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This article describes applications of novel and traditional data-science methods to the
study of brain imaging genomics. There is a discussion as to how researchers combine
diverse types of high-volume data sets, which include multimodal and longitudinal
neuroimaging data and high-throughput genomic data with clinical information and
patient history, to develop a phenotypic and environmental basis for predicting human
brain function and behavior.
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ABSTRACT | Brain imaging genomics is an emerging data

science field, where integrated analysis of brain imaging and

genomics data, often combined with other biomarker, clinical,

and environmental data, is performed to gain new insights into

the phenotypic, genetic, and molecular characteristics of the

brain as well as their impact on normal and disordered brain

function and behavior. It has enormous potential to contribute

significantly to biomedical discoveries in brain science. Given

the increasingly important role of statistical and machine learn-

ing in biomedicine and rapidly growing literature in brain imag-

ing genomics, we provide an up-to-date and comprehensive

review of statistical and machine learning methods for brain

imaging genomics, as well as a practical discussion on method

selection for various biomedical applications.
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I. I N T R O D U C T I O N
With recent technological advances in acquiring multi-
modal brain imaging data and high-throughput genomics
data, brain imaging genomics is emerging as a rapidly
growing research field. It performs integrative studies that
analyze genetic variations, such as single nucleotide poly-
morphisms (SNPs), as well as epigenetic and copy number
variations (CNVs), molecular features captured by various
omics data, and brain imaging quantitative traits (QTs),
coupled with other biomarker, clinical, and environmental
data. The goal of imaging genomics is to gain new insights
into the phenotypic characteristics and the genetic and
molecular mechanisms of the brain, as well as their impact
on normal and disordered brain function and behavior.
Given the unprecedented scale and complexity of the
brain imaging genomics data sets, major computational
and statistical challenges have to be met to realize the
full potential of these valuable data. Overcoming these
challenges has become a major and active research topic
in the field of statistical and machine learning, where
effective and efficient data analytic methods have been
developed to reveal the genetic and molecular underpin-
nings of neurobiological systems, which can impact the
development of diagnostic, therapeutic, and preventative
approaches for complex brain disorders.

Many advances in brain imaging genomics are attributed
to large-scale landmark studies, such as the Alzheimer’s
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Disease Neuroimaging Initiative (ADNI) [1], the Enhanc-
ing Neuro Imaging Genetics through Meta Analysis
(ENIGMA) Consortium [2], and the UK Biobank [3].
These studies facilitate the availability of big brain
imaging genomics data to the worldwide research com-
munity, which contributes to the generation of a large
body of literature concerning methodological devel-
opments and biomedical applications in brain imag-
ing genomics, including a number of review articles
summarizing relevant advances from multiple different
perspectives.

For example, ADNI is a landmark Alzheimer’s
disease (AD) biomarker study. The ADNI cohort constitutes
a very rich repository of multimodal data such as
genome-wide genotyping, whole genome sequencing,
blood transcriptome, blood epigenome, plasma/serum
/cerebrospinal-fluid proteome, plasma/serum meta-
bolome, neuroimaging such as multimodal magnetic
resonance imaging (MRI) and positron emission
tomography (PET), cognitive, behavioral, and clinical
data. Due to its open-science nature, data from ADNI
have been widely used by the research community around
the world to produce hundreds of publications in brain
imaging genomics. These advances were periodically
reviewed by the ADNI Genetics Core [4], [5] and the
entire ADNI team [1], [6].

ENIGMA is another major initiative that contributes
significantly to the field of brain imaging genomics. The
ENIGMA Consortium is a global team science effort with
the shared goal of understanding disease and genetic
influences on the brain. The progress of the ENIGMA
Consortium has been regularly summarized in several
review articles over the years (see [2] and [7]–[9]).
Thompson et al. [2] provided the most recent update of
the ENIGMA Consortium, which included over 1400 sci-
entists from 43 countries studying the human brain using
imaging, genomics, and other brain metrics.

The UK Biobank [3], a prospective epidemiological
cohort of over 500 000 individuals, is another prominent
study that offers an enormous amount of brain imag-
ing genomics data. It has a full genetic data release for
∼500 000 samples [10] and full brain imaging data release
for ∼15 000 samples in six modalities [11]. The team
completed large-scale genome-wide association studies of
brain imaging QTs recently, which examined >11 million
SNPs on 3144 imaging QTs in 8428 samples for discovery
and two additional sets of 930 and 3456 samples for repli-
cation [12]. This article represents the current frontiers
in large-scale brain imaging genomics, yielding invaluable
insights into the genetic architecture of the brain.

In addition to ADNI, ENIGMA, and UK Biobank, there
are many other research activities in brain imaging
genomics, which have yielded various review articles. For
example, Liu and Calhoun [13] reviewed multivariate
methods for analyzing and integrating imaging and genet-
ics data. Yan et al. [14] reviewed regression and correlation
methods for brain imaging genomics as well as set-based

methods for mining high-level imaging genomics associ-
ations. Mufford et al. [15] reviewed methods and topics
of brain imaging genomics in psychiatry. Liu et al. [16]
reviewed multimodal analysis strategies for analyzing and
integrating multiomics data and brain imaging data in the
context of schizophrenia studies.

In short, the comprehensive reviews discussed earlier
cover topics in brain imaging genomics from different
perspectives. Some of them focus on reviewing data,
methods, analyses, and/or results from a specific study,
such as ADNI [1], [4]–[6] or ENIGMA [2], [7]–[9]. Some
reviews examine the research activities and progress in the
context of a specific discipline (i.e., psychiatry in [15])
or disorder (i.e., schizophrenia in [16]). Others provide
methodology-oriented reviews on multivariate analy-
ses [13] and machine learning [14]. Given that statistical
and machine learning is playing increasingly important
roles in biomedical research and new methods are emerg-
ing in the literature at a rapid pace [17], we feel that
it will be valuable to provide an updated review on the
topic of statistical and machine learning in brain imaging
genomics. Thus, the goal of this article is to provide
an up-to-date and comprehensive coverage of statistical
and machine learning methods for solving problems in
brain imaging genomics as well as practical discussion on
method selection for various biomedical applications.

Fig. 1 shows the schematic of the topics that we will
cover in this review. The major part of this article will
be devoted to the discussion of methods for solving
the following three types of learning problems in brain
imaging genomics [see Fig. 1(a)].

1) First, we will examine the problem of heritability
estimation of brain imaging phenotypes in Section II,
where the goal is to determine how much pheno-
typic variation is determined by genetics.

2) Second, we will explore the problem of learning
imaging genomics associations. Since a majority
of articles reviewed here belong to this category,
we will devote Sections III–VI to this topic. We will
review a few fundamental strategies in Section III,
including SNP-based methods, polygenic risk scores
(PRSs), multi-SNP methods, multitrait methods,
pathway and network enrichment methods, and
interaction methods. We will discuss meta-analysis
strategies in Section IV. We will review multivariate
regression models in Section V and bimultivariate
correlation models in Section VI to identify complex
multi-SNP-multitrait associations.

3) Third, in Section VII, we will review methods for
predicting an outcome of interest by integrating
imaging and genomics data, as well as methods for
joint association learning and outcome prediction.

Finally, in Section VIII, we will provide: 1) a discussion
of principles of method selection based on biomedical
application considerations [see Fig. 1(b)] and statistical
and machine learning considerations [see Fig. 1(c)]; 2) a
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Fig. 1. Schematic of topics covered in this review. (a) Learning problems in brain imaging genomics: This review is organized by these

topics. (b) Biomedical application considerations: These are example topics related to the studied brain imaging, genomics, and outcome

data. (c) Statistical and machine learning considerations: These are example topics considered by the reviewed statistical and machine

learning methods.

discussion on scientific and clinical impact; and 3) a dis-
cussion on related work and future directions.

II. H E R I TA B I L I T Y E S T I M AT I O N

Early genetic studies of the brain largely focused on
estimating heritability—the proportion of the observed
variance in a trait that is explained by additive genetic
factors [18]. Well before quantitative genetics was applied
to neuroimaging data, classical genetic methods were
developed to estimate the proportion of variance in a trait
that was due to genetic and environmental factors—as
well as random variation, such as measurement errors. The
motivation to estimate heritability was that a highly herita-
ble trait might be an attractive target for in-depth genetic
analyses compared with a trait with little or no genetic
variance. In the following, we cover methods to estimate
heritability based on genome-wide genotyping data. First,
we note that heritability can be estimated based on data
collected using twin or family designs, where the degree
of genetic influence is estimated from trait correlations in
relative to different degrees of genetic overlap.

A. Twin and Pedigree Methods

Around 2001, neuroimaging studies of twins began to
report correlations in regional brain measures in identical
and fraternal twins, whereby identical twins had more
similar brain structure than randomly selected pairs of

individuals of the same age and sex. According to the
classical quantitative genetics, if the intraclass correlation
is higher in monozygotic (MZ) than dizygotic (DZ) twins,
then a trait is heritable. Falconers heritability statistic, h2,
is defined as twice the difference between the MZ and
DZ intraclass correlations. Thompson et al. [19] reported
the statistical maps of Falconers h2 statistics, for measures
of gray matter density across the cortex, showing signifi-
cant heritability, in a small MRI study of 80 young adult
twins. Later studies built on this approach to fit structural
equation models (SEMs) to quantify both genetic and
environmental components of variance, for brain measures
derived from MRI, diffusion tensor imaging (DTI), elec-
troencephalogram (EEG), and functional MRI (fMRI), also
using twin or family designs. A common model used for
these studies was the ACE model, which estimates additive
genetic (A), common (C), and unique (E) environmental
contributions to trait variance (see [20] for a review of
early neuroimaging studies using the ACE model).

Brun et al. [21], for example, used a general MRI
analysis method called tensor-based morphometry (TBM)
to map the heritability of brain morphology in MRI scans
from 23 monozygotic and 23 dizygotic twin pairs using
the ACE genetic model. Significance was tested using
voxelwise permutation methods. A similar work with other
computational anatomy approaches extended the ACE
model to scalar maps defined on the vertices of 3-D
surface models of brain structures, such as the ventri-
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cles [22]. In that study, path coefficients for the ACE model
that best fit the data indicated significant contributions
from genetic factors (A = 7.3%), common environment
(C = 38.9%), and unique environment (E = 53.8%) to
lateral ventricular volume.

Extending the ACE model to diffusion MRI, to assess
the genetics of brain white matter microstructure,
Shen et al. [23] confirmed the overall heritability of the
major white matter tract metrics but also identified dif-
ferences in heritability. Highly heritable measures were
found for tracts connecting particular cortical regions, such
as medial frontal cortices, postcentral, paracentral gyri,
and the right hippocampus. Later studies reported genetic
correlations between the measures of cortical gray matter
thickness and DTI-derived white matter measures [24].
Comparable methods applied to fMRI revealed significant
heritability for the measures of functional synchrony in
the brains resting-state networks (RSNs). Fu et al. [25]
estimated both genetic and environmental effects on eight
well-characterized RSNs. To do so, they fit the classical
ACE twin model to the functional connectivity covariance
at each voxel in the RSN. Although environmental effects
accounted for the majority of variance in widespread areas,
specific brain regions showed significant genetic control
within individual RSNs.

Methods to estimate heritability were advanced as
well. Open-source tools, such as OpenMx and SOLAR,
were adapted to handle brain-derived phenotypes, includ-
ing entire images. Kochunov et al. [26] examined
the agreement in the heritability estimates, across a
variety of data sets, for four different methods for
heritability estimation which have been applied to
neuroimaging data. SOLAR-Eclipse (www.solar-eclipse-
genetics.org) and OpenMx (openmx.ssri.psu.edu) use iter-
ative maximum-likelihood estimation (MLE) methods.
Accelerated permutation inference for ACE (APACE) [27]
and fast permutation heritability inference (FPHI) [28]
use fast, noniterative approximation-based methods. Her-
itability estimates from the two MLE approaches closely
agreed on both simulated and imaging data, but the two
approximation approaches showed lower heritability esti-
mates when running on data that deviated from normality.
The authors advocated a data homogenization approach
that improved agreement across packages using inverse
Gaussian transformation to enforce normality on the input
trait data.

B. GWAS Methods for SNP Heritability

As soon as genome-wide genotyping became cheaper
and more common, methods were developed to esti-
mate heritability from all genome-wide SNPs. The
GCTA method (genome-wide complex trait analysis [29];
https://cnsgenomics.com/software/gcta/), for example,
estimates heritability from general population data, and
rather than requiring twins or pedigrees, it can be applied
to data from individuals who are typically regarded as

unrelated. GCTA computes both genetic and phenotypic
covariance matrices from trait data and high-density SNP
data, after calculating a kinship matrix and a genotypic
relatedness matrix (GRM). Based on singular values of
the GRM, GCTA estimates the percentage of phenotypic
variance explained by all common SNPs (i.e., the SNP her-
itability of a trait), with a restricted maximum-likelihood
linear mixed model (GREML). GCTA has been used to
estimate “missing” heritability—the genetic contribution
from all SNPs in aggregate—without needing to know
exactly which SNPs are contributing to the variance.

Direct application of GCTA to the heritability analysis
of high-dimensional brain imaging QTs is computationally
intractable. To overcome this limitation, Ge et al. [30]
proposed a massively expedited genome-wide heritability
analysis (MEGHA) method, which approximates GCTA and
is suitable for analyzing a large number of phenotypes
efficiently. It was successfully used to create vertexwise
heritability mapping of nearly 300 000 cortical thickness
QTs. Ge et al. [31] proposed a moment matching method
for SNP-based heritability estimation (MMHE) and further
extended the GWAS-based heritabilty analysis to handle
multidimensional traits (e.g., shape). It was successfully
applied to the heritability estimation of the shape of a set
of brain structures. In a subsequent study [32], MMHE was
used to complete a phenome-wide heritability analysis of
the UK Biobank [3].

A related method—linkage disequilibrium score
regression (LDSC) [33]—was also developed to estimate
heritability due to all SNPs. Remarkably, it does not require
individual genotypes at all, but it only uses the summary
statistics from a genome-wide association study. The
approach exploits a feature of the genome called LD—the
fact is that statistical correlations are found in a series of
adjacent SNPs. Let N be the sample size, M be the number
of all SNPs, and h2 be the heritability of a phenotype due
to all SNPs. Given an SNP j, its LD Score lj is defined as
lj = ΣM

k=1r
2
jk, where r2

jk is the LD between SNPs j and
k measured by the squared correlation coefficient. The
LD Score lj measures the amount of genetic variation
tagged by j. Bulik-Sullivan et al. [33] noted that under a
polygenic model, the expected χ2 association statistics for
SNP j are

E[χ2|lj ] = Nh2 lj/M + Na + 1

where h2/M is the average heritability explained per
SNP and a measures the contribution of confounding
biases, such as cryptic relatedness and population strati-
fication. Based on this, if one regresses the χ2 statistics
from GWAS against LD Score (i.e., LDSC), the resulting
intercept minus one can serve as an estimator of the
mean contribution of confounding bias to the inflated test
statistics. Consequently, LDSC can also be used to pro-
duce SNP-based heritability estimates for any phenotypes,
including voxel- or region-based imaging QTs, partition
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this heritability into separate categories (based on regions
of the genome, such as specific chromosomes or types
of genetic variant), and to calculate genetic correlations
between separate phenotypes.

When applied to imaging GWAS (explained next),
the LDSC method has revealed patterns of genetic corre-
lations across brain regions, leading to the notion that the
brain may be partitioned into genetic modules or sets of
regions with overlapping genetic determinants. Classical
multivariate twin models had also reported evidence for
such genetic clusters [34]. In [34], a multivariate model
in 1038 twins identified a common genetic factor that
accounted for almost all the heritability of intracranial vol-
ume (0.88) and a substantial proportion of the heritability
of all subcortical structures, particularly those of the thala-
mus (0.71 out of 0.88), pallidum (0.52 out of 0.75), and
putamen (0.43 out of 0.89). LDSC has also been used to
reveal an overlap between the genetic loci associated with
brain structure and with schizophrenia based on the sum-
mary statistics from various published GWAS [35]. Similar
multivariate genetic models show that genetic influences
on longitudinal growth or loss rates over time significantly
overlap with genetic loci associated with baseline volumes
for many structures. This may be an important observation
in the quest to identify loci that influence rates of brain
development and degeneration [36].

III. I M A G I N G G E N O M I C S
A S S O C I AT I O N S: F U N D A M E N TA L S

Given an imaging phenotype, heritability analysis esti-
mates how much of its variance is explained by the entire
genome or all the SNPs on one or more chromosomes.
In order to locate specific genetic variants that contribute
to the phenotypic change, a genetic association analysis
needs to be performed. Thus, a major research theme
in brain imaging genomics is how to effectively identify
interesting imaging genomics associations, which is the
topic to be covered in Sections III–VI. In some cases,
heritability analysis can be used as a prescreening step to
identify imaging QTs with moderate to high heritability,
and subsequent genetic association studies can then be
applied only to those heritable QTs (e.g., in [38]).

A major challenge in brain imaging genomics is that
both imaging and genomics data are high dimensional.
The ability to test over a million SNPs in the genome
for associations with hundreds, thousands, or even more
imaging traits in the brain induces a huge burden for
multiple comparison correction. While failure to properly
correct for multiple comparisons leads to a high risk for
false discoveries, excessive corrections greatly reduce the
power to detect true signals. Thus, multiple comparisons
and detection power are two important topics relevant to
most association studies reviewed in this article.

Lindquist and Mejia [39] provided an excellent review of
a few major statistical approaches to address the problem
of multiple comparisons using neuroimaging studies as an

example. The goal is to choose an appropriate threshold
to balance between sensitivity (true positive rate) and
specificity (true negative rate). Two metrics to quantify the
likelihood of obtaining false positives are often used: 1) the
familywise error rate (FWER; the probability of obtaining
at least one false positive in a family of tests) and 2) the
false discovery rate (FDR; the proportion of false posi-
tives among all rejected tests). Bonferroni correction [40],
aiming to control the FWER at a user-specified level,
is the most common approach for multiple comparison
correction. Despite being simple to use, it is very conser-
vative and often reduces detection power. Random field
theory (RFT) [41]—a popular approach for controlling
the FWER in fMRI studies—considers the spatial corre-
lation in the images and appears to be less conservative
than the Bonferroni method. Permutation methods are
nonparametric methods that do not make assumptions
on the data distribution for controlling the FWER. While
they offer substantial improvements in detection power,
especially in small sample sizes, they are very computation-
ally expensive; some recent innovations have been used
to accelerate permutation testing [42]. The FDR [43] is
a newer approach that controls false positives. It is less
stringent than FWER methods and thus has an increased
detection power.

While some imaging genomics studies reviewed here
employ the above-mentioned methods for multiple com-
parison correction, others develop their own strategies for
handling the issues of multiple comparisons and detec-
tion power. For example, Hua et al. [44] proposed two
strategies to handle multiple comparisons and increase the
power of detecting imaging genomics associations. On one
hand, they treated the imaging QTs of the entire brain as
a single multivariate response and used distance covari-
ance to capture the association between all the QTs and
each SNP, which greatly reduced the number of statistical
tests. On the other hand, they proposed a new FDR-based
algorithm that demonstrated an increased detection power
compared with two existing FDR methods.

Another critical challenge in brain imaging genomics
is the relatively small effect size of SNPs on the brain.
Most SNPs account for under 1% of the variance in a
brain QT when considered individually. Thus, the studies
reviewed here all need to address this challenge, and many
of these studies have aimed to develop effective strate-
gies with increased detection power to capture interesting
imaging genomics associations. For example, one strategy
is to reduce the effective number of tests to alleviate the
burden of multiple comparison correction (see targeted
SNP/QT studies discussed in Section III-A). The second
strategy is to measure combined or collective effects of
multiple markers together to increase the detection power
(see studies discussed in Sections III-B–III-E). The third
strategy is to increase the sample size to enable the discov-
ery of individual SNPs with small effect sizes (see studies
discussed in Section IV). The fourth strategy is to apply a
single multivariate model involving all the studied SNPs
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Fig. 2. Example pairwise SNP–QT Associations [37]. Top left: All the pairwise SNP–QT association findings, where blocks labeled with “x”

reach the level of p < 10−6. Bottom left: Manhattan plot for the GWAS results of gray matter density of the right hippocampus (i.e., blue

box). Right: Voxel-based morphometry result of mapping the genetic effect of rs6463843 (in the flanking region of the NXPH1 gene) to the

brain (i.e., red box). Images are reproduced here with permission from Elsevier [37].

and QTs without needing to adjust for multiple testing
(see studies discussed in Sections V and VI).

Before covering more advanced statistical and machine
learning strategies for mining brain imaging genomic
associations in Sections IV–VI, we first review a few
fundamental methods in this section. We start from the
simplest single-SNP–single-QT approaches that search for
pairwise imaging genomics associations on an SNP-by-SNP
and QT-by-QT basis. Next, we discuss strategies using
PRSs, which examine the aggregated effect from a set of
disease-related SNPs on an imaging QT. Then, we go over
basic multi-SNP or multitrait methods, which aims to learn
imaging genomics associations involving either multiple
SNPs or multiple traits. After that, we review enrich-
ment analysis methods that intend to discover high-level
imaging genomics associations related to biological enti-
ties, such as biological pathways, functional interaction
networks, and/or brain circuits (BCs). Finally, we briefly
discuss interaction methods that focus on the exploration
of epistatic effects instead of main effects.

A. Single-SNP–Single-QT Methods

Given a set of genetic markers such as SNPs and a
set of imaging QTs, the simplest and most commonly
used analytical strategy is to perform a pairwise analysis
between each SNP and each QT at the individual marker

level. An SNP takes a value of 0, 1, or 2 (i.e., the genotype
value), indicating the number of minor alleles at the cor-
responding chromosome location. An imaging QT typically
takes a continuous value. A simple linear regression model
can be used to examine the additive effect of the SNP on
the imaging QT. An alternative strategy is to use analysis of
variance (ANOVA), which is similar to linear regression but
ignores the ordering of the genotype values. It examines
the trait mean differences among three genotype groups.
Both the strategies can be used together with hypothesis
testing to obtain a p-value. If multiple pairwise SNP–QT
associations are examined, multiple comparison correction
needs to be performed to identify significant findings.

Fig. 2 shows three major types of SNP–QT analyses.

1) Targeted QT Analyses: The first type is to perform
genetic analysis on one or more targeted imaging
QTs. For example, in Fig. 2, the bottom left (i.e., blue
box) shows the Manhattan plot for the GWAS results
of gray matter density of the right hippocampus.

2) Targeted SNP Analyses: The second type is to examine
the genetic effects of one or more SNPs on all the
imaging QTs across the brain. For example, in Fig. 2,
the right (i.e., red box) shows the voxel-based mor-
phometry (VBM) result of mapping the genetic effect
of rs6463843 (in the flanking region of the NXPH1
gene) to the brain.
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3) Brain-Wide Genome-Wide (BWGW) Analyses: The
third type is to perform massive univariate analyses
for all the possible SNP–QT pairs across the entire
brain and the entire genome. For example, in Fig. 2,
the top left summarizes all the pairwise SNP–QT
association findings (only top findings are shown),
where blocks labeled with “x” reach the level of
p < 10−6. Note that, in [37], p < 10−6 was
explored as a somewhat less stringent threshold to
identify imaging genomics associations showing a
trend toward significance as well as examine cluster-
ing patterns of the corresponding SNP and imaging
QT findings.

In the following, we discuss a few example studies in each
of these three categories.

In one targeted QT study, Stein et al. [45] performed
a genome-wide association study of the bilateral temporal
lobe volume (TLV) as the QT. A linear regression analysis
was conducted at each SNP to examine its genetic effect on
the QT and covaried for age and sex. In another targeted
QT study, Scelsi et al. [46] computed a novel disease
progression score (DPS) from multimodal neuroimaging
data and performed GWAS on it. The DPS was generated
by the GRACE algorithm [47] from the longitudinal cor-
tical amyloid burden and bilateral hippocampal volume,
providing an estimate of how advanced an individual’s dis-
ease progression is in comparison with the cohort average.
A linear regression analysis was conducted at each SNP
to examine its genetic effect on the DPS and covaried for
sex, age at first amyloid scan, education, two principal
components of population structure, and number of APOE
e4 alleles.

In one targeted SNP study, Risacher et al. [48] examined
the effect of the APOE e4 SNP rs429358 on several MRI
and PET imaging QTs. Specifically, the effects of diag-
nosis, APOE e4 carrier status, and their interaction on
regional amyloid deposition, regional glucose metabolism,
hippocampal volume, and entorhinal cortex thickness
were examined using a two-way analysis of covariance
(ANCOVA) and covaried for age and gender. In another
targeted SNP study, Ho et al. [49] examined the effect
of a commonly carried allele of the obesity-related FTO
gene on regional brain volume measures captured by MRI.
Specifically, the general linear model was used to evaluate
the relation of the imaging QT at each voxel to the SNP
rs3751812 controlling for age and sex.

In one BWGW study, Shen et al. [37] used a BWGW
approach to investigate genetic effects on imaging QTs.
The studied QTs included 56 volumetric and cortical thick-
ness measures and 86 local gray matter density values
for regions of interests (ROIs) across the entire brain.
These imaging QTs were preadjusted to remove the effects
of age, gender, education, handedness, and incracranial
volume (ICV). A linear regression analysis was conducted
at each SNP to examine its genetic effect on each QT.
In another BWGW study, Stein et al. [57] performed the

first voxel-based GWAS analysis. Using TBM to define
imaging QTs, they examined genome-wide association at
each voxel. A linear regression analysis was conducted at
each SNP-by-voxel pair to examine the SNP genetic effect
on each voxelwise QT and covaried for age and sex.

Although a voxelwise GWAS enables the examination
of imaging genomics associations at the finest resolution,
it is facing a major computational challenge, given the
huge number of univariate SNP–QT associations to test.
To overcome this challenge, Huang et al. [50] proposed
a fast voxelwise GWAS (FVGWAS) framework to facilitate
efficient BWGW study at the voxel level. FVGWAS employs
three components to achieve this goal. The first component
is a heteroscedastic linear model that allows a very flexible
covariance structure suitable for voxelwise imaging QTs.
The second component is a global sure independence
screening (GSIS) procedure [51] that can greatly reduce
the search space size from NsNv to ∼ N0Nv for N0 � Ns.
Here, Ns is the number of SNPs and Nv is the number
of voxels. The third component is a detection procedure
based on wild bootstrap methods which is computationally
cheap due to no involvement of repeated analyses of simu-
lated data sets. As a result, for standard linear association,
the computational complexity of FVGWAS is O((Ns +

Nv)n2), outperforming O(nNvNs) for standard voxelwise
GWAS [45], where n is the number of subjects. FVGWAS is
available at https://www.nitrc.org/projects/fvgwas/.

One issue related to imaging genomics is that most
GWAS studies (e.g., ADNI) are based on a case-control
design, and the data are typically a biased sample of the
target population. Directly correlating imaging QTs (as sec-
ondary traits) with genotype may lead to biased inference
generating misleading results. Kim et al. [52] compared
the standard linear regression model and disease status
adjusted linear model with two models adjusting for biased
case-control sample (i.e., inverse probability weighted
regression [53] and retrospective likelihood [54]) on the
analysis of ADNI data. Zhu et al. [55] completed a sim-
ilar systematic evaluation of the biased sampling issue
using both simulation and ADNI data. They compared
the standard linear regression model and disease status
adjusted linear model with two models adjusting for biased
case-control sample (i.e., retrospective likelihood [54]
and reparameterization of conditional model in [56]).
Although the standard linear analysis was found to be
generally valid on the ADNI data in [52], simulation
studies in [55] showed that linear regression models with-
out adjusting for biased sampling demonstrated severely
inflated Type I error rates in some cases. In general,
caution should be taken while analyzing imaging QT data
as secondary phenotypes in case-control studies.

Table 1 summarizes the studies discussed earlier, where
pairwise SNP–QT associations are examined on an SNP-
by-SNP and QT-by-QT basis. These single-SNP–single-QT
methods are simple and straightforward. The findings
discovered by these methods are easy to interpret since
each resulting association involves only one SNP and one
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Fig. 3. Example flowchart to calculate a PRS and apply it to brain imaging genomics studies. Step (i) is optional, where various strategies

can be used to calculate a set of candidate PRSs (e.g., by exploring a few p thresholds [61], [62]) and pick the PRS best associated with the

target phenotype [see (h)] as the final PRS [see (j)]. See the main text for more details.

Table 1 Example Studies Using Single-SNP–Single-QT Methods, Where

Pairwise SNP–QT Associations Are Examined on an SNP-by-SNP and

QT-by-QT Basis

QT. Given the high dimensionality of both imaging and
genomic data, studies examining a massive number of
SNP–QT associations may face major computational and
statistical challenges. In addition, multivariate associations
involving multiple SNPs or multiple QTs will not be able to
be identified by these methods.

B. Polygenic Risk Scores

One approach to identify imaging genomics associations
involving multiple SNPs is to use a PRS [58]. A PRS cap-
tures the aggregate genetic effect from a set of trait-related
SNPs that may not achieve significance at the individual
level but collectively may explain a substantial portion of
the trait variance. It is often calculated as the sum of their
genotype values weighted by their effect sizes on a base
phenotype (e.g., case-control status). Dima and Breen [59]
reviewed the usefulness and applications of PRSs in imag-
ing genetics. Chasioti et al. [60] reviewed recent progress
in PRS in AD and other complex disorders. The cohorts
with both brain imaging and genetics data are often much
smaller than those designed for large GWAS. A PRS can

typically be calculated based on using the SNP-based effect
sizes from large GWAS on a base diagnostic phenotype to
make full use of the power of the large sample. After that,
it can be applied to small samples with imaging data to
examine its association with interesting imaging QTs.

Fig. 3 shows an example flowchart to calculate a PRS
and apply it to brain imaging genomics studies. First,
using the summary statistics from an independent GWAS
(often a large-scale landmark study) on a base phenotype
[see Fig. 3(a)], a set of SNPs associated with the base phe-
notype can be obtained using a user-specified p threshold
[see Fig. 3(b)]. Second, LD clumping is often performed
to select the most significant SNP from each clumped
region to form a set of independent loci named index SNPs
[see Fig. 3(c)]. Third, using the effect sizes of index SNPs
from the summary statistics data [Fig. 3(d)] and individ-
ual SNP data [see Fig. 3(f)] from the studied imaging
genomics cohort [see Fig. 3(e)], one can calculate a PRS
that is the sum of genotype values of index SNPs weighted
by their effect sizes on the base phenotype [see Fig. 3(g)].
While this PRS can directly be used, some studies (see [61]
and [62]) perform an optional step [see Fig. 3(i)] to
calculate a set of candidate PRSs by exploring a few p

thresholds and then pick the PRS best predicting the target
phenotype [see Fig. 3(h)] as the final PRS using several
strategies described next. Finally, the effect of the resulting
PRS on interesting imaging phenotypes can be examined
[see Fig. 3(l)].

Scelsi et al. [46] performed a PRS study on a novel
image-based DPS discussed in Section III-A, using a work-
flow similar to that shown in Fig. 3. They obtained index
SNPs and their effect sizes using the large AD GWAS
conducted by the International Genomics of Alzheimer’s
Project (IGAP) [63]. Instead of computing one PRS, they
calculated 15 PRSs by exploring 15 p thresholds in the
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Table 2 Example Studies Using PRSs for Brain Imaging Genomics. A PRS

Summarizes the Aggregate Effect From an Ensemble of SNPs Related

to a Base Phenotype. The Effect of the PRS Is Examined on Interesting

Imaging QTs

range of 0.95–10−5. They identified only one PRS with p

threshold of 10−4, which is significantly associated with
the image-based DPS.

Mormino et al. [61] performed a PRS study on
MRI-derived hippocampal volume using the workflow
shown in Fig. 3. They used the IGAP GWAS summary sta-
tistics to obtain the index SNPs and their effect sizes. They
explored a dozen p thresholds ranging from 5 × 10−8 to
0.05 to generate multiple PRSs. The final PRS was selected
as the one best differentiating clinically normal (CN) and
AD participants in ADNI-1 sample. This PRS was found to
be associated with hippocampal volume for ADNI-1 sample
without dementia.

Sabuncu et al. [62] performed a PRS study on cortical
thickness measures. They used the summary statistics from
another large-scale GWAS in AD [64] to obtain the index
SNPs and their effect sizes. They further screened these
SNPs using five different thresholds based on the genetic
association results on a subset of ADNI data containing
only CN and AD participants to create five different PRSs.
The PRS with the highest correlation with Mini-Mental
State Examination (MMSE) score and Clinical Dementia
Rating Sum of Box (CDR-SB) score and strongest associa-
tion with AD diagnosis was used in the subsequent imaging
genomic analyses on a nonoverlaping ADNI sample con-
taining only CN subjects. This PRS was identified to be
associated with AD-specific cortical thickness.

Tan et al. [65] studied a similar problem on developing
a polygenic hazard score (PHS) instead of PRS. They used
the IGAP GWAS summary statistics to identify a set of
SNPs with p < 10−5. They evaluated these SNPs using
the Alzheimer’s Disease Genetics Consortium (ADGC)
Phase 1 data. Using a stepwise Cox proportional hazards
model, they identified 31 top SNPs and formed a PHS [66].
This PHS was applied to the ADNI data and found to
be associated with ADNI imaging phenotypes, such as
regional amyloid burden using Amyloid-PET and regional
volume loss using MRI.

Euesden et al. [67] presented PRSice, a software tool
for generating PRS. It takes GWAS summary statistics on a
base phenotype and genotype data on a target phenotype
and returns a PRS for each individual. It calculates PRS at
multiple p thresholds and can select the most predictive
one. The software is available at http://prsice.info/.

Table 2 summarizes the studies described earlier. A PRS
captures the aggregate effect from an ensemble of SNPs

related to a base phenotype. In disease-relevant brain
imaging genomics studies, examining the effect of a PRS
instead of each individual SNP on imaging QTs has great
potential to increase statistical power as well as gain mean-
ingful insights into the biological mechanism from genetic
determinants to brain endophenotypes and to disease sta-
tus. However, there is also some discussion in recent litera-
ture regarding potential limitations in PRS-based analyses.
For example, bias toward the reference population was
observed in [68]. Specifically, the generalizability of a
PRS across different populations appeared to be limited.
Greater diversity should be prioritized to realize the full
potential of PRS. In addition, statistical power differences
across diseases and cohorts were also observed in [69].
Several factors could limit the power of a PRS. One factor
could be the cohort difference between the base and the
target GWAS. Another factor could be limited sample sizes
of available data for certain diseases, in particular for het-
erogeneous disorders that can be stratified into different
subtypes with even smaller sample size in each group.

C. Multi-SNP Methods

A single-SNP analysis is often limited by the modest SNP
effect sizes. Multi-SNP methods examine a joint effect from
a set of SNPs on a phenotypic trait. It has enormous poten-
tial to improve the power of genetic association studies and
identify polygenic or multilocus mechanisms for complex
diseases. There are several categories of multi-SNP analysis
strategies. The first category focuses on the joint analysis
of a set of targeted SNPs based on the prior knowledge. For
example, one approach is to analyze a PRS involving top
SNPs from an independent GWAS, as previously described
in Section III-B. Another approach is to analyze a set
of disease-related SNPs from the literature (see [70]).
The second category is to perform GWAS at the gene level
instead of the SNP level, where the aggregate effect of
all the SNPs within each gene on the target phenotype
is examined to increase statistical power (see [71]–[73]).
The third category employs the data-driven strategies to
automatically identify relevant SNPs from either the entire
genome or a set of candidate SNPs [74]. In the following,
we discuss a few example studies using these strategies.
Section VI will cover additional studies using the third
category of strategies.

Apostolova et al. [70] examined the top 20 AD SNPs and
their joint effect with brain amyloidosis in an ADNI sample,
including 322 CN, 496 mild cognitive impairments (MCIs),
and 159 AD participants. Stepwise multivariate linear
regression was used to examine the association between
joint exposure of 20 AD risk alleles and mean amyloid
burden from florbetapir PET scans while controlling for
age, sex, and APOE e4 status. Voxelwise 3-D stepwise
regression was also used to map the genetic effect onto the
brain. The study identified an association between several
AD SNPs and brain amyloidosis.

Hibar et al. [71] extended the SNP-based voxelwise
GWAS (vGWAS) method [45] to a gene-based voxelwise
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GWAS (vGeneWAS) method. It was demonstrated on a
BWGW study using the same ADNI sample. The joint effect
of SNPs within each gene on each voxel was examined
using a multiple partial-F test while controlling for age
and sex. To address the SNP colinearity issue, a principal
component analysis (PCA) was performed on the SNPs
within each gene. The “eigenSNPs” capturing the first 95%
data variance were then used in the multiple partial-F tests.
This method can be thought of as a variant of principal
component regression (PCReg) [75].

Ge et al. [72] further extended vGWAS and vGeneWAS
to a new SNP-based GWAS or vGeneWAS framework with
increased power and demonstrated it on a BWGW study
using the same ADNI sample. This method includes three
new methodological contributions. The first one is a fast
implementation of voxelwise and clusterwise inferences
using an RFT to improve statistical power via embrac-
ing the spatial correlation in the images. The second
one is a multilocus model based on least-square kernel
machines (LSKMs) to evaluate the joint effect of multi-
ple SNPs within each gene on each voxelwise QT. The
multilocus method employs a semiparametric regression
model [76], where the covariate effects on the QT are
modeled linearly and parametrically and the SNP effects
on the QT are modeled nonparametrically using the LSKM
approach. This method allows for revealing nonlinear
effects introduced by the interaction among SNPs. The
third contribution is a fast permutation procedure that
uses a parametric tail approximation to provide accurate
p estimations in an efficient manner.

Xu et al. [73] proposed a new method called imaging-
wide association study (IWAS), which was inspired by
transcriptome-wide association study (TWAS) [77]. It aims
to integrate imaging QTs with GWAS to improve statistical
power and biological interpretation. It is a gene-based
approach and has two steps involving two sets of GWAS
data, respectively: 1) the reference GWAS data containing
imaging QTs and 2) the main GWAS data containing target
phenotype such as disease status. In the first step, which
analyzes the reference GWAS data, for each gene, IWAS
estimates a set of SNP weights via regressing an imaging
QT on all the SNPs. In other words, it builds a prediction
model for the genetic component of the imaging QT. In
the second step, which analyzes the main GWAS data,
IWAS uses the weights learned in the first step to calculate
a weighted genotype score for each gene and examines its
association with the target phenotype. Using the strategies
described in [78] and [79], IWAS can also be applied to
the main GWAS data containing only summary statistics. In
short, IWAS uses an imaging QT to construct weights for a
weighted gene-based GWAS test. The gene-based method
reduces the number of tests and boosts statistical power.
Also, computing gene scores via extracting genetically con-
trolled components of an imaging QT provides potential
opportunities to help interpret GWAS findings.

The above-mentioned studies developed or employed
methods to examine the association between one SNP

Table 3 Example Studies Using Multi-SNP Methods, Where Multi-SNP–

Single-QT Associations Are Examined

set and one QT. Lu et al. [74] proposed a method for
examining joint association mapping between a large num-
ber (e.g., 105) of SNP sets and a QT. Here, the SNP
sets can be defined by LD blocks or genes so that mul-
tiple SNPs can be combined to increase detection power.
A linear mixed-effects model was proposed to simulta-
neously regress a QT on a large number of SNP sets.
This model has the potential to further increase detec-
tion power via: 1) incorporating the correlation among
SNP sets and 2) greatly reducing the burden of multiple
comparison correction. A Bayesian latent variable selec-
tion procedure was proposed to select significant latent
variables. An efficient Markov chain Monte Carlo (MCMC)
algorithm was proposed to reduce the complexity of major
computationally intensive steps in MCMC iterations. The
empirical studies were performed on the ADNI sample to
identify associations between a few imaging QTs and a
number of SNP sets defined by LD blocks and genes, and
yielded promising results.

Table 3 summarizes the studies described earlier, which
are designed to identify multi-SNP–single-QT associations.
Compared with single-SNP methods, examining the joint
effect of an SNP set on an imaging QT can potentially
increase statistical power and identify multilocus or poly-
genic mechanisms for complex brain phenotype. In addi-
tion, the SNP sets are often defined by LD blocks, genes,
pathways, known trait-associated variants, or other prior
knowledge, which may offer meaningful biological insights
for interpreting multi-SNP discoveries.

D. Multitrait Methods

Similar to multi-SNP methods, multitrait methods pro-
vide an alternative means to increase detection power
compared with single-SNP–single-trait analyses. There are
several classical strategies to perform multivariate trait
analysis, as nicely summarized in [80]. One approach is
to first conduct univariate analysis on each trait and then
combine their results [81]. For example, a typical strat-
egy is to select the SNP with the minimum p-value with
multiple comparison correction. The second approach is to
perform dimensionality reduction on the traits and then
apply univariate analysis on a small number of extracted
trait features. These features could simply be the aver-
age trait or first a few components from PCA [82] or
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canonical correlation analysis (CCA). The third approach
is to employ classical multivariate analysis methods, such
as multivariate analysis of variance (MANOVA) [83] and
generalized least squares (GLS) [84], [85]. In the fol-
lowing, we discuss a few recently proposed methods for
performing multitrait analyses in brain imaging genomics.

Zhang et al. [80] proposed a set of new testing methods
for identifying single-SNP–multi-QT associations under the
framework of generalized estimation equations (GEEs)
[86]. They tried to address the challenge that in multi-QT
analyses, there is a lack of a uniformly powerful test. For
example, given a QT set, if very few QTs are associated
with the target SNP, selecting the QT with minimum p

from a set of univariate SNP–QT analyses could be more
powerful. On the other hand, if most of the QTs are asso-
ciated with the SNP, doing a univariate analysis between
the average QT and the SNP could be more powerful. With
this observation, under the GEE framework, they proposed
the SPU(γ) tests (i.e., the sum of powered score (U)
tests) for a series of values of γ = 1, 2, . . . ,∞, where a
larger γ value tends to put higher weights on QTs with
stronger associations with the SNP. As a result, SPU(∞)

corresponds to the minimum p strategy and SPU(1) cor-
responds to the average QT strategy. Based on this, they
also proposed adaptive SPU (aSPU) test. The aSPU test
statistic is defined as the minimum p among all the SPU
tests TaSPU = minγ∈Γ PSPU(γ). In other words, aSPU was
designed to be an adaptive method that automatically
performs data-driven weights’ adjustment and selects the
most powerful weighted test from all these candidates.
The empirical study was performed on an ADNI sample to
pairwisely associate 20 candidate SNPs to a few imaging
QT sets, and the proposed aSPU method outperformed
various competing methods.

Kim et al. [87] further extended the aSPU test to a new
test that can identify associations involving multiple SNPs.
While aSPU searches for single-SNP–multi-QT associations,
the new test is designed to identify multi-SNP–multi-QT
associations. Similarly, under the GEE framework, they
proposed the SPU(γ1, γ2) tests (i.e., an extension of SPU(γ)

to accommodate both multiple QTs and multiple SNPs) for
a series of values of γ1 = 1, 2, . . . ,∞ and γ2 = 1, 2, . . . ,∞.
Here, a larger γ1 value tends to put higher weights on QTs
with stronger associations with the SNPs, and γ2 tends
to put higher weights on SNPs with stronger associations
with the QTs. Based on this, they also proposed the aSPU
test for an SNP set (aSPUset). The aSPUset test statistic
is defined as the minimum p among all the SPU tests
TaSPUset = minγ1∈Γ2,γ2∈Γ2 PSPU(γ1,γ2). Clearly, aSPUset
is an extension of aSPU to identify multi-SNP–multi-QT
associations using the same adaptive method that
automatically performs data-driven weights’ adjustment
and selects the most powerful weighted test from all these
candidates at both the SNP and trait levels. It has the
benefit of measuring the collective effects of multiple SNPs
for an increased detection power. The empirical study
was performed on an ADNI sample to perform gene-based

SNP-set GWAS of 12 imaging QTs within human brain
default mode network (DMN). The aSPUset method
outperformed competing methods, including aSPU, and
identified a new gene AMOTL1 not detected by other
SNP-based methods.

Kim et al. [88] proposed a similar aSPU test for single-
SNP–multi-QT associations using a proportional odds
model (POM). Most methods for mining single-SNP–multi-
QT associations treated QTs as a response and the SNP
as a predictor. In this approach, they treated the SNP as
an ordinal response and multiple QTs as predictors and
developed a similar aSPUtest under a POM framework
instead of the GEE framework used in [80]. Compared
with the GEE-based aSPU, the POM-based aSPU has two
advantages: 1) it is easier to handle mixed types of
traits (e.g., binary and quantitative) and 2) it can handle
high-dimensional setting (e.g., QT number is greater than
sample size). The empirical studies on ADNI data were
performed to identify SNP-based genetic associations with
two imaging QT sets: one containing 12 MRI-based QTs
related to DMN, and the other containing functional brain
connectivity network data among 18 ROIs. Compared with
competing methods such as the GEE-based aSPU, the POM-
based aSPU performed similarly in both studies that have
a low-dimensional setting.

Hua et al. [44] proposed a brain imaging GWAS
method on identifying single-SNP–multi-QT associations.
The method includes a few components to improve detec-
tion power. First, they pooled voxel-level measures into
119 ROI-level QTs for reducing both dimensionality and
voxel-level noises. Second, they treated the imaging QTs of
the entire brain as a single multivariate response and used
distance covariance to capture the association between all
the QTs and each SNP. This approach could reduce the
number of statistical tests and simultaneously embrace ROI
interaction effects. Third, they proposed a new FDR-based
algorithm for multiple testing adjustment, named local
FDR modeling. Empirical study was performed on an ADNI
sample to identify SNPs associated with 119 QTs from the
entire brain.

Huang et al. [89] proposed a new functional
GWAS (FGWAS) method for efficiently performing whole
genome analysis of high-dimensional imaging QTs. First,
instead of doing a univariate analysis to each SNP and each
QT, they treated all the imaging QTs as a single functional
response measured in the brain space. They proposed a
multivariate varying coefficient model (MVCM; a function-
on-scale model) to fit all the imaging QTs (as a functional
phenotype) with each SNP via embracing key features
of a functional phenotype, including spatial smoothness,
spatial correlation, and low-dimensional representation.
Second, they introduced a GSIS procedure based on global
test statistics [51]. This approach selects NG0 important
SNPs and greatly reduces the genomic search space size
from NG to ∼ NG0 for NG0 � NG. Third, they developed
an efficient divide-and-conquer algorithm for performing
multiple comparisons and achieved a substantial perfor-
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Table 4 Example Studies Using Multitrait Methods, Where Single-SNP–

Multi-QT or Multi-SNP–Multi-QT Associations Are Examined

mance gain on computational time and memory. It can
handle functional phenotypes, such as 1-D curves, 2-D
surfaces, and 3-D images. The empirical study on an ADNI
sample was performed to identify genetic associations
with functional QTs on hippocampal surfaces and yielded
promising results.

Table 4 summarizes the studies discussed earlier, which
are designed to identify multi-QT associations with one or
more SNPs. Example strategies for performing multi-QT
analyses in recent brain imaging genomics studies include
adaptive sum of powered score test to identify the most
powerful weighted QT score, distance covariance between
QT set and each SNP to reduce the number of tests and
incorporate interaction effects among QTs, and modeling
all the QTs as a single functional response to embrace
spatial smoothness and correlation as well as low-rank rep-
resentation. Compared with single-trait methods, multi-QT
genetic association analysis has the potential to not only
improve detection power but also reveal complex imaging
genomics associations involving multiple contributing QTs.

E. Pathway and Network Enrichment Methods

Pathway and network analyses are routinely used in
genomic studies [91]. Analyzing genomic data through
sets defined by biological pathways and functional
interaction networks offers enormous potential to increase
statistical power and translate genomic findings into mean-
ingful biological hypotheses. For example, if we define an
SNP set using a pathway of interest, we can employ the
multi-SNP methods reviewed in Section III-C to examine
the joint effect of this pathway-based SNP-set on any trait.
Most of these multi-SNP methods use a single multivariate
learning model to relate multiple SNPs to a trait. Here,
we review another category of popular methods called
enrichment analysis, which are widely used in the pathway
and network analysis of GWAS findings. Different from
the multi-SNP methods discussed earlier, an enrichment
analysis typically involves two steps: 1) conduct SNP- or
gene-based GWAS on a trait and 2) perform pathway or
network enrichment analysis of the GWAS findings.

One type of enrichment analysis method is
threshold-based (e.g., hypergeometric test or Fisher’s exact

test) and is used to identify pathways or subnetworks
that are overrepresented by the “significant” GWAS hits.
Another type of enrichment analysis method is rank-based
(e.g., GSEA-SNP [92]) and uses a Kolmogorov–Smirnov-
like running sum to quantify the degree to which
a pathway- or network-derived gene set (GS) is
overrepresented at the top of the gene list ranked by
the GWAS results. These analyses are of high significance.
They can identify pathways and networks related to
imaging QTs or disease outcomes, which can potentially
serve as the foundation for the development of diagnostic,
therapeutic, and preventative approaches for complex
brain disorders. In the following, we review a few example
studies using pathway and network enrichment methods.

Ramanan et al. [93] performed a genome-wide path-
way analysis of memory impairment on an ADNI sample.
A composite memory measure was computed from the
ADNI neuropsychological test battery and used as the QT
in this study. GWAS was performed on this QT but did not
yield any significant findings after multiple testing adjust-
ments. A subsequent genome-wide pathway analysis was
then conducted through applying GSA-SNP software [94]
to the GWAS result and identified 27 significantly enriched
canonical pathways after FDR correction. The resulting
pathways include memory-related signaling pathways and
pathways related to cell adhesion, neuronal differentiation
and outgrowth, or inflammation. These results indicate
that the pathway enrichment analysis could not only offer
increased detection power but also yield valuable biologi-
cal information to help mechanistic understanding.

Yao et al. [95] expanded the scope of enrichment analy-
sis from GWAS to voxelwise brain imaging studies and
proposed a framework for mining regional imaging genetic
associations via voxelwise enrichment analysis. The main
idea was to treat an ROI as a set of voxels similar to a
pathway as a set of SNPs or genes in the genomic studies.
A post hoc enrichment analysis was performed on the
voxelwise statistics to identify ROIs overrepresented by the
top voxel findings. Fisher’s exact test for independence was
used to calculate the enrichment p-value for each ROI. The
existing ROI-based methods often collapse the voxel mea-
sures into a single value (e.g., the average) and may have
limited power when only weak signals exist in part of an
ROI. The enrichment-based strategy can properly address
this challenge. The empirical study was performed on an
ADNI sample to evaluate pairwise associations between
19 AD candidate SNPs and FDG-PET imaging QTs from
116 ROIs across the entire brain. The proposed enrich-
ment method outperformed traditional ROI and voxelwise
approaches and identified a number of new significant
associations. Some of these new findings were supported
by evidences from tissue-specific brain transcriptome data.

Yao et al. [90] expanded the scope of enrichment analy-
sis from GWAS to brain imaging genomics studies. They
proposed a new 2-D enrichment analysis paradigm, called
imaging genetic enrichment analysis (IGEA). IGEA jointly
considers meaningful GSs and BCs and aims to identify
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Fig. 4. IGEA framework proposed in [90]. Images are reproduced here from a Springer open-access article [90].

GS-BC pairs overrepresented by SNP–QT findings from
BWGW imaging genetic association study. To demonstrate
the IGEA framework, they used the whole-brain transcrip-
tome data from the Allen Human Brain Atlas (AHBA) [96]
to construct GS and BC modules so that, within each
module, genes share similar expression patterns across
ROIs and ROIs share similar expression patterns across
genes. Fig. 4 shows the IGEA workflow: (A) perform
SNP-level GWAS of brain-wide imaging QTs, (B) map
SNP-level GWAS findings to gene-level summary statistics,
(C) construct gene–ROI expression matrix from AHBA
data, (D) construct GS-BC modules by performing 2-D
hierarchical clustering on gene–ROI expression matrix and
then filter out 2-D clusters with an average correlation
below a user-given threshold, (E) perform IGEA by map-
ping gene-based GWAS findings to the identified GS-BC
modules, and (F) for each enriched GS-BC module, exam-
ine the GS using gene ontology (GO) terms [97], Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
[98], and Online Mendelian Inheritance in Man (OMIM)
disease databases (https://omim.org/), and map the BC
to the brain. The empirical study using the brain tran-
scriptome data from AHBA and brain imaging genetics
data from ADNI identified 25 significant high-level GS-BC
modules and showed the promise of IGEA on revealing
high-level imaging genomics associations.

Similar to pathways, biological networks are also valu-
able prior knowledge that can assist GWAS to identify
meaningful high-level genomics associations with a tar-
get phenotype. For example, network-based GWAS aims
to identify phenotype-associated modules from biological
networks [100]. This high-level association evaluates the
collective effect of all the SNPs/genes within the net-
work module on the phenotype and thus provides not
only increased detection power but also meaningful bio-

logical interpretation. Yao et al. [99] proposed a mod-
ule detection method for brain imaging genomics studies
using tissue-specific biological networks. Fig. 5 shows its
workflow. First, GWAS is performed on a target imaging
QT. Second, the GWAS results are reprioritized using the
NetWAS approach [101]. NetWAS couples machine learn-
ing methods [e.g., support vector machines (SVMs) and
ridge regression] with a tissue-specific functional interac-
tion network [102] (specific to the imaging QT in our
case) to rerank the GWAS results. Using network topology
information, SNPs connected to more top findings tend
to be pushed more toward the top of the reranked list.
As a result, the top reprioritized findings tend to be more
densely connected than the top findings in the original
GWAS. Thus, the third step is to identify densely connected
modules using only interactions among these top repri-
oritized findings. Finally, enrichment analysis is applied
to these modules to identify the ones overrepresented
by the original GWAS findings. The empirical study was
performed on an ADNI sample to identify modules related
to the mean FDG-PET measure in amygdala and yielded
promising results.

Table 5 summarizes the studies discussed earlier, which
are designed to detect high-level imaging genomic associ-

Table 5 Example Studies Using Pathway and Network Enrichment Meth-

ods, Which Aim to Detect High-Level Imaging Genomic Associations

Related to Pathways, Networks, or BCs
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Fig. 5. Workflow for identifying functional interaction modules from the tissue-specific network using imaging GWAS findings. Images are

reproduced here with permission from Oxford University Press [99].

ations related to pathways, networks, or BCs. The brain
imaging genomics studies usually apply the standard
enrichment methods widely used in the genomic domain,
including both threshold- and rank-based approaches.
In addition to these enrichment calculation methods, var-
ious related strategies have been proposed to address
specific issues in brain imaging genomics. For exam-
ple, the enrichment analysis can be transferred from
the genomic domain to the imaging domain to perform
an ROI enrichment analysis based on voxelwise find-
ings [95]. It can also be extended to 2-D IGEA to mine
high-level imaging genetic associations based on mas-
sive BWGW SNP–QT results [90]. In addition, given the
recent availability of tissue-specific networks, the imaging
GWAS-based module identification can be extended to use
the functional interaction network specific to the studied
imaging QT (i.e., tissue from the corresponding brain
region) [99]. In sum, the enrichment methods examine
the collective effect of an SNP/GS, a QT set, or both,
and have the potential to increase detection power. Also,
the examined SNP or QT sets correspond to functionally
annotated biological entities and may provide valuable
insights into underlying mechanisms.

A topic relevant to enrichment analysis is prioritization.
Enrichment analysis is typically performed at the end of the
analysis pipeline (e.g., as a post-hoc analysis of the GWAS
findings). Prioritization takes a reverse approach where
valuable prior knowledge, such as pathway and network
information, is used to select a small set of genes for the
subsequent analyses. For example, Patel et al. [103] used
GO [97] to build a biological process network associated
with 21 AD seed genes from [63] and then performed
imaging genetic analyses targeting at all the genes in the
network. Lorenzi et al. [104] used the GTEx database
(https://gtexportal.org/) to screen candidate SNPs gen-
erated from the imaging genetic analysis of a discovery

sample for obtaining potential expression QT loci (eQTL)
and then performed another imaging genetic analysis tar-
geting only these prioritized loci in an independent sample.
Grothe et al. [105] used Amyloid-PET and MRI scans to
compute brain-wide spatial patterns of AD-typical amy-
loid deposition and neurodegeneration and then used the
whole-brain gene expression database AHBA [96] to rank
and prioritize genes based on their spatial correlation with
the above-mentioned amyloid burden and neurodegenera-
tion patterns. In short, the strength of gene prioritization
is twofold: 1) it reduces the burden of multiple testing
and has the potential to increase detection power and
2) the valuable functional annotation knowledge used for
prioritization can help with biological interpretation and
alleviate the risk for false discoveries. On the other hand,
we should also be cautious about its possible limitations,
such as bias associated with the reference atlas or prior
knowledge used for prioritization and difficulty in updat-
ing findings according to the evolution of these valuable
resources. Finally, in addition to enrichment analysis and
prioritization, the pathway and network information can
also be incorporated into advanced statistical and machine
learning models to guide our search for more complicated
imaging genomics associations (see [106]–[108]), which
will be discussed in Sections V and VI.

F. Interaction Methods

Most brain imaging genomics association studies exam-
ine the main effects of genetic variants on imaging QTs.
It is well known that these main effects can only explain a
portion of heritability of the studied QTs. Missing heritabil-
ity can often be attributed in part to the interaction effects
(or epistatic effects) within genetic variants or between
the genetic and environmental factors. These studies are
facing major statistical and computational challenges since
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an exponentially increasing number of possible tests (to
the order of the interaction) significantly reduce the statis-
tical power due to multiple comparison correction. Thus,
a major topic in epistatic studies is to find an effective
search strategy to reduce computational time and increase
statistical power. In the following, we review a few exam-
ple studies exploring the effects of SNP–SNP interaction or
SNP–environment interaction on imaging QTs.

Zieselman et al. [109] presented a bioinformatics
pipeline for the epistatic analysis of an MRI-based QT
(i.e., mean gray matter density) using an ADNI sample.
The pipeline employed two phases to dramatically reduce
the search space. Phase I was focused on identifying a set
of genes with significant SNP–SNP interactions, where the
quantiative multifactor dimensionality reduction (QMDR)
method [110] was used to examine the SNP–SNP inter-
action effect on the QT within each gene; 20 genes with
34 SNPs were identified. In Phase II, these genes were
uploaded to the Integrative Multispecies Prediction (IMP)
webserver (http://imp.princeton.edu; see [111]) to create
a gene interaction network that incorporates the prior
functional genomics knowledge. Up to 20 additional genes
connected to the input genes with high confidence were
allowed to be added to the IMP network. Ten genes (six
original + four additional) with ten SNPs were identified.
Finally, QMDR was used to examine all pairwise, three-
way, and four-way SNP–SNP interactions among these ten
SNPs. The most significant finding is a three-way interac-
tion, including two SNPs within the olfactory gene cluster
and one TRPC4 SNP. The goal of this study was to use
the existing knowledge to reduce the possibility of false
positives instead of identifying all possible interactions
which is a much harder task to accomplish.

Meda et al. [112] performed a genome-wide interaction
analysis (GWIA) of MRI-based atrophy measures in the
hippocampus and entorhinal cortex using an ADNI sam-
ple. Their strategy to reduce the number of tests was to
examine 151 million SNP pairs based on the gene–gene
interaction patterns in the KEGG pathway database. Linear
regression implemented in the INTERSNP software [113]
was used to identify epistatic effects while controling for
sex, age, education, APOE e4, and clinical status. They
identified 109 SNP–SNP interactions for right hippocam-
pal atrophy and 123 for right entorhinal cortex atrophy.
These findings were overrepresented in several interesting
pathways, including the calcium signaling, axon guidance,
and ErbB signaling pathways.

Hibar et al. [114] performed a GWIA of MRI-based
TLV using an ADNI sample. The EPISIS software [115]
was employed to screen all possible SNP pairs based on
a machine-learning algorithm called sure independence
screening (SIS) [51]. SIS is a screening method that evalu-
ates the correlation strength between each SNP pair and
the outcome and selects the most associated SNP pairs.
In this study, 111 SNP–SNP interaction pairs were obtained
after SIS screening. All these interaction terms were then
included in a single ridge regression model, where the

extended Bayesian information criterion (BIC) [116] was
used to identify the most relevant SNP pairs. This study
identified a significant interaction between rs1345203 and
rs1213205.

Ge et al. [117] presented a kernel machine
method (KMM) to evaluate the main and interaction
effects among multiple genetic and nongenetic variable
sets on an imaging QT. Their model includes three separate
kernels. The first one is a genetic kernel to measure the
epistatic and joint effect of an SNP set on an imaging
QT. The SNP sets can be defined by haplotype structure,
gene, or pathway. The second one is a nongenetic kernel
to measure the collective effect of multiple nongenetic
factors. The third one is the Hadamard product of the
above-mentioned two kernels to examine their interaction
effect. Using an ADNI sample, they applied KMM to
explore the interaction effects between each of 21 AD
candidate genes and six cardiovascular disease (CVD) risk
factors on MRI-based hippocampal volume. Two genes,
CR1 and EPHA1, were identified to have such interaction
effects with the CVD risk factors.

Wang et al. [118] proposed a set-based mixed effect
model for gene–environment interaction (MixGE) on imag-
ing QT. They reviewed major set-based association tests
and grouped them into five categories: 1) burden tests
(collapsing variants into a burden score); 2) adaptive
burden tests (burden tests using data-adaptive weights);
3) variance component tests (examining variance of
genetic effects); 4) combined tests; and 5) exponential
combination tests (both combining burden and variance
component tests). Their work is an extension of a com-
bined test named mixed-effects score test (MiST) [119] to
examine the gene–environment (G × E) effect on imaging
QTs. The proposed MixGE method models both fixed and
random effects of G × E and examines homogeneous and
heterogeneous contributions from an SNP set and their
interaction with environmental factors on an imaging QT.
They employed score statistics instead of direct parameter
estimation to accelerate the computation, which enabled
the voxelwise analyses. Similar to [117], the empirical
study was performed on the same ADNI sample to explore
the interaction effects between each of 21 AD candidate
genes and the first principal component of six CVD risk
factors on hippocampal volume and voxelwise TBM data.
The analysis on the hippocampal volume replicated the
results of KMM [117]. The analysis on the TBM data
suggested an interaction effect of ABCA7 gene and CVD
risk on right superior parietal cortex.

Table 6 summarizes the studies discussed earlier, which
are designed to examine the epistatic effects of genetic
variants or their interaction effects with nongenetic factors
on brain imaging QTs. Given the major statistical and com-
putational challenges induced by an enormous number of
possible tests, studies in the field typically employ various
strategies to reduce the search space. For example, one
strategy is to examine only a small set of candidate inter-
actions with a potential biological mechanism suggested
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Table 6 Example Studies Using Interaction Methods, Which Aim to

Examine Epistatic Effects of Genetic Variants or Their Interaction Effects

With Nongenetic Factors on Imaging QTs

by functional interaction networks or biological pathways.
In this case, we should be aware of the strengths and
limitations of the prioritization approach, as discussed at
the end of Section III-E. Another strategy is to perform
data-driven screening to focus on the analysis of a small
number of most promising candidate interactions.

IV. I M A G I N G G E N O M I C S
A S S O C I AT I O N S: M E TA-A N A L Y S I S

A key challenge in imaging genomics is the relatively
small effect size of genetic variants on the brain—most
genetic variants account for under 1% of the variance in
a brain measure, when considered individually, meaning
that hundreds or even thousands of scans may be needed
to detect and independently replicate an effect. An impor-
tant exception to this rule appears to be the APOE gene;
a common form of this gene, APOE4, is carried by around
a quarter of the world’s population and is associated with
a roughly threefold higher lifetime risk for AD. In elderly
people, this genotype is associated with a 1–2 standard
deviation lower hippocampal volume [121], relative to
carriers of the most common form of the gene, APOE3.
Nonetheless, other common genetic variants with large
effects on the brain have been extremely difficult to find;
as a result, studies have expanded to ten thousand subjects
or more, in an effort to find replicable associations [120].

In addition, the ability to test over a million mark-
ers in the genome for associations with brain measures
means that heavy corrections are often required for mul-
tiple statistical testing. A typical genome-wide associa-
tion study might test over a million independent genetic
markers; to avoid reporting false positives, the genetics
field established a genome-wide association significance
threshold (typically p < 0.05/106 or thereabouts) before
an association could be declared significant. The number
of traits derived from images in an individual study might
also be very large (up to 140 traits in a typical study of
cortical thickness and surface area—and well over 106

voxels in an image or 104 edges in a connectivity net-
work). If every trait is tested for genome-wide associations,
this leads to even more stringent significance thresholds.
Smith and Nichols [122] gave a detailed power analysis of
association testing in large biobanks, noting the very large

samples required. In parallel, several researchers examined
the power and data requirements for well-powered studies
of image-wide genome-wide associations [45], [123] and
connectome-wide genome-wide association, which per-
forms association tests at each edge in a graph or network
model of brain connectivity [20], [38], [124].

Early attempts to reduce the search space in imaging
genomics (by focusing on genes more likely to have effects
on the brain) largely failed. Ten years ago, several hun-
dred articles had reported associations between variants
in specific candidate genes (e.g., COMT and BDNF) and
an imaging trait—yet almost none of these was replicated
when tested in independent data. Jahanshad et al. [125]
pooled regional fractional anisotropy (FA) measures for
6165 subjects from 11 cohorts worldwide to evaluate
the effects of 15 candidate SNPs that had been reported
in the literature to show associations with white mat-
ter microstructure; not a single one of these associa-
tions was replicated in independent samples. This “crisis
of reproducibility” or “power failure” has also been
noted in several branches of science [126], including
neuroscience [127], [128].

Modeled on the Psychiatric Genomics Consortium
in psychiatric genetics, the ENIGMA Consortium
(http://enigma.ini.usc.edu) was founded in 2009 to
address these problems and perform large-scale genome-
wide association studies for brain measures derived from
MRI [129], DTI [125], and EEG [130]. ENIGMA uses a
meta-analytic design to pool evidence from large numbers
of cohorts worldwide. ENIGMA has since expanded to
include over 50 working groups, focusing on global studies
of specific brain diseases and has published the largest
neuroimaging studies to date of nine brain disorders.
Here, we focus on its work in imaging genetics, which can
be categorized into studies of common [129] and rare
[131] genetic variants and epigenetic variation [132].
These studies may be further subdivided by the data types
studied (e.g., MRI and EEG) and methods used (e.g.,
mass-univariate meta-analysis, tests of genetic overlap
between brain traits and other clinical or behavioral
traits, and image- or connectome-wide testing of genetic
associations). We begin with mass-univariate analyses,
as they are the simplest.

Stein et al. [120] and Hibar et al. [121] identified over
20 genetic loci associated with the volumes of subcorti-
cal brain regions, including the hippocampus, amygdala,
thalamus, putamen and other regions of the basal gan-
glia, and intracranial volume. Manhattan plots of these
effects are shown in Fig. 6(a) and (b) for each structure;
the evidence of association is shown for each genetic
marker (on the x-axis) and each regional volume measure
(on the y-axis) using a logarithmic scale, − log10(p). Sev-
eral aspects are notable from a methodological point of
view. First, only hits that are genome-wide significant are
considered reliable, by convention, due to the large num-
ber of statistical tests performed. To attempt to replicate
these hits in independent data, ENIGMA partnered with

140 PROCEEDINGS OF THE IEEE | Vol. 108, No. 1, January 2020



Shen and Thompson: Brain Imaging Genomics: Integrated Analysis and Machine Learning

Fig. 6. Example ENIGMA results. (a) and (b) Manhattan plots of GWAS on ICV and subcortical volumes [120], [121]. (c) Catalog of rare

variants and their effects on the brain created by partnerships among ENIGMA, deCODE Genetics, and the UK Biobank [131]. Images are

reproduced here with permission from Springer Nature [120], [121], [131].

the CHARGE Consortium on a series of articles reporting
GWAS in ever-increasing sample sizes of intracranial vol-
ume [133], hippocampal volume [121], and all subcortical
volumes [134]. Earlier articles performed a simple p-value
lookup in the replication data; a later article performed a
meta-analysis of all cohorts.

These analyses were performed using standardized pro-
tocols for quality control of the imaging and genomic
data, as well as imputation of genetic data to common
reference panels, such as the 1000 genomes reference
panel (this step allows the same set of variants to be
analyzed across cohorts even if some sites have used
different genotyping chips). A later cortical GWAS [129]
led to an annotated atlas of over 200 genetic loci asso-
ciated with surface area and thickness measures from
70 cortical regions. Parallel work by the UK Biobank
reported GWAS for MRI, DTI, and even functional MRI
metrics in their first 9000 subjects scanned [12], [135].
The UK Biobank was subsequently added to the ENIGMA
studies as a replication sample, showing generally strong
replication [129]. A parallel set of studies also assessed
the overlap between these brain-related genetic loci and
genetic markers implicated in a range of brain diseases and

neuropsychiatric disorders, including AD and Parkinson’s
disease [129], schizophrenia and bipolar disorder [35],
[136], obsessive-compulsive disorder [137], Tourette syn-
drome [138], and even IQ [129], [139].

Holland et al. [140] studied the discoverability of SNPs
using GWAS for a range of different traits, including
image-derived measures. By modeling the effect sizes
found empirically for SNPs associated with brain and
behavioral traits, they noted that the rate of discov-
ery of SNPs—and the cumulative percentage of vari-
ance explained—tends to follow an S-shaped curve.
Remarkably, to discover markers that account for over
half of the SNP heritability (the proportion of vari-
ance due to genotyped SNPs), they estimate that
10 000–10 000 000 participants would be needed, depend-
ing on the trait or disease studied (e.g., increasing num-
bers of subjects were needed to perform a well-powered
GWAS of plasma cholesterol levels, regional brain volumes,
schizophrenia, and major depression). Differences in SNP
discoverability, for each trait, depend on the genetic archi-
tecture of each trait— the fraction of the genome that
accounts for various proportions of the observed variance,
the effect sizes for each SNP in this set, and the minor allele
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frequency (MAF) of the variants implicated. By estimating
these from empirical data, the detailed power analyses
were reported.

Some Bayesian methods have been proposed to over-
come the heavy statistical corrections associated with
mass-univariate testing of over a million genetic loci.
Smeland et al. [136] categorized markers as belonging to
different genetic categories (e.g., lying within and outside
known genes or by functional type, such as enhancers
or promoters). As brain-relevant genetic loci have dif-
ferent prevalence in these various genetic categories,
Smeland et al. [136] were able to use the conditional FDR
method to discover some known SNPs more efficiently
(i.e., in smaller samples) as well as other genetic mark-
ers not yet discovered using the existing methods. Sim-
ilarly, genetic clustering—the quest to identify overlap
in genetic influences between traits—has led to genetic
connectomes—matrices or graphs of genetic correlations,
in which traits with common genetic determination are
stored in a matrix and clustered. Some researchers argue
that genetic clustering of voxels in an image, edges in a
network, or vertices on surface models of the cortex may
yield more efficient targets for GWAS [141], [142]; such
methods are just beginning to be explored.

ENIGMA is also using meta-analysis to assess effects on
the brain of other types of genetic variation. ENIGMA’s
Epigenetics group identified two sites in the genome where
methylation relates to hippocampal volume (N = 3337;
see [132]). This type of study is computationally analogous
to a GWAS, although methylation occurs at a somewhat
lesser number of genetic loci, making the analysis slightly
more efficient; nonetheless, thousands of subjects are still
needed to detect and replicate individual associations.

As biobanks grow in size, it has become possible to
discover and independently replicate effects on the brain
of rare genetic loci (with a prevalence of <1:1000 indi-
viduals), such as the genetic deletions responsible for
22q deletion syndrome [143], [144]. The ENIGMA CNV
Consortium [131] is performing a systematic study of these
rare variants; in general, they may have a far greater effect
on the brain than common variants, making their effects
more efficient to replicate. Partnerships among ENIGMA,
deCODE Genetics, and the UK Biobank are creating a
catalog of rare variants and their effects on the brain
[see Fig. 6(C)] [131]. Once the effects on the brain are
known for deletions of different sizes, a second round of
analyses may be required to determine how specific genetic
loci within the deleted region influence the effects.

V. I M A G I N G G E N O M I C S
A S S O C I AT I O N S: M U L T I V A R I AT E
R E G R E S S I O N

Here, we provide a review of machine learning studies
that use regression models to identify complex multi-SNP
and/or multi-QT associations. Let X ∈ R

n×p be the genetic
data with p variables on n subjects. Let Y ∈ R

n×q be the
imaging data with q variables on n subjects. We assume

that each column of X and Y is normalized with zero
mean and unit variance. Most of the regression models
discussed earlier can be described using the following
generic regularized loss function framework:

min
W

L(X, Y, W) + Σm
i=1λiRi(W) (1)

where W ∈ R
p×q is the weight matrix for regression of Y

on X and λi is the parameter balancing the loss function
L(X, Y, W) and the regularization Ri(W).

A sparsity-inducing regularization term is often included
in these models. The motivation is twofold. First, it is
reasonable to hypothesize that only a small number of
markers are relevant in the resulting imaging genomics
association. The sparsity term can help identify these rel-
evant markers. Second, the sparsity constraint can reduce
the model complexity and subsequently reduce the risk of
overfitting.

In the following, we discuss example studies using the
four categories of methods: 1) sparse multiple regression
(SMR; univariate response, W degrades to a vector w);
2) sparse multivariate multiple regression (SMMR; multi-
variate response, W is a matrix); 3) sparse reduced-rank
regression (SRRR; reducing the rank of W, e.g., W = BAT );
and 4) Bayesian regression and neural network (NN)
models.

A. Sparse Multiple Regression

We start with a few relatively simple SMR models, where
the response is a scalar. Some of these (see [106]) will be
later extended into its multivariate version.

Silver et al. [106] proposed the pathways group lasso
with adaptive weights (P-GLAW) algorithm, which is based
on a group lasso model

min
w

�y − Xw�2
2 + λΣg∈Gdg�wg�2 (2)

where G defines the grouping structure of w. The goal is
to identify a set of SNPs from X to predict a single imaging
QT y. The SNPs are grouped using the pathway knowledge
so that the feature selection is done at the pathway level to
enhance biological interpretation and generate insightful
results. The empirical study was performed on synthetic
data simulated based on an ADNI sample and canonical
pathways from the Molecular Signals Database (MsigDB;
see [145]).

Hao et al. [146] proposed a tree-guided sparse learning
(TGSL) method, which is also based on a group lasso
model but with a tree structure

min
w

�y − Xw�2
2 + λΣl

i=0Σ
ni
j=1d

i
j�wGi

j
�2 (3)

where Gi
j indicates a predefined tree (say T ) structure of

w, the tree T has l depth level, and the ith level contains
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ni nodes organized as Ti = {Gi
1, . . . , G

i
j , . . . , G

i
ni
}. The

goal is to identify a set of SNPs from X to predict a single
imaging QT y. The SNPs are grouped using a tree structure,
which groups SNPs by LD blocks and groups LD blocks
by genes. The empirical study was performed on an ADNI
sample to predict six target imaging QTs using SNPs from
20 AD genes.

Wang et al. [147] proposed a diagnosis-aligned multi-
modal (DAMM) method for regressing a target SNP x on
multimodal imaging QTs (Ym for m ∈ [1, M ]) as follows:

min
W

ΣM
m=1�x − Ymwm�2

2 + λ1R1(W) + λ2R2(W) (4)

where W = [w1, . . . , wM ]. The first regularization R1(W)

is an l2,1-norm to select features with effects on most
of the modalities. The second regularization R2(W) is
a graph Laplacian term that encourages the subjects
within (between) the same diagnositic group to have simi-
lar (different) values in the projected space (i.e., these pro-
jected imaging components are aligned with diagnosis).
The empirical study was performed on an ADNI sample,
where the response is the APOE e4 SNP and the predictors
include two modalities of ROI measures: 1) VBM measure
from structural MRI and 2) hypergraph-based clustering
coefficient measure from fMRI.

B. Sparse Multivariate Multiple Regression

Now, we focus on SMMR models. Wang et al. [148]
proposed a Group-Sparse Multi-task Regression and Fea-
ture Selection (G-SMuRFS) method, which is a structured
sparse model [see also Fig. 7(a)]

min
W

�Y − XW�2
F + λ1�W�G2,1 + λ2�W�2,1 (5)

where the group l2,1-norm regularization (�W�G2,1) does
feature selection at the group level (e.g., LD-block) and
the l2,1-norm regularization (�W�2,1) does feature selec-
tion at the individual SNP level. The empirical study was
performed on an ADNI sample, where 1224 SNPs from
37 AD genes were used to predict ten VBM measures and
12 FreeSurfer [150] measures, and SNPs were grouped by
LD blocks.

Wang et al. [151] aimed to use longitudinal imaging
QT data (Yk for k ∈ [1, t]) to predict SNP data (X) and
proposed the following task-correlated longitudinal sparse
regression (TCLSR) model (each time point treated as a
task):

min
W

Σt
k=1�X − YkWk�2

F + λ1R1(W) + λ2R2(W) (6)

where W = [W1, . . . , Wt] [the same as that shown
in Fig. 7(b)], R1(W) is a trace norm to approximate a
low-rank representation of W, and R2(W) is an l2,1-norm
to select features with effects at most of the time points.

The empirical study was performed on an ADNI sample to
predict 1224 SNPs from 37 AD genes using longitudinal
imaging QTs.

Wang et al. [149] studied the same problem as in [151]
and proposed a new model temporal structure autolearn-
ing (TSAL) as follows [see also Fig. 7(b)]:

min
W

Σt
k=1�X − YkWk�2

F + λ1R1(W) + λ2R2(W) (7)

where R1(W) is a Schatten p-norm regularization term to
identify low-rank structures [e.g., four green boxes sharing
similar patterns in Fig. 7(b)] and R2(W) is a l2,1-norm
to select SNPs correlated with most QTs over the time
[e.g., the red box in Fig. 7(b)]. Of note, compared with
TCLSR [see (6)], Schatten p-norm approximates rank min-
imization better than the trace norm [152], and l2,0+-norm
can achieve a more sparse solution than l2,1-norm. The
empirical study was performed on an ADNI sample, where
longitudinal imaging QTs were used to predict 3576 SNPs
from 153 AD candidate genes.

Zhou et al. [153] proposed a joint projection learning
and sparse regression (JPLSR) model for identifying multi-
SNP–multi-QT association. JPLSR model takes the follow-
ing form [different from the generic form shown in (1)]:

min
W1,W2,P

�(Y − XW2)
T �2,1 + λ1�XW2P − YW1�2

F

+ λ2R(X, Y, W1, W2, P) + λ3�W1�2,1 + λ3�W2�2,1

s.t. PPT = I. (8)

The first term is the loss function to find the multi-SNP–
multi-QT association. The second term is to project the SNP
data and imaging QT data into a joint latent space to aid
association discovery. The third term combines two graph
Laplacian terms (one for SNP data and one for imaging
data) to encourage the genetic and imaging components
projected to the latent space which are aligned with diag-
nosis. The fourth and fifth terms are two l2,1-norms for
selecting relevant imaging and SNP features, respectively.
The empirical study was performed on an ADNI sample to
relate 93 ROI-based imaging QTs to 3123 SNPs from top
AD candidate genes.

C. Sparse Reduced-Rank Regression

Here, we focus on reviewing studies using SRRR, which
is a special type of multivariate multiple regression mod-
els for identifying multi-SNP–multi-QT associations from
high-dimensional imaging genomic data. The major goal is
to minimize the rank of the (p × q) regression matrix W.
Assuming that W has a reduced rank of r < min(p, q),
Vounou et al. [154] proposed to rewrite W as the prod-
uct of a (p × r) matrix B and (q × r) matrix A: W =

BAT . In [154], they studied the following rank-one model
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Fig. 7. Example structured SMMR models, where only regression weight matrices W are shown here. Let X be genotype data and Y be

imaging QT data. (a) Illustration of the G-SMuRFS model [148] (minW�Y − XW�2F � λ1�W�G2, 1 � λ2�W�2, 1), where the group l2, 1-norm

regularization (�W�G2, 1 ) does feature selection at the group level (e.g., LD-block), and the l2, 1-norm regularization (�W�2, 1) does feature

selection at the individual SNP level. Image is reproduced here with permission from Oxford University Press [148]. (b) Illustration of the

TSAL model [149] (minWΣt
k�1�X − YkWk�2F � λ1R1�W� � λ2R2�W�), where R1�W� is a Schatten p-norm regularization term to identify

low-rank structures (e.g., four green boxes sharing similar patterns) and R2�W� is an l2, 1-norm to select SNPs correlated with most QTs over

time (e.g., the red box). Image is reproduced here with permission from Mary Ann Liebert, Inc. [149].

(i.e., A and B become two vectors a and b):

min
a,b

�Y − XbaT�2
F + λ1�a�1 + λ2�b�1 (9)

where the l1 term is applied to both a and b for
sparse feature selection. This model was evaluated using
the synthetic imaging genetic data simulated using
an ADNI sample.

Vounou et al. [155] applied a slightly modified version
of the above-mentioned model [see (9)] to an ADNI sam-
ple, where they use genome-wide SNP data to predict
voxelwise longitudinal imaging QTs. They first applied
a penalized linear discriminant analysis (LDA) for voxel
filtering to identify disease-relevant imaging QTs and then
employed the following SRRR model to predict QT data Y
from SNP data X:

min
a,b

�Y − XbaT�2
F + λ�b�1 (10)

where the l1 term is applied for SNP selection. A data
resampling scheme was used to identify SNPs with high
selection probability.

In [107], Silver et al. integrated the P-GLAW idea
[see (2)] into the SRRR framework [see (9) and proposed
the following pathways SRRR (P-SRRR) model:

min
a,b

�Y − XbaT�2
F + λΣg∈Gdg�bg� (11)

where G defines the grouping structure of b. The goal
is to identify a set of SNPs from X to predict a set of
AD-related imaging QT Y. The SNPs are grouped using the
pathway knowledge so that the feature selection is done
at the pathway level. The empirical study was performed
on an ADNI sample with KEGG canonical pathways from
MsigDB [145].

Zhu et al. [156] proposed a structured SRRR (S-SRRR)
model for regressing brain-wide imaging QT data Y on
genome-wide SNP data X as follows:

min
A,B

�Y − XBAT�2
F + λ1�A�2,1 + λ2�B�2,1

s.t. AT A = I (12)

where the l2,1-norm regularizes A and B in a rowwise
fashion for effective selection of SNP and QT features.
The empirical study was performed on an ADNI sample
to relate 2098 SNPs from 153 AD candidate genes to
93 imaging QTs.

Zhu et al. [157] employed the graph self-representation
method [158] to model a sparse matrix S ∈ R

p×p capturing
the internal partial correlations among the SNP data X as
follows:

min
S

�X − XS�2
F + λ1�S�1 + λ2�S�2,1

s.t. diag(S) = 0 (13)

where the constraint diag(S) = 0 was imposed to
avoid generating the trivial solution. Integrating the
above-mentioned model [see (13)] into the S-SRRR model
[see (12)], Zhu et al. [157] proposed the following graph-
regularized S-SRRR (GRS-SRRR) model for regressing Y
on X given S as a graph constraint:

min
A,B,S

�Y − XBAT�2
F + λ1�X − XS�2

F

+ λ2�S�1 + λ3�[B,S]�2,1,

s.t. AT A = I and diag(S) = 0. (14)

The empirical study was performed on the same ADNI
sample as in [156].

Zhu et al. [159] modified the GRS-SRRR model
[see (14)] into the following robust GRS-SRRR (RGRS-
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SRRR) model:

min
A,B,S

�
�Y − XBAT�2,1

+ λ1

�
�X − XS�2,1 + λ2�S�1 + λ3�[B,S]�2,1

s.t. AT A = I and diag(S) = 0. (15)

Here, �Y−XBAT�2,1 and �X−XS�2,1 are the robust versions
of �Y − XBAT�2

F and �X − XS�2
F , respecitively, according

to [158] and [160]. The empirical study was performed
on an ADNI sample with 90 imaging QTs and 3996 SNPs
from 153 AD candidate genes.

D. Bayesian Regression and Neural Network
Models

While many regularized multivariate regression models
have been proposed in brain imaging genomics, several
Bayesian methods have been studied to achieve simi-
lar goals. For example, inspired by G-SMuRFS [148],
Greenlaw et al. [161] proposed a Bayesian group sparse
multitask regression (BGSMTR) model for identifying
multi-SNP–multi-QT associations while embracing the
group structure (e.g., LD blocks and genes) within the
SNP data. While G-SMuRFS only provided a point estimate
of the regression coefficients, BGSMTR was proposed to
allow for full posterior inference, such as obtaining interval
estimates for the regression parameters. The model was
designed as an adapted version of the Bayesian group lasso
[162], [163] to accommodate multivariate responses as
well as variable selection at both SNP and gene levels.
The empirical study was performed on an ADNI sample
to predict 56 imaging QTs using 486 SNPs from 33 AD
candidate genes.

There are also Bayesian models designed for
reduced-rank regression. Zhu et al. [164] proposed
a Bayesian generalized low-rank regression (GLRR)
model for analyzing both high-dimensional imaging
responses and covariates. Similar to SRRR, GLRR
used a low-rank representation to approximate the
high-dimensional weight matrix. It also modeled the
high-dimensional covariance matrix of imaging responses
with a dynamic factor model. Bayesian local hypothesis
testing was proposed to identify significant SNP effects on
imaging QTs while controlling for multiple comparisons.
An efficient MCMC algorithm was developed for posterior
computation. The empirical study was performed on an
ADNI sample to evaluate the effects of 1071 SNPs from
40 AD candidate genes on 93 ROI-based volume measures.

Lu et al. [165] extended the above-mentioned GLRR
model [164] into a Bayesian longitudinal low-rank regres-
sion (L2R2) model for examining genetic effects on
longitudinal imaging responses. L2R2 includes three inno-
vative components. The first one is a low-rank matrix
to approximate regression weight matrices and gene–age
interaction. The second one is to use penalized splines
for characterizing the overall time effect. The third one

is a sparse factor analysis model coupled with random
effects to embrace spatiotemporal correlations of longi-
tudinal imaging QTs. An efficient MCMC algorithm was
used for posterior computation. The empirical study was
performed on an ADNI sample to evaluate the effects
of 1071 SNPs from 40 AD candidate genes on longitudinal
imaging measures of 93 ROIs.

NN models, despite underexplored in brain imag-
ing genomics, have started to attract recent attention.
Wang et al. [166] proposed an Additive Model via Feed-
forward Neural networks with random weight (FNAM).
This model was inspired by and adapted from the
feedforward neural networks with random weight
(FNNRWs) [167] to enjoy the advantages of: 1) modeling
the nonlinear associations between SNPs and QTs and
2) computational efficiency over neural nets with back-
propagation. The improvement of FNAM over FNNRW is
that FNAM considers the role of each feature indepen-
dently in the prediction and, thus, one can estimate its
contribution to help model interpretation. The empirical
study was performed on an ADNI sample to examine the
genetic effects of 3123 SNPs from 153 AD candidate genes
on 90 VBM measures and 90 FreeSurfer measures.

E. Summary

Table 7 summarizes multivariate analysis methods used
in the studies discussed earlier, which aim to reveal
complex imaging genomics associations between multi-
variate SNP data and imaging QT data. At a high level,
the methods discussed in Sections V-A–V-C share a com-
mon rationale: they all use regularized regression models
to relate SNPs to imaging QTs. While the SMR models
in Section V-A aim to identify multi-SNP–single-QT asso-
ciations, the SMMR models in Section V-B and the SRRR
models in Section V-C are designed to identify multi-SNP–
multi-QT associations. The SRRR models may be thought
of as a special case of the SMMR models, where the
regression coefficient matrix W in SMMR is explicitly
described as a low-rank version W = BAT in SRRR.
In general, these models share some common benefits:
1) the regression coefficients directly capture the SNP–QT
relations and thus are easy to interpret and 2) using a
single model to analyze the studied SNP and QT data
eliminates the need for multiple testing correction and
improves the detection power. One pitfall with these mod-
els is the high dimensionality of the data, which increases
the risk of overfitting. To address this challenge, various
regularizations are used in these models to simplify model
complexity, incorporate biologically meaningful structure,
and thus reduce the overfitting risk. For example, sparsity
can be imposed by using the l1- or l2,1-norm to sim-
ply model complexity (e.g., in G-SMuRFS and SRRR).
Meaningful biological structures (e.g., LD block, gene,
and pathway) can be embraced by using group lasso or
group l2,1-norm (e.g., in P-GLAW, TGSL, and P-SRRR).
Rank minimization can also be modeled as a regulariza-
tion term (e.g., in TCLSR and TSAL) to address spatial
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Fig. 8. (a) Schematic of a generic reguarlized CCA framework for brain imaging genomics, which aims to find a genetic component Xu and

an imaging component Yv so that their correlation (i.e., uTXTYv s.t. �Xu�22 � �Yv�22 � 1) is maximized under one or more regularizations

R i�u,v�. For example, the conventional SCCA model [168] is formed by introducing two l1-norm terms: R1�u� � �u�1 and R2�v� � �v�1.
(b) Schematic of KG-SCCA [108]. Two regularizations are introduced into the reguarlized CCA framework shown in (a). On the genomic side,

R1�u� is a group l1 term, where SNPs are grouped by LD blocks. On the imaging side, R2�v� is a network-guided regularization term (similar

to graph Laplacian), where ROIs are connected if they share similar coexpression patterns across the genes from the amyloid pathway.

Network inset image is reproduced here with permission from Oxford University Press [108].

or temporal correlation and reduce model complexity.
Besides the above-mentioned regression models, Bayesian
methods have also been studied to achieve similar goals.
NN methods, although underexplored in this field have
started to appear to address brain imaging genomics
problems.

VI. I M A G I N G G E N O M I C S
A S S O C I AT I O N S: B I M U L T I V A R I AT E
C O R R E L AT I O N

Besides regression models, another category of promi-
nent methods developed for brain imaging genomics stud-
ies are bimultivariate correlation models, such as sparse
CCA (SCCA) and parallel-independent component analy-
sis (pICA). Similar to the regression model discussed
earlier, the sparsity is also encouraged in these correla-
tion models to reduce model complexity and the risk of
overfitting, as well as identify relevant biomarkers. Here,
we discuss a few example studies using these strategies to
identify complex multi-SNP–multi-QT associations. We will
cover: 1) fundamental SCCA models; 2) enhanced SCCA
models; 3) multimodal and longitudinal SCCA models; and
4) other bimultivariate correlation models.

A. Fundamental SCCA Models

Let X ∈ R
n×p be the genetic data with p variables on

n subjects. Let Y ∈ R
n×q be the imaging data with q

variables on n subjects. We assume that each column of
X and Y is normalized with zero mean and unit variance.
The most popular bimultivariate correlation models used
in brain imaging genomics are SCCA and its variants
with various regularization terms. These models can typ-
ically be described using the following generic regularized

CCA form:

max
u,v

uTXTYv − Σk
i=1λiRi(u, v)

s.t. �Xu�2
2 = �Yv�2

2 = 1. (16)

A schematic of this reguarlized CCA framework is shown
in Fig. 8(a) in the context of brain imaging genomics.
The goal is to find a genetic component Xu (i.e., a linear
combination of the SNPs) and an imaging component Yv
(i.e., a linear combination of the imaging QTs) so that
their correlation (i.e., uTXTYv s.t. �Xu�2

2 = �Yv�2
2 = 1)

is maximized under one or more regularization terms
Ri(u, v). For example, the conventional SCCA model [168]
is formed by introducing two l1-norm terms: R1(u) = �u�1

and R2(v) = �v�1. Various other regularization terms can
be defined to achieve different goals, such as incorpo-
rating group/network structure or other prior knowledge
in brain imaging genomics data. In the following,
we discuss a few example studies using regularized
SCCA strategies.

Du et al. [169] proposed a structure-aware SCCA
(SCCA) model by introducing into (16) two group
l1-norms: R1(u) = Σg∈G1�ug�2 and R2(v) = Σg∈G2�vg�2.
The LD blocks were used to form the SNP grouping
structure G1. The ROIs were used to form the voxelwise
imaging QT grouping structure G1. An empirical study
was performed on an ADNI sample to identify multi-
SNP–multi-QT associations between the voxelwise QTs and
APOE SNPs.

Yan et al. [108] proposed a knowledge-guided SCCA
(KG-SCCA) by introducing into (16) the following two
regularization terms [see Fig. 8(b)]. On the genomic side,
R1(u) is a group l1 term, where SNPs are grouped by LD
blocks. On the imaging side, R2(v) is a network-guided
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Table 7 Example Studies Using Multivariate Regression, Which Aim to

Reveal Complex Imaging Genomics Associations Between Multivariate

SNP Data and Imaging QT Data

regularization term (similar to graph Laplacian), where
ROIs are connected if they share similar coexpression
patterns across the genes from the amyloid pathway. AHBA
[170] was used to get the gene expression data across the
brain. An empirical study was performed on an ADNI sam-
ple to identify multi-SNP–multi-QT associations between
amyloid imaging QTs and APOE SNPs.

B. Enhanced SCCA Models

As shown in Section VI-A, there are three types of
regularizations used in SCCA models: 1) l1-norm for flat
sparsity; 2) group l1-norm for group sparisity; and 3) graph
Laplacian-type norm to encourage the joint selection of
features connected in a graph. In the following, we discuss
a few enhanced SCCA models that are designed to improve
some of the above-mentioned norms.

Du et al. [171] proposed an SCCA framework using
a generic nonconvex penalty (GNC-SCCA) to address the

challenge that the l1-norm overpenalizes large coefficients
and may introduce estimation bias. They tested seven non-
convex penalties for replacing the l1 term in an l1-based
SCCA. These nonconvex penalties were designed to reduce
the estimation bias. An empirical study was performed on
an ADNI sample to identify multi-SNP–multi-QT associa-
tions between voxelwise QTs and 163 SNPs from AD genes.

Although the ideal sparsity-inducing term is l0-norm,
it is computationally intractable. Thus, l1-norm is typi-
cally used to approximate l0-norm. Given that the trun-
cated l1-norm better approximates l0, Du et al. [172]
proposed a truncated l1-norm penalized SCCA (TLP-SCCA)
via replacing l1-norm with truncated l1-norm and a trun-
cated group lasso SCCA (TGL-SCCA) via replacing group
lasso with truncated group lasso. An empirical study was
performed on an ADNI sample to identify multi-SNP–multi-
QT associations between voxelwise QTs and 58 SNPs from
AD-related genes, where QTs were grouped by ROI and
SNPs were grouped by LD block.

GraphNet was proposed in [173] as a regression model
with combined graph Laplacian and l1-norm regularization
terms �u�GN = uT Lu + β�u�1 where L is the Laplacian
matrix of a given graph. Du et al. [174] proposed an
absolute value-based GraphNet SCCA (AGN-SCCA) model,
which incorporated an extended version of GraphNet reg-
ularization into the SCCA framework. The AGN regulariza-
tions are modeled as follows:

R1(u) = �u�AGN = |u|T L1|u| + β1�u�1 (17)

R2(v) = �v�AGN = |v|T L2|v| + β2�v�1 (18)

where L1 and L2 are Laplacian matrices of the correlation
matrices of X and Y. Here, they used data-driven corre-
lation as graph constraint to encourage the selection of
correlated features together. The newly added absolute
value operation allows for the joint selection of both
positively and negatively correlated features. An empirical
study was performed on an ADNI sample to identify multi-
SNP–multi-QT associations between ROI-based imaging
QTs and 58 SNPs from AD-related genes.

Gossmann et al. [175] proposed a FDR-corrected SCCA
(FDR-SCCA) procedure to introduce an FDR concept to
SCCA and develop a method to control FDR. The existing
SCCA methods determine the sparsity parameter using
model fit criteria, such as cross validation and permu-
tation. There is a lack of theoretical results to identify
an appropriate level of sparsity for true signal discov-
ery. This article proposed a method to define the FDR
for canonical weight vectors in SCCA and used it as a
statistical criterion to determine the model sparsity level.
An empirical study was performed on an imaging genomics
sample from the Philadelphia Neurodevelopmental Cohort
(PNC) [176] to relate nearly 100 000 SNPs to nearly
5000 functional connectivity measures extracted from the
fMRI data.
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C. Multimodal and Longitudinal SCCA Models

The SCCA models discussed earlier aim to relate the
SNP data to the imaging data of one single modality
at one single time point. Attempts have also been made
to extend these models to handle multimodal or longi-
tudinal imaging data. We review a few example studies
here.

Du et al. [177] proposed a multitask SCCA (MTSCCA)
model to identify bimultivariate associations between SNP
data and multimodal imaging data. Let X ∈ R

n×p be the
SNP data and Yj ∈ R

n×q (j ∈ [1, M ]) be the imaging data
of M modalities. MTSCCA is designed as

max
U,V

ΣM
j=1uT

j XTYjvj − λ1�U�2,1

− λ2�U�G2,1 − λ3�V�2,1

s.t. �Xuj�2
2 = �Yjvj�2

2 = 1 (19)

where U = [u1 u2 · · · uM ] and V = [v1 v2 · · · vM ]. Here,
the canonical correlation is maximized for each modality
separately. The first regularization �U�2,1 is an l2,1 term for
SNP feature selection. The second regularization �U�G2,1

is a group l2,1 term for SNP feature selection at the group
level (e.g., LD blocks). The third regularization �V�2,1 is an
l2,1 term for imaging feature selection across all the modal-
ities. A fast optimization algorithm was implemented and
applied to an ADNI sample to identify associations between
over 150 000 SNPs from chromosome 19 and ROI-based
QTs from three imaging modalities (VBM, FDG-PET, and
Amyloid-PET).

Hao et al. [178] proposed a temporally constrained
group SCCA (TG-SCCA) model to identify genetic associ-
ation with longitudinal imaging QTs. Let X ∈ R

n×p be the
SNP data and Yj ∈ R

n×q (j ∈ [1, t]) be the imaging data at
t time points. TG-SCCA is designed as

max
u,V

Σt
j=1uTXTYjvj − λ1�u�1

− λ2�V�2,1 − λ3Σ
t−1
j=1�vj+1 − vj�1

s.t. �Xu�2
2 = �Yjvj�2

2 = 1 (20)

where V = [v1 v2 · · · vt]. Here, the canonical corre-
lation is maximized for each time point separately while
maintaining the genetic component the same across all the
time points. The first regularization �u�1 is an l1-norm for
SNP feature selection. The second regularization �V�2,1 is
an l2,1 term for imaging feature selection across all the
time points. The third regularization Σt−1

j=1�vj+1 − vj�1

is a fused lasso term to constrain the weight difference
between two neighboring time points. An empirical study
was performed on an ADNI sample to identify associations
between 85 APOE SNPs and longitudinal VBM QTs from
116 ROIs at four time points.

Du et al. [179] proposed another longitudinal imaging
genetics model based on MTSCCA [177]. It is named

temporal MTSCCA (T-MTSCCA) and designed as

max
U,V

Σt
j=1uT

j XTYjvj − λ1R1(U) − λ2R2(V)

s.t. �Xuj�2
2 = �Yjvj�2

2 = 1 (21)

where U = [u1 u2 . . . ut] and V = [v1 v2 . . . vt]. Here,
the canonical correlation is maximized for each time point
separately. The regularization R1(U on the genomic side
contains three components: one l1-norm and one l2,1-norm
for feature selection at SNP level, and one group l2,1-norm
for feature selection at group level (e.g., LD block). The
regularization R2(V on the imaging side contains three
components: 1) an l1-norm for imaging feature selection
using flat sparsity; 2) an l2,1-norm for selection imaging
features associated at most time points; and 3) a fused
pairwise l2,1-norm (FP2,1-norm) for joint selection of the
same QT at neighboring time points. Compared with the
nonconvex fused lasso used in TG-SCCA [178], FP2,1-norm
is convex and thus easy to optimize. An empirical study
was performed on an ADNI sample to identify associations
between 1085 APOE SNPs and longitudinal VBM QTs from
90 ROIs at four time points.

D. Other Bimultivariate Correlation Models

We now discuss a few other bimultivariate cor-
relation models. Le Floch et al. [180] proposed a
two-step procedure, named FSPLS (filtering + sparse
partial least squares), to identify associations between
high-dimensional SNP and imaging QT data (e.g., empir-
ical study of real data including 94 subjects with
600 000 SNPs and 34 fMRI QTs). The first step of FSPLS
selected top SNPs with minimal p-values via massive uni-
variate association analysis between each SNP–QT pair
using linear regression based on an additive genetic model.
The second step of FSPLS applied a single sparse partial
least squares (SPLS) model to the selected SNP data
and full QT data to identify a multi-SNP–multi-QT asso-
ciation. Empirical studies on both simulated and real
high-dimensional SNP and imaging QT data demonstrated
that FSPLS outperformed several competing methods
using other regularization and dimensionality reduction
strategies coupled with PLS or kernel CCA models. This
article also illustrated that the SRRR, SCCA, and SPLS
models are mathematically equivalent methods, up to spe-
cific assumptions on the covariance matrix.

Fang et al. [181] proposed a greedy projected
distance correlation (G-PDC) method to examine pairwise
gene–ROI associations, where each gene contains a num-
ber of SNPs and each ROI contains a number of voxels. Dis-
tance correlation measures statistical dependence between
two random vectors (e.g., gene versus ROI) and can model
nonlinear relationship between them. Projected distance
correlation measures conditional dependence based on
distance correlation [182]. In this article, given a gene–ROI
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Table 8 Example Studies Using Bimultivariate Correlation Meth-

ods, Which Aim to Identify Multi-SNP–Multi-QT Associations From

High-Dimensional Imaging Genomic Data

pair, the goal is to test their independence while controlling
for all the other SNPs and voxels. Fang et al. [181] pro-
posed an efficient G-PDC algorithm to enable large-scale
imaging genomics analysis. An empirical study was per-
formed on the PNC data [176] to examine the pairwise
association between 221 ROIs (containing 27 168 voxels)
and 2035 genes (containing 63 010 SNPs).

Hu et al. [183] integrated distance correlation model
into the CCA framework and proposed a distance CCA
(DCCA) method. The G-PDC method described earlier per-
forms pairwise analysis for each possible gene–ROI combi-
nation and is still facing large burden for multiple testing
correction. The DCCA model was proposed to overcome
this limitation by identifying a set of original SNPs and
a set of original imaging QTs with the highest distance
correlation. The approach was to first construct a distance
kernel function and then solve an optimization problem.
An empirical study was performed on the PNC data [176]
to examine the pairwise association between 264 ROIs
(containing 27 384 voxels) and 736 genes (containing
21 487 SNPs).

pICA [184], [185] is another well-established strategy
for mining multi-SNP–multi-QT associations. It is a joint
estimation procedure to extract imaging components
and genetic components for achieving two goals:
1) maximizing independence among components within
each modality using an entropy term and 2) maximizing
components’ correlation between two modalities. Meda
et al. [186] applied pICA to an ADNI sample for identifying

multi-SNP–multi-QT associations between the
genome-wide SNPs and brain-wide ROI-based imaging
QTs.

E. Summary

Table 8 summarizes bimultivariate correlation methods
used in the studies discussed earlier, which aim to identify
multi-SNP–multi-QT associations from high-dimensional
imaging genomic data. Most of these strategies are regu-
larized SCCA models. Similar to the regression models in
Section V, these SCCA models also employ l1 or l2,1-norm
for feature selection, group l1 or l2,1-norm for feature selec-
tion at group level, and graph Laplacian for graph-guided
learning. Multimodal and longitudinal SCCA models often
include l2,1-norm for feature selection across modalities or
time points as well as fussed lasso or fused pairwise l2,1-
norm for smoothing neighboring weights along the tem-
poral dimension. Other bimultivariate correlation models
include: 1) SPLS that is mathematically equivalent to SRRR
and SCCA under certain assumptions on the covariance
matrix; 2) distance correlation that can model nonlinear
associations; and 3) parallel ICA models for joint maxi-
mization of within-modality component independence and
between-modality component correlation.

VII. I N T E G R AT I N G I M A G I N G A N D
G E N O M I C S F O R O U T C O M E
P R E D I C T I O N

In addition to identifying imaging genomics associations,
another active research topic in brain imaging genomics
is how to integrate brain imaging and genomics data for
prediction of outcomes of interest, such as disease stage,
impairment score, and progression status. A relevant inter-
esting topic is to learn the associations among genomics,
imaging, and the outcome to help understand the biologi-
cal pathway from genetics to brain structure and function,
and to cognitive, behavior, and diagnostic outcomes. In this
section, we first focus on methods for outcome prediction
and then review methods for joint association learning and
outcome prediction.

A. Outcome Prediction

We discuss a few example studies using the existing
conventional prediction models, newly developed machine
learning approaches, and state-of-the-art deep learning
methods. Of note, all these studies were performed using
brain imaging genomics data from the ADNI cohort.

We start with some studies using conventional predictive
models. For example, Dukart et al. [187] examined the
role of multimodal imaging (MRI, FDG-PET, and Amyloid-
PET), neuropsychological, and genetic data as potential
biomarkers for identifying MCI patients who will convert
to AD in the future. They first built naive Bayes classifiers
to distinguish AD and CN participants using different com-
binations of the above-mentioned data modalities. After
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Fig. 9. (a) JCRMML framework [193] performs joint classification and regression via multimodal multitask learning to identify

disease-sensitive and cognition-relevant biomarkers from brain imaging genomic data. The identified biomarkers could predict not only

disease status but also cognitive functions to help us better understand the underlying mechanism from gene to brain structure and function

and to cognition and disease. (b) Illustration of the JCRMML feature weight matrix WT. The group l1-norm (G1-norm) learns the groupwise

weights for features within a single modality for each task (i.e., outcome) and the l2, 1-norm selects features associated with most tasks.

Images are reproduced here with permission from Oxford University Press [193].

that, they applied the learned classifier to the MCI cohort
for predicting AD conversion status. They achieved 76%
accuracy using FDG-PET data and 87% accuracy using
multimodal imaging and genetic data. This shows the
promise of the data integration strategy in the context of
AD outcome prediction.

Filipovych et al. [188] proposed a method to create
a composite imaging genetic score for predicting MCI
conversion to AD. On the imaging side, they used a non-
linear pattern recognition method “COMPARE” [189] to
identify AD-relevant volumetric regions. After that, a non-
linear SVM was applied to imaging measures from these
regions to get an imaging score for each individual. On the
genomic side, a linear SVM was used to classify AD vs CN,
which yielded a polygenic AD-related genetic score for
each subject. Finally, a composite imaging genetic score
was created as a weighted sum of the imaging score and
the genetic score. The empirical study showed that the pro-
posed composite score improved the prediction accuracy.

Kauppi et al. [190] performed survival analysis using the
Cox proportional Hazard model to predict time to progres-
sion from MCI to AD via integrating a PHS, an imaging-
based atrophy score, and the MMSE score. The PHS was
generated using the ADGC data [66], as described in
Section III-B. The atrophy score was generated from vol-
umetric measures of a few AD-related ROIs using an LDA
to distinguish AD versus CN (see [191] and [192] for more
details). The empirical study showed that combining PHS
with atrophy and MMSE significantly improved the predic-
tion performance compared with models without PHS.

Besides conventional prediction methods, new machine
learning models have also been proposed for outcome
prediction using brain imaging genomics data. For exam-
ple, Wang et al. [193] proposed a joint classification and
regression framework for multimodal multitask learning
(JCRMML). JCRMML was designed to use multimodal
imaging (MRI and FDG-PET) and genetic data for
joint prediction of diagnositic and cognitive outcomes

and, at the same time, to identify disease-sensitive
and cognition-relevant imaging and genetic biomarkers
[see Fig. 9(a)]. It is formulated as a regularized mul-
tivariate linear model with feature weight matrix �WT �
shown in Fig. 9(b), where a task indicates an outcome
response. The loss function includes a logistic regression
component for disease classification and a linear regression
component for cognitive score regression. JCRMML has
two regularization terms. One group l1 term �W�G1 is used
for learning groupwise weights for features within a single
modality for each task (i.e., a diagnostic or cognitive out-
come). One l2,1 term �W�2,1 is used for selecting features
associated with most tasks (i.e., outcomes). The empirical
study yielded improved performance on prediction both
diagnostic and cognitive outcomes compared with several
competing methods.

Zhang et al. [194] examined several machine learning
strategies for AD prediction via combining multimodal
imaging (MRI and FDG-PET), CSF, and SNP data.
Specifically, they compared three state-of-the-art feature
selection methods. The first is a multiple kernel learn-
ing (MKL) method named SimpleMKL [195]. The second
is a high-order graph matching-based feature selection
(HGM-FS) [196]. The third is sparse multimodel learning
(SMML) [197]. The AD prediction model was learned in
three steps: 1) a feature selection method was applied to
select discriminative features; 2) each selected feature was
multiplied by its learned weight to form a new feature
vector; and 3) a linear SVM was applied to the new feature
vectors to learn a predictor. Empirical studies yielded a
few findings: 1) FDG-PET was the modality with the best
prediction accuracy; 2) adding SNP data to other modal-
ities could improve prediction accuracy; and 3) HGM-FS
worked the best among three feature selection methods.

Peng et al. [198] proposed a structured sparse kernel
learning (SSKL) model for AD prediction using multi-
modal imaging (MRI and FDG-PET) and SNP data. They
described each feature with a kernel and used the modality
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information to group kernels to facilitate variable selection
at both feature and group levels. An innovative structured
sparsity regularization term was further introduced to
enable feature sparsity within each modality but encour-
age nonsparse solution modality wisely. The intuition is
based on the hypothesis that different modalities offer
complementary information and including modalities with
weaker predictive power may help capture valuable com-
plementary information. Their empirical study yielded
promising results.

Singanamalli et al. [199] proposed a Cascaded Multi-
view Canonical Correlation (CaMCCo) for classifying CN,
MCI, and AD using multidimensional imaging, genetics,
biomarker, and cognitive data. The cascaded framework
first classified all subjects as CN versus cognitively
impaired (CI) and further classified CI subjects as MCI
versus AD. For each binary classification, the class label
was used as a separate variable set. Integrating the class
label set with all the other modalities, supervised mul-
tiview CCA (sMVCCA) [200] was employed to obtain a
low-dimensional representation of each involved modality,
followed by a modality selection step using the diagnostic
information. Naive Bayes classification method was then
applied to the fused representation of selected modalities
to learn a classifier. Empirical study showed that fusion of
selected modalities outperformed that using each individ-
ual modality and that integrating all the modalities.

Although NN models have been highly successful in
making prediction for many recent applications in vari-
ous fields such as computer vision and natural language
processing, they have not been widely used in brain
imaging genomics. This could be largely attributed to the
limited sample size and high dimensionality of the existing
imaging genomics data. Some attempts have been made
to address this challenge. In the following, we review a
couple of recent studies using NN methods for AD outcome
prediction via integrating brain imaging genomics data.

For example, Zhou et al. [201] presented a three-stage
deep feature learning and fusion framework to detect
disease status (e.g., CN/MCI/AD) via integrating MRI,
FDG-PET, and SNP data. In the first stage, they learned
feature representation for each modality independently.
In the second stage, they used the features learned in
Stage 1 to learn joint latent features for each pair of
modalities. In the third stage, they learned the diagnostic
label using the features learned in Stage 2. This frame-
work can address several challenges: 1) learning high-level
features for each modality in Stage 1 could alleviate data
heterogeneity issue and 2) using the maximum number
of all available samples at each stage could help address
both the high-dimension-low-sample-size and incomplete
modality data issues. Their empirical study showed very
promising results that the proposed NN method outper-
formed a number of non-NN-based competing methods.

Ning et al. [202] proposed another NN framework
to detect AD or MCI-to-AD conversion using
MRI and SNP data. Their strategy to address

Table 9 Example Studies Using Machine Learning Methods for Outcome

Prediction via Integrating Imaging and Genomics Data

high-dimension-low-sample-size is twofold: 1) instead of
examining all the SNPs and imaging QTs, their analysis
only targeted at 16 AD-related QTs and 19 AD-related
SNPs to reduce the dimensionality and 2) they designed
a relatively simple NN with two hidden layers, and
explored 2, 4, 8, up to 64 nodes in each layer to reduce the
model complexity. The proposed NN was fully connected
between the layers, coupled with shortcut connections
linking all the input nodes directly to the output layer.
Their empirical study showed promising results that the
proposed NN model outperformed a linear regression
model.

Table 9 summarizes the example studies using machine
learning methods for outcome prediction via integrating
imaging and genomics data. Some studies directly applied
conventional learning methods to the combined data sets
and showed improved performances. Some studies devel-
oped new learning models to address various challenges,
such as feature selection at a group level, and joint
classification and regression. With a couple of successful
attempts, NN models have started to attract attention in
the field of brain imaging genomics.

B. Joint Association Learning and Outcome
Prediction

Here, we review a few example studies exploring the
associations among genomics, imaging, and outcome.
These include four SCCA-based studies [203]–[206], one
study using classic mediation analysis [207] and one study
using a newly proposed Bayesian method [208]. While
two studies [206], [207] performed the analyses using the
PNC data, the other four studies were conducted on the
ADNI data.

Yan et al. [203] proposed a discriminative SCCA model
in order to identify disease-relevant imaging proteomics
associations. Instead of SNP data, Yan et al. [203] ana-
lyzed the protein expression data collected from CSF and
plasma and studied their relationship to imaging QTs and
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Fig. 10. (a) Schematic of the DSCCA model [203]. DSCCA incorporates regularization into SCCA to encourage the identification of canonical

components with discriminative power. (b) Imaging component Yv is plotted against the proteomic component Xu. DSCCA components are

clearly more discriminative than SCCA components. Image in (b) is reproduced here from an open-access chapter by World Scientific

Publishing Company [203].

multiclass diagnostic label (CN, MCI, and AD). Fig. 10(a)
shows a schematic of the DSCCA model. It introduced a
new graph Laplacian regularization to the standard SCCA
framework. The graph is defined on the subjects, where
subjects within the same diagnositic group are connected.
This regularization encourages the identification of canon-
ical components with discriminative power. Fig. 10(b)
shows a comparision between DSCCA and SCCA, where
the imaging component Yv is plotted against the proteomic
component Xu. It is clear that the components identified
by DSCCA have more discriminative power than those by
SCCA. The empirical study using cross validation showed
that DSCCA yielded higher canonical coefficient (CC) on
the test data than SCCA.

Hao et al. [204] proposed an alternative strategy to
identify pairwise associations among genomics, imaging,
and outcome(s). This was directly implemented by a
three-way SCCA, which was a joint learning model by
combining three pairwise SCCA models to learn a single
component for each modality (i.e., genomics, imaging,
or outcome). Two empirical studies were performed on
ADNI imaging genomics data: one using a set of cognitive
scores as outcome, and the other using diagnostic status as
outcome. In a cross-validation setting, both studies using
three-way SCCA yielded higher CCs on the test data than
that using SCCA.

Du et al. [205] proposed a joint learning model by
combining SCCA and regression (SCCAR) to identify
diagnosis-relevant imaging genomics associations. Let z be
the outcome data. The model is defined as

min
u,v

1

2
�z − Yv�2

2 − uTXTYv + λ1R1(u) + λ2R2(v)

s.t. �Xu�2
2 = �Yv�2

2 = 1. (22)

Here, they would like to jointly learn the imaging compo-
nent Yv so that it could predict the outcome z (see the
first regression term) and is correlated with the genomic
component (see the second CCA term). In the empiri-
cal study, they used l1-norm for both R1(u) and R2(v).
The cross-validation results showed that SCCAR could

identify stronger canonical correlations than SCCA in the
test data.

Zille et al. [206] proposed a Multi-Task
Collaborative Regression (MT-CoReg) method to extract
outcome-relevant variables that are coexpressed in both
imaging and genomics modalities. Similar to SCCAR,
MT-CoReg was also formulated as a joint learning model
by integrating SCCA and linear regression. The major
difference is that MT-CoReg allows the imaging component
used in the linear regression to predict outcome to be
different from that used in the SCCA to correlated with
the genetic component. An empirical study was performed
on the PNC cohort to analyze the SNP and fMRI data
for the study of learning ability as outcome and yielded
promising results.

Bi et al. [207] performed a genome-wide mediation
analysis in order to detect complicated mechanisms of
genetic inferences on the outcome implicitly through inter-
mediate imaging QTs. The study was performed on the
PNC cohort, analyzing 445 205 SNPs, 204 imaging QTs,
and 104 psychiatric and cognitive traits as outcomes. Medi-
ation analysis was performed at the individual marker level
using a three-stage procedure: 1) GWAS was performed
to identify significant SNP–QT pairs; 2) each outcome
was regressed against each candidate SNP; and 3) each
outcome was regressed against each identified SNP and its
associated QT. A mediation relationship is established if the
SNP is significant in 1) and 2), QT is significant in 3), and
the absolute effect size of the SNP is smaller in 3) than 1).
Their analysis identified an NMNAT2 SNP associated with
a psychiatric trait through the volume of the left superior
frontal region.

Performing brain-wide genome-wide analysis at the
single marker level faces a major challenge on multiple
comparison correction. To overcome this limitation, a com-
mon approach is to learn one single multivariate multi-
ple regression model coupled with some sparsity-inducing
regularization. Batmanghelich et al. [208] proposed such
a Bayesian method for probabilistic modeling of imaging,
genetics, and diagnosis. The goal of this method is to
jointly learn the following two predictive relationships in
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Table 10 Example Studies for Joint Learning of Imaging Genomics

Associations and Outcome Prediction Model

a single Bayesian model: 1) using imaging QTs to predict
diagnosis and 2) using SNPs to predict imaging QTs. The
joint model can help identify a set of imaging QTs that
not only have a genetic basis but also are associated with
diagnostic status. Their empirical study on the ADNI data
yielded promising results.

Table 10 summarizes the example studies for joint
learning of imaging genomics associations and outcome
prediction model. Four of these studies introduced into
the standard SCCA framework one or more components
that incorporate outcome information. Empirical stud-
ies demonstrated that including outcome information
as additional constraints could identify stronger imag-
ing genomics associations, indicating that this strategy
has the potential to capture true signals and reduce
model overfitting.

VIII. C O N C L U S I O N A N D D I S C U S S I O N

A. Summary of Learning Problems and Reviewed
Methods

We have reviewed three categories of learning problems
in brain imaging genomics, as shown in Fig. 1(a). In the
first category, we focused on the learning problem of heri-
tability estimation of brain imaging QTs. The heritability of
a trait is defined as the proportion of its observed variance
explained by the genetic factors. Given high-dimensional
brain imaging data, heritability estimation can be used
as a screening tool to extract heritable QTs as attractive
targets for in-depth genetic analyses. We discussed two
types of methods for heritability estimation: one based on
data collected using twin or family designs, and the other
based on genome-wide genotyping data.

In the second category, we focused on the problem of
learning imaging genomics associations, a major theme
studied in brain imaging genomics to gain new insights
into the genetic and molecular mechanisms of the brain
structure and function. Given the high-dimensionality-
small-sample-size challenge that we are facing in brain
imaging genomics, a wide range of methods have been pro-
posed to increase statistical power and enhance biological
interpretation via reducing dimensionality, measuring col-
lective effects, and incorporating prior knowledge. We first
reviewed a few fundamental strategies, including single-
SNP–single-QT methods, PRSs, multi-SNP methods, multi-
trait methods, pathway and network enrichment methods,

and interaction methods. We then discussed the important
topics of power and sample size and reviewed relevant
meta-analysis strategies. After that, we reviewed two major
types of multi-SNP–multi-QT methods: multivariate regres-
sion models and bimultivariate correlation models.

In the third category, we focused on the learning
problem of integrating imaging and genomics for out-
come prediction. This is an important topic studied in
brain imaging genomics to gain valuable insights into
the outcome-relevant neurobiological mechanisms at the
genetic, molecular, and macroscale brain system levels.
Imaging and genomics data capture the subject’s charac-
teristics at different scales and from different perspectives
and are naturally considered to contain complementary
information for improved outcome prediction. Various
machine learning and deep learning methods have been
proposed to address relevant data integration challenges,
such as high dimensionality, small sample size, hetero-
geneity, and incompleteness. We reviewed these learning
strategies for outcome prediction using both brain imaging
and genomics data, as well as joint learning strategies
that could not only identify associations between imag-
ing and genomics data but also use them to accurately
predict outcomes.

B. Biomedical Application Considerations

Fig. 1(b) summarizes some biomedical application con-
siderations regarding the studied data sets across multi-
ple disciplines, including brain imaging, genomics, and
clinical outcome research. Careful consideration of the
data characteristics and relevant biological structure and
knowledge can often provide valuable guidance on the
selection of an appropriate method for practical applica-
tions. A brain imaging genomics application involves the
integrated analysis of brain imaging data, genomics data,
and optionally clinical outcome data.

First, let us take a look at brain imaging data. Imag-
ing QTs can be extracted from brain scans at multiple
scales (e.g., voxels, ROIs, and connectivity matrix). In
the following, we discuss a few example strategies for
dealing with analytic challenges with these QTs. Although
voxelwise analysis (see [57]) can capture the finest details
in the brain, it is often underpowered due to its heavy
burden of multiple comparison correction and high spa-
tial correlation. There are several strategies to overcome
this limitation: 1) use methods, such as RFT (see [72]),
to reduce the multiple testing burden via embracing spatial
correlation; 2) collapse voxel measures into ROI measures
to greatly reduce the number of statistical tests (see [37]);
3) measure collective effect of all voxels within an ROI to
reduce the test number (see [95]); and 4) perform only
targeted SNP analysis (see [49]). Compared with voxel-
wise analysis, ROI-based analysis has a greatly reduced
multiple testing burden but may not be able to capture the
detailed spatial patterns. One strategy to leverage this issue
is to first identify a small number of interesting SNPs from
ROI-based analysis and then map their effects onto the
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brain in a voxelwise fashion (see [37]). Connectivity matri-
ces are another type of high-dimensional imaging QTs. To
alleviate the multiple testing burden, besides conducting
targeted QT analyses, one can perform heritability analysis
to select only highly heritable connectivity QTs for in-depth
genetic analysis (see [38]).

Brain imaging data can be collected with multiple
modalities. Given the availability of multimodal imag-
ing data, one can employ multimodal learning strate-
gies (see [193]) to make full use of the complementary
information offered by multiple imaging modalities. One
may also consider methods, such as in [201], to address
potential challenges related to multimodal imaging data
(e.g., high dimensionality, small sample size, heterogene-
ity, and incompleteness). In addition, brain imaging data
can be longitudinal. A longitudinal QT offers a unique
power to capture progressive pattern a cross-sectional QT
cannot describe and thus is an important biomarker to
study. One simple approach could examine some summary
statistics of a longitudinal QT (see [48]). One can also
employ more complicated longitudinal learning models
(see [149] and [151]) to identify more detailed longitu-
dinal patterns. Finally, there are different types of prior
knowledge and structure that can be used to group and
connect imaging QTs. For example, voxels can be grouped
by ROIs (see [169]), and ROIs can be grouped by network
components (e.g., DMN [88]) and connected by brain
networks (see [108]). Incorporating this prior knowledge
into the learning model can help alleviate overfitting and
yield biologically interpretable findings.

Second, let us take a look at the genomic data.
Traditional GWAS performs univariate analysis at the SNP
level, with a huge burden on multiple testing correction.
To address this challenge, the following are a few possible
strategies: 1) examine a few target SNPs (see [49]) or a
PRS (see Section III-B); 2) perform analysis at the SNP-set
level (e.g., LD block and gene) (see [71]); 3) perform
enrichment analysis using pathways and networks (see
Section III-E); and 4) examine a single model involving
multiple SNPs (see Sections V and VI). Here, the LD
blocks, genes, pathways, and functional interaction net-
works are biologically meaningful knowledge and struc-
tures. They can also be incorporated into the multivariate
learning models to reduce overfitting and improve
model interpretability.

Third, let us take a look at the clinical outcome data,
such as disease stage, impairment score, and progression
status. These are critical data sources for the study of
brain disorders. There are several strategies to perform
outcome-relevant brain imaging genomics studies. One is
to first identify outcome-relevant imaging QTs and then
reveal its genetic basis. This can be done as a two-step
procedure (see [207]) or via a joint learning model
(see [208]). The second strategy is to combine imaging
and genomics data for an improved outcome prediction
(see Section VII-A). The third strategy is to use outcome
information to guide the search for imaging genomics

associations, which can often reduce overfitting and
identify stronger associations (see [203]).

C. Statistical and Machine Learning
Considerations

Fig. 1(c) summarizes some statistical and machine
learning considerations for brain imaging genomics. The
first important consideration is the statistical power since
the existing brain imaging data sets typically have high
dimensionality and relatively small sample size. The fol-
lowing are a few strategies on how to increase study power.
First, compared with case-control analyses, QT studies
are shown to have increased statistical power [4], [209].
The second strategy is to employ more powerful multiple
testing correction methods by taking into consideration the
correlation within imaging and genomics data (see [44]).
The third strategy is to increase the sample size via mega-
or meta-analysis on combined data set from multiple col-
laborative sites (see Section IV). The fourth strategy is to
reduce the test number by pooling low-level measures into
high-level ones (e.g., averaging voxel measures into ROI
measures and aggregating SNP statistics into gene statis-
tics) or simply by applying a single multivariate model
involving all the studied SNPs and QTs.

Another important methodological consideration is how
to control overfitting and reduce spurious findings for
multivariate learning models. To reduce the risk of over-
fitting, the data fitting flexibility of a learning model
should be properly controlled. One strategy is to reduce
the number of variables in the model via dimensional-
ity reduction. For example, one can condense fine-level
SNP/voxel measures into high-level gene/ROI components
(see [37] and [71]). Another strategy is to include reg-
ularization terms in the model to control data fitting
flexibility. For example, to increase the feature selection
stability, we can group SNPs by LD block (see [169]).
To help biological interpretation, we can group SNPs by
gene, pathway or network, and/or ROIs by brain network
(see [107], [108], and [146]). In addition, incorporating
outcome information into the learning model can help
select outcome-relevant SNP and QT markers and reduce
overfitting (see [203]).

There are a few other methodological considerations
that we briefly discuss in the following.

1) To help biological interpretation, we can incorporate
prior knowledge and structure into the learning
methods and try to identify associations between
meaningful biological entities, such as genes, path-
ways, ROIs, and genetic and brain networks. One
strategy is to perform GWAS enrichment analysis
(see [90] and [99]) to measure collective effects at
the set level. This can reduce the number of tests
and increase the detection power. Another strategy is
to regularize the learning model using these sources
of prior knowledge and structure to guide our
search for meaningful associations (see [106]–[108]

154 PROCEEDINGS OF THE IEEE | Vol. 108, No. 1, January 2020



Shen and Thompson: Brain Imaging Genomics: Integrated Analysis and Machine Learning

and [146]). In both cases, findings are associated
with meaningful functional annotation implicating
potential biological mechanism and interpretation,
which make them less likely to be false discoveries.

2) Scalability is often an important consideration
in BWGW studies, particularly if one wants to
perform analyses at the voxelwise level. Several
efficient algorithms (see [50] and [72]) have been
proposed to address this consideration. One effective
strategy is a GSIS procedure used in [50], which
can greatly reduce the search space size from NsNv

to ∼N0Nv for N0 � Ns. Here, Ns is the number
of SNPs and Nv is the number of voxels. Another
valuable strategy is a fast permutation procedure,
proposed in [72], which uses a parametric tail
approximation to provide accurate p estimations in
an efficient manner.

3) Biased sampling is another potential cause for spu-
rious findings. Most GWAS studies (e.g., ADNI) are
based on the case-control design, and the data
are typically a biased sample of the target popula-
tion. Directly correlating imaging QTs (as secondary
traits) with genotype may lead to biased inference
generating misleading results. This issue has been
considered in several studies (see [52] and [55]).
Although the standard linear analysis was found
to be generally valid on the ADNI data in [52],
simulation studies in [55] showed that linear regres-
sion models without adjusting for biased sampling
demonstrated severely inflated Type I error rates
in some cases. In general, caution should be taken
while analyzing imaging QT data as secondary phe-
notypes in case-control studies.

4) Gene–gene interaction has also been studied to iden-
tify epistatic genetic effects on imaging QT and to
help address miss heritability. Given an exponen-
tially increasing number of possible tests, a major
topic in epistatic studies is to find an effective
search strategy to reduce computational time and
increase statistical power. One strategy is to exam-
ine only a subset of candidate interactions with a
potential biological mechanism suggested by func-
tional interaction networks or biological pathways
(see [109] and [112]). Another strategy is to per-
form data-driven screening to focus on the analysis
of a small number of most promising candidate
interactions (see [109] and [114]).

D. Scientific and Clinical Impact

Our previous reviews of ADNI brain imaging genomics
findings [4], [5] indicated that numerous genes contribut-
ing to increased risk for or protection against AD have
been identified and replicated using multimodal brain
imaging data. These findings implicated immune, mito-
chondrial, cell cycle/fate, and other biological processes
and advanced the mechanistic understanding of AD. In the

following, we briefly discuss a few new example findings
with potential scientific and clinical impacts.

According to the most recent ENIGMA review article
[2], the consortium’s GWAS analyses have revealed over
200 genetic loci associated with cortical thickness or sur-
face area and over 40 common genetic variants asso-
ciated with subcortical volumes. In addition, the recent
UK Biobank GWAS of 3144 brain imaging QTs identified
148 clusters of SNP–QT associations [12]. These results
have provided substantial new insights into the genetic
landscape of the brain and offered a great scientific value
that could impact and advance research on normal brain
development and aging, and neurological and psychiatric
disorders.

Given the timelines set in place by the National
Alzheimer Project Act (NAPA) (e.g., the goal of effectively
treating or preventing AD and related dementias by 2025)
and that many clinical trials of therapies for AD have
failed in recent years, it becomes an extremely important
and timely topic to study brain imaging genomics in AD.
In particular, these efforts could accelerate progress in
better understanding of the genetic, molecular, and neu-
robiological mechanisms of AD and have a subsequent
translational impact on disease modeling and drug devel-
opment. For example, recent ADNI studies have yielded
prominent imaging genomics findings, such as BCHE and
IL1RAP with amyloid QTs [210], [211], PARP1, CARD10,
REST, FASTKD2, and ADORA2A with hippocampal mor-
phometry [212]–[215], INPP5D with cerebral blood flow
[216], and APOE with multimodal imaging QTs [48],
[108], [174]. Some of these findings have contributed to
genetically based drug targets leading to novel disease
model systems [e.g., creation of the IL1RAP knockout
mouse [217] and nomination of INPP5D as a modeling
target (http://agora.ampadportal.org)].

Finally, for many novel statistical and machine learning
methods reviewed here, the authors often used the ADNI
data to demonstrate the power of the methods to detect
interesting and novel imaging genomics signals. Some
yielded confirmatory findings matching previous studies,
showing the effectiveness of these methods. Some identi-
fied novel signals missed by the existing methods, showing
improved detection power. Of note, the generalizability of
findings from many of these new methods needs to be eval-
uated in additional independent data sets to demonstrate
their broader impact on the future.

E. Related Work and Future Directions

In this article, we mostly reviewed the methods devel-
oped and employed for analyzing ADNI and ENIGMA data.
Similar methods have been investigated in the study of
other neurological and psychiatric disorders. For example,
the pICA method was first proposed and then widely used
in studies of psychiatric disorders [218]. Various SCCA and
other multivariate models (see [219]–[223]) have been
developed and employed in brain imaging genomics appli-
cations to study psychiatric disorders. Additional details
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are available in [224], where the authors provided a
recent review on neuroimaging genomics analyses and
their translational potential to diagnosis and treatment in
mental disorders.

Due to the open-science nature of the ADNI project and
the large-scale global alliance formed by ENIGMA, a large
number of researchers around the world have had the
chance to analyze the ADNI and ENIGMA data, resulting in
a major growth of literature in new statistical and machine
learning methods for brain imaging genomics. Of note,
the generalization of many of these new methods remains
to be evaluated in other independent data sets, which
will be an interesting and promising future direction.
In particular, given the rapid growth and sheer number of
these new developments, we observe no lack of innovation
and expect to see the impact of these methods or their
enhanced versions to permeate biomedical studies in brain
imaging genomics.

Integrating imaging and omics data is also an active
research topic in cancer studies, which is often referred
to as radiogenomics [225]. In these studies, in addition
to SNP data, multiomics data (e.g., transcriptomics, pro-
teomics, metabolomics, and epigenomics) are often col-
lected from the actual tumor tissues. Therefore, relat-
ing multiomics data to imaging data becomes a study
focus. Note that the omics data are tissue-specific. Thus,
the methods reviewed in this article are mostly focused
on relating SNP data to imaging QTs, mainly due to
the lack of the available brain tissue in these in vivo
studies. However, with the increasing accumulation of
brain samples in some landmark studies (e.g., AMP-AD
[226]), more and more omics data will be available for
the study of brain disorders. A promising future direc-
tion is to adapt many radiogenomics approaches devel-
oped for cancer research to the study of brain imaging
genomics.

As we aim at understanding mechanisms and pathways,
another challenge in brain imaging genomics is how to
handle spurious correlations leading to erroneous con-
clusions. Thus, replication in independent cohorts will
be an important step to complete in order to identify
true signals. Some sources of spurious correlations, such
as overfitting and biased sampling, have been studied
as described earlier. However, systematic investigation of
various confounding factors is an underexplored topic and
warrants further investigation.

Deep learning models have been highly successful in
addressing data-driven problems in biology and medi-
cine [227]. However, they have not been widely used in
brain imaging genomics, partly due to the limited sample
size and high dimensionality of the existing imaging and
genomics data sets. Some recent attempts have been made
to develop effective deep learning models for outcome
prediction via integrating brain imaging genomics data
(see [201]). Given that deep learning has been producing
impressive results in both medical image analysis [228],
[229] and multiomics research [230], it is a promising

future direction to develop deep learning methods for
solving pressing problems in brain imaging genomics.

Given the unprecedented scale, complexity, and het-
erogeneity of the fast-growing big data in brain imaging
genomics, we are facing a variety of other methodologi-
cal challenges that suggest promising and exciting future
research directions as follows.

1) Although multicohort integrative data analysis can
offer increased statistical power, one major obstacle
is that the available data modalities often vary
across different studies. Thus, one promising direc-
tion is to develop novel machine learning or transfer
learning methods that can effectively handle incom-
plete data modalities and facilitate multicohort data
integration.

2) Most methods reviewed here analyzed genotyping
data and were not designed for examining the whole
genome/exome sequencing (WGS/WES) data. The
rapid growth of WGS/WES data in brain imaging
genomics calls for new statistical and machine learn-
ing methods that can properly handle their ultrahigh
dimensionality and resolution as well as effectively
identify both common and rare genetic variants
related to imaging QTs.

3) There is also an urgent need for novel scal-
able computational strategies to support large-scale
consortium-based collaborative efforts. For consor-
tia with one single centralized data repository,
cloud-based computational and informatics tools
are needed to enable the users to directly analyze
large-scale data in the cloud. For consortia with mul-
tiple local data repositories, distributed computation
methods and frameworks could be established to
handle the decentralized data sets.

The rapid growth of brain imaging genomics as an
emerging data science field is greatly attributed to the
public availability of valuable imaging and genomics data
sets. For example, due to the open-science nature of the
ADNI project, hundreds of publications using ADNI imag-
ing genomics data have been produced in the past decade,
yielding not only innovative machine learning methods but
also novel biomedical discoveries. Similar to ADNI and
ENIGMA, more and more landmark studies are producing
big data, including multidimensional imaging and omics
modalities, and make them available to the research com-
munity. Some example landmark studies are shown in the
following:

1) ADNI [1];
2) ENIGMA [7], [8];
3) UK Biobank [3];
4) Human Connectome Project (HCP) [231];
5) Accelerating Medicines Partnership AD (AMP-AD)

[226];
6) Mind Clinical Imaging Consortium (MCIC) [232];
7) Pediatric Imaging, Neurocognition, and Genetics

study (PING) [233];
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8) Parkinson’s Progression Markers Initiative (PPMI)
[234];

9) The Cancer Genome Atlas (TCGA) [235];
10) The Cancer Imaging Archive (TCIA) [236].

With this growing availability of brain imaging genomics
data, we anticipate to observe many more advances
in machine learning and their applications to brain
imaging genomics, which will significantly contribute to

biomedical discoveries in brain science and the study of
brain disorders.
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