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Abstract

Experimental and clinical evidence have demonstrated the increased synthesis of specific

inflammatory mediators, and the upregulation of their cognate receptors in the chronic epileptic

brain, indicating that some proinflammatory pathways are activated in seizure foci. Inhibition of

experimental seizures by pharmacological interference with specific proinflammatory signaling,

together with evidence of changes in intrinsic susceptibility to seizures in transgenic mice with

perturbed inflammatory pathways, was instrumental to establish the concept that brain

inflammation has a role in the etiopathogenesis of seizures. Increasing evidence also highlights the

possible involvement of inflammatory processes arising in the injured brain in the development of

epilepsy (i.e., in epileptogenesis). Since brain inflammation in epilepsy is not a mere

epiphenomenon of the pathology but is likely involved in the mechanisms underlying neuronal

hyperexcitability, the onset of seizures and their recurrence, it might be considered as a biomarker

of disease development and severity, and, as such, could be used for diagnostic, prognostic or

therapeutic purposes, provided that adequate noninvasive methodologies are developed to detect

and quantify brain inflammation in humans.
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Inflammation as a biomarker of epileptogenesis

The first insights into the role of brain inflammation in epileptogenesis originate from

studies in transgenic mice overexpressing cytokines, such as TNF-α and IL-6, in astrocytes

[1,2]. These mice develop age-dependent neurological dysfunctions including cell loss,

decreased seizure threshold and spontaneous seizures. A second set of evidence is provided

by immunohistochemical and biochemical studies demonstrating that pro-epileptogenic

brain injuries, such as trauma, infection, and febrile and nonfebrile status epilepticus, are

followed by a rapid rise in specific inflammatory mediators in brain regions affected by the

injury [3–5]. In some instances, the kinetics and extent of the inflammatory response appear

to be developmentally regulated [6–8]. The induction of the inflammatory response to a
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given experimental brain injury can last several days or weeks and often precedes the

development of epilepsy [9]. This circumstantial evidence highlights the possibility that the

onset of spontaneous seizures arising after the original precipitating event might be

determined also by the extent and/or duration of the inflammatory response in susceptible

brain regions.

Since inflammation is a homeostatic mechanism of defense against infection or other

pathological threats, its involvement in epileptogenesis should be considered at the light of

its aberrant induction, and consequent uncontrolled signaling in the target cells. There are at

least two notable examples of uncontrolled brain inflammation during the latent phase,

which follows status epilepticus. The first example relates to the delayed peak induction and

limited biosynthesis of IL-1 receptor antagonist as compared with IL-1β [10–12]. IL-1

receptor antagonist is an anti-inflammatory peptide that competitively blocks IL-1 receptor

type 1 and it is instrumental to rapidly terminate IL-1β signaling to avoid detrimental effects

in tissues [13]. The second example concerns the limited induction of complement inhibitors

in glia and neurons after brain injury, predicting that the activation of the complement

cascade is not properly controlled [14,15]. Therefore, it appears that the mechanisms for

rapidly resolving inflammation upon its induction, following tissue damage or during

recurrent seizures, are not very efficient in the brain.

What determines the extent of induced inflammation after a pro-epileptogenic injury, or for

how long inflammation develops, is currently unknown. However, it is evident that

apparently similar brain injuries in rodents provoke brain inflammation that may differ in

extent and duration, suggesting that the degree of brain inflammation could contribute either

to determine whether or not epilepsy will develop, or to tissue epileptogenicity after epilepsy

is established (as discussed later). In addition, the genetic background of an individual could

significantly contribute to determine the development of the inflammatory response

following an injurious pro-epileptogenic event.

Compelling pharmacological studies, demonstrating in experimental models that

inflammation is indeed involved in epileptogenesis, are still lacking. The major

inflammatory pathways studied so far for their possible contribution to epileptogenesis are

the activation of the IL-1β system, COX-2 and mTOR [16]. The IL-1β system has been

studied only using the surrogate kindling model of epileptogenesis, both in adult and

immature rats: blockade of IL-1β signaling leads to prevention of seizure generalization or

delays stage 5 seizure occurrence, respectively, and increases the threshold for

afterdischarge induction [17,18]. However, studies on the involvement of IL-1β in

epileptogenesis induced by status epilepticus or brain insults (e.g., traumatic brain injury)

are still lacking.

Inhibition of COX-2 during the latent phase, which follows status epilepticus, and is

prodromal to spontaneous seizures onset, has given variable results. Either neuroprotection

and decreased spontaneous seizures [19], or no major effects on neuropathology and various

functional outcomes have been reported [20,21], depending on the anti-COX-2 treatment

schedule and the severity of chemically or electrically induced status epilepticus in each of

these studies. mTOR inhibition by rapamycin has also given contrasting results since anti-

epileptogenesis actions consisting of inhibition of sprouting and decreased chronic seizure

frequency have been reported in kainate-treated rodents [22], while chronic epilepsy onset or

severity was not affected in pilocarpine-treated animals [23]. Recently, mTOR signaling has

also been implicated in the recurrence of seizures in chronic epileptic tissue [24].

These apparent discrepancies are likely due to the different role that the activation of

specific proinflammatory pathways may have on neuronal excitability, cell survival, and
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cellular and synaptic plasticity, depending on the intrinsic properties of the first damaging

event used to trigger epileptogenesis. Thus, this critical feature would determine the tissue

context in which inflammation develops, that is, the type of mediators released and which

receptors are induced, the type of effector and target cells, which will, in turn, affect the

outcome features of tissue inflammation.

The role of brain inflammation in mood disorders and behavioral deficits, such as autism

and cognitive impairments, has also been substantiated by increasing evidence in the

experimental and clinical setting; interestingly, these pathological aspects often present as

comorbidities of epilepsy [25] and are now conceptually included as outcomes of the

epileptogenic process [26].

In this view, it is worth mentioning the studies demonstrating that a systemic pro-

inflammatory challenge inducing a mirror focus of brain inflammation, even in the absence

of brain damage or seizures, when imposed on rats during their infancy, induces a long-term

decrease in seizure threshold, as well as learning and memory deficits, and anxiety-like

behaviors in adulthood, accompanied by long-lasting changes in the forebrain expression of

glutamate receptor. Therefore, inflammation during brain development can set permanent

changes in brain functions, likely by modifying genomic programs, thus representing a

convincing evidence of long-term modifications induced by inflammation with an impact on

brain excitability associated with neurological dysfunctions.

The concept that inflammation may induce chronic tissue dysfunction applies not only to

epilepsy, but also to several CNS disorders, including neurodegenerative diseases [27,28]

where inflammation appears to contribute to disease progression.

Inflammation as a biomarker of epileptogenicity

Immunohistochemical and biochemical studies in human chronic epileptic tissue, resected at

surgery from drug-resistant patients, demonstrated increased levels of specific inflammatory

mediators and their receptors in activated glial cells, in neurons and in endothelial cells of

the blood–brain barrier (BBB) [9]. Although this inflammatory trait is common to epilepsies

of differing etiologies, there are notable differences in the type of cells contributing to

inflammation, as well as in the extent of inflammation in the specimens analyzed. In

particular, brain tissue from temporal lobe epilepsy (TLE) with hippocampal sclerosis is

mainly characterized by intrinsic inflammation involving activated microglia, parenchymal

and perivascular astrocytes, scattered neurons, and endothelial cells of microvessels.

Macrophages are also found, both surrounding vessels and in parenchyma, while cells of

adaptive immunity, such as T cells and B lymphocytes, are scarce or absent, and

predominantly found within vessels [29,30].

Analysis of focal cortical dysplasia tissue highlighted differences with TLE – although glia

and neurons, as well as vessels, are sources of inflammatory molecules similar to TLE, the

contribution of peripheral immune cells, such as T cells and dendritic cells, is more

significant than in TLE [30]. Moreover, focal cortical dysplasia type 2 has more pronounced

brain inflammation than focal cortical dysplasia type 1 as far as the extent and number of

inflammatory cells involved are concerned [31]. Finally, brain inflammation in Rasmussen’s

encephalitis demonstrates a peculiar involvement of cytotoxic T lymphocytes contributing to

tissue pathology in concert with intrinsic brain cells [32,33]. Another notable evidence is

that the number of microglia cells in the epileptic foci, and the level of expression of IL-1β
and its receptor, IL-1R1, in glia and neurons, correlate positively with the frequency of

seizures in the surgically treated patients [11].
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Therefore, we can envisage that there is a spectrum of different degrees of brain

inflammation and cell components in epilepsy, either intrinsically contributing to this

phenomenon or imported from the blood; this spectrum is determined both by the frequency

of seizures and the underlying neuropathology.

Based on these findings, one can envisage that brain inflammation may be considered a

biomarker of tissue epileptogenicity, as supported by data in experimental models of

epilepsy where pharmacological interventions to resolve brain inflammation dramatically

reduce chronic seizure recurrence [34–36], most likely by raising the threshold of neuronal

excitability or reducing network pathological plasticity.

This feature of brain inflammation could be exploited for therapeutic purposes, for example,

to identify the patient population with more significant brain inflammation since these

patients might benefit from specific anti-inflammatory treatments adjunctive to

anticonvulsant drugs. Moreover, brain inflammation could be used as a biochemical marker

of the therapeutic success of a treatment with disease-modifying properties. Thus, seizure

relapse might be predicted in patients using anticonvulsant drugs, which may transiently

decrease seizures without provoking a concomitant significant reduction of brain

inflammation in the seizure focus. Finally, inflammation may be used to identify seizure foci

with the highest degree of epileptogenicity for surgical or alternative therapeutic

interventions.

BBB dysfunction: a surrogate marker of brain inflammation & a biomarker

of epileptogenesis

Dysfunction of the BBB has been described by many authors as a frequent result of injuries

to the brain [37,38] as well as in the chronic epileptic tissue [39]. BBB dysfunction may be a

result of the primary injury to blood vessels but may also result from secondary mechanisms

including metabolic compromise, prolonged seizures and inflammation [40]. In fact,

inflammatory mediators have been reported to modulate both the paracellular tight

junctional pathway and vesicular mechanisms [41]. Thus, it seems that any significant

inflammatory response within the brain tissue will be associated with BBB dysfunction,

raising the potential use of BBB permeability measure as a surrogate marker for a local

inflammatory response. Furthermore, recent evidence indicates that BBB opening and

consequent exposure of brain tissue to serum proteins (specifically albumin) induce a robust

astrocytic response resulting in upregulation of proinflammatory cytokines and activation of

the complement system. This brain response to serum albumin is mediated by TGF-β
signaling [42], and suggests a positive feedback between increased permeability of the brain

endothelium, the local immune/inflammatory response and neuronal hypersynchronicity.

Status epilepticus induced by kainate or pilocarpine in mice has been demonstrated to

upregulate adhesion molecules, such as ICAM-1, VCAM-1 and E- and P-selectin, on

endothelial cells of brain microvasculature [43,44]. This phenomenon was also described

following epileptifom activity induced by bicuculline in an in vitro guinea pig preparation

[45]. In this in vitro model, the absence of circulating blood cells or blood-derived large

molecules allowed the establishment of a strict relationship between seizure-associated

inflammation in parenchymal and perivascular astrocytes, and BBB dysfunction [Librizzi L,

Noé F, Vezzani A, de Curtis M, Ravizza T, Manuscript in Preparation]. Leukocyte adhesion

on inflamed brain endothelium was implicated in the vascular leakage during seizure

activity in vivo, and the interference with this phenomenon after pilocarpine-induced status

epilepticus reduced the frequency of spontaneous seizures in epileptic mice [44].
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Indeed, BBB opening per se may lead to the induction of epileptogenesis [46] and promote

the generation of seizures [47,48], and thus may serve as a potential surrogate biomarker for

the brain inflammatory response and a biomarker of epileptogenesis.

How to measure brain inflammation with noninvasive techniques

Imaging techniques could be advocated and developed to detect and possibly quantify

inflammation in the brain of epileptic patients, or those individuals at risk of developing

epilepsy. Initial studies have been developed using PET ligands to detect activated microglia

in seizure foci [49–53]; magnetic resonance spectroscopy could also be a promising way to

go since it allows one to monitor and quantify the degree of astrocytic activation in specific

brain regions [54–56] as these cells are pivotally involved in the production and release of

inflammatory molecules. Changes in T2 signals in experimental models of febrile status,

which may reflect edema associated with BBB breakdown, have been described as being

possibly predictive of the subsequent development of epilepsy [6].

More direct methods for the detection and quantification of BBB permeability changes are

being developed; while preliminary reports suggest a significant number of injury-related

epileptic patients showing BBB damage [57], future studies are awaited to clarify to what

extent vascular permeability reflects brain inflammatory response or may predict seizures.

Further development of more sensitive and specific tools is mandatory, to devise methods

for detecting specific inflammatory molecules in the brain or to visualize the brain vessels’

upregulation of inflammatory mediators or for measuring the extent of BBB breakdown.

Biochemical measurements of inflammatory mediators in blood and serum are another, not

mutually exclusive, approach [53]. The drawback of these types of measurements is the

difficulty in demonstrating that peripheral biomarkers meaningfully reflect the degree and

extent of brain inflammation. This is due to interference of peripheral sources, such as the

liver, the lymphoid organs or even the muscles, which can release cytokines during intensive

activity. Antiepileptic drugs may also increase blood proinflammatory cytokines [58];

therefore, caution should be taken when considering blood cytokines as biomarkers in

epilepsy.

Moreover, the rapid half-life of many inflammatory cytokines makes it difficult to

accurately detect their levels in peripheral fluids. Cerebrospinal fluid (CSF) measurements

should give a more direct measure of the inflammatory mediators released from an epileptic

tissue. However, these samples are not routinely available, and cytokine levels may differ

dramatically owing to the size of brain tissue involved and not only because of the

inflammatory load. Moreover, dilution effects along the ventricles and spinal CSF may

render the levels of relevant cytokines undetectable or may not readily reflect the extent of

inflammation. In addition, blood and CSF measurements lack critical information on the

spatial characteristics of the brain’s inflammatory response and may vary significantly

depending on the extent of the lesion. These aspects are likely to underlie the variability of

data reporting on changes in peripheral blood or CSF levels of several cytokines in human

epilepsy, either after seizures or interictally.

As described in the previous section, soluble vascular adhesion molecules may serve as a

marker of vascular inflammation in epilepsy, thus mirroring parenchymal inflammation.

Indeed, several studies have demonstrated the presence of elevated soluble vascular

adhesion molecules in the serum and CSF of patients with stroke, and elevated levels of

soluble endothelial adhesion molecules have been associated with disease severity in

multiple sclerosis patients [59–61]. In addition, soluble endothelial adhesion molecules have

been proposed as biomarkers in Alzheimer’s disease and aging [62].
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Because of the reciprocal brain-to-blood communication mediated by the BBB, and the

known interactions between the brain and the peripheral immune system, attempts have been

made to measure the in vitro responsiveness of leukocytes isolated from the blood of

patients with epilepsy to proinflammatory challenges [63–65]. This was taken as an index of

the individual propensity to develop an inflammatory response, which could mirror a similar

response in the brain parenchyma. However, the results are not very encouraging so far

since the majority of these studies were unable to demonstrate a clear-cut difference with the

control nonepileptic population.

Cell sorting measurements of leukocytes in epilepsy patients have shown differences in the

profile of peripheral immune cells in some cohorts [66,67] but more information is still

required to understand whether these changes could be used as reliable and meaningful

biomarkers of inflammatory traits in epileptic syndromes.

Therefore, the future challenge is to characterize markers of inflammation in peripheral

fluids specifically reflecting the brain phenomenon, either by direct leakage out of the brain

and into the CSF and blood, or released from inflamed brain vessels, or inducing a

secondary peripheral response that specifically reflects the primary CNS signal.

Finally, a growing number of specific auto-antibodies are being detected in patients with

new-onset epilepsy and immuno-mediated seizure disorders [68,69]. These antibodies are

directed to intracellular targets (i.e., glutamic acid decarboxylase), or to cell-surface

membrane proteins, such as voltage-gated potassium channels (voltage-gated potassium

channel-complex proteins) or NMDA receptors [68,70]. Increasing evidence shows that

these antibodies may serve as biomarkers for underlying immunopathology of limbic

encephalitis which represents a precipitating event in adult-onset TLE with hippocampal

sclerosis [69,71]. Whether these antibodies could be of value as biomarkers in seizure

disorders without infectious or immune-mediated etiology remains to be established.

Conclusion & future perspective

The increased knowledge of the role played by brain inflammation and BBB breakdown in

seizure recurrence supports the concept that these phenomena may represent biomarkers of

epileptogenicity in chronic epileptic tissue. Their putative contribution to the induction of

epileptogenesis underlines they could be used as putative predictors of epilepsy development

in the injured brain.

This new notion highlights the need of developing adequate noninvasive brain imaging

methods, or CSF/blood biomarkers, for detecting and quantifying brain inflammation and

BBB damage (Figure 1 & Box 1). This effort might provide powerful tools for diagnostic,

prognostic and therapeutic purposes.

Box 1

Potential biomarkers of brain inflammation in epilepsy

• Brain imaging (cell types or macromolecules)

– PET (microglia/macrophages, endothelial cell adhesion molecules)

– Magnetic resonance spectroscopy (astrocytes)

– Molecular MRI (endothelial dysfunction; VCAM)

– Contrast-enhanced MRI (endothelial dysfunction; increased permeability)

• Soluble inflammatory mediators in cerebrospinal fluid/blood

– #x02022; – Cytokines/chemokines/danger signals†
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– Cell adhesion molecules

– Autoantibodies

• Leukocytes

– Cell sorting profile

– In vitro responsiveness to proinflammatory challenges

– Pro- or anti-inflammatory gene polymorphisms‡

See main text for details.
†
Danger signals are endogenous molecules released from cells exposed to stressful events. For example, high-

mobility group box 1 is a danger signal released from glia and neurons in epileptic tissue [34]; increased high-

mobility group box 1 blood levels have been measured in neurological disorders [72].
‡
A modest association between the IL-1β gene and epileptic disorders has been reported [73,74].
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Executive summary

• Brain inflammation in epilepsy is not a mere epiphenomenon but is likely to

directly contribute to neuronal hyperexcitability, network plasticity, the onset of

seizures and their recurrence.

• The onset of spontaneous seizures arising after the original precipitating event

might be determined also by the extent and/or duration of blood–brain

communication, vessel permeability and the inflammatory response in

susceptible brain regions.

• Long-term modifications induced by inflammation have an impact on brain

excitability associated with neurological dysfunctions.

• ; In epilepsy there is a spectrum of different degrees of brain inflammation and

inflammatory cell types; this spectrum appears to be determined both by the

frequency of seizures and the underlying neuropathology.

• Brain inflammation, including vascular inflammation, may be considered as a

potential biomarker of epileptogenicity and be exploited for diagnostic and

therapeutic purposes.

• Blood–brain barrier dysfunction has been described as a frequent result of

injuries to the brain as well as in the chronic epileptic tissue.

• A positive feedback appears to occur between increased permeability of the

brain endothelium, the local immune/inflammatory response and neuronal

hypersynchronicity.

• Blood–brain barrier opening per se may lead to the induction of epileptogenesis

and promote the generation of seizures; it may serve as a surrogate biomarker

for brain inflammatory response and a biomarker of epileptogenesis.

• Imaging techniques are under development to detect and quantify inflammation

in the brain of epileptic patients, or those individuals at risk of developing

epilepsy.

• Biochemical measurements of inflammatory mediators/cells in blood and serum

should meaningfully reflect the degree and extent of brain inflammation.
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Figure 1. Strategies to monitor crucial events putatively contributing to epileptogenicity or the
development of epilepsy
Brain imaging techniques will serve for detection and quantification of brain inflammation

and the associated blood–brain barrier breakdown in established epilepsy, or to predict the

development of epileptogenesis after brain injury. CSF biomarkers could reflect pro-

epileptogenic brain injury/plasticity as well as the severity of seizures. CSF-born molecules

may also drain out of the brain into the systemic circulation via the arachnoid villi/venus

sinus or via the nasal lymphatics (not shown). Blood biomarkers are soluble molecules that

could mirror brain inflammation, either indirectly by leakage into the circulation via the

compromised blood–brain barrier, or directly by activation of brain efferent vagal nerve

pathways projecting to the reticulo–endothelial system. Brain injury may also give rise to

blood biomarkers of pro-epileptogenic type of damage. Leukocytes and autoantibodies could

be considered as surrogate markers of brain inflammation, to be included as putative blood

biomarkers. Seizure activity per se can alter each one of the mentioned biomarkers by

contributing both to brain inflammation and blood–brain barrier damage, as well as to brain

injury and plasticity.

CSF: Cerebrospinal fluid; CT: Computed tomography.
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