concept of control points [16, 11. In 
this technique, specific points on the outer cortex would 
attract specific points on each active contour through ad- 
ditional external forces. This could improve point corre- 
spondence of the entire active contour if large errors are 
otherwise observed. 

Extension of this approach t o  three dimensions is also 
possible through the use of active surfaces 1191 instead 
of active contours. Since it is generally not possible t o  
achieve an isometric mapping of two surfaces, we cannot 
expect the landmark points generated by an active sur- 
face to be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas good as those generatedby an active contour. 
Therefore, methods that force landmark point matching, 
such as Bookstein’s approach, may not be a wise choice 
for step two. In contrast, because it does not force land- 
mark points to match and i t  is readily extensible to three 
dimensions, EDT appears to be a good option for a three- 
dimensional transformation using active surface pairs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 2. A block diagram of the approach proposed 
in this paper. Figure 1. A mechanical analog of the active contour. 

Figure 3. (a) A post-mortem photograph of a baboon brain cross-section. (b) An MR image of the same, approximately, 
cross-section superimposed on the outline of (a). 
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(a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA03) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 4. The cortical outline obtained through the active contour algorithm for (a) the image of Fig. 3a and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b) the 
image of Fig. 3b. 

(a) (b) 

Figure 6. Demonstration of the automatic landmark-point generation through the active contour algorithm: (a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsix 
selected active contour points of the active contour configuration shown in Fig. 4a and (b) their corresponding points of 
the active contour configuration shown in Fig. 4b. 

(a) (b) 
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8. (a) The image of Fig. 3a transformed using EDT and (b) the cortical outline of (a) superimposed on the MR 
image. 
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(a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA03) (C) ( 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 7. (a) A Talairach atlas image ofthe human brain, (b) an MR transaxial image ofthe corresponding cross-section, 
(c) the atlas image transformed using ED”, and (d) the cortical outline of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c) superimposed on (b). 

Figure 8: (a)-(c) Three MR images obtained from patients with enlarged ventricles and (d) a Talairach atlas image 
obtained from the same, approximately, level of the brain. 

(a) (b) (Cl 

Figure 9: The cortical and ventricular outlines of Figures 8a-8c superimposed on Fig. 8d. The mismatch is apparent. 
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(4 (d) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 10. The landmark points automatically determined by our active contour points, for the images of Fig. 8. 

(a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b) (C) 
Figure 11: The warped atlas image of Fig. 8g superimposed on the cortical and ventricular outlines of the images of 
Figs. 8 a - 8 ~ .  A good registration of the cortical and the ventricular area was obtained. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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