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Brain-inspired replay for continual learning
with artificial neural networks
Gido M. van de Ven 1,2✉, Hava T. Siegelmann 3 & Andreas S. Tolias 1,4

Artificial neural networks suffer from catastrophic forgetting. Unlike humans, when these

networks are trained on something new, they rapidly forget what was learned before. In the

brain, a mechanism thought to be important for protecting memories is the reactivation of

neuronal activity patterns representing those memories. In artificial neural networks, such

memory replay can be implemented as ‘generative replay’, which can successfully – and

surprisingly efficiently – prevent catastrophic forgetting on toy examples even in a class-

incremental learning scenario. However, scaling up generative replay to complicated pro-

blems with many tasks or complex inputs is challenging. We propose a new, brain-inspired

variant of replay in which internal or hidden representations are replayed that are generated

by the network’s own, context-modulated feedback connections. Our method achieves state-

of-the-art performance on challenging continual learning benchmarks (e.g., class-incremental

learning on CIFAR-100) without storing data, and it provides a novel model for replay in

the brain.

https://doi.org/10.1038/s41467-020-17866-2 OPEN

1Center for Neuroscience and Artificial Intelligence, Department of Neuroscience, Baylor College of Medicine, Houston TX 77030, USA. 2Computational and

Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK. 3College of Computer and Information Sciences,

University of Massachusetts Amherst, Amherst, MA 01003, USA. 4Department of Electrical and Computer Engineering, Rice University, Houston, TX 77251,

USA. ✉email: ven@bcm.edu

NATURE COMMUNICATIONS |         (2020) 11:4069 | https://doi.org/10.1038/s41467-020-17866-2 | www.nature.com/naturecommunications 1

12
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17866-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17866-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17866-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17866-2&domain=pdf
http://orcid.org/0000-0002-5239-5660
http://orcid.org/0000-0002-5239-5660
http://orcid.org/0000-0002-5239-5660
http://orcid.org/0000-0002-5239-5660
http://orcid.org/0000-0002-5239-5660
http://orcid.org/0000-0003-4938-8723
http://orcid.org/0000-0003-4938-8723
http://orcid.org/0000-0003-4938-8723
http://orcid.org/0000-0003-4938-8723
http://orcid.org/0000-0003-4938-8723
http://orcid.org/0000-0002-4305-6376
http://orcid.org/0000-0002-4305-6376
http://orcid.org/0000-0002-4305-6376
http://orcid.org/0000-0002-4305-6376
http://orcid.org/0000-0002-4305-6376
mailto:ven@bcm.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


C
urrent state-of-the-art deep neural networks can be
trained to impressive performance on a wide variety of
tasks1. But when these networks are trained on a new task,

previously learned tasks are typically quickly forgotten2–4.
Importantly, this ‘catastrophic forgetting’ is not due to limited
network capacity, as the same networks can learn many tasks
when trained in an interleaved fashion5. In the real world,
however, training examples are not presented interleaved but
appear in sequences with temporal correlations. One solution
would be to store previously encountered examples and revisit
them when learning something new. Although such ‘replay’ or
‘rehearsal’ solves catastrophic forgetting, the scalability of this
solution has been questioned as constantly retraining on all
previously learned tasks is highly inefficient and the amount of
data that would have to be stored becomes unmanageable
quickly6,7. Yet, in the brain—which clearly has implemented an
efficient and scalable algorithm for continual learning—the
reactivation of neuronal activity patterns that represent previous
experiences is believed to be important for stabilizing new
memories8–11. Such memory replay is orchestrated by the hip-
pocampus but also observed in the cortex12,13, and mainly occurs
in sharp-wave/ripples during both sleep and awake14. Inspired by
this, here we revisit the use of replay as a tool for continual
learning in artificial neural networks (ANNs).

As alluded to above, a straight-forward way to add replay to an
ANN is to use stored data from previously learned tasks and
interleave them with the current task’s training data15–17

(Fig. 1a). Relying on stored data is however undesirable for a
number of reasons. Firstly, it is a disadvantage from a machine
learning perspective as storing data is not always possible in
practice (e.g., due to safety or privacy concerns) and it is pro-
blematic when scaling up to problems with very many tasks.
Secondly, from a neuroscience perspective, if we hope to use
replay in ANNs as a model for reactivation in the brain5, using
stored data is unwanted as it is questionable how the brain could
directly store data (e.g., all pixels of an image), while empirically it
is clear that human memory is not perfect18. As alternative to
storing data, here we focus on generating the data to be replayed
with a learned generative neural network model of past obser-
vations19–21 (Fig. 1b).

Recent evidence indicates that depending on how a continual
learning problem is set up, replay might even be unavoidable21–24.
Typically, continual learning is studied in a task-incremental
learning (Task-IL) scenario24, in which an agent must incre-
mentally learn to perform several distinct tasks. Although this is a
natural scenario for many reinforcement learning problems (e.g.,
incrementally learning to play Atari games25), for classification
this scenario is often artificial. Imagine an agent that first learns to
classify cats and dogs, and then cows and horses. It seems rea-
sonable to expect that this agent should now also be able to dis-
tinguish between cats and cows. In the Task-IL scenario, however,

the agent is only expected to be able to solve the exact classifi-
cation tasks it was trained on. Distinguishing between classes from
different learning episodes is only required in the class-
incremental learning (Class-IL) scenario24. Although this differ-
ence might seem subtle, it turns out to dramatically affect the
difficulty of a continual learning problem: established machine
learning algorithms for continual learning fail in the Class-IL
scenario even on seemingly simple toy examples. Generative
replay (GR) is currently the only method capable of performing
well in this scenario without storing data.

An important potential drawback of GR, however, is that
scaling it up to more challenging problems has been reported to
be problematic26,27. As a direct result, Class-IL with more com-
plex inputs (e.g., natural images) remains an open problem in
deep learning, as acceptable performance on such problems has
so far only been achieved by methods that explicitly store
data15,17. In addition, from a neuroscience perspective, the
reported inability of replay to scale to more realistic problems in a
biologically plausible way (i.e., without storing data) is puzzling as
it raises the question how replay could underlie memory con-
solidation in the brain.

Here, we challenge the unscalability of GR. After first con-
firming the importance of replay for Class-IL, we report experi-
ments on the MNIST dataset highlighting the surprising
efficiency and robustness of replay: replaying just a few or low-
quality samples can already be enough. Yet, despite these pro-
mising experiments with hand-written digits, we also find that
scaling up GR to more complicated problems is not straight-
forward. To address this, we propose a new variant of GR in
which internal or hidden representations are replayed that are
generated by the network’s own, context-modulated feedback
connections. We demonstrate that this brain-inspired replay
method achieves state-of-the-art performance on challenging
continual learning benchmarks with many tasks (≥100) or com-
plex inputs (natural images) without the need to store data.

Results
Comparing continual learning methods. Our first goal was to
compare the performance of GR with that of established con-
tinual learning methods. For this, as for the remainder of this
study, we focused on image classification based continual learning
problems. To quantify performance, we used the average test
accuracy over all tasks or classes seen so far. For a justification of
this measure and a more detailed discussion of the scope of this
study, we refer to the discussion.

For our implementation of GR, we followed the general
framework proposed by Shin et al.20: besides the main model for
solving the tasks (i.e., a classifier), a separate generative model was
trained to generate the data to be replayed (Fig. 2). We used a
standard variational autoencoder (VAE)28 as generator (see
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Fig. 1 Schematic of how current approaches of adding replay to an artificial neural network could be to mapped onto the brain. a Exact or experience

replay, which views the hippocampus as a memory buffer in which experiences can simply be stored, akin to traditional views of episodic memory77,78.

b Generative replay with a separate generative model, which views the hippocampus as a generative neural network and replay as a generative process62,79.
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“Methods”). An alternative strategy for alleviating catastrophic
forgetting in ANNs is to protect the parameters of a network that
are important for previously learned tasks. Two widely used
examples of this regularization-based approach are elastic weight
consolidation (EWC)25 and synaptic intelligence (SI)29. Both
methods maintain estimates for all parameters of how influential
they were for the performance of previous tasks, and those
estimates are then used to penalize changes to the more
influential parameters when learning a new task. From a
neuroscience point of view, these methods can be interpreted as
metaplasticity-inspired30. Another recent, neuroscience-inspired
method for continual learning with ANNs is context-dependent
gating (XdG)31. To reduce interference between tasks, this
method gates for each task a different, randomly selected subset
of network nodes. An important limitation of XdG is that it
assumes that the specific task to be performed is always known,
which means this method cannot be used for Class-IL. The final
continual learning method that we considered is learning without
forgetting (LwF)32. This method has an interesting link with
replay-based methods: instead of storing or generating the data to
be replayed, this method replays the inputs of the current task
after labelling them using the model trained on the previous tasks.

Class-incremental learning might require replay. To compare
these continual learning methods, we first used the popular deep
learning example of classifying MNIST digits33. When trained on
all digits simultaneously, this is a very simple problem for modern
deep neural networks and they make almost no mistakes. But
when the dataset is split up into multiple tasks or episodes that
must be learned in sequence, the problem becomes substantially
more difficult. This task protocol is known as split MNIST29

(Fig. 3a). Although in recent years it has become a popular
continual learning benchmark, it is not always appreciated that
this protocol can be setup in multiple ways [or according to
different ‘scenarios’24]. One option is that the network only needs
to learn to solve each individual task, meaning that at test time it
is always clear from which task the digit to be classified is (i.e., the
choice is always just between two possible digits). This is the
Task-IL scenario24 or the ‘multi-headed’ setup22. Another,
arguably more realistic option is that the network eventually must
learn to distinguish between all ten digits. Set up this way, split
MNIST becomes a Class-IL problem. The network must learn a
10-way classifier, but only observes two classes at a time. This
more challenging scenario is also referred to as the ‘single-headed’
setup22.

On these two scenarios of split MNIST we compared our
implementation of GR with EWC, SI and LwF, and on the Task-
IL scenario also with XdG. As baselines, we included the naive
approach of simply fine-tuning the neural network on each new

task in the standard way (None) and a network that was always
trained using the data of all tasks so far (Joint; can be seen as
upper bound). For a fair comparison, all methods used similar-
sized networks and the same training protocol.

In line with recent reports21–24, we found that for most of the
compared methods there was a dramatic difference in perfor-
mance between the two scenarios. For the Task-IL scenario, when
tasks had to be learned incrementally, all compared methods were
successful in preventing catastrophic forgetting (Fig. 3b). Strik-
ingly, however, for the Class-IL scenario, when classes had to be
learned incrementally, the metaplasticity-inspired methods EWC
and SI dramatically failed and only GR was able to successfully
learn all digits (Fig. 3c). This suggests that for Class-IL, when the
network must learn to distinguish between classes that are not
observed together, some form of replay might be required.

Efficiency and robustness of generative replay. These results
highlight GR as a promising, perhaps unavoidable, tool for con-
tinual learning in ANNs. However, although replaying generated
data avoids the issue of having to store potentially large amounts
of data, the concern that it is highly inefficient to constantly
retrain on all previous tasks is still unaddressed. It is true that for
a naive implementation of GR, in which full pseudo-datasets are
generated for all previous tasks and concatenated to the current
task’s training set, this concern certainly applies. Importantly,
however, using replay does not necessarily mean fully retraining
on all previous tasks. For example, for the implementation of
replay used in this paper, in each iteration only a fixed amount of
samples were replayed. The total number of replayed samples
therefore did not depend on the number of previous tasks. For the
results in Fig. 3, every iteration was based on a mini-batch of 128
current samples and 128 replayed samples (divided over the
previous tasks). Then, to test whether the amount of replay could
be reduced further, we ran additional experiments in which the
number of replayed samples per mini-batch was systematically
varied. We found that the performance of GR was relatively
robust (red lines in Fig. 4a): even with a single replayed sample
per mini-batch (i.e., one replayed sample for every 128 samples
from the current task), GR performed competitively in the Task-
IL scenario and outperformed all non-replay methods in the
Class-IL scenario.

Another common criticism of GR is that it simply "shift[s] the
catastrophic forgetting problem to the training of the generative
model” (ref. 7; p. 3). The concern here is that training generative
models is also a hard problem. That is, although it might be
possible to train a model that can generate realistic MNIST
images, for real-world problems with more complicated inputs it
might be too difficult or computationally be too costly to train
high-quality generative models. It is true that the need to train an
additional generative model is a disadvantage of GR. But how
important is the quality of this generative model? A first
indication that replay does not need to be perfect in order to
be useful was given by the reasonable performance of LwF on the
split MNIST protocol: replaying inputs from the current task—for
example replaying ‘2’s and ‘3’s in order not to forget about ‘0’s
and ‘1’s—outperformed EWC and SI (Fig. 3b, c). Then, to further
and more systematically test how good the quality of the replay
needs to be, we varied the number of hidden units in the VAE
model used for producing the replay. Strikingly, reducing the
VAE’s hidden layers to only 10 units resulted in low-quality
samples (Fig. 4c; left panel), but only moderately affected the
performance of GR (Fig. 4b).

Why is it possible to replay so few or such low-quality
examples? One likely reason is that having to learn something
new is substantially harder than not forgetting it. This intuition
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was confirmed by a control experiment in which we re-initialized
the parameters of the network before training on each new task
(but after the samples to be replayed were generated), so that the
network had to constantly re-learn all previous tasks from scratch
(brown lines in Fig. 4a, b). In this case, replaying only a few or
low-quality examples was indeed not enough to achieve the same
strong performance.

Scaling up to more challenging problems. To summarize, cat-
astrophic forgetting in ANNs can be prevented by relatively small
amounts of ‘good enough’ replay. This suggests GR has the
potential to also be useful for more challenging, real-world con-
tinual learning problems. This is what we set out to test next.

We first asked how GR scales to problems with many tasks. A
suitable task protocol to test this was permuted MNIST34

(Fig. 5a), another common benchmark for continual learning.
This protocol also uses the MNIST dataset, but now every task
contains all 10 digits and for each task a different permutation is
applied to the pixels of all images. The goal is always to identify
the original digit (i.e., a 10-way classification). Typically, at test
time the network is not told which permutation was applied to
the image, meaning that the problem is performed according to
the domain-incremental learning (Domain-IL) scenario24.
Although permuted MNIST is usually considered with a limited
number of permutations (≤10), a recent study by Masse et al.31

used this protocol to assess how methods behave when the
number of tasks is substantially increased. They found that after
100 tasks, SI and online EWC, a more efficient version of EWC7,
obtained average accuracies of ~82% and ~70%, respectively.
Although their proposed method XdG by itself performed worse
than both methods (~61%), they found that the performance of SI
could be substantially improved (to ~95%) by combining it with
XdG. One important caveat, however, is that XdG assumes that
the network is always told—also at test time—which permutation
was applied to the image. That is, while SI and online EWC by
themselves were performed according to the Domain-IL scenario,
the variants with XdG were performed according to the easier

Task-IL scenario. Put differently, the gain in performance
obtained with XdG was dependent on the availability of
additional information at test time. Here, using the same
permuted MNIST task protocol with 100 different permutations,
we asked whether GR could match or improve upon the
performance of SI without using additional information at test
time. Unfortunately, despite the promising results presented in
the previous section, we found that a straight-forward imple-
mentation of GR did not scale well to such a long series of tasks,
as its performance rapidly declined after about 15 tasks (red line
in Fig. 5b).

A second question is whether GR can scale to problems with
more complex inputs. To test this, we used the CIFAR-100
dataset35 split up into 10 tasks with 10 natural image classes each
(Fig. 6a). As with split MNIST, the difficulty of this task protocol
differs widely depending on the scenario according to which it is
performed. When performed according to the Task-IL scenario
(i.e., with the choice always only between 10 classes), we found
that methods such as EWC, SI and LwF prevented catastrophic
forgetting almost fully (Fig. 6b). The standard version of GR,
however, failed on this task protocol with natural images even in
the Task-IL scenario. When performed according to the Class-IL
scenario (i.e., with the choice between all classes seen so far; so a
100-way classification in the end), the split CIFAR-100 protocol
became substantially more challenging and all compared existing
methods (i.e., GR, EWC, SI and LwF) performed poorly, suffering
from severe catastrophic forgetting (Fig. 6c). Currently, the only
methods obtaining acceptable performance on this benchmark
are methods that explicitly store data, such as iCaRL15 or
experience replay17.

Brain-inspired modifications to GR. These results, together with
other recent reports26,27, indicate that straight-forward imple-
mentations of GR break down for more challenging problems.
Although we found earlier that replay does not need to be perfect,
it seems that for these problems the quality of the generated
inputs that were replayed was just too low (Fig. 6d). One possible
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solution would be to try to use the recent progress in generative
modelling with deep neural networks36–38 to improve the quality
of the generator. Although this approach might work to certain
extent, an issue is that incrementally training high-quality gen-
erative models is a very challenging problem as well26,27. More-
over, such a solution would not be very efficient, as state-of-the-
art generative models tend to be computationally very costly to
train or to sample from. Instead, given that the brain has
implemented an efficient algorithm for continual learning that is
thought to rely on replay, we turned for inspiration to the brain.

Our first modification to the standard GR approach was
motivated by anatomy. Replay in the brain originates in the
hippocampus, from where it propagates to the cortex39. For
current versions of GR it has been suggested that the generator, as
the source of replay, is reminiscent of the hippocampus and that
the main model corresponds to the cortex (Fig. 1b). Although this
analogy has some merit, an issue is that it ignores that the
hippocampus sits atop of the cortex in the brain’s processing
hierarchy40. Instead, we propose to merge the generator into the
main model, by equipping it with generative backward or
feedback connections. The first few layers of the resulting model
can then be interpreted as corresponding to the early layers of the

visual cortex and the top layers as corresponding to the
hippocampus (Fig. 7a). We implemented this ‘replay-through-
feedback’ model as a VAE with added softmax classification layer
to the top layer of its encoder (see “Methods”).

One issue with a standard VAE is that it is not possible to
intentionally generate examples of a particular class. Humans
however have control over what memories are recalled41. To
enable our model to control what classes to generate, we replaced
the standard normal prior over the VAE’s latent variables by a
Gaussian mixture with a separate mode for each class (Fig. 7b; see
“Methods”; see also ref. 42). This made it possible to generate
specific classes by restricting the sampling of the latent variables
to their corresponding modes. In addition, for our replay-
through-feedback (RtF) model, such a multi-modal prior should
encourage a better separation of the internal representations of
different classes, as they no longer all have to be mapped onto a
single continuous distribution.

The brain processes stimuli differently depending on the
context or the task that must be performed43,44. Moreover,
contextual cues (e.g., odours, sounds) have been shown to bias
what memories are replayed45,46. A simple but effective way to
achieve context-dependent processing in an ANN is to fully gate
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(or ‘inhibit’) a different, randomly selected subset of neurons in
each hidden layer depending on which task should be performed.
This is the approach of XdG31. But, as discussed above, this
technique can only be used when task identity information is
always available, which is not the case for domain-IL or class-IL.
However, we realized that in these scenarios it is still possible to
use context gates—albeit only in the decoder part of our network
—by conditioning on an internal context. The internal context
that we conditioned on was the specific task or class to be
generated or reconstructed (Fig. 7c; see “Methods”). Note that
this is possible because for inference (i.e., classifying new inputs)
only the feedforward layers of the network are needed, and those
layers were not gated.

Our fourth and final brain-inspired modification was to replay
representations of previously learned classes not all the way to the
input level (e.g., pixel level), but to replay them internally or at the
‘hidden level’ (Fig. 7d; see “Methods”). Motivation for this was
that the brain is also not thought to replay memories all the way
down to the input level. Mental images are for example not
propagated to the retina47. From a machine learning point of
view the hope was that generating such internal representations
would be substantially easier, since the purpose of the early layers
of a neural network is to disentangle the complex input level
representations. A likely requirement for this internal replay
strategy to work is that there are no or very limited changes to the
first few layers that are not being replayed. From a neuroscience
perspective this seems realistic, as the representations extracted by
the brain’s early visual areas are indeed not thought to drastically
change in adulthood48,49. To simulate development, we pre-
trained the convolutional layers of our model on CIFAR-10, a
dataset containing similar but non-overlapping images compared
to CIFAR-10035. During the incremental training on CIFAR-100,
those convolutional layers were frozen and we replayed only
through the fully connected layers. For a fair comparison, all
other methods also used pre-trained convolutional layers for the
CIFAR-100 experiments. As no convolutional layers were used
with split and permuted MNIST, pre-training and internal replay
were not used in those experiments.

Finally, we also made a modification inspired by the machine
learning literature. Instead of labelling the generated data as
the most likely class according to the main model (‘hard targets’),
we labelled them with the predicted probabilities for all possible
classes (‘soft targets’; see “Methods”). This is called ‘distillation’
and has been shown to be an effective way of transferring
information or knowledge from one model to another model50.
Especially when the quality of the generated data is low, we

expected this way of labelling replayed samples to be important,
since it might be harmful to label ambiguous inputs (e.g., that are
in between two or more classes) as belonging to a single class.

Evaluating brain-inspired replay. To test the effectiveness of
these modifications, we applied the resulting brain-inspired
replay method on the same benchmarks as before while using
similar-sized networks. On the permuted MNIST protocol with
100 permutations, we found that brain-inspired replay out-
performed the already strong performance of SI (Fig. 5b). Com-
bining brain-inspired replay with SI pushed performance even
higher, achieving state-of-the-art performance on this benchmark
when task identity information is not available at test time.

On the split CIFAR-100 protocol, our brain-inspired modifica-
tions also substantially improved the performance of GR. In the
Task-IL scenario, brain-inspired replay almost fully mitigated
catastrophic forgetting and outperformed EWC, SI and LwF
(Fig. 6b). In the Class-IL scenario, brain-inspired replay also
outperformed the other methods, although its performance still
remained substantially under the ‘upper bound’ of always training
on the data of all classes so far (Fig. 6c). Nevertheless, we are not
aware of any continual learning method that performs better on
this challenging problem without storing data. Finally, as for
permuted MNIST, combining brain-inspired replay with SI again
substantially improved performance, further closing the gap
towards the upper bound of joint training (Fig. 6c).

Lesion experiments. To gain insight into the contributions of the
various components of our brain-inspired replay method, we
performed a series of addition- and ablation-experiments (Fig. 8).
Internal replay appeared to be the most influential modification
as introducing or removing this component had the largest effects
on performance, but we also found that the different modifica-
tions were complementary to each other. For both permuted
MNIST (Fig. 8a) and the Class-IL scenario on CIFAR-100
(Fig. 8c), the gain in performance obtained by combining all
components together was larger than the sum of the effects of
adding each of them in isolation. Especially the benefit of con-
ditional replay and that of gating based on internal context
depended on their combination with other components. More-
over, for both permuted MNIST and Class-IL on CIFAR-100,
none of the individual modifications were sufficient to achieve the
performance of brain-inspired replay, while all of them—with the
exception of RtF—were necessary. The contribution of RtF is
rather that it increases efficiency (i.e., removing the need for a
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separate generative model) without substantially hurting perfor-
mance. Although when brain-inspired replay was combined with
SI, ablating RtF did slightly reduce the average accuracy (per-
muted MNIST: 0.904 ± 0.005 versus 0.892 ± 0.004; Class-IL on
CIFAR-100: 0.344 ± 0.002 versus 0.334 ± 0.002), so the best
overall performance was in fact obtained with RtF. Finally, that
none of the individual components were necessary for the Task-
IL scenario on CIFAR-100 (Fig. 8b) reflects that preventing cat-
astrophic forgetting in this scenario is substantially easier.

Quality of generated replay. To better understand why brain-
inspired replay performed so well, we set out to compare the
quality of the generator with and without the various modifica-
tions. In particular, we asked whether replaying representations
internally rather than at the pixel level improved the quality of the
generated samples. Testing for this was however not straight-
forward. Visually comparing samples was not possible as it is
unclear how the generated internal representations could be
visualized, while traditional quantitative measures for evaluating
VAEs such as reconstruction error or average log-likelihood are
problematic for comparing between models of different input
distributions (although these measures can be computed for both
internal replay and replay at the pixel level, see Supplementary
Fig. 4). To fairly compare samples generated at different levels,
they first had to be transformed to a common embedding space.
Incidentally, the first step for computing recent measures for
evaluating generative models such as Inception Score (IS)51,
Fréchet Inception Distance (FID)52 and Precision & Recall
curves53 is to embed samples into a different feature space. The
original versions of these measures embed samples using Incep-
tion Net54, but our generated internal representations cannot be

fed into this network. We therefore replaced the Inception Net
with a different neural network with the same pre-trained con-
volutional layers as the incrementally trained models (see
“Methods”, see also ref. 55), so that samples at both the pixel and
the internal level could be embedded by this network.

For the Class-IL scenario on CIFAR-100, our modified IS
(Fig. 9a) and modified FID (Fig. 9b) measures both indicated that
the samples replayed by the brain-inspired replay method were
indeed better than those replayed by standard GR. In line with the
results in Fig. 8c, this improvement was for a substantial part due
to replaying at the internal rather than at the pixel level, although
the other modifications (and their combination) also contributed.
However, one issue with these two measures is that they only
quantify generator performance with a single number; they do
not distinguish between sample quality and sample diversity. To
test whether the observed improvements in generated samples
were mainly driven by better quality or by better diversity, Fig. 9c
reports our version of Precision & Recall curves. These curves
indicate that our modifications improved both the quality and the
diversity of the generated samples to similar extents.

Discussion
Catastrophic forgetting in ANNs is a major obstacle to the
development of artificial agents that can incrementally learn from
their experiences6,56. Biological neural networks are superior to
their artificial counterparts when it comes to continual learning,
making it no surprise that the brain has inspired recent attempts
to alleviate catastrophic forgetting in ANNs: regularization-based
methods such as EWC25 and SI29 model the complexity of bio-
logical synapses; while the brain’s ability to process stimuli dif-
ferently depending on context inspired explicit task-based
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methods such as XdG31. We demonstrated that although these
methods are successful for scenarios in which tasks must be
learned incrementally, they are unable to incrementally learn new
classes. Only another neuroscience-inspired approach, replaying
examples representative of previous observations, was found to be
able to solve Class-IL problems. Critically, such replay does not
need to rely on stored data, as it is possible to generate the
samples to be replayed. Further strengthening the case for replay,
we found that replaying low-quality samples or including just a
single replayed example per mini-batch could be sufficient.
Nevertheless, it turned out that straight-forward implementations
of GR break down for more challenging problems (e.g., with
natural images as inputs). To address this, using inspiration from
the brain, we proposed a series of simple, easy-to-implement and
efficient modifications, and we showed that these enable GR to
successfully scale to problems with many tasks or complex inputs.

The continual learning problems considered in this study all
involved image classification, raising the question to what extent
the insights gained here apply to other machine learning domains
or other input modalities. Firstly, although classification was
indeed the end goal, we also showed that GR facilitates incre-
mentally learning a generative model and that our brain-inspired
modifications improve the quality of the learned generative
model. However, it should be noted that in semi- or unsupervised
settings, the conditional replay and the gating based on internal
context components would need to be modified as their current
implementation depends on the availability of class labels during
training. It might be possible to instead condition on other
context information. In reinforcement learning replaying epi-
sodes of previous experiences already is a widely used tool16,57,
but so far it has relied on memory buffers storing these episodes.
Future work could test whether brain-inspired GR could remove
or reduce this dependence on stored data. Secondly, regarding
input modalities, although indeed only image-based experiments
were reported in this study, most of the results and proposed
methodology should extent to other modalities. In particular,
none of the experiments on MNIST used tools specific for images.
Only translating the internal replay component to other input
modalities will not be straight-forward, as this one depends on
pre-trained convolutional layers. Analogous to the separate sen-
sory processing areas in the brain, other input modalities require
different pre-processing layers, and it remains to be confirmed
whether replaying internal representations will work with those.
Another drawback of internal replay is that the rigid, pre-trained
convolutional layers likely restrict the ability of the model to learn
out-of-distribution inputs (e.g., images without natural image
statistics), although to some degree this is true for the brain as
well58. Finally, another limitation of the current study is that
continual learning performance was only quantified by the
average accuracy over all tasks or classes seen so far, which is a
measure that mainly reflects the extent to which a method suffers
from catastrophic forgetting. Other critical aspects of continual
learning such as forward and backward transfer or compressa-
bility were not explicitly addressed. Especially for Task-IL—where
catastrophic forgetting can be prevented by simply training a
different network for each task to be learned—it can be argued
that these other aspects are most interesting59. For Class-IL,
however, preventing catastrophic forgetting is still an unsolved
problem, justifying our focus on the average accuracy measure.

Besides using insights from neuroscience to improve continual
learning with ANNs, another aim of this work was to generate
new perspectives and hypotheses about the computational role
and possible implementations of replay in the brain. With regard
to replay’s implementation, this study firstly provides evidence
that replay might indeed be a feasible way for the brain to combat
catastrophic forgetting. Although it has long been known that

revisiting previously seen examples could prevent catastrophic
forgetting in toy examples5, it had remained an open question
whether replay could scale to more complex, real-world problems
without having to rely on biologically implausible mechanisms
such as explicitly storing past observations. Further, our work
postulates replay in the brain to be a generative process. This
conjecture is in agreement with a growing body of experimental
work reporting that the representations replayed in the brain do
not directly reflect experiences60,61, but that they might be sam-
ples from a learned model of the world62–64. Regarding replay’s
function, our findings highlight an important computational role
for replay in incrementally learning new classes or categories.
Being able to distinguish items or objects from each other is
critical to survival65, and there is a vast cognitive science literature
on computational models for category learning66. However, an
assumption typically made by these models is that examples for
all categories are either observed together or that they can be
directly stored in memory (e.g., exemplar-, prototype- and rule-
based models all rely on this assumption). GR could be a biolo-
gically plausible way to extend these models to the more natural
case in which the different categories to be learned are only
available sequentially. Finally, we should also note that there are
important aspects of replay in the brain that are missing from our
brain-inspired replay method. One of them is temporal structure:
replay-events in the brain consist of sequences of neuronal
activity that reflect the temporal order of the actual experiences67.
A recent method for continual learning that incorporates such
sequence replay was proposed by Parisi et al.68. Their approach
has several conceptual similarities with our internal replay com-
ponent, as they also use pre-trained convolutional layers as a
feature extractor and they replay network embeddings rather than
pixel-level images. However, an important difference is that their
method does not learn an explicit generative model to generate
these embeddings, but it stores them using a recurrent self-
organizing network. A disadvantage of this approach is that it
depends on growing new neurons for each new experience, which
raises doubt whether their method could scale to the protocols
considered here.

An intriguing question is why GR is so much more effective for
Class-IL than regularization-based methods such as EWC and SI.
One answer may relate to how these different approaches store
and maintain the memory of previously encountered classes. GR
maintains this memory in the function or output space of the
network, because this method learns to produce input-output
combinations that the network should not forget. On the other
hand, regularization-based methods store and maintain the
memory of previous classes entirely in the parameter space of the
network, as their only tool is to vary the plasticity of parameters.
Especially with Class-IL this might be challenging, since all
information about previous classes must be kept, as it is unknown
what the future classes will be like. With Task-IL the memory to
be stored is simpler, because only the features important for the
specific task learned at that time need to be remembered.
Nevertheless, we want to highlight that although we found that
current regularization-based methods were not able to solve
Class-IL by themselves, they did provide a unique contribution
when combined with GR. We hypothesize that this is because
maintaining memories in function space and maintaining them in
parameter space each come with their own, separate challenges:
for GR the challenge is to learn a generative network that captures
enough of the essence of the previous tasks/classes, while for
regularization-based approaches the challenge is to correctly
assign credit to the parameters of the network. This suggests that
regularization (or metaplasticity) and replay are complementary
mechanisms, which is consistent with empirical observations that
the brain uses both strategies—roughly corresponding to cellular
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and systems consolidation, respectively—side by side to protect
its memories69.

Methods
Task protocols. For the split MNIST task protocol, we split up the MNIST
dataset33 in five tasks or episodes, such that each task/episode contained two digits.
The original 28 × 28 pixel grey-scale images were used, no pre-processing was
applied. We used the standard training/test-split, resulting in 60,000 training
images (~6000 per digit) and 10,000 test images (~1000 per digit).

For permuted MNIST, the original MNIST images were first zero-padded to
32 × 32 pixels. For each task, a random permutation was then generated and
applied to these 1024 pixels. No other pre-processing was performed. A sequence
of 100 tasks was used, whereby each task was a ten-way classification with as goal
to identify the original digit. Again the standard training/test-split was used, so that
for each task there were 60,000 training images and 10,000 test images.

For split CIFAR-100, the CIFAR-100 dataset35 was split into ten tasks or
episodes, such that each task/episode consisted of ten classes. The original 32 × 32
pixel RGB-colour images were normalized (i.e., each pixel-value was subtracted by
the relevant channel-wise mean and divided by the channel-wise standard
deviation, with means and standard deviations calculated over all training images),
but no other pre-processing or augmentation was performed. The standard
training/test-split was used, resulting in 50,000 training images (500 per class) and
10,000 test images (100 per class).

Network architecture. For a fair comparison, the same base neural network
architecture was used for all compared methods. For split MNIST, this was a fully
connected network with two-hidden layers of 400 nodes each and a softmax output
layer. ReLU non-linearities were used in all hidden nodes. The same network
architecture was used for permuted MNIST, except with 2000 nodes per hidden
layer, similar as in ref. 31. For split CIFAR-100, the base neural network archi-
tecture consisted of five-pre-trained convolutional layers (see below) followed by
two-fully connected layers each containing 2000 nodes with ReLU non-linearities
and a softmax output layer.

The softmax output layer was treated differently depending on the scenario
according to which a task protocol was performed. In both the Task-IL and the
Class-IL scenario, the output layer always had a separate output unit for each class
to be learned (i.e., there were 10 output units for split MNIST and 100 for split
CIFAR-100), but these scenarios differed in when these output units were ‘active’.
In the Task-IL scenario the output layer was ‘multi-headed’, meaning that always
only the output units of classes in the task under consideration—i.e., either the
current task or the replayed task—were active; while in the Class-IL scenario the
output layer was ‘single-headed’, meaning that always all output units of the classes
encountered so far were active. For permuted MNIST, which was performed
according to the Domain-IL scenario, the output layer had one unit for each digit
(i.e., there were 10 output units) and all output units were active all the time.

Whether an output unit was active in a given task decided whether the network
could assign a positive probability to the corresponding class: the normalization
performed by the softmax output layer only took into account the active nodes.
That is, the by the neural network predicted conditional probability that an input x
belongs to class c was calculated as:

pθ Y ¼ cjxð Þ ¼

ez
ðxÞ
c

P

j
e
z
ðxÞ
j

if output node c is active

0 otherwise

8

>

<

>

:

ð1Þ

whereby zðxÞc is the unnormalized probability or ‘logit’ of class c obtained by putting

input x through the neural network parameterized by θ (note that zðxÞc thus also
depends on θ, but to lighten notation this dependence is suppressed), and the
summation in the denominator is over all active nodes in the output layer.

Training. The goal was always to sequentially train the neural network on all tasks
or episodes of the task protocol, whereby the network only had access to the data of
the current task/episode. For all methods considered in this paper, during training
the parameters θ of the neural network were updated with mini-batch stochastic
gradient descent on a task-specific loss function (Ltotal). The exact formulation of
this loss function differed between methods, but a central component was always
the standard multi-class cross-entropy classification loss on the data of the current
task. For an input x labelled with a hard target y, the per-sample classification loss
is given by:

LC x; y; θð Þ ¼ �log pθ Y ¼ yjxð Þ; ð2Þ

with pθ the conditional probability distribution defined by the neural network (see
Eq. (1)).

Each task was trained for 2000 (split MNIST and permuted MNIST) or 5000
(split CIFAR-100) iterations using the ADAM-optimizer (β1= 0.9, β2= 0.999)70

with learning rate of 0.001 (split MNIST) or 0.0001 (permuted MNIST and split
CIFAR-100). The mini-batch size was set to 128 (split MNIST) or 256 (permuted
MNIST and split CIFAR-100), meaning that in each iteration Lcurrent (see below)
was calculated as average over that many samples from the current task. If replay

was used, the same number of replayed samples was used to calculate Lreplay (see
below). Only exception to this were the experiments in Fig. 4a, in which the mini-
batch size used for replay was systematically varied while the mini-batch size for
the current task was kept at 128.

Baselines. To assess how successful the compared methods are in alleviating
catastrophic forgetting, we included two baselines in each comparison.

For our naive baseline, the base neural network was sequentially trained on all
tasks in the standard way (i.e., the loss was always the classification loss on the data
of the current task: Ltotal ¼ Lcurrent ¼ LC).

To get an upper bound, the base neural network was always trained using the
training data of all tasks so far (‘joint training’). This is also referred to as offline
training.

Main model for GR. For standard GR, two models were sequentially trained on all
tasks: (1) the main model, for actually solving the tasks, and (2) a separate gen-
erative model, for generating inputs representative of previously learned tasks.

The main model was a classifier with the base neural network architecture. The
loss function used to train this model consisted of two terms: one for the data of the
current task and one for the replayed data, with both terms weighted according to
how many tasks/episodes the model had seen so far:

Ltotal ¼
1

N tasks so far
Lcurrent þ ð1�

1

N tasks so far
ÞLreplay: ð3Þ

For standard GR, Lcurrent and Lreplay were the standard classification loss on the
current task data and on the replayed data.

Generator for GR. For the generative model, we used a symmetric VAE28,71. A
VAE consists of an encoder network qϕ mapping an input-vector x to a vector of
stochastic latent variables z, and a decoder network pψ mapping those latent
variables z to a reconstructed or decoded input-vector x̂. We kept the architecture
of both networks similar to the base neural network: for the MNIST-based pro-
tocols both the encoder and the decoder were fully connected networks with two-
hidden layers containing 400 (split MNIST) or 2000 (permuted MNIST) units with
ReLU non-linearity; for split CIFAR-100 the encoder consisted of five pre-trained
convolutional layers (see below) followed by two-fully connected layers containing
2000 ReLU units and the decoder had two-fully connected layers with 2000 ReLU
units followed by five deconvolutional or transposed convolutional layers (see
below). The stochastic latent variable layer z always had 100 Gaussian units
(parameterized by mean μ(x) and standard deviation σ(x), the outputs of the
encoder network qϕ given input x) and the prior over them was the standard
normal distribution.

Typically, the parameters of a VAE (collected here in ϕ and ψ) are trained by
maximizing a variational lower bound on the evidence (or ELBO), which is
equivalent to minimizing the following per-sample loss function for an input x:

LG x;ϕ;ψð Þ ¼ Ez�qϕð:jxÞ
½�log pψðxjzÞ� þ DKLðqϕð:jxÞjjpð:ÞÞ

¼ Lrecon x;ϕ;ψð Þ þ Llatent x;ϕð Þ;
ð4Þ

whereby qϕð:jxÞ ¼ N μðxÞ; σðxÞ
2
I

� �

is the posterior distribution over the latent

variables z defined by the encoder given input x, pð:Þ ¼ N 0; Ið Þ is the prior
distribution over the latent variables and DKL is the Kullback-Leibler divergence.
With this combination of prior and posterior, it has been shown that the latent
variable regularization term Llatent can be calculated, without having to do
estimation, as28:

Llatentðx;ϕÞ ¼
1

2

X

100

j¼1

1þ log ðσðxÞj

2
Þ � μ

ðxÞ
j

2
� σ

ðxÞ
j

2� �

; ð5Þ

whereby μ
ðxÞ
j and σ

ðxÞ
j are the jth elements of respectively μ(x) and σ(x). To simplify

the reconstruction term Lrecon , we made the output of the decoder network pψ
deterministic, which is a modification that is common in the VAE literature72,73.
We redefined the reconstruction term as the expected binary cross entropy between
the original and the decoded pixel values:

Lrecon x;ϕ;ψð Þ ¼ E
ϵ�Nð0;IÞ

X

Npixels

p¼1

xplog x̂p

� �

þ 1� xp

� �

log 1� x̂p

� �

" #

; ð6Þ

whereby xp was the value of the pth pixel of the original input image x and x̂p was

the value of the pth pixel of the decoded image x̂ ¼ pψ zðxÞ
� �

with z(x)= μ(x)+ σ
(x) ⊙ ϵ and ϵ � N 0; Ið Þ. Replacing z(x) by μ(x)+ σ(x) ⊙ ϵ is known as
the ‘reparameterization trick’28 and makes that a Monte Carlo estimate of the
expectation in Eq. (6) is differentiable with respect to ϕ. As is common in the
literature, for this estimate we used just a single sample of ϵ for each datapoint.

To train the generator, the same hyperparameters (i.e., learning rate, opti-
mizer, iterations, batch sizes) were used as for training the main model.
Similar to the main model, the generator was also trained with replay (i.e., LG

total ¼
1

N tasks so far
LG
current þ ð1� 1

N tasks so far
ÞLG

replay).
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Generating a replay sample. The data to be replayed were produced by first
sampling inputs from the generative model, after which those generated inputs
were presented to the main model and labelled as the most likely class as predicted
by that model (Fig. 2a). There were however two subtleties regarding the genera-
tion of these replay samples.

Firstly, the samples replayed during task T were generated by the versions of the
generator and main model directly after finishing training on task T − 1.
Implementationally, this could be achieved either by temporarily storing a copy of
both models after finishing training on each task, or by already generating all
samples to be replayed during training on an upcoming task before training on that
task is started.

Secondly, there were some differences between the three continual learning
scenarios regarding which output units were active when generating the labels for
the inputs to be replayed (i.e., which classes could be predicted). With the Task-IL
scenario, only the output units corresponding to the classes of the task intended to
be replayed were active (with the task intended to be replayed randomly selected
among the previous tasks), while with the Class-IL scenario the output units of the
classes from up to the previously learned task were active. With the Domain-IL
scenario, always all output units were active.

Distillation. For brain-inspired replay, instead of labelling the inputs to be replayed
only with an integer indicating the most likely class as predicted by the main model
(i.e., ‘hard targets’), we labelled them with a vector containing the predicted
probabilities for all possible classes (i.e., ‘soft targets’). As is common for distilla-
tion, these target probabilities with which the generated inputs were labelled were
made ‘softer’ by raising the temperature T of the softmax layer of the main model
when generating the labels. This meant that before the softmax normalization was
performed on the logits z(x) (see Eq. (1)), these logits were first divided by T. That
is, for an input x to be replayed during training of task K, the soft targets were given
by the vector ~y with cth element equal to:

~yc ¼ pT
θ̂
ðK�1Þ Y ¼ cjxð Þ; ð7Þ

where θ̂
ðK�1Þ

is the vector with parameter values after finishing training on task
K − 1 and pTθ is the conditional probability distribution defined by the neural
network with parameters θ and with the temperature of the softmax layer raised to
T. A typical value for this temperature is 2, which was the value used here.

The standard classification loss LC could not be used for replayed samples
labelled with soft targets. Instead, the training objective was to match the
probabilities predicted by the model being trained to these soft targets by
minimizing the cross entropy between them. For an input x labelled with a soft
target vector ~y, the per-sample distillation loss is given by:

LD x; ~y; θð Þ ¼ �T2
X

Nclasses

c¼1

~yclog p
T
θ Y ¼ cjxð Þ; ð8Þ

with temperature T again set to 2. The scaling by T2 was included to ensure that the
relative contribution of this objective matched that of a comparable objective with
hard targets50.

Replay-through-feedback. The RtF model was implemented as a symmetric VAE
with an added softmax classification layer to the final hidden layer of the encoder (i.e.,
the layer before the latent variable layer; Fig. 7a). Now only one model had to be
trained. To train this model, the loss function for the data of the current task had two
terms that were simply added: LRtF

current ¼ LC þ LG , whereby LC was the standard
cross-entropy classification loss (see Eq. (2)) and LG was the generative loss (see Eq.
(4)). For the replayed data, when distillation was used, the classification term was
replaced by the distillation term from Eq. (8): LRtF

replay ¼ LD þ LG . The loss terms for
the current and replayed data were again weighted according to how many tasks/
episodes the model had seen so far: LRtF

total ¼
1

N tasks so far
LRtF
current þ ð1� 1

N tasks so far
ÞLRtF

replay .

Conditional replay. To enable the network to generate examples of specific classes,
we replaced the standard normal prior over the stochastic latent variables z by a
Gaussian mixture with a separate mode for each class (Fig. 7b):

pχð:Þ ¼
X

Nclasses

c¼1

pðY ¼ cÞpχð:jcÞ; ð9Þ

with pχð:jcÞ ¼ N μc; σc2I
� �

for c = 1, . . . , Nclasses, whereby μc and σc are the

trainable mean and standard deviation of the mode corresponding to class c, χ is

the collection of trainable means and standard deviations of all classes and pðY ¼

cÞ ¼ Categorical 1
Nclasses

� �

is the class-prior. Because of the change in prior dis-

tribution, the expression for analytically calculating the latent variable regulariza-
tion term in Eq. (5) is no longer valid. In the Supplementary Methods we show that
for an input x labelled with a hard target y (i.e., for current task data), Llatent still

has a closed-form expression:

Llatent x; y;ϕ; χð Þ ¼
1

2

X

100

j¼1

1þ log ðσðxÞj

2
Þ � log ðσyj

2
Þ �

μ
ðxÞ
j � μ

y
j

� �2
þ σ

ðxÞ
j

2

σ
y
j
2

0

B

@

1

C

A
;

ð10Þ

whereby μ
y
j and σ

y
j are the j

th elements of respectively μy and σy. However, for an
input x labelled with a soft target ~y (i.e., for replayed data), there is no closed-form
expression for Llatent so we resort to estimation by sampling. In the Supplementary
Methods we show that in the case of soft targets, Llatent can be rewritten as:

Llatent x; ~y;ϕ; χð Þ ¼
1

2

X

100

j¼1

1þ log ð2πÞ þ log σ
ðxÞ
j

2� �� �

þE
ϵ�N 0;Ið Þ log

X

100

j¼1

~yjN μðxÞ þ σðxÞ � ϵjμj; σ j
2
I

� �

 !" #

;

ð11Þ

whereby ~yj is the j
th element of ~y. The expectation in Eq. (11) was estimated with a

single Monte Carlo sample per datapoint.
When generating a sample to be replayed, the specific class y to be

generated was first randomly selected from the classes seen so far, after which the
latent variables z were sampled from Nðμy ; σy2IÞ. Although this meant that a
specific class was intended to be replayed (and that class could thus be used to
label the generated sample with a hard target), it was still the case that the
generated inputs were labelled based on the predictions made for them by a
feedforward pass through the (main) model.

Gating based on internal context. To enable context-dependent processing in the
generative part of our models, for each task or class to be learned, a randomly
selected subset of X% of the units in each hidden layer of the decoder network
was fully gated (i.e., their activations were set to zero; Fig. 7c). There was a
different mask either for each task (permuted MNIST) or for each class (CIFAR-
100) to be learned. As for the original version of XdG, X was a hyperparameter
whose value was set by a grid search (Supplementary Figs. S2 and S3). When
combined with conditional replay, during the generation of the samples to be
replayed, the specific classes selected to be generated dictated which task- or class-
masks to use. When not combined with conditional replay, the task- or class-masks
to use when generating replay were selected randomly from the tasks or classes
seen so far.

Internal replay. To achieve the replay of hidden or internal representations, we
removed the deconvolutational or transposed convolutional layers from the
decoder network. During reconstruction or generation, samples thus only passed
through the fully connected layers of the decoder. This meant that replayed
samples were generated at an intermediate or ‘hidden’ level, and those replayed
intermediate representations then entered the encoder network after the con-
volutional layers (Fig. 7d). The reconstruction term of the generative part of the
loss function was therefore changed from the input level to the hidden level, and it
was defined as the expected squared error between the hidden activations of the
original input and the corresponding hidden activations after decoding:

Li�recon x;ϕ;ψð Þ ¼ E
ϵ�Nð0;IÞ

X

Nunits

i¼1

h
ðxÞ
i � ĥi

� �2
" #

; ð12Þ

whereby hðxÞi was the activation of the ith hidden unit when the original input image

x was put through the convolutional layers, and ĥi was the activation of the ith

hidden unit after decoding the original input: ĥ ¼ p�ψ zðxÞ
� �

with p�ψ the decoder
network without deconvolutational layers and z(x) = μ(x) + σ(x) ⊙ ϵ with
ϵ � N 0; Ið Þ. The expectation in Eq. (12) was again estimated with a single Monte
Carlo sample per datapoint. To prevent large changes to the convolutional layers of
the encoder, the convolutional layers were pre-trained on CIFAR-10 (see below)
and frozen during the incremental training on CIFAR-100. For a fair comparison,
for split CIFAR-100, pre-trained convolutional layers were used for all compared
methods. Note that with the permuted MNIST protocol the base network did not
contain any convolutional layers; for this protocol internal replay and pre-training
were therefore not used.

Addition- and ablation-experiments. The five components of brain-inspired
replay—RtF, conditional replay, gating based on internal context, internal replay
and distillation—are modular and they could be used independent of each other.
This property was used for the analyses in Figs. 8 and 9 aimed at tearing apart the
separate and combined contributions of these modifications.

Pre-trained convolutional layers. For split CIFAR-100, all networks had five
convolutional layers containing 16, 32, 64, 128 and 254 channels. Each layer used a
3 × 3 kernel, a padding of 1, and there was a stride of 1 in the first layer (i.e., no
downsampling) and a stride of 2 in the other layers (i.e., image-size was halved in
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each of those layers). All convolutional layers used batch-norm74 followed by a
ReLU non-linearity. For the 32 × 32 RGB pixel images used in this study, these
convolutional layers returned 256 × 2 × 2= 1024 image features. No pooling was
used. Mirroring these convolutional layers, the decoder network of the VAE that
was used with standard GR had five deconvolutional or transposed convolutional
layers75 containing 128, 64, 32, 16 and 3 channels. The first four deconvolutional
layers used a 4 × 4 kernel, a padding of 1 and a stride of 2 (i.e., image-size was
doubled in each of those layers), while the final layer used a 3 × 3 kernel, a padding
of 1 and a stride of 1 (i.e., no upsampling). The first four deconvolutional layers
used batch-norm followed by a ReLU non-linearity, while the final layer had no
non-linearity.

To simulate development, the convolutional layers were pre-trained on CIFAR-
10, which is a dataset containing similar but non-overlapping images and image
classes compared to CIFAR-10035. Pre-training was done by training the base
neural network to classify the 10 classes of CIFAR-10 for 100 epochs, using the
ADAM-optimizer (β1= 0.9, β2= 0.999) with learning rate of 0.0001 and mini-
batch size of 256.

Regularization-based methods. For the regularization-based methods (SI29,
EWC25 and online EWC7), to penalize changes to parameters important for pre-
viously learned tasks, a regularization term was added to the loss:
Ltotal ¼ Lcurrent þ λLregularization . The value of hyperparameter λ was set by a grid
search (see Supplementary Figs. 1–3; for SI this hyperparameter is typically referred
to as c).

For SI, to estimate the importance of parameter i, after every task k the
contribution of that parameter to the change in loss was first calculated as:

ω
ðkÞ
i ¼

X

N iters

t¼1

θ̂i½t
ðkÞ� � θ̂i½ t � 1ð ÞðkÞ�

� ��δLtotal½t
ðkÞ�

δθi
; ð13Þ

with Niters the number of iterations per task, θ̂i½t
ðkÞ� the value of the ith parameter

after the tth training iteration on task k and δLtotal ½t
ðkÞ �

δθi
the gradient of the loss with

respect to the ith parameter during the tth training iteration on task k. To get the
estimated importance of parameter i for the first K − 1 tasks, these contributions
were normalized by the square of the total change of parameter i during training on
that task plus a small dampening term ξ (set to 0.1, to bound the normalized
contributions when a parameter’s total change goes to zero), after which they were
summed over all tasks so far:

Ω
ðK�1Þ
i ¼

X

K�1

k¼1

ω
ðkÞ
i

Δ
ðkÞ
i

� �2
þ ξ

; ð14Þ

with Δ
ðkÞ
i ¼ θ̂i½N iters

ðkÞ� � θ̂i½0
ðkÞ�, where θ̂i½0

ðkÞ� indicates the value of parameter i
right before starting training on task k. The regularization term of SI during
training on task K > 1 was then given by:

L
ðKÞ
regularizationSI

θð Þ ¼
X

Nparams

i¼1

Ω
ðK�1Þ
i θi � θ̂

ðK�1Þ

i

� �2

;
ð15Þ

whereby θ̂
ðK�1Þ

i is the value of parameter i after finishing training on task K − 1.
For EWC and online EWC, the importance of parameter i for task k was

estimated by the ith diagonal element of that task’s Fisher Information matrix,
evaluated at the optimal parameter values after finishing training on that task:

F
ðkÞ
ii ¼

1

jSðkÞj

X

x2SðkÞ

X

Nclasses

c¼1

~yðxÞc

δlog pθ Y ¼ cjxð Þ

δθi

�

�

�

�

θ¼θ̂
ðkÞ

� �2
 !

; ð16Þ

with S(k) the training data of task k, θ̂
ðkÞ

the vector with parameter values after
finishing training on task k, pθ the conditional probability distribution defined by
the neural network with parameters θ and ~yðxÞc ¼ p

θ̂
ðkÞ Y ¼ cjxð Þ. For EWC, the

regularization term during training on task K > 1 was then given by:

L
ðKÞ
regularizationEWC

θð Þ ¼
X

K�1

k¼1

1

2

X

Nparams

i¼1

F
ðkÞ
ii θi � θ̂

ðkÞ

i

� �2
 !

: ð17Þ

For online EWC, the regularization term during training on task K > 1 was
given by:

L
ðKÞ
regularizationonline�EWC

θð Þ ¼
X

Nparams

i¼1

~F
ðK�1Þ
ii θi � θ̂

ðK�1Þ

i

� �2

;
ð18Þ

whereby ~F
ðK�1Þ
ii is a running sum of the ith diagonal elements of the Fisher

Information matrices of the first K − 1 tasks, with a hyperparameter γ ≤ 1 that
governs a gradual decay of the contributions of previous tasks. That is:
~F
ðkÞ
ii ¼ γ~F

ðk�1Þ
ii þ F

ðkÞ
ii , with ~F

ð1Þ
ii ¼ F

ð1Þ
ii . We always set γ to 1. Note that the version

of EWC used by Masse et al.31, for which the results are discussed in the main text,
was in fact online EWC with γ equal to 1. For split MNIST and split CIFAR-100,

the performances of EWC and online EWC were almost identical, so for those task
protocols the results of online EWC were omitted.

Context-dependent gating. For XdG31, the base neural network was sequentially
trained on all tasks using the standard loss (i.e, Ltotal ¼ Lcurrent ¼ LC). Only dif-
ference was that for each task a different, randomly selected subset of X% of the
units in every fully connected hidden layer was inhibited (i.e., their activations were
set to zero), with X a hyperparameter whose value was set by a grid search
(Supplementary Figs. 1 and 3). A limitation of this method is that it requires
availability of task identity at test time; it could therefore only be used in the Task-
IL scenario.

Learning without forgetting. LwF32 was implemented similarly to standard GR,
but instead of replaying generated inputs, the inputs of the current task were
replayed. So there was no need to train a generator. This method further used
distillation to label the replayed samples. That is, the inputs from the current task
were replayed after being labelled with soft targets provided by a copy of the model
stored after finishing training on the previous task.

Measures for evaluating generator performance. To quantify the quality and
diversity of the generated samples replayed by different variants of GR in the Class-
IL scenario of split CIFAR-100, we reported modified versions of IS51, FID52 and
the Precision & Recall curves53. The first step of the original versions of these
measures is to embed samples into a different space using Inception Net54.
However, as samples generated at the internal level could not be fed into this
network, we replaced the Inception Net by a different neural network (see also
ref. 55). The neural network we used had the same architecture as the base neural
network: five pre-trained convolutional layers (as above) followed by two-fully
connected layers each containing 2000 nodes with ReLU non-linearities and a
softmax output layer with 100 nodes. With the convolutional layers frozen, this
network was trained offline to classify the 100 classes of CIFAR-100 for 20 epochs,
using the ADAM-optimizer (β1= 0.9, β2= 0.999) with learning rate of 0.0001 and
mini-batch size of 256. Because this network had the same pre-trained convolu-
tional layers as the encoder of the VAE, samples generated at the internal level
could be fed into this network after those convolutional layers. Except for the use of
this different embedding network, the three measures were computed as they were
originally proposed.

The modified IS measure was calculated by first putting Ngen= 10,000
generated samples through the embedding network to obtain for each generated
sample xg a conditional probability distribution p(. ∣xg) over the 100 classes of the
CIFAR-100 dataset. The modified IS was then calculated as:

mIS ¼ exp
1

Ngen

X

Ngen

g¼1

DKL pð:jxgÞjjpð:Þ
� �

 !

; ð19Þ

whereby pð:Þ ¼ 1
Ngen

PNgen

g¼1 pð:jxgÞ. Because a 100-way classifier is used as

embedding network, this modified IS measure is bounded between 1 and 100 (see
Appendix of ref. 76).

To calculate the modified FID measure, the 10,000 real data samples from the
held-out test set and 10,000 generated samples were first transformed to feature
vectors by putting them through all but the final softmax layer of the embedding
network. The modified FID was then calculated as:

mFID ¼ jjμr � μg jj
2
2 þ Tr Σr þ Σg � 2 ΣrΣg

� �1
2

� �

; ð20Þ

whereby (μr, Σr) and (μg, Σg) are the mean and covariance of the feature vectors of
the real and generated data. This measure is bounded below by 0 and has no
maximum value.

For the Precision & Recall curve, the first step was again to transform the
10,000 samples from the test set and 10,000 generated samples to feature vectors by
putting them through all but the final softmax layer of the embedding network. The
resulting 20,000 feature vectors were then divided into 20 clusters using k-means
clustering. Letting P(ω) and Q(ω) be the proportion of real and generated feature
vectors in cluster ω, the Precision & Recall curve was then calculated as:

PR ¼ ðαðλÞ; βðλÞÞjλ 2 Λf g; ð21Þ

whereby αðλÞ ¼
P20

ω¼1 minðλPðωÞ;QðωÞÞ is the precision, βðλÞ ¼
P20

ω¼1 minðPðωÞ; QðωÞλ Þ is the recall and Λ ¼ tan i
mþ1

π
2

� �

ji ¼ 1; 2; :::;m
n o

. Both the

precision α and the recall β are bounded between 0 and 1. The clustering step and
above computation were repeated 10 times and the resulting curves were averaged.

In addition to these three measures, we also reported the average estimated log-
likelihood and the reconstruction error (see Supplementary Fig. 4), although it
should be noted that comparing between samples generated at the internal level
versus at the pixel level might not be fair with these measures (see Supplementary
Methods).
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Data availability
All datasets analysed in this study are freely available online resources.

Code availability
Detailed, well-documented code that can be used to reproduce or build upon the
reported experiments is freely available online under an MIT License: https://github.com/
GMvandeVen/brain-inspired-replay.
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