INVITED
PAPER

Brain-Inspired Learning on
Neuromorphic Substrates

This article provides a mathematical framework for the design of practical online
learning algorithms for neuromorphic substrates.

By FRIEDEMANN ZENKE"“ AND EMRE O. NEFTCI

ABSTRACT | Neuromorphic hardware strives to emulate
brain-like neural networks and thus holds the promise for
scalable, low-power information processing on temporal data
streams. Yet, to solve real-world problems, these networks
need to be trained. However, training on neuromorphic sub-
strates creates significant challenges due to the offline charac-
ter and the required nonlocal computations of gradient-based
learning algorithms. This article provides a mathematical
framework for the design of practical online learning algo-
rithms for neuromorphic substrates. Specifically, we show a
direct connection between real-time recurrent learning (RTRL),
an online algorithm for computing gradients in conventional
recurrent neural networks (RNNs), and biologically plausible
learning rules for training spiking neural networks (SNNs).
Furthermore, we motivate a sparse approximation based on
block-diagonal Jacobians, which reduces the algorithm’s com-
putational complexity, diminishes the nonlocal information
requirements, and empirically leads to good learning per-
formance, thereby improving its applicability to neuromor-
phic substrates. In summary, our framework bridges the gap
between synaptic plasticity and gradient-based approaches
from deep learning and lays the foundations for powerful infor-
mation processing on future neuromorphic hardware systems.

KEYWORDS | Artificial neural networks; biological neural
networks; learning systems; machine learning; neural net-
work hardware; neuromorphic engineering; recurrent neural

networks (RNNs).

Manuscript received August 1, 2020; revised October 22, 2020; accepted
December 6, 2020. Date of publication January 8, 2021; date of current version
April 30, 2021. This work was supported in part by the National Science
Foundation under Grant 1652159 and Grant 1823366 (EN) and in part by the
Novartis Research Foundation (FZ). (Friedemann Zenke and Emre O. Neftci
contributed equally to this work.) (Corresponding author: Emre O. Neftci.)
Friedemann Zenke is with the Friedrich Miescher Institute for Biomedical
Research, 4058 Basel, Switzerland.

Emre O. Neftci is with the Department of Cognitive Sciences and the
Department of Computer Science, University of California at Irvine, Irvine,
CA 92697 USA. (e-mail: eneftci@uci.edu).

Digital Object Identifier 10.1109/JPROC.2020.3045625

, Member IEEE

I. INTRODUCTION

Our brain simultaneously processes various streams of
temporal information, allowing us to solve challenging
real-world problems that ensure our survival. Importantly,
brains do this with an aptitude that dwarfs existing
computer technologies while only consuming a meek
25 W of power.

Neuromorphic engineering has taken on the challenge
of approaching such efficiency by building scalable,
low-power systems that mirror the brain’s essential archi-
tectural features [1]-[3]. Decades of research helped
overcome major engineering challenges toward this goal,
resulting in an increasing number of neuromorphic sub-
strates available today [4]-[6] and allowing the efficient
emulation of brain-inspired neural networks. One key
challenge that remains and prevents the widespread appli-
cation of neuromorphic systems is the lack of practical
algorithms that run on such hardware and equip it with
complex functionality.

Deep learning provides algorithmic blueprints to
organize large neural networks into suitable function
approximators that flexibly solve diverse real-world prob-
lems [7]. To achieve this feat, deep learning optimizes
loss functions with gradient descent, which can be com-
puted efficiently with the back-propagation (BP) algo-
rithm. This efficiency, however, rests on the von Neumann
computer architecture. In contrast, gradient BP is difficult
to implement on non-von Neumann neuromorphic sub-
strates. These difficulties mainly arise from limitations in
their ability to communicate neural activities and weight
values between different network elements, similar to the
architectural constraints of biological neural networks [8].
For instance, synaptic plasticity implemented at a bio-
logical synapse may have access to the activity of the
two neurons that it connects but not to the activity of
other neurons that it is not physically connected to. This
notion is often expressed by saying that plasticity in the
brain is local. Local learning rules have been extensively
studied in computational neuroscience, typically based
on experimental data. However, these rules often lack

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Vol. 109, No. 5, May 2021 | PROCEEDINGS OF THE IEEE 935

https://orcid.org/0000-0003-1883-644X
https://orcid.org/0000-0002-0332-3273

Zenke and Neftci: Brain-Inspired Learning on Neuromorphic Substrates

n
[}
n — —
Z L2 L£i=1 Lt
q | / /% T
)
N
t—1 t
i 1% Vv
56 § ht—2 ht—l ht
B =
¥ o
é n
w2 Wit wt
J
pt—2 L1 ot

Fig. 1.
The bottom row represents the inputs x'. The middle row represents

Computational graph of a recurrent neural network (RNN).

the network states of a network with parameters 6 — {W, V}. Here,
arrows indicate operations on the nodes, and the arrow labels
indicate the parameters involved in the computations. Note that,
to distinguish between direct and indirect influences,

the parameters have superscripts with time indices even though
these parameters are tied across time. The top row shows the
computations of the output loss in each time step.

the normative foundations of BP and hence the abil-
ity to instantiate complex functional neural networks.
However, top-down-driven synaptic plasticity rules can
also be derived from gradient descent both in the case
of single biologically inspired spiking neurons [9]-[11],
thereby establishing a link to the Perceptron [12], and in
more complex multilayer networks [13]-[21]. Remarkably,
many normative approaches do result in learning rules
largely consistent with models of cortical neurons and
synapses [17], [22]-[27].

In this article, we discuss the remarkable commonalities
across machine-learning and computational neuroscience
learning algorithms from the standpoint of neuromorphic
engineering. To this end, we rely on the conceptual frame-
work provided by deep learning, allowing us to focus on
three distinct aspects of building functional artificial neural
networks: architecture, learning rules, and loss functions
(see Fig. 1) [28]. Within this framework, we focus on
online learning rules (see Sections II and III) and loss
functions (see Section IV) due to their specific relevance for
neuromorphic engineering. This relevance largely derives
from the use of non-von Neumann architectures in this
field, which we introduce next.

A. von Neumann Computers and Biological Brains

Conceptually, computation requires memory, communi-
cation, and arithmetic. Computation is a physical process
in which these three components come together in the
same place and at the same time. Doing so requires space,
time, and energy. The number of resources used deter-
mines the overall cost of computation and varies depend-
ing on both the computation itself and the architecture on
which it runs.

The von Neumann architecture, which underlies
virtually all human-made computers, posits a physical
separation between processing units for arithmetic,

936 PROCEEDINGS OF THE IEEE | Vol. 109, No. 5, May 2021

program flow control, and memory. This separation
induces a communication channel between the two.
A significant design limitation of this architecture is
that, when the amount of data becomes too large,
communication between the processing and the memory
unit becomes a bottleneck. Thus, for memory-intensive
computations, this so-called von Neumann bottleneck
impacts both latency and power efficiency. The impact
is especially noticeable in deep learning applications
that require large amounts of data to first propagate
through immense deep neural network models. Then,
gradient information propagates back through the same
nodes to compute gradients for learning. Since both
the data and the model parameters reside in memory
while the operations that act on them take place in the
processing units, the communication requirements become
substantial. Although modern computer architectures use
diverse strategies to mitigate this bottleneck, for example,
caching, branch prediction, and parallelism, all these
measures come at the expense of higher energy cost and
larger on-chip space requirements. Hence, they eventually
run into the same bottleneck. With the looming end
of Moore’s law, the communication bandwidth across
processing and memory units is reaching a plateau. While
the continued development of deep learning hinges,
in large part, on ever faster and larger-scale hardware,
some emerging neuromorphic developments seek to
provide alternatives to the von Neumann architecture [29].

While von Neumann architectures simulate deep neural
networks, neuromorphic solutions attempt to emulate
them on a physical substrate, inspired by the brain. In the
brain, neurons integrate inputs in an analog manner,
apply nonlinear transformations to them, and communi-
cate asynchronously through digital spikes or action poten-
tials. Spikes are binary events in continuous time that
evoke electric currents in receiving neurons whose synap-
tic strength is determined by their connecting synapses.
Importantly, these connections are plastic and can change
dynamically in an experience-dependent manner to imple-
ment learning and memory. Together, neurons and their
intricate synaptic connectivity achieve neural processing
and long-term memory storage in a completely parallel
and time-continuous way. Since memory and arithmetic
are physically colocalized and distributed within the same
physical network, brains are fundamentally non-von Neu-
mann architectures.

Sparse, event-based communications and physically
colocalized memory and computation are two
defining principles of brain-inspired computing and
neuromorphic engineering [29], [30]. Neuromorphic
engineers recognized the benefits of this approach and
developed large networks of VLSI neurons and synapses
communicating asynchronously through address event
representation (AER) [31], [32]. Recent digital hardware,
such as Google’s TPU [33], Graphcore’s intelligence
processing unit (IPU), and Cerebras’ wafer-scale CS-1,
have also embraced some form of memory computation

Zenke and Neftci: Brain-Inspired Learning on Neuromorphic Substrates

colocalization to improve the energy and performance
metrics of scientific computing and machine-learning
workloads. The development of these brain-inspired
architectures is, in large part, motivated by the need to
process the ever-increasing deluge of data generated by
the pervasive sensors in everyday life.

B. Processing and Learning From Temporal Data
Streams

A large fraction of sensor data are temporal and require
real-time processing, thus warranting dedicated architec-
tures. For example, autonomous vehicles need continuous
monitoring and processing of time-series data from their
sensors to navigate safely. Similarly, Internet-of-Things
(IoT) devices have to continuously monitor their environ-
ment to respond to speech commands, detect anomalies
online from biosensor data (e.g., a pacemaker implant),
and learn continually [34]-[36]. While data streams
induce specific challenges, most of which we will discuss
in Section IV, we first focus on the essential fact that
most real-world data, whether streaming or not, are also
temporal data that need to be processed in real time. In the
following, we briefly review RNNs as the de facto standard
for processing temporal data before focusing specifically on
neuromorphic implementations thereof and how we can
accomplish gradient-based optimization in real time.

The brain is an inherently time-dependent dynamical
system [37], [38] that relies on biophysical processes,
recurrence, and feedback of its physical substrate for com-
putation [30], [39]. These dynamics are different from
the majority of deep neural networks, which are often
strictly feedforward, and lack the fine temporal dynamics
of brains. From a technological point of view, emulating
neural dynamics on a physical substrate has the advantage
of operating much more efficiently compared to simula-
tions [40]. However, this comes with a key challenge in
which “time represents itself.” This implies that all compu-
tational processes occur at the timescales of the physical
system. In VLSI technologies, this is achieved by operating
CMOS transistors in their subthreshold regime, such that
currents and, consequently, the time constants are matched
to those of the brain [40], [41]. As such, these systems
are both online and streaming. Other technologies run in
accelerated time [42], which can create a mismatch of
timescales in certain real-world applications.

RNNs have proved highly effective for sequential
processing, such as keyword spotting, object recognition,
and time-series forecasting [7], [43]. Neuromorphic
processors generally implement spiking neural networks
(SNNs) [6], which can be viewed as a special class of
RNNs inspired by biology. SNNs are particularly suited
for energy-efficient processing due to their rich local
dynamics but spatiotemporally sparse communication
via spikes (events). This is in contrast to most RNNs
used in machine learning, which rely on dense and
analog-valued communications. Moreover, biological
neurons presumably carry specific inductive biases in their

internal dynamics that are potentially advantageous for
real-world information processing.

Like all neural networks, SNNs can be trained to
find suitable connection weights. Because SNNs are
RNNs, they can be trained with similar gradient-based
methods that only need to be modified slightly to
accommodate the binary activation functions underlying
action potentials [20]. Gradient descent on a loss function
therefore automatically adjusts neuron and synapse
parameters in the hidden layers of the network to reduce
a scalar training loss. In the following, we review two
common algorithms underlying gradient computation in
RNNs and highlight their limitations for gradient-based
learning on neuromorphic substrates, before discussing a
range of possible remedies.

II. GRADIENT-BASED LEARNING IN
RECURRENT NEURAL NETWORKS
Training RNNs requires computing objective function gra-
dients with respect to the network parameters. To gain a
better understanding of why specific challenges arise when
computing gradients for RNNs, we consider a simple RNN

B = fo(h",2")

with the network state h* € R*, the input z € R, and the
parameters 6§ € R”, where p is the number of parameters.
We further define the output y* = go(h'), the associated
target y**, and the loss function £ = 3, L'(y",y™).
Training an RNN requires computing the gradients of £
with respect to all parameters 6. Following the steps of
Marschall et al. [44], we define 0 as the application of the
parameter at time ¢ to distinguish between their direct and
indirect influence, and bear in mind that all parameters 6*
are tied across all timesteps t. The gradient is given by

L oLt

oLt ont oLt Oht
56 =2 0 = =2 M

_Oh 0~ 2 ot 2 o7
Two different temporal summations appear in this
expression. To be able to use (1) for online learn-
ing, we have to first evaluate the sum over s,
which underlies (0h'/80). Fortunately, it is possible
to compute (Oh'/00) with the help of a simple
recursion relationship. To write this relationship com-
pactly, we define the influence G' := (0h'/00) €
R**P the immediate influence F' := (9h'/06") € RF*P,
and the RNN’s dynamics H' := (dh'/0hi™') € RF*F,
By further assuming that G° = 0, G' is given as the
recursive product of Jacobians

Gt = qHtat! + Ft)

which can be computed going forward in time. For a
detailed derivation of the above expressions, see [44].
By inserting G* back into (1) and assuming a small learn-

Vol. 109, No. 5, May 2021 | PROCEEDINGS OF THE IEEE 937

Zenke and Neftci: Brain-Inspired Learning on Neuromorphic Substrates

ing rate, the summation over ¢ can be implemented as an
online learning algorithm. This causal learning algorithm
is called real-time recurrent learning (RTRL) [44], [45].

However, a more common method to evaluate the gra-
dient is back-propagation-through-time (BPTT). The BPTT
algorithm takes an acausal approach to evaluate the same
Jacobian matrix products: It computes the product of
Jacobians starting at the end and works its way backward
through time, hence its name. To make this relationship
explicit, we define the credit assignment vector C* =
(DL/dhY) € R* and the instantaneous credit vector D' =
(DL'/Bh) € R*. The recursion relation underlying BPTT
is then given by

Ot = ot gttt 4 pt 3)

This expression needs to be computed in an acausal man-
ner [44], which precludes its use as an online learning
algorithm. Although, for a given input sequence, the gra-
dients resulting from BPTT and RTRL are the same, BPTT
remains the gold standard for training RNNs on von Neu-
mann hardware. The reason is that the different implemen-
tations have specific advantages. To understand the origin
of these differences, we now analyze the computational
costs of BPTT and RTRL.

A. Cost Analysis of BPTT

The first term in (3) is the k-vector derivative of a scalar
loss function and is thus a row vector. The factorization
afforded by the chain rule means that all products are
vector Jacobian products of dimensions k and k x k, respec-
tively, and can be computed in k? evaluations. To eval-
uate the gradient in the reverse mode, it is necessary to
record all evaluations in the forward phase. Thus, the full
activation history needs to be stored in memory, and in
the case of RNNs, memory complexity scales as O(kT).
The time complexity of each timestep is dominated by the
number of scalar multiplication operations underlying the
product of the Jacobians, which is O(k* T'), or O(k?) if a
single update is performed at the end of the sequence [44].
(see Fig. 4). The memory dependence on 7 restricts BPTT
to temporal inputs of limited duration and to substrates
that offer enough memory to store the activation history.
Both requirements are major shortcomings when we want
to process continuous streaming data on non-von Neu-
mann architectures on which locally accessible memory
is limited. To reduce the complexity of BPTT, gradient
propagation is generally truncated at a number of steps
smaller than 7'. This temporal restriction reduces memory
complexity but severely restricts learning performance on
tasks that require long time horizons. Truncation is even
suspected to render RNNs trained with BPTT to what is
effectively a feed-forward (FF) network [46].

B. Cost Analysis of RTRL

The computational cost of RTRL is determined by eval-
uating G* as a product of Jacobians of the shape R***

938 PROCEEDINGS OF THE IEEE | Vol. 109, No. 5, May 2021

and R**?_ which requires k? p scalar multiplications. Since
p is the number of parameters, the cost is sizable. RTRL
requires O(kp) memory to store G*, a R**? matrix. For
instance, in a fully connected network, we have k(n + k)
parameters for the feedforward and recurrent connections.
Assuming that n ~ k, the overall memory complexity
scales cubically with the number of neurons [O(k:’)],
whereas time scales as O(k*) per time step.

Nevertheless, one decisive advantage of RTRL is that,
although G' is a potentially large matrix, it can be
discarded after each update. In other words, RTRL’s
complexity is independent of 7, which makes it an
interesting contender for training on streaming data using
neuromorphic substrates. Despite the benefit of the online
evaluation, RTRL’s high computational burden O(k*),
compared with O(k* T') for BPTT, makes it prohibitive for
any practical RNN implementation.

C. Reducing the Cost of Online Learning Through
Sparseness

Fortunately, there are multiple ways to reduce the
computational load of RTRL while, at the same time,
retaining most of its efficiency. One way of lowering RTRL’s
high computational burden is to approximate the compu-
tation of the influence matrix G*, for instance, by decom-
posing it in a product of lower order tensors [47], [48]
or Kronecker factors [49] (see [44] for a comprehensive
review). Another way of reducing RTRL’s complexity is
to consider sparse approximations of the influence matrix
G" [50]. This situation arises naturally when the network
connectivity is either sparse [51]-[55] or approximately
sparse. Approximately sparse here means there are a few
strong connections that dominate the temporal dynamics
and thus the gradients.

Sparsity has additional benefits for neuromorphic
substrates because it alleviates two of their inherent
limitations. First, it caters to limited on-device storage
by requiring less memory for model parameters. Second,
sparseness can help overcome communication bottlenecks
that result from the need of communicating nonlocal but
relevant information for learning to where it is needed.
In both BPTT and RTRL, the update of a single network
parameter indirectly depends on all other network
parameters, thus rendering learning nonlocal.

Due to the relevance of sparseness and local learn-
ing rules to neuromorphic substrates, we dedicate the
remainder of this article to efficient biologically inspired
approximations of RTRL and describe how they empower
neuromorphic devices to learn from streaming data. As we
will see, the dynamics of biological neuron models nat-
urally admit a formulation with sparse block Jacobians
that are both sparse and obey locality principles by tying
gradient propagation to diagonal blocks that implement
the underlying neural and synaptic dynamics. However,
before we can fully appreciate the algorithmic importance
of sparse Jacobians, we will briefly review the notion

Zenke and Neftci: Brain-Inspired Learning on Neuromorphic Substrates

of autodifferentiation, which most modern gradient-based
learning algorithms rely on.

D. Autodifferentiation Strategies in Practice

Automatic differentiation (AD) is a type of differen-
tiable programming that allows us to compute the gra-
dients across entire computational pipelines [56]-[58].
automatic differentiation (AD) has been used exten-
sively in scientific computing before it was applied to
neural networks [59], but it has been popularized with
recent libraries, such as Theano [60], Tensorflow [61],
and PyTorch [62]. The key principle underlying AD
is that numerical computations are compositions of a
finite set of elementary operations for which deriva-
tives can be defined. By combining the derivatives of
the operations through the chain rule of derivatives,
the gradient of the overall composition is systematically
computed.

Just as in (2) and (3), gradients in AD can be accu-
mulated according to different modes. The two main
modes are forward and reverse. For RNNs, forward-mode
accumulation is equivalent to RTRL, and backward-mode
accumulation corresponds to BPTT. These two modes are
two extremes of gradient accumulation. In principle, it is
possible to mix forward and backward within the same
algorithm [63], [64]. However, for reasons of its supe-
rior time and space complexity, most machine-learning
frameworks use pure reverse-mode accumulation. Later
in this article, we discuss an example of mixed-mode AD
that is computationally advantageous for neuromorphic
hardware.

III. APPLYING GRADIENT-BASED
LEARNING TO BIOLOGICALLY
INSPIRED NEURAL NETWORKS

Biological neural networks are RNNs, but there are two
defining characteristics that set them apart from the
generic RNN models discussed in Section II. First, bio-
logical neurons possess internal dynamics on different
timescales due to a plethora of biochemical processes
that interact with the membrane dynamics [30], [65].
Because these dynamics play an important role for the
approximations of the Jacobians H* and F*, which are the
basis for the efficient online learning algorithms, we will
discuss them in detail in Section III-B. Second, most bio-
logical neurons communicate through action potentials
or spikes. Since spikes are binary neuronal outputs, they
render SNNs nondifferentiable, which poses a problem for
standard gradient-based optimization algorithms. Hence,
special training methods are required, which we briefly
review in the following.

A. Training Spiking Neural Networks

Several learning schemes have been developed to over-
come the nondifferential nature of spiking neurons [20],
[66]-[68]. The most commonly used gradient-based SNN

learning paradigms are network translation [69]-[72],
variational learning with stochastic neuron models [13],
[23], [73], [74], and surrogate gradients in combina-
tion with deterministic integrate and fire (LIF) neurons
[15]-[17]1, [20], [21], [75]-[78].

While translation approaches require the training of
a nonspiking proxy network whose connectivity is later
translated into a spiking network, the other methods
operate directly on SNNs. Variational learning approaches
attempt to change the distribution of the network out-
put toward a given target distribution by minimizing an
upper bound on the Kullback-Leibler divergence between
the two. To this end, these models employ stochastic
neuron models, typically formulated within the scope
of the spike response model (SRM) with escape noise
or a stochastic firing threshold [79]. Variational meth-
ods can learn useful representations in hidden neurons,
and importantly, the resulting learning rules often have
natural interpretations as local learning rules with a
global modulatory factor [13], [23], [80]. However, both
low-dimensional feedback [81] and stochasticity [13] are
known to result in noisy gradient estimates, which can lead
to slow convergence and can render learning practically
impossible.

Surrogate gradient learning avoids such problems by
using neuron-specific feedback signals as in standard BP
and dispensing with stochasticity in the forward pass.
Nevertheless, gradients are computed as if the noise was
present to smooth out the nondifferentiable binary non-
linearities of spiking neurons. While a rigorous theoret-
ical formulation of this interpretation still needs to be
worked out, it could provide a compelling explanation of
why surrogate gradient learning is robust to the choice
of surrogate derivative [78]. Within such a framework,
different functional shapes of surrogate derivatives may
simply correspond to different choices of neuronal noise
distributions.

Irrespective of the underlying explanation, a host of
recent studies has established the effectiveness of surro-
gate gradient learning at scale on various deep SNN archi-
tectures and diverse tasks and data sets [15], [16], [20],
[21], [27], [77]1, [78]. To this end, surrogate derivatives
have been used in combination with variants of both RTRL
or BPTT.

B. Spiking Neuron Models Have Implicit
Recurrence

To capture the internal dynamics of real neurons,
spiking neuron models possess implicit recurrence [20].
To understand this concept, we consider one of the sim-
plest and most widely used spiking neuron models: the lin-
ear integrate and fire (LIF) neuron [79]. The LIF neurons
capture key electrophysiological properties of biological
neurons while being abstract, analytically tractable, and
easy to simulate. The state of a single-compartment LIF
neuron ¢ is described by its membrane potential U;, which

Vol. 109, No. 5, May 2021 | PROCEEDINGS OF THE IEEE 939

Zenke and Neftci: Brain-Inspired Learning on Neuromorphic Substrates

obeys the following temporal dynamics:

Tm_. = _(Uz - Urest)
+R2Wijsj,in(t) +R2Viksk(t) “)
j k

J

where we have introduced the resting potential Ukest,
the membrane time constant 7,,, and the input resistance
R [79]. The membrane potential U; acts as a leaky inte-
grator of the input spike trains S; i, (¢) = Zkegj s(th —t),
where § is the Dirac delta and the sum runs over all firing
times ¢; of neuron j. The output spike trains Sk(t) are
defined similarly. Matrices W and V here define feed-
forward and recurrent weight matrices. On a digital com-
puter, (4) is commonly integrated using an Euler numerical
integration scheme' on a discrete-time grid as follows:

Ut = Ul + (1 - p) (—Urest +RY WiSiin

J

+RY msz))
k

where we further introduced the decay factor g :=
exp(—(A/7m)) with timestep A and the discrete spike
trains S};,, S}, which are equal to 1 if the respective
neurons j spiked in timestep ¢ and zero otherwise. Equa-
tion (5) makes the formal connection to our RNN example
above more obvious. Similar to a long short-term memory
(LSTM) cell, the spiking neuron’s leaky membrane poten-
tial maintains an internal state through implicit recurrence
via the decay constant 0 < 3 < 1. The LIF [see (5)] model
is related to the RNN and its learning dynamics in (2),
by replacing h* with the membrane potential state U*.

To understand the implications of this property for
gradient computation and use it for efficient algorithmic
learning implementations, we distinguish between two
types of recurrence: explicit and implicit. In keeping with
our convention [see (2)], we define the following notation:

., oUt ., out Ut Ut 9St1

G = — = = —+
90’ a0t”’ oUt—1 ' 9St—1 gUt-1
I e ———

HIt HE.t
where H'* and H®* denote the implicit and explicit
recurrent dynamics, respectively. This decomposition is
motivated by the elementwise nature of the computa-
tions inside the network elements. Implicit recurrence
captures the sensitivity to perturbations of the internal
neuronal dynamics, such as membrane dynamics. Explicit
recurrence is due to interneuronal synaptic connections,
such as in any vanilla RNN model. With these definitions,

'Due to the chaotic nature of many SNN models and the dominant
discretization error introduced by the simulation time grid, most simu-
lators rely on the Euler integration [82], [83].

940 PROCEEDINGS OF THE IEEE | Vol. 109, No. 5, May 2021

the forward-mode recursion takes the familiar RTRL form
that exhibits the contributions of the two types of recur-
rences

Gt = HI,th—1+HE,th—1 LR (6)
—_— ~—
Implicit Explicit

with initial states G° = 0.

A consequence of elementwise operations within the
neuron is that H'* and (8S*/0U") are block sparse Jaco-
bian matrices with a diagonal structure (see Fig. 2).

The model descriptions above represent SNNs in the
same form as artificial RNNs. However, compared with
RNNs, the timestep used for SNN integration is much finer
in practice to account for the internal neuronal dynamics.
Furthermore, a small time step provides a more accurate
integration with respect to the continuous-time dynamics
and thus the modeled neuromorphic substrate. Since this
timestep is determined by the shortest timescale in the
dynamical system and thus independent of the input data,
many SNNs are trained over hundreds of steps. This results
in as many network instances in memory as there are time
steps, which becomes cumbersome for networks of more
than a few thousand neurons. As a result, in recent works,
the size of SNNs trainable by BPTT has remained severely
limited by the available GPU memory [15]. Hence, pure
reverse-mode AD, that is, BPTT, is not suitable to train
large SNNs. The invariance of RTRL’s memory complexity
to the number of time steps 7" offers a potential solution to
this problem, provided that the unfavorable O(k*) space
and O(k*) time scaling can be mitigated. But how can one
achieve a reduction in complexity?

Let us, for a moment, ignore the explicit recurrences
when computing G*. In this case, if H! and G! have
the same block structure,” the resulting product H:*G*~*
is also block diagonal. Thus, only O(k?) operations are
necessary to compute the recursion of the derivative, and
O(k?) memory is required to store the nonzero values
of G*. Therefore, maintaining the sparseness of the G*
recursion has the potential of reducing the complexity of
RTRL. Here, we focus on two solutions to maintain G*
sparse.

The first solution is to work with sparse H¥ matrices,
meaning, in the case of a single-layer RNN, a sparse
matrix V with few nonzero entries. Sparse connectivity
patterns are pervasive in the brain as biological neural
networks tend to be locally dense but globally sparse [84].
While a sparse V does not indefinitely maintain the G*
sparse, it does so for a certain number of steps. This
opens up possibilities for sparse m-step approximations,
allowing to save computation by a factor of the sparsity
squared [50]. Moreover, sparse connectivity caters to the
fact that neuromorphic hardware often relies on sparse
connectivity for better memory efficiency [85], which is

2@ is not square, in general, but the same arguments hold for block
diagonal matrices shown in Fig. 2.

Zenke and Neftci: Brain-Inspired Learning on Neuromorphic Substrates

Implicit Recurrence

Explicit Recurrence

Immediate Jacobians

gt Gt-1 HEt Gt1 Ft
g . + . + k
z
B P
&
HI.) thl HE’f’ P Gt—l FL
. + |:| + mk

- p

|

Multicompartment
Neuron

Fig. 2.

lllustration of the Jacobians involved in the RTRL recursion [see (6)] for four point neurons n — 3, k — 4, and p — nk (top) and two

2-compartment neurons n = 3, k=2, m = 2, and p = nkm (bottom). To distinguish input and output dimensions, the recursion is shown here

for the parameters of W only. For the parameters V, this illustration would look similar, but with n = k. Top: single-compartment neuron. For
both cases, it was assumed that Gt™1 is a stepwise diagonal matrix. This shows the “mixing” effect of HE't, By virtue of block matrix algebra,

the implicit recurrence preserves the (block) diagonal structure of Ft. Hence, H't is referred to as implicit recurrence (yellow shaded area).
On the other hand, the off-diagonal terms of HE't destroy the (block) diagonal property (red shaded area).

also mirrored in the hierarchical communication fabric
[5]1, [86], [87]. Thus, from an implementation standpoint,
sparse connectivity matrices are preferable on neuromor-
phic hardware. From a performance standpoint, the suit-
ability of sparsely connected networks varies from case to
case and is an intensely studied topic, both in terms of
implementation [88] and algorithms. Randomly pruning
network weights typically impairs overall network per-
formance unless special care is taken, such as intelligent
sparse initialization schemes [52], [53], [55], [89] or
dynamic rewiring during the training [51], [54]. Moving
forward, the “lottery ticket hypothesis,” which posits the
existence of sparse, trainable strictly feed-forward net-
works without loss in accuracy [52], is likely to spur
further research on sparse RNNs.

The second solution is to approximate the gradient com-
putation by assuming that certain connections contribute
more to the gradient than others. For SNNs, a simple way
of doing so is to ignore all contributions of H” to the
gradient which amounts to assuming that most relevant
temporal information is carried forward in time through
implicit recurrence, that is, H’. All the while, the recurrent
connections remain in place in the network and contribute
to the dynamics. But how well do such approximations
work?

C. Implicit Recurrence Induces Approximate,
Local, and Efficient Learning Rules

Although ignoring H” seems like a drastic simplifica-
tion, several studies have used it to construct biologically

plausible online learning rules as local approximations of
RTRL. Empirically, these rules perform well on a number
of complex problems either without recurrent connections,
such as in the case of SuperSpike [17], or by ignoring
gradient flow through the recurrent synaptic connectivity
as done in e-Prop [27], RFLO [92], and DECOLLE [19].
These findings suggest that explicit recurrence is either
not necessary for many problems or that ignoring explicit
recurrence in gradient computations does not create a
major impediment for successful learning, even when such
recurrent connections are present.

To disambiguate between these different possibilities,
we extended previous work [78] by running additional
simulations in which we either ignored or included the
contribution of H¥ during SNN training. We then sys-
tematically compared the resulting network performance
of the two approaches to networks without any explicit
recurrent connections (see Fig. 3). Since these results may
be dataset-dependent, we repeated this analysis for a range
of different classification datasets that required different
levels of temporal memory. The tasks can be coarsely
divided according to the temporal duration of their inputs.
For the Randman and MNIST datasets, all input spikes
arrive within a short temporal window (< 50 ms), whereas
for the speech processing problems, we considered
individual inputs with a duration of ~ 1 s.

Not surprisingly, the addition of explicit recurrent con-
nections to a given SNN results in the reduction of error
over strictly feed-forward synaptic connectivity, in most
cases (compare RC and FF in Fig. 3). Note that we did not
correct for the larger parameter count of the recurrently

Vol. 109, No. 5, May 2021 | PROCEEDINGS OF THE IEEE 941

Zenke and Neftci: Brain-Inspired Learning on Neuromorphic Substrates

Randman MNIST

Sum Max

Sum Max

SHD RawHD RawSC

40
2
10 20
1 20
0 0 0 0

Sum Max

Sum Max Sum Max

Fig. 3. Classification error of SNNs trained on various classification tasks, as in [78]. Randman: synthetic spike-timing-dependent task

based on smooth random manifolds. MNIST: time-to-first spike latency encoded version of the MNIST data set. SHD: Spiking Heidelberg
Digits data set [90]. RawHD: Heidelberg Digits data set, but using analog current-based input instead of spikes. RawSC: same current-based

input, but using the Speech Commands data set [91]. We distinguish between the following types of synaptic connectivity and training
approaches. FF (gray): Strictly feed-forward SNNs. RC (red): explicitly recurrent SNNs trained with surrogate gradients. RD (blue): “recurrent

detached” networks that are architecturally identical to recurrent synaptic connections (RCs), in which we ignored explicit recurrence for
gradient computation (see HE). Finally, we used two different readout configurations to compute the logits for the softmax cross-entropy

loss. We either summed up the readout unit activation over all timesteps (Sum) or computed the Max over all timesteps. Due to the high
computational cost of full RTRL and the absence of efficient training libraries, we performed all simulations using BPTT and determined

optimal hyperparameters with a grid search comprising more than 8000 simulations. For each configuration, we selected the ten best models
using held-out validation data and computed the mean error and SEM on separate test data.

connected models. This observed difference was generally
larger for tasks with increased complexity and temporally
longer stimuli, consistent with the idea that longer stimuli
require longer memory timescales. However, when the
same SNNs were trained while ignoring gradient contri-
butions from explicit recurrence through HF, error rates
increased mildly on most data sets. Importantly, however,
the errors remained lower than for the networks without
RCs. The effect was largest on tasks that required more
temporal memory.

Thus, in the scenarios that we tested, the cost of
ignoring the contribution of H” to gradients is small; all
the while, the algorithmic benefits are substantial. As illus-
trated earlier, ignoring H yields local online learning
rules [see (6)], which are better suited for hardware
implementations. Several online learning approaches,
therefore, make use of this or similar approximations [19],
[271, [93].

The LIF neuron model used for the simulations in Fig. 3
had a 2-D state. One variable was used to model the
membrane potential, whereas the other described the time
course of exponentially decaying synaptic currents. How-
ever, the scaling properties of the online learning algorithm
are not affected by extending it to more complex multicom-
partment neuron models, for instance, by incorporating
additional slow dynamical variables [27], [75], [77], [94].

D. Implicit Recurrence of Multicompartment
Neurons Can Increase Computational Power

We now illustrate that RTRL applied to multicompart-
ment neurons results in Jacobians H'! that are block
diagonal and, hence, efficient to train using approximate
online algorithms. This can be formalized by extending
the domain of U* to R™*, where m is the total number
of compartments per neuron. Note that, in this formalism,
synaptic dynamical variables also count as compartments,
for instance, the ones that are typically used to implement

942 PROCEEDINGS OF THE IEEE | Vol. 109, No. 5, May 2021

exponentially decaying conductance or current variables as
for the experiments shown in (see Fig. 3 and Appendix A).
In a typical multicompartment model, S* € R” is a function
of only one compartment per neuron, which can be written
as

St =e(pPU"

where P is a binary k¥ x mk matrix that selects the spiking
compartment. Without loss of generality, we can assume
that the first compartment is the spiking one, resulting in
the following matrix P:

1, ifj=m-i

Py =
J 0,

otherwise.

Consequently, the dynamics are given by

. ouU' out 98!
B = 5077 T g1 appi 1 @
—_————
e e

Since only spiking compartments are assumed to be con-
nected with other compartments through explicit recur-
rence, the weights V are matrices defined in R™**%,
Furthermore, we have that G* € R™**?, Following the
approximate gradient computation where HF is ignored,
G" becomes block diagonal (see Fig. 2), resulting in pm
nonzero entries.

Thus, adding neuronal complexity by widening the
neuronal state space does not change the time complex-
ity of the learning algorithms and does not preclude
the use of efficient online learning algorithms. However,
such changes can have dramatic effects on the computa-
tional expressivity of the resulting network models and
are reflected in the corresponding approximate learning
rules [27]. These insights may partially explain why neu-
robiology uses a diversity of different neuron types with

Zenke and Neftci: Brain-Inspired Learning on Neuromorphic Substrates

L2 Yo, It =% L1 Lt [Li—2 [t—1 It
i
t—2 t—1 t t—2 t—1 t
St—2 St—l St S S 14 S S S Vv S
Ty TNy Tol T s TN
Ut—2 Ut-1 Ut Ut—2 Ut—1 Ut Ut—2—— yt-1 —— [t
T T w1 T T
St—2 St St Si=2 St St Si=2 Si-1 St
(2) (b) (©)

Fig. 4. Computational graphs for the gradient using three distinct AD modes. Edge colors emphasize gradient computations in

reverse (orange) or forward (blue). Gray edges indicate that gradients are not involved. For clarity, only the computations relating to Lt are
emphasized. (a) Full reverse mode (BPTT). (b) Approximate forward mode (RTRL). (c) Mixed mode.

distinct internal dynamics and thus opens up new vistas
for exciting future research.

E. Different Modes of Autodifferentiation in
Biologically Inspired Learning

To train biologically inspired SNNs and study the
dynamical properties of biological networks discussed
above in functional networks, many researchers rely on
autodifferentiation frameworks. However, because of the
shortcomings of BP in the context of online learning for
neuromorphic applications, increasing attention is given
to the approximate online learning methods discussed in
Sections III-C and III-D. In the following, we give concrete
examples of recent work on SNN training. However, it is
important to bear in mind that the same algorithms also
apply to nonspiking RNNs when the spiking nonlinearity is
replaced with a smooth differentiable function.

Specifically, we will show one case of reverse mode AD
(BPTT), one case of forward-mode AD (RTRL), and one
example of mixed-mode AD (see Fig. 4). For all three
examples, we consider a network consisting of LIF neurons
that evolve according to the dynamics in (5). To simplify
the mathematical expressions and without loss of general-
ity, we consider U,est = 0 and R = 1. We write the LIF
dynamics in matrix form as follows:

Ut =pU" + (1 - B)(WSHL+VSYH, S =0U). @8

Here, we assume n input and k output neurons and S}, to
be the input spike train.

1) Training With BPTT [see Fig. 4(a)]: We first analyze
the case of training this network with BPTT. The hidden
state is U?, and the dynamics and immediate Jacobian take
the form

ou* p——
H' = omg =6+ (1= B)Vo' (U™
t
D' = % =d'(UY)

where we have assumed the smooth surrogate func-
tion o. Using the BPTT recursive expression for C* [which
includes dynamics H*; see (3)], the gradients for W and V/

become

oL oL

ow ov

Due to the inherent support of reverse-mode AD in
machine-learning frameworks, this spiking neuron model
can be implemented and differentiated like RNNs. This
approach has been applied successfully to train general
SNNs models [15], [18], [76], [77], [90], [95], [96].

The BPTT has the advantage that it does not restrict
the dynamics, connectivity patterns, and loss function.
However, these advantages come at the cost of a large
memory footprint and temporal nonlocality. Thus, for
applications using small networks of some thousands of
neurons that do not require online learning, BPTT is the
method of choice. For larger networks, the memory over-
head becomes impractical, and other modes of gradient
computation described in the following may be necessary.

CtSt, ctst. 9)

2) Training With Sparse RTRL [see Fig. 4(b)]: As dis-
cussed above, it is possible to reduce the complexity of
RTRL by keeping G* sparse. We demonstrate this in the
case of the LIF neuron. Using the RTRL recursion [see (2)],
the gradient of W obeys

Giv =B+ (1 -3V (UG +F'. (10)
~—_—

Explicit rec.

If we neglect explicit recurrence in the above expres-
sion, all involved matrices remain block sparse as shown
in Fig. 2. The recursion can be compactly written in vector
form by defining the following k-vector trace:

t+1 t t
Qin = BQin + Sin (11)
where we used a different variable Q;, to emphasize that
it represents a vector, rather than a tensor. Since the

Qin € R™ terms are dense n-vectors, for gradients with

Vol. 109, No. 5, May 2021 | PROCEEDINGS OF THE IEEE 943

Zenke and Neftci: Brain-Inspired Learning on Neuromorphic Substrates

respect to W, the RTRL recursion is simplified from O(np)
memory to O(n) memory. Gradients are then computed in
the familiar three-factor form:

oLt oLt

W WU/(Ut) Qfa (12)

and similarly for V' gradients

oLt _ oL
av

where Q° € R¥ is defined in analogy to Q°,, but replacing
St with S*. Note that the above factorization to the dense
k-vector form is only valid for linear LIF neurons with
instantaneous approximations of the loss function [19].
However, in the case of nonlinear neuronal dynamics, such
as spike-triggered adaptation or for certain loss functions
(see Section IV), O(k?) traces may be necessary, leading to
quadratic scaling with the number of neurons [17], [27].

3) Mixed Mode: It is possible to combine elements of
both BPTT and RTRL for training RNNs and SNNs. We call
this situation mixed-mode AD [see Fig. 4(c)]. The portion
of the graph from S, to £ in (see Fig. 4) may involve sev-
eral steps. Such cases can occur, for example, in convolu-
tional networks with pooling layers, linear readout layers,
and multiple recurrent layers [97]. In [19], for example,
loss functions were defined based on random combinations
of max-pooled outputs of a convolutional layer consisting
of spiking neurons. If these steps are instantaneous, that is,
they do not explicitly depend on past states, the immediate
Jacobians Ff, and F{, can be computed online using
BP within a single timestep. All other gradients can be
accumulated over time by virtue of the RTRL recursion.
Up to rounding errors, the numerical result will be exactly
the same as sparse RTRL discussed earlier, but the mem-
ory footprint of the implementation differs and may be
more favorable. The recent deep continuous local learning
(DECOLLE) [19] is one example of a mixed-mode AD
implementation using spatially and temporally local loss
functions. It combines the forward-mode AD, to achieve
temporal credit assignment, with the reverse-mode AD
for spatial credit assignment. This allows the convenient
use of existing autodifferentiation tools while combining
them with the more favorable scaling properties of BP in
space. Bohnstingl et al. [97] laid the ground to extend this
idea to multiple recurrent layers and found that estimating
gradients for layer [using solely the recurrence relation
of that layer and ignoring others result in good learning
performance and low complexity.

IV.LOSS FUNCTIONS FOR ONLINE
LEARNING

So far, we have focused on learning algorithms that
permit efficiently computing loss gradients in an online
manner to learn from temporal data. The applicability of

944 PROCEEDINGS OF THE IEEE | Vol. 109, No. 5, May 2021

these algorithms, however, hinges on the ability to also
compute the loss functions in an online manner, which
is not always possible. In the following, we discuss the
desiderata of loss functions for online real-time learn-
ing and point out directions where future research is
required.

Since loss functions are defined at the output of a
network, let us briefly review what input-output (IO)
paradigms exist for RNNs. We can coarsely divide neural
network processing by specifying whether they require
inputs at every timestep or only once. Similarly, we can
distinguish between networks that yield one output at the
end of processing as opposed to networks that produce
outputs in every timestep. Networks that receive a single
input at the beginning produce a single output at the end
are very similar to FF neural networks in that they provide
a one-to-one mapping [see Fig. 5(a)]. Similarly, we can
construct networks that output a trajectory in response to
a single command input, which corresponds to a one-to-
many mapping. For streaming data, networks must be able
to consume a temporal sequence of inputs. Thus, these
networks have many inputs and can be further separated
into many-to-many or many-to-one mappings.

For our above derivations pertaining to RTRL,
we assumed a gradient of a loss function £ defined
as a sum over time £ =), L' of temporally localized
loss functions £*. We assumed further that these localized
loss functions can be computed immediately after the
corresponding network timestep is computed, that is,
online. It is easy to see how such local functions can
be defined on the output of a many-to-many network
[see Fig. 5(b)]. Similarly, this also covers the many-to-one
case since we can simply set all losses for ¢ < T to zero
(£' = 0) and retain only one late value £T.

In the context of SNNs, several studies have focused
on the many-to-many setting in which the network has
to learn a predefined output trajectory. A classic example
is FORCE learning that applies the recursive least-squares
algorithm that can be done forward in time and online
[98], [99]. A related approach is FOLLOW learning [100]
that is another online learning approach for SNNs that
relies on local learning rules to learn a forward model of
arbitrary dynamical systems.

However, not all learning tasks require learning an out-
put trajectory, and hence, the temporal locality of the loss
function is not the rule, but rather the exception. To solve
classification problems, for example, one often considers a
nonlocal loss that takes into account extended periods of
network activity [see Fig. 5(b)]. For instance, in seminal
work, Giitig and Sompolinsky [9] and Giitig [101] trained
a spiking neuron, the Tempotron, as a binary classifier on
input spike trains with a sparse temporal code. Crucially,
the Tempotron can freely decide when to spike within
a given temporal window. This has the advantage that
targets or labels do not have to be given to a learning
system with temporal acuity. To achieve this, the authors
introduced a loss that depends on the maximum of the

Zenke and Neftci: Brain-Inspired Learning on Neuromorphic Substrates

a Classes of network input-output paradigms b Temporal locality of loss functions
& One-to-many Many-to-many Lolcal 9 A3 ad AT T
g LY L L° LY L L
o TR
s S T TR
- One-to-one Many-to-one rT Cl £2
a Non-local Delayed
Input paradigms streaming
Fig. 5. (a) Schematic of different computational graphs of RNNs, illustrating the main different 10 paradigms that typically exist in RNNs.

For streaming data purposes, the many-to-one and many-to-many mappings in the gray shaded box are most relevant. (b) lllustration of

different computational graphs used for computing loss functions. Online learning algorithms, such as RTRL, require temporally localized

loss functions that can be evaluated at every timestep, which trivially generalizes to the regime in which many local losses are zero, for

example, L! for t < T. However, nonlocal loss functions, such as the sum or the maximum over network outputs and delayed arrival of labels

that cause the loss evaluation to be delayed, pose challenges for online learning.

neural membrane potential during an entire trial. Hence,
the loss function can only be evaluated once the trial is
completed.

A similar approach was later extended to train mul-
tilayer SNNs by either computing the maximum over
time or the sum over time of dedicated readout units
[78], [90] or by simply summing over the number of
output spikes [15], [18], [102]. Although this approach
can learn powerful classification models, nonlocal loss
functions are not suitable for online learning since their
gradient can only be evaluated after a trial has completed.
Although similar to the late loss case, they are different
in that their value depends explicitly on all timesteps
[see Fig. 5(b)].

This temporal nonlocality has far-reaching
consequences for all classification and pattern detection
tasks because it means that all network activities have
to be stored until the loss function can be evaluated.
Thus, gradient computation is locked until the last
timestep of a given trial is evaluated. A similar situation
arises when targets or labels are delayed because this
also affects the corresponding loss function evaluations
[see Fig. 5(b)]. While locking is the norm in the context
of BPTT, online algorithms, such as RTRL, may lose their
real-time character due to it. Therefore, loss functions that
can be evaluated online are crucial to successful online
learning. Although research on this issue is still limited,
one possible remedy to avoiding delays and locking is to
fold the nonlocality back into the network and rely on a
loss function that can be written as a sum of temporally
localized losses.

One example builds on the van Rossum distance that
was developed as a distance metric for spike trains [103].
As a spike train distance metric, it was recognized early
on as a suitable loss function for training SNNs to produce
precisely timed output spikes [104], but, as we will see
in a moment, it is not limited to precisely timed output
spike trains. For a given spike train S(t) = >, 0(tx — t)
and an associated target spike train S*(t), the van Rossum

distance is given defined as

1 oo
‘*ifw

where x denotes the temporal convolution of the spike
trains with the kernel function e. The trick is now to
define a filtered spike train Y = ¢ x S(¢) as the network
output and similarly a target network Y* = e *x S*(¢).
The kernel € can be arbitrary, but choosing a causal ker-
nel is critical for all online implementations. In practice,
we choose a kernel that can be easily implemented as
a simple dynamical system [17], [104] that allows the
online evaluation of the term in parenthesis [see (13)].
Canonical choices are exponential or double-exponential
functions that are straightforward to implement with one
or two additional ordinary differential equations for each
output, for example, 7(9z/0t) = —z + S(¢t) with the
kernel timescale 7. These manipulations allow us to write
L (1/2) [7_dt(Y(t) — Y*(t))2. Finally, by further
reducing the integral to a sum over discrete timesteps,
this expression can be expressed as L (1/2) >,
(Yi-Y™*")? =3, £', asum of local losses. Finally, it is not
necessary to provide a target spike train. Instead, it suffices
to simply provide a target time-series Y*' that can be
interpreted as an instantaneous target firing rate.

As we already alluded to earlier, the van Rossum
distance does not necessarily learn precisely timed spikes.
Rather, the extent to which the van Rossum distance
punishes temporal misalignment can be smoothly adjusted
by the time horizon of the ¢ kernel. For instance, if one
chooses a small timescale 7 for the exponential kernel
function e, this allows for learning precisely timed output
spike trains. However, a large choice of 7 will result in
a reduction of temporal spike alignment of individual
spikes with their targets. The distance then smoothly inter-
polates between the spike-timing code and rate codes.
Another interesting property of the van Rossum distance,
in particular, when used with causal kernels, is that causal

dt(ex S(t) —ex S*(t))? (13)

Vol. 109, No. 5, May 2021 | PROCEEDINGS OF THE IEEE 945

Zenke and Neftci: Brain-Inspired Learning on Neuromorphic Substrates

kernels induce an effective delay, which acts as an eligibil-
ity trace [17]. Eligibility traces are found in neurobiology
[105], and importantly, they solve the distal reward prob-
lem by bridging the delay between network output and the
error feedback that arrives later in time [106].

Thus, at the expense of temporal precision, the van
Rossum distance can introduce temporal memory and
accommodate label delay during learning [17] while,
at the same time, allowing to compute temporally localized
losses. Finally, computing simple kernels, such as exponen-
tial or double-exponential, for each network output corre-
sponds to adding additional filtering layers to the network.
This layer implies another set of diagonal Jacobians for
which we have already seen how their gradients can be
computed efficiently using RTRL.

While the van Rossum distance solves some challenges
in the streaming data setting in which labels can only
be assigned coarsely in time, a number of important
issues remain open. Here, future work, possibly building
on aggregate label losses [101], [107] or connectionist
temporal classification (CTC) losses [43], provided that
these approaches can be made online-capable, may offer
possible solutions.

In summary, online gradient algorithms based on RTRL
require temporally localized losses. While such losses are
the standard for learning output trajectories, there are
situations in which temporally nonlocal loss functions are
more natural choices (e.g., classification problems). For-
tunately, a conversion to online-enabled losses is possible
for some nonlocal loss functions, as we have illustrated
in the example of the van Rossum distance. However,
future research efforts are required to firmly establish
online-capable loss functions for situations in which labels
are only loosely aligned with streaming input.

V.IMPLEMENTATION STRATEGIES IN
NEUROMORPHIC HARDWARE

How can the gradient-based learning strategies discussed
in this article guide the development of a neuromorphic
learning substrate? Memory is generally a limiting fac-
tor in neuromorphic hardware. In SNNs, the need for
online learning in combination with such capacity lim-
its makes forward-mode accumulation particularly com-
pelling. Sparse RTRL equates to one trace per parameter,
which can be realized in hardware by replicating the
circuits and storage for weight updates. For instance, for
each connection in the Intel Loihi Research Chip, up to
two states that evolve as functions of the postsynaptic and
presynaptic states are possible [5]. These states and their
dynamics are implemented similar to the weight update
dynamics. Thus, Intel Loihi is, in principle, compatible
with a sparse forward-mode AD learning scheme. However,
several significant open challenges remain for its imple-
mentation. First, unlike weight (parameter) updates that
can be carried out in an event-based fashion, traces are
dynamical states per connection that must be updated at
every time step. Because scale in neuromorphic hardware

946 PROCEEDINGS OF THE IEEE | Vol. 109, No. 5, May 2021

and software simulations is often achieved by storing the
synaptic traces at the neuronal level [108], computing
traces per connection would significantly increase the com-
putational burden. Second, the memory overhead becomes
significant for large networks with shared weights, for
instance, in convolutional architectures, because weight
sharing does not imply trace sharing. Note that although
the idea of weight sharing is counterintuitive to a neuro-
morphic implementation, digital neuromorphic hardware
can take advantage of it [4], [5].

One solution to the above problems is to use the sparse
approximation described above [see (11)], previously
implemented as part of DECOLLE [19] and, subsequently,
for “LIF neurons” in [27], resulting in one trace per
axon. In this approximation, synaptic traces use the
same state as the synaptic currents for learning. This
implies only constant [O(1)] memory overhead for
learning, which significantly simplifies the neuromorphic
hardware implementation. Payvand et al. [109] described
a DECOLLE crossbar implementation that leverages the
sharing of the learning and inference signals while eliciting
updates in a temporally sparse, error-driven fashion.
Furthermore, the learning dynamics are potentially
immune to the mismatch in the synaptic dynamics since
the same signal is used for computing the forward pass
and gradient dynamics. The gradient-based learning of
SNNs induces a three-factor rule [see (12)], comprising
one term to compute the loss gradient (0£/9S") and two
terms for the network states (9S*/06). Payvand et al.
[109] exploited this factorization in a neuromorphic
design comprising two types of cores: processing
cores and neuromorphic cores. Processing cores are
general-purpose processors that compute the loss gradients
and neuromorphic cores compute the network states and
their gradients. A similar strategy was demonstrated on
the Intel Loihi using the on-chip three Lakemont x 86 cores
[102]. This separation imparts significant flexibility to the
hardware, as loss functions are often task-dependent, but
network architectures tend to be generic.

Despite the advantages of online algorithms,
reverse-mode AD remains an important reference
and a tool for training SNNs offline and offchip. One
strategy for digital neuromorphic chips is to use a
functional simulator of the dynamics [110] and train it
using conventional deep learning techniques (GPUs and
BPTT). Functional simulators and BPTT were also used to
pretrain networks for subsequent learning on-chip [102].
Due to device-to-device variation, functional simulators of
mixed-signal hardware require calibration, for example,
by system identification [111], [112]. This calibration
scheme is costly and often imprecise because the limited
access to the chips’ internal states dictates several
approximations.

Hardware-in-the-loop approaches can partially over-
come this limitation by using the hardware substrate
to compute the forward pass and computing synaptic
updates in software. Recent work demonstrated successful

Zenke and Neftci: Brain-Inspired Learning on Neuromorphic Substrates

learning on an accelerated neuromorphic VLSI substrate
using a chip-in-the-loop approach [113], as well as in
phase-change memory [21]. While this approach can
self-correct for any remaining device mismatch, it requires
dedicated on-chip circuitry, for example, sampling ADCs,
to read out the internal voltages. In addition, the external
computation of updates poses a significant performance
bottleneck that renders this strategy often too slow for
real-time or accelerated learning. One solution that has
not been fully explored is to pretrain networks on an
approximate functional simulator of a mixed-signal chip
and fine-tune on the chip, as in [102]. Regardless of
which training strategy is employed, the methods based
on reverse-mode AD are generally limited by memory.
Hence, mixed-mode AD and other advanced AD meth-
ods will presumably play a central role in reducing the
memory footprint, thereby improving the performance and
applicability of SNNs training to dedicated neuromorphic
substrates.

VI. DISCUSSION

This article has reviewed common bottlenecks encountered
when applying gradient-based learning to neuromorphic
architectures that require online computation of gradi-
ents. Using the example of SNNs, we have shown that
many recently proposed learning algorithms for online
learning are approximate variants of RTRL. In its exact
form, RTRL is an online algorithm to compute gradients
in RNNs, but it is computationally expensive. However,
when used in combination with temporally local losses
and biologically inspired neural architectures, such as LIF
neurons, it is possible to find effective approximations
that reduce RTRL’s computational cost substantially while
retaining good learning performance. We have shown that
such approximations are inspired by biological neurons
whose implicit recurrence structure induces block sparse or
approximately block sparse Jacobians, allowing speeding
up gradient computation while simultaneously reducing
the memory footprint. These conceptual links expose a
clear path forward toward building more efficient online
learning algorithms for neuromorphic devices.

We further elaborated on the relationship between
gradient-based learning in SNNs and the different modes
of automatic differentiation. Due to sufficient memory
and the lower computational cost on the von Neu-
mann computers, deep learning has primarily focused on
reverse-mode accumulation or BPTT. However, when com-
bining appropriate architectures with approximate RTRL,
we expect a renaissance of forward-mode AD to empower
non-von Neumann computers and streaming applications
requiring online learning. Mixed-mode AD is a particularly
exciting direction for implementing learning in biological
neural networks as it efficiently reduces complexity by
exploiting the Jacobians’ sparseness. This idea resonates
with a widespread trend in deep learning accelerators:
To tradeoff compute against memory, as evidenced by

advanced AD techniques on manycore processors the
Cerebras CS-1 and the Graphcore IPU.

A. Spatial and Temporal Scales in Gradient-Based
Learning

Computation is a physical process that extends across
multiple spatial and temporal scales. Practical learning
algorithms have to take this multiscale behavior into
account. The finite truncation length in BPTT defines the
time span (memory) over which the learning algorithm
can efficiently navigate between timescales, even when
the network itself supports such dynamics (e.g., through
working memory or gating mechanisms in LSTMs [114]).
Thus, prematurely truncated gradients can be harmful.
Memory and stability go hand-in-hand in dynamical
systems, including RNNs. Miller and Hardt [46] argued
that RNNs are trained to operate in the stable regime
in which gradients vanish for stable learning. However,
stability can often be at odds with flexible long-term
memory [115]. Therefore, many working memory models
in neuroscience rely on multistability and attractor states
to implement long-term memory [116]-[118], with
regions of state space in which gradients either vanish
[119] or become very large [120]. The LSTM networks
explicitly overcome this shortcoming by including long
timescales in their architecture, thereby avoiding vanishing
gradients [115]. This twist, however, requires training
procedures that can similarly bridge such long time
horizons, which is where truncated BPTT can easily reach
its limits. An interesting question is whether training
with approximate forms of RTRL can offer advantages in
training networks with such longer short-term memory.
Thus, if remaining issues related to the bias of approximate
variants of RTRL and stability can be addressed at scale,
these findings will open new vistas in computing with the
non-von Neumann computers.

B. Solutions to the Weight Transport Problem

Another issue that plagues neuromorphic implementa-
tions of BP is that reverse accumulation requires access to
the transposed weight matrices W and V. This require-
ment has also been referred to as the weight transport
problem [121]. The weight transport problem implies a
bidirectional flow of information, which is biologically
implausible and crucially difficult to realize in any physical
system [122], [123]. The problem is that, to compute
the gradient, error information needs to flow backward
through the same connections that are used in the forward
pass. This creates a major impediment for any physical
system, be it biological or neuromorphic, in which infor-
mation flow is directed. Overcoming this limitation often
requires an explicit learning channel that implements these
backward weights or weight transposes [122], [123] and
ideally keeps them synchronized across nodes or different
physical locations of physical network implementation.
A number of studies have shown that such synchronization

Vol. 109, No. 5, May 2021 | PROCEEDINGS OF THE IEEE 947

Zenke and Neftci: Brain-Inspired Learning on Neuromorphic Substrates

can be achieved, for instance, by learning the backward
weights [124]-[126].

In any case, the mere existence of such backward
connections for spatial credit assignment still has a
real physical price as they require space on the chip and
consume energy, thus raising the question of whether
one could dispense with them entirely. Interestingly, RTRL
and its approximate variants do suggest ways forward
toward viable alternatives. Since RTRL preserves causal-
ity with respect to the forward dynamics, the temporal
weight transport problem does not apply. Unfortunately,
exact RTRL still requires synapses to know the state of
all other neurons and synapses in the network, thus pos-
ing a state transport problem. The block sparse Jacobian
approximations that we discussed in this article are not
straightforward to extend to learning across multiple lay-
ers. Nevertheless, the inherently causal nature of RTRL
and the recent success of local loss functions for training
SNNs [19], [971, [127], [128] provide exciting avenues of
future research to spatially assign credit and circumvent
the weight transport problem in multilayer networks.

While a plethora of neuromorphic platforms, which
mimic the brain’s computational substrate, have matured
over the years, seeing these solutions thrive in real-world
applications will require them to learn. To tackle this
challenge, we should turn once more to biology. Taking
inspiration from the brain will allow us to develop neu-
romorphic learning algorithms toward tomorrow’s neuro-
morphic computers.

APPENDIX A

DERIVATION OF LOCAL LEARNING
APPROXIMATIONS FOR SNNs

FROM RTRL

RTRL is a special case of forward-mode AD applied to
RNNs. For a population of spiking LIF neurons with cur-
rently available exponential synapses, the discrete-time
dynamics are given by

= AU [t] + 111

= WS S Vs
J

U.(”[t + 1]

IO (14)

REFERENCES

The output of neuron Ui(l) is given as the spike train
Sl.(l) = @(Ui(”). To compute gradients with respect to this
spike train output, we first define

(ZM)H_

P WW&”W] (15)

7

and perform gradient descent on the global loss function £
with respect to the parameters

AW o _ 9Ll
i aWi(Jm)
oL[t] oLlt] U@) P
o = 2 e U R

l,m
P +1] = (8P,

pLm) 0
ijk [t] + aw(m)l [])

0

—— 141 =
(m) "k
oW

) s l I,m
SV WP

J
Z W'

(I 1P 1

)

~
explicit

+ 0 SV (16)

Similar equations can be obtained for AVZ.S.’”). The terms
underwritten with “explicit” introduce nonlocality to the
learning that is difficult to compute since it depends on the
history of all other neurons in the network. If these terms
are dropped, the indices ¢ and k from P become unnec-
essary since no term on the right-hand side depends on
those indices. Thus, for purposes of gradient computation,
the indirect influence of all these interactions is ignored,
whereas, in interactions through the implicit recurrence,
the memory within the neuron is maintained. The price
of performing such an approximation on task performance
is often surprisingly low, and it seems that neural networks
can, nevertheless, take advantage of their explicit recurrent
connectivity (see Fig. 3). |

[1]

[2]

C. Mead, Analog VLSI and Neural Systems.
Reading, MA, USA: Addison-Wesley, 1989.

C. S. Thakur et al., “Large-scale neuromorphic
spiking array processors: A quest to mimic the
brain,” Frontiers Neurosci., vol. 12, p. 891,

Dec. 2018.

M. Davies, “Benchmarks for progress in
neuromorphic computing,” Nature Mach. Intell.,
vol. 1, no. 9, pp. 386-388, Sep. 2019.

[71

[8]

[91

1. Goodfellow, Y. Bengio, and A. Courville, Deep
Learning. Cambridge, MA, USA: MIT Press, 2016.

T. P Lillicrap, A. Santoro, L. Marris, C. J. Akerman,

and G. Hinton, “Backpropagation and the brain,”
Nature Rev. Neurosci., vol. 21, pp. 335-346, 2020.
R. Giitig and H. Sompolinsky, “The tempotron:

A neuron that learns spike timing-based
decisions,” Nat Neurosci, vol. 9, no. 3,

pp. 420-428, Mar. 2006.

[4] P A.Merolla et al., ‘A million spiking-neuron [10] S. M. Bohte, J. N. Kok, and J. A. La Poutré,
integrated circuit with a scalable communication “Spikeprop: Backpropagation for networks of
network and interface,” Science, vol. 345, spiking neurons,” in Proc. ESANN, 2000,
no. 6197, pp. 668-673, Aug. 2014. pp. 419-424.

[5] M. Davies et al., “Loihi: A neuromorphic manycore [11] J.-P Pfister, T. Toyoizumi, D. Barber, and
processor with on-chip learning,” IEEE Micro, W. Gerstner, “Optimal spike-timing-dependent
vol. 38, no. 1, pp. 82-99, Jan. 2018. plasticity for precise action potential firing in

[6] G. Indiveri et al., “Neuromorphic silicon neuron supervised learning,” Neural Comput., vol. 18,
circuits,” Frontiers Neurosci., vol. 5, pp. 1-23, no. 6, pp. 1318-1348, Jun. 2006.

2011. [12] E Rosenblatt, “The perceptron: A probabilistic

948 PROCEEDINGS OF THE IEEE | Vol. 109, No. 5, May 2021

[13]

[14]

[15]

[16]

model for information storage and organization in
the brain,” Psychol. Rev., vol. 65, no. 6,

pp. 386-408, Nov. 1958.

D. Jimenez Rezende and W. Gerstner, “Stochastic
variational learning in recurrent spiking
networks,” Frontiers Comput. Neurosci., vol. 8,

p. 38, Apr. 2014.

B. Gardner, 1. Sporea, and A. Griining, “Learning
spatiotemporally encoded pattern transformations
in structured spiking neural networks,” Neural
Comput., vol. 27, no. 12, pp. 2548-2586,

Dec. 2015.

S. B. Shrestha and G. Orchard, “Slayer: Spike
layer error reassignment in time,” in Proc. Adv.
Neural Inf. Process. Syst., 2018, pp. 1412-1421.

J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training
deep spiking neural networks using
backpropagation,” Frontiers Neurosci., vol. 10,

p. 508, Nov. 2016.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

E Zenke and S. Ganguli, “SuperSpike: Supervised
learning in multilayer spiking neural networks,”
Neural Comput., vol. 30, no. 6, pp. 1514-1541,
Jun. 2018.

G. Bellec, D. Salaj, A. Subramoney, R. Legenstein,
and W. Maass, “Long short-term memory and
learning-to-learn in networks of spiking neurons,”
in Proc. Adv. Neural Inf. Process. Syst., 2018,

pp. 795-805.

J. Kaiser, H. Mostafa, and E. Neftci, “Synaptic
plasticity dynamics for deep continuous local
learning (DECOLLE),” Frontiers Neurosci., vol. 14,
p. 424, May 2020.

E. O. Neftci, H. Mostafa, and E Zenke, “Surrogate
gradient learning in spiking neural networks:
Bringing the power of gradient-based optimization
to spiking neural networks,” IEEE Signal Process.
Mag., vol. 36, no. 6, pp. 51-63, Nov. 2019.

S. Wozniak, A. Pantazi, T. Bohnstingl, and

E. Eleftheriou, “Deep learning incorporating
biologically inspired neural dynamics and
in-memory computing,” Nature Mach. Intell.,

vol. 2, no. 6, pp. 325-336, Jun. 2020.

J. Sacramento, R. P Costa, Y. Bengio, and W. Senn,
“Dendritic cortical microcircuits approximate the
backpropagation algorithm,” in Proc. Adv. Neural
Inf. Process. Syst., 2018, pp. 8721-8732.

J. Brea, W. Senn, and J.-P. Pfister, “Matching recall
and storage in sequence learning with spiking
neural networks,” J. Neurosci., vol. 33, no. 23,
pp. 9565-9575, Jun. 2013.

N. Frémaux and W. Gerstner, “Neuromodulated
spike-timing-dependent plasticity, and theory of
three-factor learning rules,” Frontiers Neural
Circuits, vol. 9, p. 85, Jan. 2016.

L. Ku$mierz, T. Isomura, and T. Toyoizumi,
“Learning with three factors: Modulating Hebbian
plasticity with errors,” Current Opinion Neurobiol.,
vol. 46, pp. 170-177, Oct. 2017.

J. Guerguiev, T. P, Lillicrap, and B. A. Richards,
“Towards deep learning with segregated
dendrites,” eLife, vol. 6, Dec. 2017,

Art. no. e22901.

G. Bellec et al., “A solution to the learning
dilemma for recurrent networks of spiking
neurons,” Nature Commun., vol. 11, no. 1,

p. 3625, Jul. 2020.

B. A. Richards et al., “A deep learning framework
for neuroscience,” Nature Neurosci., vol. 22,

no. 11, pp. 1761-1770, Nov. 2019.

E. O. Neftci, “Data and power efficient intelligence
with neuromorphic learning machines,” iScience,
vol. 5, pp. 52-68, Jul. 2018.

P Sterling and S. Laughlin, Principles of Neural
Design. Cambridge, MA, USA: MIT Press,

Jun. 2017.

J. Lazzaro, J. Wawrzynek, M. Mahowald,

M. Sivilotti, and D. Gillespie, “Silicon auditory
processors as computer peripherals,” IEEE Trans.
Neural Netw., vol. 4, no. 3, pp. 523-528,

May 1993.

S. Deiss, R. Douglas, and A. Whatley, “A
pulse-coded communications infrastructure for
neuromorphic systems,” in Pulsed Neural
Networks, W. Maass and C. Bishop, Eds.
Cambridge, MA, USA: MIT Press, 1998, ch. 6,

pp. 78-157.

N. P Jouppi et al., “In-datacenter performance
analysis of a tensor processing unit,” in Proc. 44th
Annu. Int. Symp. Comput. Archit., 2017,

pp. 1-12.

J. Kirkpatrick et al., “Overcoming catastrophic
forgetting in neural networks,” Proc. Nat. Acad.
Sci. USA, vol. 114, Mar. 2017, Art. no. 201611835.
E Zenke, B. Poole, and S. Ganguli, “Continual
learning through synaptic intelligence,” 2017,
arXiv:1703.04200. [Online]. Available:
http://arxiv.org/abs/1703.04200

G. L. Parisi, R. Kemker, J. L. Part, C. Kanan, and

S. Wermter, “Continual lifelong learning with
neural networks: A review,” Feb. 2018,
arXiv:1802.07569. [Online]. Available:
http://arxiv.org/abs/1802.07569

G. Drion, T. O’Leary, J. Dethier, A. Franci, and

R. Sepulchre, “Neuronal behaviors: A control

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

Zenke and Neftci: Brain-Inspired Learning on Neuromorphic Substrates

perspective,” in Proc. 54th IEEE Conf. Decis.
Control (CDC), Dec. 2015, pp. 1923-1944.

E. M. Izhikevich, Dynamical Systems in
Neuroscience: The Geometry of Excitability and
Bursting. Cambridge, MA, USA: MIT Press,

2007.

U. S. Bhalla, “Molecular computation in neurons:
A modeling perspective,” Current Opinion
Neurobiol., vol. 25, pp. 31-37, Apr. 2014.

C. Mead, “Neuromorphic electronic systems,”
Proc. IEEE, vol. 78, no. 10, pp. 1629-1636,

Oct. 1990.

P Livi and G. Indiveri, “A current-mode
conductance-based silicon neuron for
address-event neuromorphic systems,” in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), May 2009,
pp. 2898-2901.

J. Schemmel, L. Kriener, P Miiller, and K. Meier,
“An accelerated analog neuromorphic hardware
system emulating NMDA-and calcium-based
non-linear dendrites,” Mar. 2017,
arXiv:1703.07286. [Online]. Available:
http://arxiv.org/abs/1703.07286

A. Graves, “Supervised sequence labelling,” in
Supervised Sequence Labelling With Recurrent
Neural Networks. Berlin, Germany: Springer,
2012, pp. 5-13.

O. Marschall, K. Cho, and C. Savin, “A unified
framework of online learning algorithms for
training recurrent neural networks,” J. Mach.
Learn. Res., vol. 21, no. 135, pp. 1-34, 2019.

R. J. Williams and D. Zipser, “A learning algorithm
for continually running fully recurrent neural
networks,” Neural Comput., vol. 1, no. 2,

pp. 270-280, Jun. 1989.

J. Miller and M. Hardt, “Stable recurrent models,”
in Proc. Int. Conf. Learn. Represent., 2019,

pp. 1-28.

C. Tallec and Y. Ollivier, “Unbiased online
recurrent optimization,” Feb. 2017,
arXiv:1702.05043. [Online]. Available:
http://arxiv.org/abs/1702.05043

T. Cooijmans and J. Martens, “On the variance of
unbiased online recurrent optimization,”

Feb. 2019, arXiv:1902.02405. [Online]. Available:
http://arxiv.org/abs/1902.02405

A. Mujika, E Meier, and A. Steger, ‘Approximating
real-time recurrent learning with random
kronecker factors,” May 2018, arXiv:1805.10842.
[Online]. Available: http://arxiv.org/abs/
1805.10842

J. Menick, E. Elsen, U. Evci, S. Osindero,

K. Simonyan, and A. Graves, “A practical sparse
approximation for real time recurrent learning,”
Jun. 2020, arXiv:2006.07232. [Online]. Available:
http://arxiv.org/abs/2006.07232

G. Bellec, D. Kappel, W. Maass, and R. Legenstein,
“Deep rewiring: Training very sparse deep
networks,” Nov. 2017, arXiv:1711.05136.
[Online]. Available:
http://arxiv.org/abs/1711.05136

J. Frankle and M. Carbin, “The lottery ticket
hypothesis: Finding sparse, trainable neural
networks,” Mar. 2018, arXiv:1803.03635.
[Online]. Available:
http://arxiv.org/abs/1803.03635

H. Tanaka, D. Kunin, D. L. K. Yamins, and

S. Ganguli, “Pruning neural networks without any
data by iteratively conserving synaptic flow,”

Jun. 2020, arXiv:2006.05467. [Online]. Available:
http://arxiv.org/abs/2006.05467

U. Evci, T. Gale, J. Menick, P S. Castro, and

E. Elsen, “Rigging the lottery: Making all tickets
winners,” Nov. 2019, arXiv:1911.11134. [Online].
Available: http://arxiv.org/abs/1911.11134

T. Liu and F Zenke, “Finding trainable sparse
networks through neural tangent transfer,” in
Proc. Int. Conf. Mach. Learn., vol. 1, 2020,

pp. 6336-6347.

A. Griewank and A. Walther, Evaluating
Derivatives: Principles and Techniques of
Algorithmic Differentiation. Philadelphia, PA, USA:
SIAM, 2008.

U. Naumann, The Art of Differentiating Computer
Programs: An Introduction to Algorithmic

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[731]

[74]

[75]

[76]

[771

[78]

Differentiation. Philadelphia, PA, USA: SIAM,
2011.

A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and
J. M. Siskind, “Automatic differentiation in
machine learning: A survey,” J. Mach. Learn. Res.,
vol. 18, no. 1, pp. 5595-5637, 2017.

L. Bottou and Y. LeCun, “SN: A simulator for
connectionist models,” in Proc. NeuroNimes,
Nimes, France, vol. 88, 1988.

R. Al-Rfou, “Theano: A Python framework for fast
computation of mathematical expressions,”

May 2016, arXiv:1605.02688. [Online]. Available:
https://arxiv.org/abs/1605.02688

M. Abadi et al. (2015). TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems.
[Online]. Available: https://www.tensorflow.org
A. Paszke et al., “Automatic differentiation in
Pytorch,” in Proc. NIPS Autodiff Workshop, Long
Beach, CA, USA, 2017.

J. Revels, T. Besard, V. Churavy, B. De Sutter, and
J. P Vielma, “Dynamic automatic differentiation of
GPU broadcast kernels,” 2018, arXiv:1810.08297.
[Online]. Available: http://arxiv.org/abs/
1810.08297

U. Naumann, “Optimal jacobian accumulation is
NP-complete,” Math. Program., vol. 112, no. 2,
pp. 427-441, Nov. 2007.

C. Pozzorini, R. Naud, S. Mensi, and W. Gerstner,
“Temporal whitening by power-law adaptation in
neocortical neurons,” Nature Neurosci., vol. 16,
no. 7, pp. 942-948, Jul. 2013.

L. E Abbott, B. DePasquale, and

R.-M. Memmesheimer, “Building functional
networks of spiking model neurons,” Nature
Neurosci., vol. 19, no. 3, pp. 350-355, Mar. 2016.
M. Pfeiffer and T. Pfeil, “Deep learning with
spiking neurons: Opportunities and challenges,”
Frontiers Neurosci., vol. 12, p. 774, Oct. 2018.

A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh,

T. Masquelier, and A. Maida, “Deep learning in
spiking neural networks,” Neural Netw., vol. 111,
pp. 47-63, Mar. 2019.

B. Rueckauer, L.-A. Lungu, Y. Hu, M. Pfeiffer, and
S.-C. Liu, “Conversion of continuous-valued deep
networks to efficient event-driven networks for
image classification,” Frontiers Neurosci., vol. 11,
p. 682, Dec. 2017.

D. Zambrano, R. Nusselder, H. Steven Scholte,
and S. Bohte, “Efficient computation in adaptive
artificial spiking neural networks,” Oct. 2017,
arXiv:1710.04838. [Online]. Available:
http://arxiv.org/abs/1710.04838

R. Kim, Y. Li, and T. J. Sejnowski, “Simple
framework for constructing functional spiking
recurrent neural networks,” PNAS, vol. 116,

pp. 22811-22820, 2019.

C. Stockl and W. Maass, “Optimized spiking
neurons can classify images with high accuracy
through temporal coding with two spikes,”

Jan. 2020, arXiv:2002.00860. [Online]. Available:
http://arxiv.org/abs/2002.00860

D. Ackley, G. Hinton, and T. Sejnowski, “A learning
algorithm for Boltzmann machines,” Cognit. Sci.,
Multidisciplinary J., vol. 9, no. 1, pp. 147-169,
1985.

H. Jang, O. Simeone, B. Gardner, and A. Gruning,
“An introduction to probabilistic spiking neural
networks: Probabilistic models, learning rules,
and applications,” IEEE Signal Process. Mag.,

vol. 36, no. 6, pp. 64-77, Nov. 2019.

G. Bellec, M. Galtier, R. Brette, and P, Yger, “Slow
feature analysis with spiking neurons and its
application to audio stimuli,” J. Comput. Neurosci.,
vol. 40, no. 3, pp. 317-329, Jun. 2016.

D. Huh and T. J. Sejnowski, “Gradient descent for
spiking neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 31, 2018, pp. 1440-1450.

B. Yin, E Corradi, and S. M. Bohté, “Effective and
efficient computation with multiple-timescale
spiking recurrent neural networks,” Jun. 2020,
arXiv:2005.11633. [Online]. Available:
http://arxiv.org/abs/2005.11633

E Zenke and T. P Vogels, “The remarkable
robustness of surrogate gradient learning for
instilling complex function in spiking neural

Vol. 109, No. 5, May 2021 | PROCEEDINGS OF THE IEEE 949

Zenke and Neftci: Brain-Inspired Learning on Neuromorphic Substrates

[791

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

networks,” bioRxiv, Jun. 2020, doi:
10.1101/2020.06.29.176925.

W. Gerstner, W. M. Kistler, R. Naud, and L.
Paninski, Neuronal Dynamics: From Single Neurons
to Networks and Models of Cognition. Cambridge,
U.K.: Cambridge Univ. Press, 2014.

H. Jang, N. Skatchkovsky, and O. Simeone,
“VOWEL: A local online learning rule for recurrent
networks of probabilistic spiking winner-take-all
circuits,” Apr. 2020, arXiv:2004.09416. [Online].
Available: http://arxiv.org/abs/2004.09416

J. Werfel, X. Xie, and H. S. Seung, “Learning
curves for stochastic gradient descent in linear
feedforward networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2004, pp. 1197-1204.

D. Goodman and R. Brette, “Brian: A simulator for
spiking neural networks in Python,” Frontiers
Neuroinform., vol. 2, p. 5, Nov. 2008.

E Zenke and W. Gerstner, “Limits to high-speed
simulations of spiking neural networks using
general-purpose computers,” Frontiers
Neuroinform., vol. 8, p. 76, Sep. 2014.

M. Ercsey-Ravasz et al., “A predictive network
model of cerebral cortical connectivity based on a
distance rule,” Neuron, vol. 80, no. 1,

pp. 184-197, Oct. 2013.

B. U. Pedroni et al., “Memory-efficient synaptic
connectivity for spike-timing-dependent
plasticity,” Frontiers Neurosci., vol. 13, p. 357,
Apr. 2019.

S. Moradi, N. Qiao, E Stefanini, and G. Indiveri,
“A scalable multicore architecture with
heterogeneous memory structures for dynamic
neuromorphic asynchronous processors
(DYNAPs),” IEEE Trans. Biomed. Circuits Syst.,
vol. 12, no. 1, pp. 106-122, Feb. 2018.

J. Park, T. Yu, S. Joshi, C. Maier, and

G. Cauwenberghs, “Hierarchical address event
routing for reconfigurable large-scale
neuromorphic systems,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 28, no. 10, pp. 2408-2422,

Oct. 2017.

G. Huang, S. Liu, L. van der Maaten, and

K. Q. Weinberger, “CondenseNet: An efficient
DenseNet using learned group convolutions,”

vol. 3, 2017, arXiv:1711.09224. [Online].
Available: http://arxiv.org/abs/1711.09224

N. Lee, T. Ajanthan, and P H. S. Torr, “SNIP:
Single-shot network pruning based on connection
sensitivity,” Feb. 2019, arXiv:1810.02340.
[Online]. Available:
http://arxiv.org/abs/1810.02340

B. Cramer, Y. Stradmann, J. Schemmel, and

F Zenke, “The Heidelberg spiking datasets for the
systematic evaluation of spiking neural networks,”
Dec. 2019, arXiv:1910.07407. [Online]. Available:
http://arxiv.org/abs/1910.07407

P Warden, “Speech commands: A dataset for
limited-vocabulary speech recognition,”

Apr. 2018, arXiv:1804.03209. [Online]. Available:
http://arxiv.org/abs/1804.03209

J. M. Murray, “Local online learning in recurrent
networks with random feedback,” eLife, vol. 8,
May 2019, Art. no. e43299.

J. M. Murray, “Local online learning in recurrent
networks with random feedback,” ELife, vol. 8,

p. €43299, 2019.

N. Kalchbrenner et al., “Efficient neural audio
synthesis,” Jun. 2018, arXiv:1802.08435.
[Online]. Available:
http://arxiv.org/abs/1802.08435

[95]

[96]

[971

[98]

[991

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

J. Christian Thiele, O. Bichler, and A. Dupret,
“SpikeGrad: An ANN-equivalent computation
model for implementing backpropagation with
spikes,” 2019, arXiv:1906.00851. [Online].
Available: http://arxiv.org/abs/1906.00851

C. Lee, S. S. Sarwar, P Panda, G. Srinivasan, and
K. Roy, “Enabling spike-based backpropagation
for training deep neural network architectures,”
Frontiers Neurosci., vol. 14, p. 119, Feb. 2020.

T. Bohnstingl, S. Wozniak, W. Maass, A. Pantazi,
and E. Eleftheriou, “Online spatio-temporal
learning in deep neural networks,” 2020,
arXiv:2007.12723. [Online]. Available:
http://arxiv.org/abs/2007.12723

D. Sussillo and L. E Abbott, “Generating coherent
patterns of activity from chaotic neural networks,
Neuron, vol. 63, no. 4, pp. 544-557, Aug. 2009.
W. Nicola and C. Clopath, “Supervised learning in
spiking neural networks with FORCE training,”
Nature Commun., vol. 8, no. 1, p. 2208,

Dec. 2017.

A. Gilra and W. Gerstner, “Predicting non-linear
dynamics by stable local learning in a recurrent
spiking neural network,” eLife, vol. 6, Nov. 2017,
Art. no. e28295.

R. Giitig, “Spiking neurons can discover predictive
features by aggregate-label learning,” Science,
vol. 351, no. 6277, Mar. 2016, Art. no. aab4113.
K. Stewart, G. Orchard, S. B. Shrestha, and

E. Neftci, “Online few-shot gesture learning on a
neuromorphic processor,” IEEE J. Emerg. Sel.
Topics Circuits Syst., vol. 10, no. 4, pp. 512-521,
Dec. 2020.

M. C. W. V. Rossum, ‘A novel spike distance,”
Neural Comput., vol. 13, no. 4, pp. 751-763,

Apr. 2001.

B. Gardner and A. Griining, “Supervised learning
in spiking neural networks for precise temporal
encoding,” PLoS ONE, vol. 11, no. 8, Aug. 2016,
Art. no. e0161335.

W. Gerstner, M. Lehmann, V. Liakoni, D. Corneil,
and J. Brea, “Eligibility traces and plasticity on
behavioral time scales: Experimental support of
neoHebbian three-factor learning rules,”

Jan. 2018, arXiv:1801.05219. [Online]. Available:
http://arxiv.org/abs/1801.05219

E. M. Izhikevich, “Solving the distal reward
problem through linkage of STDP and dopamine
signaling,” Cerebral Cortex, vol. 17, no. 10,

Pp. 2443-2452, Oct. 2007.

Z. Pan, Y. Chua, J. Wu, M. Zhang, H. Li, and

E. Ambikairajah, “An efficient and perceptually
motivated auditory neural encoding and decoding
algorithm for spiking neural networks,”

Sep. 2019, arXiv:1909.01302. [Online]. Available:
http://arxiv.org/abs/1909.01302

R. Brette et al., “Simulation of networks of spiking
neurons: A review of tools and strategies,”

J. Comput. Neurosci., vol. 23, no. 3, pp. 349-398,
Dec. 2007.

M. Payvand, M. E. Fouda, E Kurdahi, A. Eltawil,
and E. O. Neftci, “Error-triggered three-factor
learning dynamics for crossbar arrays,” in Proc.
2nd IEEE Int. Conf. Artif. Intell. Circuits Syst.
(AICAS), Aug. 2020, pp. 218-222.

S. K. Esser et al., “Convolutional networks for fast,
energy-efficient neuromorphic computing,” PNAS,
vol. 113, no. 41, pp. 11441-11446, 2016.

E. Neftci, E. Chicca, G. Indiveri, and R. Douglas,
“A systematic method for configuring VLSI
networks of spiking neurons,” Neural Comput.,

»

950 PROCEEDINGS OF THE IEEE | Vol. 109, No. 5, May 2021

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

vol. 23, no. 10, pp. 2457-2497, Oct. 2011.

D. Briiderle et al., “A comprehensive workflow for
general-purpose neural modeling with highly
configurable neuromorphic hardware systems,”
Biol. Cybern., vol. 104, nos. 4-5, pp. 263-296,
May 2011.

B. Cramer et al., “Training spiking multi-layer
networks with surrogate gradients on an analog
neuromorphic substrate,” 2020,
arXiv:2006.07239. [Online]. Available:
http://arxiv.org/abs/2006.07239

R. C. O'Reilly and M. J. Frank, “Making working
memory work: A computational model of learning
in the prefrontal cortex and basal ganglia,” Neural
Comput., vol. 18, no. 2, pp. 283-328,

Feb. 2006.

S. Hochreiter and J. Schmidhuber, “Long
short-term memory,” Neural Comput., vol. 9, no. 8,
pp.- 1735-1780, Nov. 1997.

D. Amit, Modeling Brain Function: The World of
Attractor Neural Networks. Cambridge, U.K.:
Cambridge Univ. Press, 1992.

A. Litwin-Kumar and B. Doiron, “Formation and
maintenance of neuronal assemblies through
synaptic plasticity,” Nature Commun., vol. 5, no. 1,
pp. 1-12, Nov. 2014.

F Zenke, E. J. Agnes, and W. Gerstner, “Diverse
synaptic plasticity mechanisms orchestrated to
form and retrieve memories in spiking neural
networks,” Nature Commun., vol. 6, no. 1,

p. 6922, Apr. 2015.

Y. Bengio, P Simard, and P Frasconi, “Learning
long-term dependencies with gradient descent is
difficult,” IEEE Trans. Neural Netw., vol. 5, no. 2,
pp. 157-166, Mar. 1994.

U. Rutishauser, R. J. Douglas, and J.-J. Slotine,
“Collective stability of networks of winner-take-all
circuits,” Neural Comput., vol. 23, no. 3,

pp. 735-773, Mar. 2011.

S. Grossberg, The Adaptive Brain I. Amsterdam,
The Netherlands: Elsevier, 1987.

P Baldi, P Sadowski, and Z. Lu, “Learning in the
machine: Random backpropagation and the deep
learning channel,” Artif. Intell., vol. 260, pp. 1-35,
Jul. 2018.

T. P Lillicrap, D. Cownden, D. B. Tweed, and

C. J. Akerman, “Random synaptic feedback
weights support error backpropagation for deep
learning,” Nature Commun., vol. 7, no. 1,

p. 13276, Dec. 2016.

J. E Kolen and J. B. Pollack, “Backpropagation
without weight transport,” in Proc. IEEE Int. Conf.
Neural Netw. (ICNN), vol. 3, Jun. 1994,

pp. 1375-1380.

M. Akrout, C. Wilson, P Humphreys, T. Lillicrap,
and D. B. Tweed, “Deep learning without weight
transport,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle,
A. Beygelzimer, E D. Alché-Buc, E. Fox, and

R. Garnett, Eds. Red Hook, NY, USA: Curran
Associates, 2019, pp. 976-984.

Y. Amit, “Deep learning with asymmetric
connections and Hebbian updates,” Frontiers
Comput. Neurosci., vol. 13, p. 18, Apr. 2019.

A. Ngkland and L. H. Eidnes, “Training neural
networks with local error signals,” Jan. 2019,
arXiv:1901.06656. [Online]. Available:
https://arxiv.org/abs/1901.06656

H. Mostafa, V. Ramesh, and G. Cauwenberghs,
“Deep supervised learning using local errors,”
Frontiers Neurosci., vol. 12, p. 608, Aug. 2018.

http://dx.doi.org/10.1101/2020.06.29.176925

