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Brain-Like Emergent Spatial Processing
Juyang Weng Fellow, IEEE and Matthew Luciw Member, IEEE

Abstract—This is a theoretical, modeling, and algorithmic pa-
per about the spatial aspect of brain-like information processing,
modeled by the Developmental Network (DN) model. The new
brain architecture allows the external environment (including
teachers) to interact with the sensory ends S and the motor ends
M of the skull-closed brain B through development. It does not
allow the human programmer to hand-pick extra-body concepts
or to handcraft the concept boundaries inside the brain B.
Mathematically, the brain spatial processing performs real-time
mapping from S(t)×B(t)×M(t) to S(t+1)×B(t+1)×M(t+1),
through network updates, where the contents of S, B, M all
emerge from experience. Using its limited resource, the brain
does increasingly better through experience. A new principle is
that the effector ends in M serve as hubs for concept learning
and abstraction. The effector ends B serve also as input and the
sensory ends S serve also as output. As DN embodiments, the
Where-What Networks (WWNs) present three major function
novelties — new concept abstraction, concept as emergent goals,
and goal-directed perception. The WWN series appears to be
the first general purpose emergent systems for detecting and
recognizing multiple objects in complex backgrounds. Among
others, the most significant new mechanism is general-purpose
top-down attention.

Index Terms—Mental architecture, cortical representation,
attention, perception, cognition, behavior, computer vision, text
understanding, reasoning, regression, complexity.

I. INTRODUCTION

WHILE a child incrementally learns new skills in an

open-ended fashion, one after another, how does the

child’s brain learn to represent, and think about, its external

world without a need for an internal central controller? It

is clear that the learning must be “skull-closed”. A “skull-

closed” brain or network can only interact with the external

environment through its sensory port and effector port. The

main effector ports for the brain are muscles and glands.

Conventionally, effector ports are often called motor ports.

A. Symbolic Representations: Skull Open

Using symbolic representations corresponds to assigning the

human programmer to the role of an all-aware central con-

troller. Cognitive Science [4], [81] and Artificial Intelligence

(AI) [69], [54], [71] employ symbolic representations to model

cognitive systems, assuming a restricted domain. Symbolic

models assume that there is a one-to-one correspondence
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between each Handpicked symbol and meanings in the minds

of human domain experts. Each symbol has only a unique

meaning (or a unique set of meanings) and each meaning has

a unique symbol (or a unique set of symbols). Because of

this symbol use, cognitive system modelers use “skull-open”

approaches — the central controller is in the outside human

designer, who defines each internal module using a symbolic

meaning, designs or train each module separately, and then

manually links related modules.

A “skull-open” approach might use handpicked symbols for

the extra-body concepts to assign roles for a brain region. For

example, a “V1” module is designed to detect oriented edges,

and an “hippocampus” module is designed to detect “Jennifer

Aniston”, “Mother Teresa”, and the Pythagorean theorem a2+
b2 = c2 (see Koch 2011 [42]). However, as we will see below

from the Developmental Networks (DN), no internal neuron

alone represents the pure meaning of any extra-body concept:

(1) the firing of an internal neuron does not surely report the

presence of an extra-body concept; (2) many other internal

neurons fire in the presence of the same extra-body concept;

(3) furthermore, the firing of an internal neuron depends on

not only its bottom-up match (sensory feature), but also its

top-down match (e.g., top-down attention), its lateral match,

and its competition with many other neurons.

In principle, such handcrafting symbols is inconsistent with

autonomous development of brain-mind functions, as argued

by Weng et al. [100], and is intractable for muddy tasks dis-

cussed in Weng 2009 [89]. It is a root reason for system’s high

brittleness — the resulting systems are brittle in dealing with

real environments over their lifetimes, since the task-aware

human controller has already left the system but the system

itself cannot guarantee that the human controller’s domain

restrictions are all met during all its operations. Weng & Chen

2000 [95] argued that this is the absence of an applicability
checker with symbolic approaches. Such systems are not able

to learn (develop) autonomously from the real physical world,

with or without human supervision. The contents of any set

of task-specific, handcrafted symbolic concepts are static, and

so are the boundaries between the concept modules.

The high brittleness of symbolic systems seems mainly due

to the static symbolic design, not primarily due to, as often

argued, a lack of full domain ontology which is interpreted in

AI as formal representation of knowledge as a set of concepts

within a domain, and the relationships between those concepts.

A human child or even adult does not have such a full domain

ontology, but he is not that brittle.

B. Emergent Representations: Skull Closed

In contrast, using a “skull-closed” autonomous development

approach, the developmental program (DP) that implicitly
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regulates internal self-organization is task-nonspecific and

autonomous. Such a developmental network does not need an

applicability checker. A developmental agent is not perfect in a

new environment or for a new task but it autonomously learns

to become better for what it does until all its limited resource

has been optimized for what it does in its recent life.

The brain is, of course, skull-closed during learning —

its internal representations are not directly manipulatable by

external human teachers. It has been proposed that each

developing brain learns through grounded, autonomous in-

teractions with the environment [61], [10], [93], [21], [63],

[100]. But what regulates the brain’s development and what

characterizes the development? How does the brain generate

and self-organize internal representations and operate fully

autonomously with its skull fully closed? How does the

brain learn concepts one after another incrementally, including

concepts that the ancestors are not aware of? The theory about

the spatial aspects of brain information processing presented

here provides some attempts, although the theory does not

mean to completely answer these questions.

C. Functional Novelty of the Paper

This work presents a general-purpose architecture and

model for brain-like spatial processing, with its major ad-

vances summarized in Table I, where the major new con-

tributions are listed in the last three columns. The temporal

aspect of this brain-like processing model will appear else-

where. Developmental Networks (DN), also called Epigenetic

Developer (ED) networks, were proposed by Weng 2010

[90] as a simplified brain-mind model that incorporates 5

concepts chunks. The Where-What Network (WWN) [39] will

be presented as an example of DN, and in WWN a motor zone

(type motor area TM) is used to teach a type concept and

another motor zone (location motor area LM) is used to teach

a location concept. However, any other practically learnable

concepts can be taught to a DN, at least in principle.

The new contributions of this work are as follows:

New-concept abstraction: Concept abstraction in spatial

processing corresponds to the extraction of (abstract) concept

independent of particular instances. However, since each in-

stance is associated with particular values of multiple concepts

(e.g., a particular type and a particular location), abstraction for

concept C (e.g., type concept) should be invariant to all other

related concepts (e.g., location), at least for all cases where

these concepts are applicable. For example, assume a WWN

has learned two concept categories, location and type. Location

concept abstraction in output means that the outputs from the

location motor area of WWN have a certain location specificity

with invariance to all types. Type concept abstraction in output

means that the outputs from the type motor area of WWN have

a certain type specificity with invariance to all locations.

Now, for new concepts to emerge and reach this level of

abstraction requires these three conjunctive conditions: (1)

Each possible concept is not handcrafted during the program-

ming time, and therefore a symbolic representation is ruled

out. (2) The teachers tolerate certain variability in the motor

port (e.g., an action — raising the index finger — can be

slightly different each time as long as other humans can

agree which finger is raised). (3) A mechanism for invariance

of the new concept to all other related concepts (e.g., the

type concept is invariant to other concepts, such as location,

viewing angle, object scale [78], etc.), subject to the richness

of experience. Earlier networks, such as Cresceptron [94],

do not have general-purpose mechanisms to deal with both

specificity and invariance because it uses a built-in invariance

(e.g., the built-in shift invariance in Cresceptron means that

it cannot learn to report location distortions such as facial

expressions).

Concepts as emerging goals: The term “goal” in this paper

is a task-specific term as a special case of a general brain

mechanism — spatiotemporal context. Recall that the DP of

the brain is not task-specific. However, “goal” is a task-specific

concept of the external environment. Thus, “goal” must not

be part of the DP. A goal is a spatiotemporal context that

emerges in the motor area and is used as a top-down signal

(e.g., to control the next focus of attention in WWN). Another

term might fit a particular task better, such as intent, objective,

action, target, type-to-search-for, location-to-attend, cognitive-

state, or action-state. Interestingly, human language has these

rich terms but they seem to correspond to the same top-down

brain mechanism.

“Concepts as emerging goals” requires at least six conjunc-

tive conditions: (1) New-concept abstraction. (2) Top-down:

effectively influence the operation of all the related elements in

earlier processing streams. (3) Rich concept possibility, since a

goal should represent a goal of any learnable practical task. (4)

Emergent. The goal is emergent from interactive experience,

instead of constantly imposed (as with the IBM Deep Blue [35]

for computer chess or IBM Watson for the Jeopardy game).

(5) Dynamic: change in real time depending on real-time

experience. (6) For all long-term, short-term and immediate

goals, a goal emerges in the motor area that causes the brain

to recursively recall the next immediate goal in the motor area.

For an short-term goal (e.g., reach an apple), the next goal can

be more immediate (e.g., lift the arm) or less immediate (e.g.,

to eat the apple). For a long-term goal (e.g., get PhD), the next

action can also be immediate (e.g., concentrating on reading

this paper) or less immediate (e.g., to get a more interesting

job). Existing networks (e.g., [94], [36], [34]) do not have

a clear way to dynamically emerge goals. Cresceptron 1997

[94], although having a separate (not concurrent) top-down

computation pass, cannot generate a location goal because of

its built-in location invariance.

Goal-directed perception requires three conjunctive con-

ditions: (1) Goal emergence. (2) Preference: The goal biases

the corresponding perception of the sensory input so that the

sensory elements that are correlated with the current goal are

more likely to contribute to the next action. (3) Relativeness:

the sensory elements not correlated with the goal are relatively

suppressed. Existing self-organizing networks (e.g., [94], [65])

do not have a clear way to deal with goal-directed perception

for sensory inputs that have highly structured but irrelevant

parts (e.g., natural but complex backgrounds).
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TABLE I
COMPARISON AMONG SPATIAL METHODS

Issues Representation Incremental Goal-directed New-concept Concepts as Goal-directed
addressed learning search abstraction emerging goals perception

Symbolic (Markov field, Bayesian net, etc.) Handcraft No Yes No No No
Prior emergent (neural net) models Emergent Yes No No No No

DN, WWN (also brain) Emergent Yes Yes Yes Yes Yes

D. Mechanistic Novelty of the Paper

Now, the mechanistic novelties of this paper are summa-

rized.

First, it was found that, not only the sensory ends, but also

the effector ends of a brain must also be memory query ports.

This new mechanism is inspired by neural anatomy of the

brain, well known in neuroscience, but has been challeng-

ing for researchers in computational neuroscience, cognitive

science, neural networks, computer science, and electrical

engineering to understand. This challenge has been great, since

there is a lack of understanding about spatial representations

in the brain.

Second, a new theory is reported here about a brain’s

internal spatial representation — the hextuple representation.

In particular, a neuron in the brain has not only a receptive

field and a projective field, but also 6 fields since we must

consider (1) motor area as also input, (2) the sensory area as

also output, (3) other neurons in the same areas as both input

and output. The new, cortex-inspired hextuple representation

introduced here indicates that the “much in-between” — inter-

nal representations — integrates bottom-up (sensory), lateral

(other features), and top-down (motor) inputs. Furthermore,

the integration is not static.

Third, the internal active representations at any time are:

• emergent: generative from experience;

• selective: linked with related components only;

• dynamic: quickly switch which neurons are active;

• distributed: no neuron alone represents any pure meaning

of the extra-body concepts; and

• interactive: almost no neuron is irrelevant to top-down

processing based on action (e.g., verbal, manipulatory,

internal attention, internal glands)

Forth, the internal representations can be mathematically

rigorously modeled and understood. We establish (1) the per-

fect motor output theorem, (2) the square-like tiling theorem,

and the top-down effect theorem. We also show that symbolic

representation is intractable — the number of required symbols

is exponential in the number of concepts.

The remainder of this paper is organized as follows. In-

formed by the literature in biology, neuroscience, psychology,

Section II provides new, integrated insights into the brain-

mind. Section III presents the General-purpose architecture

and the representation of cortex like processing. Section IV

discusses the experiments with a variety of different networks

using the theory and method presented here. A comparative

discussion about existing models is presented in V. Section VI

concludes with discussion.

II. PERSPECTIVES FOR BRAIN-MIND

Mind is what the brain does. The hyphenated word brain-

mind stresses tight integration of the brain and the mind.

In this section, we provide some perspectives from biology,

neuroscience, and psychology, which motivated the work

presented here.

A. The Brain is First a Developer: Cell-Centered

The brain is gradually developed with the body from con-

ception (a single cell called zygote), to fetus, to birth, to in-

fancy, to adulthood, through active sensorimotor experiences.

This developmental process depends heavily on interactions

among neighboring cells as well as the locally and remotely

connected cells, while the entire process is regulated by the

genome in the nucleus of every cell [62], [29].

Cell-autonomous interactions determine the representations

and functions of different areas of the brain [8], [14], [83], [5].

The brain’s internal representation is not totally innate. It is a

compounding result of the genome and the experience. Thus,

instead of modeling the extremely complex brain (end result of

development) directly, it is more systematic and more tractable

to model the functional equivalence of its developmental

program (i.e., genome) and the process of autonomous brain

development, as researchers have argued [21], [94], [63], [2],

[100], [96].

Then, how can cell-autonomous interactions take place? The

genetic equivalence principle [62] indicates that the genetic

information in the nucleus of every cell is sufficient to regulate

the development of a single cell into an adult having 100

trillion of cells and the brain with 100 billion cells. Weng et

al. [99] proposed that this principle indicates that development

is cell-centered — every cell is autonomous through the

development, while interacting with its environment formed

by other cells and the external environment.

This cell-centered development includes the body devel-

opment (development from a single cell to an adult body)

and brain-mind development (connections and modifications

of synapses in the brain). By AMD, we mainly concentrate on

the latter — brain-mind development — although the former

is closely related.

Weng et al. [99] further argue that this cell-centered property

of development further implies that learning is in-place —

every cell is responsible for its learning all by itself and there

is no extra-cellular learning mechanism that is dedicated to

the cell. As explained in [99], this “in-place” concept is more

precise than the conventional concept “local” in Euclidean

distance because a neuronal connection is not local (can be

as long as over a meter), and “local” does not mean that the

learning model does not require an extra-cellar mechanism
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(e.g., taking partial derivative for the input of each neuron as

required by error back-propagation networks). For example,

there is no extra-cellar mechanism to compute the correlation

matrix of the input vector of each cell.

B. Implication of Genomic Equivalence

This cell-centered property of biological development dis-

cussed above is supported further by a deeper property of the

genome:

The genomic equivalence principle [62] (dramatically

demonstrated by mammal cloning) has shown that the genome

in the nucleus of any somatic cell (i.e., any cell that forms

the body) carries the complete genetic information for normal

development (in typical ecological environments) from a single

cell to an adult body having 100 trillion cells. This suggests

that the basic, autonomous units of the brain development (and

learning) are individual cells. Based on its genetic and cellular

properties, each cell interacts with other cells during its devel-

opment, including mitosis, differentiation, migration, growth

of dendrites and axons, connection, synaptic adaptation and

response generation. Many brain cells autonomously interact

to form tissues, cortex, and areas [62], [83]. Thus, for the DP

of DN, we should focus on cell mechanisms. Other multi-cell

properties and capabilities are emergent.

The genomic equivalence principle implies that indeed there

is no central controller for brain computation or brain learning.

For artificial developmental agents, by “without an internal

central controller”, we mean that no human programmer after

knowing and understanding each task to be taught, is permitted

to get into the “skull” to handcraft task-specific representations

(e.g., symbolic representations or task-specific connectionist

representations).

C. Biological vs. Behavioral Evidence

In addition to the above architectural implication, biol-

ogy and neuroscience of development can provide detailed

information about development, complementary to behavior

studies.

For example, studies in developmental psychology have

provided convincing evidence that the development of visual

capabilities require extensive experience [10], [29], [12], [18],

[28]. However, many psychological studies rely on observing

the stimuli dependent behaviors from humans and higher an-

imals, instead of directly studying the biological mechanisms

inside the brain. Therefore, results from such studies are not

sufficient for understanding the brain-mind because of their

lack of modeling the causal processes inside the brain.

For example, based on behavior studies Susan Carey 2011

[11] interpreted that “a representational capacity is innate.”

Such a statement lacks a deeper biological account, giving an

illusion that the zygote totally determines the new born brain.

Biologically, all phenotypes, except the zygote that de-

fines the new life, seem not totally innate, since they are

all emergent from the first cell zygote and dependent on

experience (e.g., bad experience can stop the first mitosis

from the zygote). Carey’s interpretation is inconsistent with

mounting evidence in developmental neuroscience: Prenatally

in the womb, a vast amount of sensory (spontaneous and from

the womb) and motor experience (e.g., kicking in the womb)

is necessary for the brain to wire and generate signal-statistics

dependent representation at birth (see, e.g., [47], [26], [57],

[30]). The same is also true after the birth as soon as the baby

opens his eyes.

D. Conventional Networks and Lack Thereof

One may doubt that simulating biological and neuroscience

phenomena is sufficient to give rise to complex mind. This is

indeed a major question that the conventional neural networks

need to answer.

Although many basic models for artificial neural networks

are inspired by neuron-like computations and use emergent

representations, a large gap exists: Existing purely numeric

connectionist approaches (neural networks) are deficient in

their abilities to abstract well as correctly criticized 20 years

ago by Minsky 1991 [54], also stated by Michael I. Jordan at

the David Rumelhart Memorial Plenary Talk IJCNN 2011.

For example, conventional artificial neural networks are

not well suited for goal-directed search (which symbolic

methods do using handcrafted symbols) and goal-directed
perception (which symbolic methods do using handcrafted

object models, 3D or appearance based, in almost all published

pattern recognition and computer vision methods). Minsky

[54] argued that connectionist approaches are bottom-up (e.g.,

from pixels, in fact, grounded) and symbolic approaches are

top-down (in fact, from human handcrafted abstract concepts,

not machine abstracted). Between the concrete (e.g., an edge

or an edge grouping) and the abstract (e.g., goal and decision),

“much in-between” is missing. This paper intends to show that

this “much in-between” is something like the autonomously

developed internal (i.e., inside the brain skull) representations

inside the WWN.

E. Symbols vs. Grounding

Before we deal with the network abstraction issue, let us

consider why we argue that symbols are abstracted by humans.

From the cortex-like processing architecture and represen-

tation below, we will see that true meanings of the physical

world lie in the spatiotemporal association of sensory and

effector information experienced by a grounded developmental

agent (brain or network), not necessarily in any computerized

symbol.

Symbols are invented by humans to communicate among

them, hand-written, said, typed, and manually signed. None of

them has a form like a computerized symbol (e.g., the ASCII

code of a word).

In fact, any form of a symbol is meaningless unless a human

senses it in a grounded way (e.g., sees the visual image of

a hand-written word or hears the sound of the word) whose

sensation well matches his own grounded and memorized

sensorimotor experience in the past.

A computer system that takes symbolic inputs (e.g., the

ASCII code) is not grounded in the physical world without

a human between it and the physical world. For example,

it requires the human to detect, attend, and recognize a
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foreground object from a cluttered and complex background

scene and provide the ASCII code of the object. Likewise,

a symbolic output from a computer system is meaningless

without a human reading it. Thus, a system that takes only

symbolic inputs and outputs is not able to directly interact

with the physical world without a human in between.

Therefore, an Autonomous Mental Development (AMD)

system must directly interact with the physical world to

develop, if the development is truly autonomous — without

a human in between. A simulated physical world is fine for

simulation but one must be aware that a simulated physical

world is not exactly the same as the real physical world.

F. Concepts

Then, how can a neural network abstract in a grounded way

— in the physical world? In order words, how does physics

give rise to abstract concepts? We need to first discuss what

a concept is.

By the definition of the Merriam-Webster dictionary, “con-

cept is an abstract or generic idea generalized from particular

instances”. The term “concept” in this paper refers to any

concept that can be practically learned by a human. “Abstract”,

by definition, means “disassociated with any specific sensed

instance”. For example, “car” is a concept, but the “car”

concept is disassociated with any particular kind of car, sedan,

SUV, van, etc.

Since a concept can refer to different “levels” of meanings,

almost any word and phrases in a human language can be a

concept.

To give a sense of how varied a concept can be, here are 22

examples of concepts: object type, horizontal direction, verti-

cal direction, apparent scale on the retina, distance, physical

size, viewing angle, material, weight, surface texture, surface

color, surface reflectance, temperature, deformability, lighting

direction, lighting color, lighting uniformity, usage, purpose,

ownership, price, horizontal relationship between two entities.

Each concept has concept values which themselves can be

concepts. For example, task is a concept; while reading, eating,

and sleeping are its three values (or subtasks, but subtask is

a concept). Features (e.g., need humans) and properties (e.g.,

noble) involved in all tasks are also concepts. Among task,

feature and property, it is hard to say which is “high” and

which is “low”. Therefore, concepts are not necessarily always

hierarchical.

To model autonomous development, a human programmer

should not handcraft concepts and their relationships. Concepts

and their relationships emerge in the brain through interactions

between the brain and its external environments (body and

extra-body environment).

G. Representation of Concepts

Any human communicable concept is explained either

through verbal actions (i.e., say it) or limb actions (e.g., write

it down, or sign it in the American Sign Language).

Some cognitive scientists (e.g., Reber et al. 1980 [66] and

Sun et al. 2005 [80]) believe that humans have two types of

concepts (or knowledge), (1) explicit, declarative, or verbal

(those for which we have a clear language term, such as type

“cat”) and (2) implicit, procedural, or nonverbal. (those we do

not have a clear language term, such as skills of pointing to an

object, dancing or singing). We propose that they correspond

to two types of effector behaviors: (1) Explicit concepts

correspond to actions for which human have developed clear

linguistic terms. (2) Implicit concepts correspond to actions

for which human have not developed clear linguistic terms

(e.g., subtle moves during dancing). Therefore, the studies of

those cognitive scientists are consistent with our proposal:

Any concept can be represented at, and commu-

nicated through, the exposed effector end.

This proposal does not mean that internal representations do

not represent concepts. They do. However, they are secondary

for concepts, since they are emergent from the sensory ends

and the effector ends (including prenatal development). In our

DN theory below, we will see that internal representations are

not necessarily more “abstract” than the representation at the

effector ends.

H. Conceptual Perspectives

With the above perspectives, we are ready to discuss a few

details.

First, there are no input and output symbols for the brain.

We note that the brain does not input and output any com-

puter symbol used in our symbolic cognitive science and

AI systems, since the brain cannot guarantee the one-to-

one correspondence. For example, all retina images of an

object are different and all utterances of a word have different

waveforms. Similarly, a brain produces muscle images, where

each action is represented by at least slightly different muscle

images each time. Such variation is also assumed for WWNs.

Second, effectors are subject to calibration. Although the

brain is skull-closed, its sensory ends (e.g., retina, cochlea,

and their subparts) and effector ends (e.g., muscles, glands

and their subparts) are open to the brain’s external environment

(outside the brain, including the body). The teacher calibrates

the actions from WWN through interactions.

Third, a numeric effector sequence can represent all prac-

tically possible brain outputs (muscles and glands). As we

discussed, cognitive scientists argued that there are two types

of memory, skills, and learning. The first type is explicit.

The second type is implicit. However, the distinction between

these two types is superficial if we consider muscles. For

example, the muscle implicit procedure in the vocal track can

pronounce any explicit declarative words. Therefore, there is

in fact no fundamental difference between the above two types

as the brain is concerned: They are all muscle contractions.

Therefore, the WWN model here is general purpose, since it

can drive artificial muscles and glands.

Fourth, the existing dorsal and ventral account misses their

functional causality — motor. Since Mishkin et al. 1983

[55] discovered, through their brain lesion studies, that the

dorsal stream and ventral stream are correlated to, respectively,

space (“where”) and object (“what”), Goodale & Milner 1992

[31] further refined to “how” and “what”. Some experimental

studies [25], [16], [23] reported and modeled the connections
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of these two pathways. However, the dorsal and ventral

streams experiments and models missed a major represen-

tational causality — motor signals from and to the frontal

cortex [13, e.g., Fig. 7], as modeled, as far as we know first,

by the WWN-1 work of Ji & Weng 2008 [39]. The WWN

scheme goes beyond the traditional ventral and dorsal streams

by including the motor areas — which are one of the two

causalities (sensor and effector) of internal representations as

explained below.
Fifth, behaviors are primary for the brain. Under the pres-

sure of evolutionary competition, at any stage of development,

the brain, with a limited resource, must produce in a timely

manner context-aware behaviors that are aligned with its

developmental stage. Thus, generating competition-required

behaviors is the primary purpose of brain’s internal represen-

tations, not for easier human programmer’s understanding or

intuitive computer visualization. For example, the brain does

not seem to build an internal symbolic representation although

it allows intuitive computer visualization.
Sixth, a basic hypothesis, waiting for further biological

verifications, of this theory is that the basic biological DP

mechanisms are similar across a wide variety of brains —

from mammals to humans — and across different parts of the

brain. Different brains are not the same and different brain

areas are not same; but this does not mean that their develop-

mental mechanisms are very different. Such similarities across

different brain areas are well accepted in neuroscience (e.g.,

different areas in the cerebral cortex all have the similar 6-layer

laminar structure [40]). The differences in brain sizes, bodies,

and environments seem to play a major role in functional

differences from mammals to humans. Computationally, this

hypothesis is supported by two aspects, representation and

completeness. In terms of representation, Weng 2012 [92]

argued that any partition of brain areas into zones of extra-

body concepts corresponds to a symbolic representation, which

seems not what the brain uses. In terms of completeness,

the theoretical results in Weng 2011 [91] established that

the network-wise uniform DP of a generative DN (DGN)

is sufficient to learn any complex Finite Automaton (FA),

incrementally, immediately, and error-free, but grounded in

the physical world, without using any handcrafted symbolic

representations like the FA.
In the remainder of this section, we discuss the brain at

four scales — from global to local — brain, cortex, layer, and

neuron.

I. Brain Scale: Cortex Seems General Purpose
Regulated by the genome, the cerebral cortex develops

a processing hierarchy [40] through extensive experience.

Before we describe WWN at different scales of the hierarchy,

we outline different scales of this hierarchy.
At the brain scale, the cortex is organized as pathways, as

illustrated in Fig. 1. Each sensing modality (visual, auditory,

touch, etc.) corresponds to different sensory pathways, which

may not be single in the cortex as shown in Fig. 1. Each

of these pathways occupies different cortical areas before

converging to the frontal cortex where they are integrated and

linked with the motor pathways.

VisualSomatosensory

Auditory Motor

Frontal
lobe

Occipital
lobe

Temporal
lobe

Parietal
lobe4

S

5

7

46

17

20
21

46

8A

8B

22

STP

9

TG

Prefrontal

Premotor
Motor

Fig. 1. The major lobes of the cerebral cortex and major cortical
pathways. Upper left: somatosensory pathways. Upper right: visual
pathways. Lower left: auditory pathways. Lower right: motor path-
ways. The somotosensory, visual and auditory pathways converge to
the frontal cortex where the motor pathways drive motor neurons
(effectors). Only bottom-up links are shown, but every one-way
connection is in fact two-way realized by two one-way connections.
The numbers marked are Brodmann codes for brain areas. Adapted
from [40].

Our developmental model indicates that the motor area

(i.e., it represents actions) is the main hub for multi-modal

integration. For example, the feature neurons in the visual area

for visual “car” stimuli and the feature neurons in the auditory

area for auditory “car” stimuli should all link to the same

action in the motor area by the Hebbian learning mechanism

— the action of pronouncing “car” by the agent itself (mirror

neurons), as illustrated in Fig. 5 later.

The correlation between visual features and the auditory

features exists. Such correlations are represented by multi-

modal feature areas in the brain but such areas are found

to be relatively small. This seems due to the fact that such

correlations are likely not as strong as feature-and-action

correlations. Many sensory features lead to the same action

but many sensory features do not often occur at the same

time.

Therefore, each sensory pathway consists of a network of

cortical areas, but they converge into motor areas. Neurons in

early cortical areas have smaller receptive fields than those in

later areas. But the neurons in the motor area has the largest

receptive fields. The motor area appears the largest multi-

modal area in the brain.

Computationally, the WWN model indicates that each path-

way has the following characteristics.

1) Brain Processing from Two Signal Sources: Sensor and
Effector: The brain faces a major challenge. It does not have

the luxury of having a human teacher to implant symbols

into it as its skull is closed. Thus, it must generate internal

representations from the two signal sources: the sensors and

the effectors (motors).

Thus, the brain can be modeled as a highly recurrent

regressor (z′,x′) = r(x, z, M(t)) which maps sensory input-

output x and motor input-output z using its current memory
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M(t) to the updated version (z′,x′). The two-way connections

to the effector z enables the brain to not only control the

effector, but also to learn from the actions that are either

generated externally or internally. The external generation

takes place when, e.g., a child learns passively while the

teacher directly guides his hand. The internal generation occurs

when, e.g., the brain is practicing.

The output from the Lateral Geniculate Nucleus (LGN) to

sensory source (retina) does not exist in primate, but this is

not always so with other lower animals. The output to an early

sensory area is useful for attention and reduction of noise and

motion blur. Unlike some other emergent models discussed

in Section V, we consider that the purpose of attention is

to generate desired behaviors, not to reconstruct images. The

lack of connection from LGN to retina in the primate central

nervous system seems to support this perspective.

2) Top-down input corresponds to both top-down attention
and context: The top-down input reflects the status of the

motor (e.g., want cars or pedestrians) which enhances the re-

sponse of the best-matched neurons. This information reflects

both attention (in terms of enhancing response) and top-down

context (in terms of immediate goal). Further, the duration of

such a top-down context is variable, depending on how long

the object in the sensory input has been present and attended.

3) Bottom-up input corresponds to both bottom-up saliency
and feature match: The bottom-up input reflects the detected

features that have survived competition. The competition in-

cludes both goodness of bottom-up match (as the inner product

of input and weights) and the effect of top-down attention in

the past. That is, they are reflected as bottom-up saliency this

time — the more often attended in the past the more neurons

are recruited for representing the same range of features and,

thus, the better the bottom-up match.

4) Cross modality plasticity: Sur et al. [82] showed that the

extensive sectioning (i.e., cutting) of the ascending auditory in-

puts from the inferior colliculus (from the ears) into the Medial

Geniculate Nucleus (MGN) of the default auditory pathway of

the newly born ferret causes retinal projections (visual sensory

nerves) to innervate (i.e., axons grow into) the now “job less”

MGN. This is equivalent to altering the source of bottom-up

area (called X) of the auditory Y from the normal auditory

source to the visual source. Interestingly, Sharma, Angelucci &

Sur [74] showed that the rewired auditory cortex Y displayed

visual orientation map similar to V1, but less orderly. This

biological work indicates that a cortical area can emerge (i.e.,

develop) to work for very differently signal sources, normally

auditory but now visual.

5) A brain area as general-purpose learning: The cross-

modality plasticity is unlikely restricted only to the auditory

pathway. Different cortical areas have shown other similar

plasticity properties [83],[21, pp. 270-283]. When we talk

about a subarea Y in the brain B, we use X , Y , and Z, where

the bridge Y has its two banks X and Z. When we talk about

brain B, we use S, B, and M , as a special case of X , Y ,

and Z. We predict that each brain area Y is a general purpose

“bridge” that develops to predict the signals in both “banks”

X and Z. By general purpose, we do not mean that there is

no genetically modulated pre-disposition, such as the default

neuronal resource. Yes, this “bridge” is two-way. Although

one can call X to be bottom (sensory) and Z top (motor), this

is not always necessary. For example, the Lateral Intraparietal

Cortex (LIP) links the dorsal and ventral pathways for which

it is not necessary to tell which is bottom and which is top.

In our model, X and Z are largely treated symmetrically by

Y .

J. Cortex Scale: Prescreening before Integration

Every cortical area has six laminar layers, regardless of its

function. Layer L1 is the superficial layer and layer L6 is

the deepest layer. Weng et al. 2008 [99] reasoned that L4

and L2/3 are two feature detection layers with L5 assisting

L2/3 and L6 assisting L4, in the sense of enabling long-range

lateral inhibition. Such long-range inhibitions enable different

neurons to detect different features.

The DN model was informed by the work of Felleman

& Van Essen [25], Callaway and coworkers [9], [105] and

others (e.g., [33]). There are no top-down connections from

L2/3 to L4, indicating that L4 uses unsupervised learning

(U), competition among bottom-up components. L2/3 features

are supervised (S) as the survived bottom-up features in X
and survived top-down features in Z integrate in L2/3 to

generate the bridge representation Y for X × Z. Weng et al.

2008 [99] reported that such a paired hierarchy USUS led to

better recognition rates than the unpaired SSSS alternative. An

important function of such paired cortical layer is to prescreen

bottom-up features to only allow top-match neurons to fire so

that top-down input does not hallucinate very weak or absent

bottom-up features.

To simplify our following discussion, we will omit the

prescreening layers and simply model each cortex area as a

single layer that directly integrates the bottom-up and top-

down flows.

K. Layer Scale: Lobe Component Analysis

As discussed above, each cortical area has two feature

layers, L4 and L2/3. The layer here means a feature layer,

either L4 assisted by L5 or L2/3 assisted by L6.

1) Two conflicting criteria and working and long-term
memory: Each cortical area faces two conflicting criteria

that many neural networks face: fast adaptation of working

memory and large stable long-term memory in the same

cortical layer.

2) LCA: dual optimality: The above problem is resolved

by distinguishing related memory from unrelated ones. The

sparse coding principle (Olshaushen & Field 1996 [59]) allows

only few neurons to fire. Those firing neurons correspond

to best matched filters for the current neuronal input and

are considered the working memory for the current input.

Other neurons in the layer are long-term memory for the

current input. Therefore, the role of working memory and

long-term memory is dynamic. The inhibition in each feature

layer is assisted by the corresponding assistant layer. This

working memory and long-term memory model published in

Weng & Luciw [97] is different from typical psychological

explanations. Rather, our model is based on cortical anatomy.
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Different from Olshaushen & Field 1996 [59] who consid-

ered sparse coding as a part of their objective function, we

consider sparse coding as a result from neuro-anatomically

observed lateral inhibitory connections, which suppress the

firing of all irrelevant long term memory neurons for this

cortical context.

We have developed a model called Candid Incremental

Covariance-free (CCI) LCA [101], [97]). Mathematically, a

lobe component is the first principal component of a region

in the random input space X × Z that the neuron belongs

to, assigned through neuronal competition. This model has

a dual optimality: (1) Best representation for space — the

smallest average error in the sense of the principal component.

That is, the least average error for the cortex to represent the

cortical input using a limited number of feature neurons. (2)

Best estimation of representation through different learning

times — the smallest average error from the starting time (the

birth of DN) up to the current time, among all the possible

estimators, under some regularity conditions.

L. Neuronal Scale: In-place Learning

Although the above dual optimality is described at the layer

scale because of the neuronal interactions, the learning must

be performed in-place by each neuron, without requiring any

extra-cellular mechanisms. The above spatial optimality (1)

gives the Hebbian increment direction. The above temporal

optimality (2) gives the best step size.

The step size of each neuron depends on the individual

firing age of the neuron. The CCI LCA [101] optimal step

size scheduling requires that every neuron to have a self-stored

age and age-dependent plasticity schedule. Thus, every neuron

in a layer has a different automatically determined (optimal)

learning rate.

III. NETWORK MODEL

When you speak, do your muscle activities shape your

brain’s thinking? Due to the top-down connections from your

motor areas, WWNs indicate that they do.

As we discussed earlier, we consider a general purpose area

Y , which is connected with its sensory area X and its motor

area Z, as illustrated in Fig. 2. The order of areas from low

to high is X, Y, Z.

A. Area Function

During “prenatal” learning, the c neurons of A in {X, Y, Z}
need to initialize their synaptic vectors V = (v1,v2, ...,vc),
and the firing ages A = (a1, a2, ..., ac). Each synaptic vector

vi is initialized using the input pair pi = (bi, ti), consisting

of the bottom up input bi and the top-down input ti, i =
1, 2, ..., c, at the first c time instances. Each firing age ai is

initialized to be zero, i = 1, 2, ..., c.

After “birth,” at each time instant, each area A computes

its response r′ from its input p = (b, t) based on its adaptive

part N = (V,A) and its current response r, regulated by the

attention vector ba, and updates N to N ′:

(r′, N ′) = f(b, r, t, ra, N)

where f is the area function described below. The attention

supervision vector ra, having the same dimension as r, is

used to softly avoid the area A from excessively learning

background. In our simulation, it suppresses all the A neurons

to zeros except 3 × 3 = 9 ones centered at the correct

object location. Biologically, the vector ra is driven by other

connected brain areas and is not very accurate during early

ages, as a child does learn something from backgrounds. This

need for the soft internal attention vector ra is expected to

be removed in future more powerful modeling of brain-like

development.

The area A can be any of the areas X, Y, Z. The sensory

area X and the motor area Z also compute and update in

this unified way. But X does not have bottom-up input and Z
does not have top-down input since they are nerve terminals.

Receptors and muscles are nerve terminals.

B. Hextuple Fields of Each Neuron

It is known that each neuron in an early cortex has a

(classical) receptive field (RF), corresponding to a field in

the retina. The effective field (EF) of a neuron is the scope

of its effect on the motor ends — the 3-D array of muscle
elements over the body, called “muxels” here for short. We

feel that the term “effective” is symmetrical to “receptive”, and

is different from the term “projective” used by Sejnowsky 2006

[72] to mean downstream targets. The term “projective” does

not imply effectors. These two fields, RF and EF, corresponds

to bottom-up flows — from pixels to muxels.

It has been documented that each cortical neuron receives

three types of connections, bottom-up, top-down and lateral

[25], [19]. Evidence [48], [67] suggests that multiple repre-

sentations of an object exist, each specific to either perception

(ventral) or action (dorsal). It is known biologically that

feedback connections have been widely present in the dorsal

and ventral streams [25], [13], [41]. They may contribute to

illusory contours [33] (e.g., Kanizsa triangle). However, the

operational roles of top-down connections are not clear [30]

and neither are their representational effect.

To understand internal representation, we introduce that

the receptive field (RF) of a neuron should contain three

parts: sensory RF (SRF), motor RF (MRF) and lateral RF
(LRF), respectively. By “lateral” we mean connections with

neurons in the same area that are strongly correlated or anti-

correlated, similar to Felleman & Van Essen’s sensory and

motor hierarchies [25]. The effective field (EF) of each neuron

should also include three parts: sensory EF (SEF), motor
EF (MEF), and lateral EF (LEF), respectively. Primate LGN

does not project back to the retina, which is a special case,

indicating that SEFs of later neurons have LGN cells as the

highest possible resolution. See Fig. 2(a) for these six new

fields — hextuple fields.

Two neurons are connected if they co-fire often (i.e., Heb-

bian learning). Therefore, for each neuron, three pairs are

similar:1 SRF with SEF, MRF with MEF, and the excitatory

parts of LRF and LEF.

1But the corresponding weights are not the same, as the firing ages of the
pre- and post-synaptic neurons are typically not the same.
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Fig. 2. A simple WWN and the network hextuple fields. (a) The hextuple fields for each neuron: SRF, MRF, LRF, SEF, MEF, and LEF,
thus are highly recurrent. (b) As DN embodiment, a WWN has three areas: retina X , simple brain Y , and motor Z. The Z area has two
concept areas LM and TM. Each wire connects if the pre-synaptic and post-synaptic neurons have co-fired. The weight is the frequency of
pre-synaptic co-firing when the post-synaptic neuron fires. Within each cortical area, each neuron connects with highly correlated neurons
using excitatory connections but connect with highly anti-correlated neurons using inhibitory connections. This forces neurons in the same
area to detect different features in SRF and MRF. These developmental mechanisms result in the shown connections. Every Y neuron is
location-specific and type-specific, corresponding to an object type (marked by its color) and to a location block (2 × 2 each). Each LM
neuron is location-specific and type-invariant (more invariance, e.g., lighting-direction invariance, in more mature WWNs). Each TM neuron
is type-specific and location-invariant (more invariance in more mature SWWs). Each motor neuron pulls all applicable cases from Y . It also
top-down boosts all applicable cases in Y as top-down context. A two-way arrow means two one-way connections, whose two synapses are
generally not the same. All the connections within the same area are omitted for clarity. All LM and TM neurons have global SEFs.

To facilitate discussion, we denote Y as a simple brain in

Fig. 2(b). In general, Y should include neurons with small and

large SRFs. Each Y neuron with a specific receptive field is

responsible for detecting a feature at its specific location with

the specific scale.

Not to forget motor areas, we trace the dorsal stream further

to the Location Motor (LM) area and the Type Motor (TM)

area. LM loosely represents the frontal eye field (FEF) and

the arm reaching control area in the pre-motor and the motor

cortices [13]. TM loosely represents the ventral frontal cortex

(VFC) and the following verbal control area in the pre-motor

and motor cortices [13]. Therefore, the muxels in LM and

TM hubs are “meta” muxels, representing instances of abstract

actions.2 LM and TM roughly correspond to implicit skill

and explicit knowledge, respectively, discussed in cognitive

science. In our WWN example, we only teach LM to learn

2The motor hierarchy in the motor area have neurons with larger MRFs
similar to SRF for the sensory cortex, giving neurons representing “meta”
muxels.

two concepts: vertical direction (row) and horizontal direction

(column). Likewise, we only teach TM to learn one concept:

type. According to our hextuple fields, motor neurons are not

only action output ports, but also input ports for the network.

Fig. 2 gives an example of the resulting hextuple network

representation throughout a WWN which consists of one retina

buffer, an internal area (Y ), and two motor areas (LM and

TM). The amount, richness, and sophistication of its behaviors

are limited by the resource available and its experience (e.g.,

“living” age).

Before discussing how WWN abstracts, we must first see

how it computes.

C. Area Computation

For each neuron we need to refer to their input source

neurons and output target neurons. Corresponding to SRF,

SEF, MRF, MEF, LRF, and LEF of a neuron, we change

receptive field (RF) to input neurons (IN) and change effective

field (EF) to output neurons (ON) and thus define SIN, SON,
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MIN, MON, LIN, and LON, respectively, as the hextuple
neuronal sets of each neuron.

Thus, the SINs give the components of bottom-up x ∈ X ,

the LINs the lateral y ∈ Y and the MINs the top-down z ∈ Z,

corresponding to its three parts of weights, vx, vy , and vz ,

respectively. Namely, each SIN corresponds to a component

in the vector space X , etc..

Each cortical area uses lateral connections to enable its

neurons to find their roles. There are two types of lateral

connections, inhibitory and excitatory. On one hand, adaptive

excitatory connections are extensive at early ages to generate a

smooth map to globally cover a rough “terrain” but gradually

become selective and local to fit the detail of the “terrain”.

Highly correlated cells form a clique and they are connected by

excitatory connections. On the other hand, adaptive inhibitory

connections find highly anti-correlated cells, and therefore they

connect cells from different cliques. The major purpose [97]

of inhibitory connections is to allow only few best responding

neurons (winners) to fire and update, and other neurons (e.g.,

weakly responding backgrounds) do not fire to distract so that

they can also keep their long-term memory intact.

In our LCA model of cortex, lateral inhibitions within area

Y are simulated by the top-k competition mechanism, not

by actual inhibitory connections, to quickly identify the top

winners within each network update. This is especially useful

when the software or hardware cannot run fast enough (e.g.,

update the entire network at 1kHz or above) to quickly sort

out the winner in real time (every 30ms). In the experiment,

we hand-picked the value of k, assuming that the value is

largely gene pre-dispositioned. The adaptive lateral excitation

[49] within area Y can encourage a smooth representation in

early development and lateral prediction (e.g., edge filling in

Kanizsa triangle).

As explained in the sparse coding theory [59], [97], it is

important that only few top winner neurons in each area fire

and update so that those that do not update serve as long term

memory for the current context.

Consider an area A in {X, Y, Z}. In general, each neuron

in A has a weight vector v = (vb,vt), corresponding to the

area input (b, t), if both bottom-up part b and top-down part

t are applicable to the area. Otherwise, the missing part of the

two should be dropped from the notation. Its pre-action is the

sum of two normalized inner products:

r(vb,b,vt, t) = v̇ · ṗ, (1)

where v̇ is the unit vector of the normalized synaptic vector

v = (v̇b, v̇t), and ṗ is a unit vector of the normalized input

vector p = (ḃ, ṫ).3 The inner product measures the degree

of match between these two directions v̇ and ṗ, because

r(vb,b,vt, t) = cos(θ) where θ is the angle between two

unit vectors v̇ and ṗ.

3In our more recent experiments with much large backgrounds than the
ones reported here, we found that it is beneficial to first subtract the means of
x and z from each so that the average “brightness” in x and z does not affect
the inner product. To avoid a zero denominator for a constant vector, each
subtracted mean is reduced by the standard deviation of the digital quantization
noise.

Consider the area A to be Y , connecting with bottom-up

input area X and top-down input area Z. The area Y with

many neurons has a set of cluster centers:

{(vx,vz) | vx ∈ X,vz ∈ Z}. (2)

Each center (vx,vz) is the center of the corresponding

Voronoi tile in the area’s input space X×Z. The competition

of neurons discussed below means that all the samples in

the tile is represented (quantized) by the center. Each center

(vx,vz) is an instance of co-occurrence which humans gen-

erally have no language term (symbol) to correctly identify.

Thus, each center is not pure linguistically in any human

language — can not be precisely described as the concepts

of the external environment in any natural language. This

linguistic impurity should be true for all internal neurons

inside the brain skull — those neurons that cannot be directly

supervised by the external environment.

It is known in electrical engineering that positive feedbacks

may cause uncontrollable oscillations and system instability.

Lateral reciprocal inhibitory connections require many fast

iterations with unpredictable oscillations — an unsolved great

challenge faced by the nonlinear control theory and many-

cell neurodynamics. Our computational theory for a cortical

area, the Lobe Component Analysis (LCA) [97], uses a top-k

mechanism — a highly nonlinear mechanism — to explain

that lateral inhibitions enable neurons in each area Y to sort

out top winners within each time step tn, n = 1, 2, 3, .... Let

the weight vector of neuron i be vi = (vbi,vti), j = 1, 2, ..., c.

For simplicity, considering k = 1, the single winner neuron j
is identified by:

j = arg max
1≤i≤c

r(vbi,b,vti, t).

Suppose c is sufficiently large and the set of c synaptic vectors

distributes well (mathematically, the density of the c points

well approximates the observed probability density in the

parallel input space. Then, with a high probability the winner

(nearest neighbor) neuron j has its both parts match well:

vbj ≈ b and vtj ≈ t

not counting the lengths of these vectors because of the length

(contrast) normalization in r(vb,b,vt, t).
Consider area A to be area Y . We would like to have the

response value yj to approximate the probability for (x, z) to

have vj = (vxj ,vzj) as the nearest neighbor. For k = 1, only

the single winner fires with response value yj = 1 and all

other neurons in the area do not fire yi = 0 for i �= j.

In general k > 1, a dynamic scaling function dynamically

shifts and scales each pre-action potential ri so that the top-1

winner has a response value y = 1 and the (k + 1)-th and

weaker neurons respond with zeros, avoiding the undesirable

effect of any static threshold. The above represents c update

equations with c unknowns in y. Without a need to explicitly
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solve c simultaneous equations, each dynamic function4 g
depends on values in y at time tn to give the updated response

yi but for the next time tn+1.

As further discussed below, z may be supervised using

abstract concepts, such as location and type. However, a few

rounds of internal updates using the above c computations

with c neurons quickly blur the linguistic boundaries in

the top-down z with the concrete bottom-up x. This is a

computational account about the absence of any handcrafted

boundary (“walls”) that separate symbolic meanings even if z
is supervised to represent abstract concepts. That is what we

mean by “the brain’s internal representation seems not pure

linguistically in any human language.”

D. Receptive Fields Are Selective and Dynamic

Conventionally, a receptive field has been computationally

modeled as a more-or-less static field for a sensory neuron

(e.g., detecting a feature in the field). The new hextuple

concept means that a receptive field is attention-selective
and temporally dynamic — a different subpart is active at a

different time [27], depending on top-down attention and the

competition in early areas.

RF is conventionally for a sensory neuron, not a motor

neuron. However, the SRF of the “pink” motor neuron (e.g.,

“person” as type-A) in Fig. 2(b) is a union of the overlapping

SRFs of all “pink” Y neurons (e.g., as instances of “person”

at different retinal locations). Thus, the SRF of each motor

neuron is global, but selective and dynamic, since only a few

Y neurons win to fire at any time.

This dynamic, selective SRF explains why each TM neuron

is locationally invariant and type specific. Similarly, every LM

neuron is type invariant and location specific.

Likewise, an MRF is also selective and dynamic, e.g., differ-

ent motor actions boost a V1 neuron at different contexts. An

MRF is typically disconnected (e.g., each Y neuron connects

one neuron in LM and TM, respectively).

In general, we argue that the brain represents all human

communicable concepts through its motor areas as “hubs”.

Any human communicable concepts can be produced by

muscle contractions: Verbal concepts can be communicated

through muscle languages — written, verbal, sign languages,

etc.. Non-verbal concepts can be produces through muscle

procedures — reaching, grasping and manipulation. Therefore,

the motor vector z can be taught to represent any concept.

E. Concepts

Weng et al. [100] argued that the genome (developmental)

program is body-specific (e.g., sensor-specific and effector

specific) but not task-specific. In principle, any language and

any concept about the external world can be learned after the

4Suppose r1 ≥ r2, ...,≥ rk+1 and rk+1 ≥ ri for all i > k + 1. Then
yi = g(ri), i = 1, 2, ..., c, where the function g(r) depends on the ranked
values r1 and rk+1: g(ri) = (ri−rk+1)/(r1−rk+1), if i ≤ k. It subtracts
rk+1 from the input r and divides the difference by r1 − rk+1 so that the
response vector y of the area has k positive components with the maximum
value reaching 1. All remaining c− k components in y are zeros: g(ri) = 0
for all i > k.

programming, subject to available resources. The DP is sensor-

specific and body-specific, in the sense that its X area is tied

to a particular sensor (camera in this case) and its Z area is

tied to a particular type of body effectors (e.g., each motor

neuron corresponds to a finger). However, the DP is not task-

specific. Of course, each particular WWN regulated by the DP

is task-specific and environment-specific, because each WWN

can be trained by a particular sequences of task in a particular

social environment. In our experiment, the members of the

first society S1 partition all the fingers into two groups, LM

and TM. The S1 society uses canonical representation for TM

and the row-column representation for LM, as we explained

below. However, this is just a particular language in society

S1. Another society S2 may use a different language, not

necessarily a canonical one.

Let C = {(c1, c2, ..., cn) | ci ∈ Z, i = 1, 2, ..., n} consists

of vector of n learned concepts, where each concept variable

ci has mi possible values from Z (denoting the set of all

integers), represented by mi neurons in sub-motor area i, 1 ≤
i ≤ n. In Fig. 2(b), the WWN has learned n = 2 concepts,

location and type. The location concept has m1 = 4× 4 = 16
possible values, and the type concept has m2 = 1 × 4 = 4
possible values.

In each sub-area, the neuron that has the highest response

indicates the output from the sub-area. But the relative contrast

among the neurons for the same concept indicates confidence.

All the response values from every neuron is normalized to

[0, 1]. Consider Fig. 2(b). c2 represents the 2nd concept type,

then c2 = j means that the type is of class j. Thus, the j-

th neuron in TM have a value 1 and all other neurons in

TM are zeros. This type of representation of concept is called

canonical representation — each neuron represents a concept

value.

Each motor sub-area typically specifies a value at any

time, but this is not always necessary. When all the neurons

in a motor sub-area are all nearly zero, this representation

means “do not know” as motor output and “do not care”

as motor input. During motor-imposed teaching, we set the

corresponding neuron to 1 and all the other motor neurons in

the same sub-area to be zero to indicate “absolutely sure”.

The concept representation in WWN is emergent, not sym-

bolic. Suppose that every concept variable has the same v
possible values. Each combination of all c concepts corre-

sponds to a motor state. The total number of symbolic states

is vc, exponential in c. The possible concepts can be object

name (type), row, column, distance, scale, material, weight,

color, viewing angle, lighting, relations between objects, etc.

For v = 4 and c = 22, vc = 420 = 1611 > 1011, larger

than the number of neurons in the human brain. In contrast,

the distributed representation in the motor area Z requires

only vc neurons to represent all possible vc symbolic states.

For v = 4 and c = 22, vc = 88, instead of 1611. Using

numerical parameters such as synaptic weights, an emergent

representation can interpolate among an exponentially num-

ber of unobserved vectors. This is a great advantage of an

emergent representation over a symbolic representation.
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F. Learning

The hextuple network representation in Fig. 2 should not

be statically handcrafted for three major reasons [21], [63],

[100]. First, new objects appear through a lifetime. Second, a

network needs previously learned skills to autonomously learn

more sophisticated skills. Third, handcrafted representations

are suboptimal.

All the WWN weights learn through an incremental, in-

teractive “seeing” and often supervised “acting” process. By

supervised acting, we mean that the external environment (e.g.,

teacher) supervises in real time the motor port, which is used

as both input and output by the WWN. The network grabs

one at a time input pair p = (b, l, t) consisting of bottom-up

input b, lateral input from the same area l (excitatory only)

and top-down input t to update the area A before the next

input p is grabbed.

Consider area A to be Y . If only partial or none of Z are

available, the network’s self-generated values are used (i.e.,

practice during semi-supervision). Simulated pulvinar signals

(early attention) allow only Y neurons in the 3 × 3 region

centered at the correct location to fire and update during

training. The exact neuronal location is unknown even during

training, since at each location there are fewer neurons than all

possible foreground objects and each neuron must report for

multiple similar locations. Thus, the SRF of every Y neuron

is contaminated by “leaked-in” background pixels, requiring

the top-down representational effect discussed below.

The traditional error back-propagation models [103], [44] do

not consider long-term memory, not suited for development as

earlier skills must serve as long term memory for acquisition of

later, more sophisticated skills. The Lobe Component Analysis

(LCA) [97] not only has a long-term model, but also cast long-

term and short-term memory in a dually optimal framework.

LCA was compared with some well known methods in [97].

The learning in each area uses the same LCA procedure. LCA

is similar to Self-Organization Map (SOM) [43] and LISSOM

[53] but it optimally distributes the limited number of neurons

of each area optimally in the input space X × Z — optimal

Hebbian learning, spatially and temporally, as illustrated in

Fig. 3.

Consider a general area A. The spatial optimality of A
sets up the best target. With a limited number of neurons

in each area, the set of all synaptic vectors is V . The best

representation for each areal input p = (b, t) is p̂(V ),
whose error is ‖p̂(V ) − p‖. Note that the quality of the

representation p̂, as explained in [97], is measured as the

error of reconstruction from the best matched synaptic vector

in V but the actual reconstruction is not performed as the

synaptic weight vector can not be read. The spatial optimality

[97] identifies the theoretically best set V ∗ that minimizes the

expected representation error: V ∗ = arg minV E‖p̂(V )− p‖.
The temporal optimality of A does the best for V (t) at every

time t through lifetime, by minimizing its expected distance

to the best but unknown target E‖V (t) − V ∗‖. Suppose that

the neuron j with synaptic vector vj is the top winner. This

temporal optimality [97] leads to not only Hebbian direction

yp but also the best step size w(nj), best in terms of the

temporal optimality, for every update:

vj ← (1− w(nj))vj + w(nj)(yp) (3)

where w(nj) and 1−w(nj) are the optimal learning rate and

retention rate, respectively, both depending5 on the firing age

nj of neuron j. See Weng & Luciw [97] for derivation. The

real-valued firing age is updated as nj ← nj + y.

For example, a child is staring at a novel car (indicated

by pattern A in Fig. 2) and his pulvinar suppresses other

background sensing neurons as he attends. This leads to the

firing of pink Y neuron in Fig. 2 that best matches the “car”

image patch at the correct retina location. At the same time, his

mother repeats “car, car,” which excites, through child’s the

auditory stream, the child’s motor neurons for pronouncing

“car”. (This association should have established before since

when the child motor pronounced “car”, his auditory stream

heard his own “car” — co-firing.) This corresponds to the

firing between the Y neuron and the pink motor neuron in

TM in Fig. 2. Their synapse (both-way) is connected with the

Hebbian increment ypi where pi is each active Y neuron. The

learning of LM is analogous.

Let us carefully examine the case of perfect supervision of

all the motor neurons. As the car sweeps across the retina

against the complex background, the “car” motor neuron in

TM is supervised to fire, and the correct location neuron is

also supervised to fire. The pulvinar attention signal guarantees

that Y neurons whose receptive field is far from the correct car

location are suppressed. So, only Y neurons whose receptive

field roughly coincide with the car region potentially can fire.

However, the Y neuron that actually fires is the one whose

weight vector matches the car best. First, consider the synapse

from each firing Y neuron responding to the car at the correct
location and the supervised-to-fire “car” motor neuron in TM.

The Y neuron is the pre-synaptic neuron and the Z neuron is

the post-synaptic neuron. The Hebbian learning uses this co-

firing event to strengthen the synaptic weight (e.g., from zero

to a non-zero weight). Thus, as the car sweeps across, the

“car” neuron in TM automatically connects all the Y neurons

that respond to “car” at different locations. This “car” motor

neuron is then “car” specific but location invariant. Similarly,

all other type neurons in TM are also type specific and

location invariant, as illustrated in Fig. 2. The same principle

applies also to every LM neuron. Each location neuron adds

connections from Y neurons responding to different types but

at the specific location. This enables every LM neuron to be

location specific and type invariant, as illustrated in Fig. 2.

Because of the statistical average nature of the optimal

Hebbian learning in Eq. (3), precise timing of action is helpful

(e.g., the eyes attend to the current position of the hand),

but is not always necessary. This is because an object will

stay for a while. Imposition of an action for a new object

5The plasticity schedule w(nj) is probably genetically scheduled. For
WWN, w(nj) = 1/nj gives the optimal step sizes w(nj) for a fixed
distribution of yp under some regularity conditions. For a practical, slowly
changing distribution of yp due to network’s “grow-up”, w(nj) slowly
increases from 1/nj to 3/nj in the “critical window” of “child ” age.
w(nj) = 3/N when nj has reached a mature age, e.g., nj ≥ N = 2000,
to maintain an small “adult” plasticity.
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Fig. 3. Illustration of Lobe Component Analysis for bottom and top input spaces. (a) The default connection pattern of each neuron in
area Y . The Y area is a bridge representation that serves its two banks: the bottom space X and the top space Z. All the connections are
local but two-way. Blue: neuronal input; red: neuronal output. In the same layer, near neurons are connected by excitatory connections (for
representation smoothness) and far neurons are connected by inhibitory connections (competition resulting in detection of different features
by different neurons) (b) The meaning of the dual optimality of LCA. The upper area indicates the positions for the neurons in the 3-D Y
area (i.e., several stacked layers within Y ). The firing neurons (green) are context-dependent working memory for this context and those do
not fire are context dependent long-term memory for this context. The lower area indicates the very high dimensional input space P = X×Z
of the cortical area Y , but illustrated in 2-D. Each curve links the neuron in Y plane with its synaptic weight vector illustrated as the position
in P = X × Z. For simplicity, the weight vectors of Y represented in P as small dots define a Voronoi diagram in P . The magenta area
in P indicates the manifold of the distribution of input data, which is typically very sparse in P and of a much lower dimension than the
apparent dimension of P . The spatial optimality of LCA means that the target tiling by the Voronoi diagram in the pink area is optimal to
minimize the representation error for P = X × Z. The temporal optimality of LCA means that the neuronal weight of firing neurons must
move toward their unknown best target the quickest through out the developmental experience. As illustrated, the updating trajectory of every
neuron is a highly nonlinear trajectory. The statistical efficiency theory for neuronal weight update (amnesic average) results in the nearly
minimum error in each age-dependent update, meaning that not only the direction of each update is nearly optimal (Hebbian direction), but
also every step length (fully automatically determined).

does not need to always be aligned with the onset of the

relevant visual information. A few second after the onset of

the object, an action is supervised (or answer provided) which

enables the agent to rehearse the action internally (i.e., speak to

itself softly) while it continuously reinforces the object-action

association through its Hebbian learning in Eq. (3).

On the other hand, it is incorrect to think that inter-stimuli

interval is unimportant. For example, the inter-stimuli interval

between a tone and an air-puff needs to fall within the range

from 325ms to 550ms for the classical conditioning to be

learned effectively by an animal [32], [79].

Suppose k = 1 in top-k competition in the Y area. Each

Y neuron fires at 1. Then, it can be shown [91] that the

above learning expression incrementally updates the synapse

as the sample probability for the pre-synaptic neuron to fire

conditioned on that the post-synaptic neuron fires.6

All “loser” neurons are not updated and their ages do not

advance, serving as the long term memory relative to this

context p. Therefore, the role of each neuron as working-

6That is, the WWN can be considered a spiking network, simulating the
Spike Timing Dependent Plasticity.

memory or long-term memory is relative and dynamic. If it

fires, it is part of the current working memory and updates.

Otherwise, it is part of the long term memory. Therefore,

forgetting occurs only in the details of the nearest matched

memory for “unconscious” refinement of skills.

G. DN Algorithm

The following mechanic algorithm incrementally solves the

task-nonspecific, optimal learning problem of the highly non-

linear, highly recurrent DN, with WWN has an embodiment.

Algorithm 1 (DN): A DN has three areas, X , Y and Z. Y
is always hidden. X is exposed to the external environment

as it connects with sensors. Likewise, Z is exposed as it is

connected with effectors. The internal brain area Y predicts

the responses in two banks X and Z as the bridge.

1) At time t = 0, for each area A in {X, Y, Z}, initialize

its adaptive part N = (V,G) and the response vector

r, where V is the synaptic weights and G the neuronal

ages.

2) At time t = 1, 2, ..., for each area A in {X, Y, Z}, do

the following two steps repeatedly forever:
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a) Every area A computes using area function f .

(r′, N ′) = f(b, t, N) (4)

where f is the unified area function; b and t are

area’s bottom and top inputs from current network

response r, respectively; and r′ is its new response.

b) For each area A in {X,Y, Z}, A replaces: N ←
N ′ and r← r′.

If X is the sensor port S, x ∈ X is always supervised

by the external environment. If Z is the effector port M ,

z ∈ Z is supervised only when the teacher chooses too.

If the teacher does not supervise z, the DN self-supervises

(practices). Regardless z is supervised or not, z gives motor

output if Z is an effector port.

Instead of considering Y as the entire internal brain, we

can also consider Y as a subarea of the internal brain, where

Y can be the spinal cord, the hindbrain, the midbrain, the

forebrain, or a Brodmann area. The two banks X and Z
compute themselves, just like the bridge Y , while they are

partially supervised by other brain areas in addition to Y .

H. Concept Purity

The sensory space X (e.g., an image patch) and the motor

space Z (e.g., a particular action) are both concrete. The brain

has only limited choice (e.g., attention) for the sensory space

X since it consists of projections from the natural world. The

brain has more choices for the motor space Z since evolution

has selected effectors that are useful for the agent. We propose

that brain attended concepts are expressed through the motor

area Z, since the other exposed end X is for sensors only.

Suppose that the area Y has enough neurons to well sample

the sensory space X to a sufficient density that is sufficient

to distinguish the concept values for the concept space C that

the network will end up learning (e.g., location and type).

Other environmental variations that the concept C does not

learn need to be sufficiently sampled (e.g., use neurons with

different default sizes of receptive field to detect different sizes

of foreground object). In other words, for any x ∈ X , every

best matched Y neuron is concept-pure. A neuron (or an area)

being concept-pure is different from an area having a crisp

concept boundary, because the latter at least implies that some

neurons in the region is concept-pure. A neuron that is not

concept-pure means when it fires, one of multiple concepts

can be true.

Mathematically, a neuron j is concept-pure is defined as

follows. Let Pj ⊂ P = X ×Z to be the subset of contexts so

that the Y neuron j is the winner:

Pj = {(x, z) | j = arg max
1≤i≤c

r(vxi,x,vzi, z), (x, z) ∈ P}.

If all the contexts (x, z) ∈ Pj has a single z ∈ C, then we

say that Pj is concept pure. That is, whenever (x1, z1) ∈ Pj

and (x2, z2) ∈ Pj , we have z1 = z2 Specifically, we may also

say that a Y neuron to be location pure (c1) or type pure (c2).

Note that each input (x, z) has two components. When z is

a zero vector, the context p is a pure bottom-up case (free-

viewing mode). Otherwise, it is a z top-down context and x
bottom-up context integration case (goal-directed mode).

The concept-pure case is useful for understanding how

the system works, although the exact concept-purity is not

guaranteed with a limited-size network.

Theorem 1 (perfect motor output): Suppose that all Y neu-

rons that have ever fired are concept-pure and the supervision

at motor area Z is all correct. Suppose also that the network

uses top-1 firing rule for Y and the society language uses a

language-specific sub-area in motor Z for each concept. Then,

every winner concept neuron in Z is correct for the particular

concept value of ci it represents and is concept invariant for

all the other n− 1 concepts learned by the network.

Proof: Since every Y neuron is pure in the combination

of n concept (e.g., only one pair of location-type), it is

impossible for the Hebbian learning to link an impure Y
neuron with a Z neuron. All the Y neurons collected by each

motor neuron through Hebbian learning are different cases

for this particular concept value (e.g., a particular type, but

for different locations). Thus, each motor neuron is pure for

its concept value (e.g., the type value is “car”) and invariant

to all other n − 1 concepts (e.g., location). Mathematically,

all Y neurons form a perfectly fine partition of the space P
according to Z concept labels (values), and every Z neuron

perfectly collects all its cases from Y . Then, all Z neurons

form a perfect super (i.e., coarse) partition of P .

The requirement of all concept pure Y neurons may need

unrealistically larger number of Y neurons. Top-k competition

with k > 1 but relatively small can perform interpolation

with sparsely populated Y neurons in the lower dimensional

manifold inside the high-dimensional P , as reported in [98],

[52]. Recently, Weng 2011 [91] reported that there is a type

of generative WWNs that incrementally learn one time frame

at a time like the WWNs here but guarantee to give 0% error

for all training data observed so far and are optimal, in the

sense of maximum likelihood, for all disjoint testing data.

The WWN does not treat features in Y as a “bag-of-

features” used in some other scene classification methods [24],

[73] to reduce the number of training samples, because of the

inner-product-based neuronal response for Z. The location of

each element in a vector x affect the outcome of the inner

product.

I. A WWN Example

As discussed earlier, a developmental network is not meant

for a specific task but instead for incrementally learning skills

required for performing a variety of tasks suitable for its age

and useful for its target applications. Our current emphasis of

experimental studies is on the properties, power and limitation

of the theory, method and algorithm. In Section IV, we will

discuss a variety of networks. Here let us see a WWN example

so that we can continue our theoretical discussion using this

example. More detail of this WWN example will be presented

in Section IV

We trained a WWN using images like those in Fig. 4(a).

The object contour is approximated by an octagon by default.

The refinement of object contour needs synapse maintenance,

discussed elsewhere in [88], which automatically cuts off

synapses that have bad matches since their pre-synaptic input
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is from backgrounds. Synapse maintenance was not used in

the experiments reported here.

To simulate a shortage of neuronal resource relative to

the input variability, we used a small network, five object

image patches of a single scale, and many different natural

backgrounds. Both the training and testing sets used the same

5 object image patches, but different background images. As

there are only 3 Y neurons at each location but 5 objects,

the WWN is 2/5 = 40% short of resource to memorize all

the foreground objects. The Y area optimally uses the limited

resource by implicitly balancing the trade off between type

concept representation and location concept representation.

Therefore, each Y neuron must deal with various misalignment

between an object and its receptive field, simulating a more

realistic resource situation.

We are now ready to see what a trained WWN can do. We

will see that WWN does not just do pattern recognition. As

outlined in Table I, it does not require the human programmer

to model each concept but instead enables un-modeled con-

cepts (e.g., location and type here) to be learned interactively

and incrementally as actions; it enables such concepts to serve

as goals (supervised or self-generated) but in general serve

as attended spatiotemporal equivalent top-down contexts; and

it enables such goals to direct perception, recognition and

behavior emergence.

J. Free-viewing Mode

Without top-down inputs from motor areas, the network

operates in the free-viewing mode. This mode is also called

bottom-up attention [36], [37] — a salient learned object

“pops up” from backgrounds. Within WWN the saliency is

learned, supported by the neuro-anatomic studies on cortical

connections from which we derived our computational model,

although a human new born has a set of inborn behaviors.

For example, a toy is salient to a young boy but not salient

to an elderly. The shapes of leaves on a tree is salient to a

plant biologist but not so to a young boy. Our prediction that

bottom-up saliency is largely learned is also consistent with

experience-dependent saliency reported by Lee et al. [46].

As reported in Fig. 4(b), the network gave respectable

performance after only the first round (epoch) of practice.

After 5 epochs of practice, the network reached an average

location error around 1.0 pixels and a correct classification

rate over 99%. This is the first solution to the joint attention-

recognition problem in unknown complex backgrounds with

a practical-grade performance in free-viewing mode. The

dynamic selective SRF of all motor neurons are essential for

the success.

This new capability is potentially applicable to a wide

variety of vision problems that currently do not have a general-

purpose technical solution, such as autonomously finding

objects (e.g., people, cars, man-made structures) from complex

backgrounds, and while driving a car autonomously control-

ling a pan-tilt head through LM signals according to the

location of the object of interest found.

Fig. 4(c) will be discussed later. Fig. 4(d) shows the Y class

map from the disjoint testing in the free-viewing mode, which

shows that most neurons are almost class-pure, except a few

around the decision boundaries. This is because each Y neuron

fires and learns only when a foreground object is present, top

Y winners report excellent matches of a single type. The top-

down representational effect discussed below further discounts

leaked-in background pixels (due to limited neurons), since

the co-firing wiring enables the correct motor neuron to send

the correct top-down signal to the correct Y neuron during

training and practice. The LCA optimality [97] contributed

to the superior purity of V2 neurons under a limited number

of neurons and experience. Fig. 5(e) gives two examples of

outputs in the free-viewing mode.

This brain-inspired object representation scheme is different

from the proposed appearance-kept shift-circuits proposed by

Anderson & Van Essen 1987 [3], implemented by Olshausen,

Anderson & Van Essen 1993 [58], and extended by Tsotsos

et al. 1995 [86] for an internal master feature map originally

schematically proposed by Treisman 1980 [85]. The WWN

model does not require the existence of such a holistically

object-aware, topography-kept, scale- and location-invariant

master map. The first problem with such a master map

is the absence of the mechanism that is necessary for the

autonomous development of such a holistic master map from

experience. The second problem is that it does not recon-

cile the distributed nature of brain’s internal representations

emerging from autonomous self-organization using sensory

inputs and motor inputs. The third problem is that this master

map requires two separate circuits — one for identification

of the location and the scale of attended “spot light”; the

other for the normalization from this “spot light” into the

assumed master map. The fist circuits seems harder, without

a general-purpose computational solution so far. The brain-

inspired WWN scheme here not only copes with the functions

of the above two circuits using the same set of mechanisms,

a uniform developmental program of the WWN can develop

the entire brain-like circuit.

From the above idea that each brain area serves as a bridge

to predict its two banks, the most basic bridge between the

sensory port and the motor port is the “skeleton” base. This

“skeleton” base for the somatosensory motor system is the

spinal cord which is developed earlier in life. The “skele-

ton” base for visuomotor system seems to be the thalamus,

which contains the LGN and the pulvinar. The pulvinar bi-

directionally connects with all the areas in the forebrain [58].

The areas in the higher brain, which develop slightly later

than the “skeleton” bases but also co-develop with the bases,

add “flesh” to the “skeleton” bases to refine the corresponding

prediction between the sensory port and the motor port.

Namely, brain’s internal representation can be regarded as

adding more and more areas between any pair of source area

X and target area Z.

The deep learning scheme proposed by Lee & Mumford

2003 [45], Hinton et al. 2006 [34] considers the brain circuits

as a deep cascade of areas. We have experimentally shown

that a cascade of four areas X-Y1-Y2-Z performed worse

than one which adds direct connections between Y1 and

Z [50], and also performed worse than three areas X-Y-Z

using less resource [88]. Adding more “flesh” areas to the
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Fig. 4. The performance of a limited-size WWN. (a) Sample image inputs. Five object patches “car”, “table”, “penguin”, “person”, “horse”
pasted at any location on a randomly selected natural background image. Later versions of WWN used arbitrary contours for the foreground
objects since the model allows any contours. (b) The average errors of the reflexive actions, reaching and telling the type (recognition) during
free-viewing in unknown complex natural backgrounds, which improve through epochs of learning experience. (c) Performance when input
contains two learned objects: reflexive (free-viewing), two types of goal-directed recognition (top-down type-context and location-context),
and fully autonomous goal-switching (homeostasis). (d) Type-concept representation map (for TM) of Y , using top-1 winning rule, disjoint
test, in the free-viewing mode. It has an array of cells, each representing a Y neuron (20 rows, 20 columns, depths 1 to 3 corresponding
to the thickness of a cortical layer). In each cell, the area of a color is proportional to the corresponding probability of the type. If all the
neurons are type-pure, all the cells have a single color. As Y has a limited number of neurons, these Y neurons are not all type-concept
pure.

“skeleton” bases is beneficial for improving the prediction

between intermediate representations, but they should help the

skeleton base, instead of acting alone. The X-Y-Z three-area

architecture is functionally sufficient (see Theorem 1 in Weng

2011 [91] ). The dual optimality of LCA [97] further justifies

that each area predicts the best based on its limited resource

and limited amount of experience.

K. Goal Directed Perception
It is known [17], [13], [41] that visual top-down attention as

operational bias has two types, location based and object (or

feature) based. As we discussed above, the top-down signal

from a motor action can represent any human communica-

ble concepts, the goal-directed recognition scheme below is

applicable to general abstract concepts as goals.

Fig 5(b-d) illustrates the 3-stage process as a complete link
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Fig. 5. How WWN performs goal-directed recognition from pixels. (a) Free-viewing — reflexive, no top-down context. The WWN now
attends object A and it is at “upper left”. (b-d) With top-down context — deliberative. (b) Abstract concept. A friend stated an abstract
concept ”Object B.” Through the auditory stream, WWN gets ”Object B” firing in its TM area as top-down context. (c) Internal updates.
Winners among top-down boosted Y neurons now fire (one here), with all pixels taking into account. (d) Abstract concept emerged. The
firing Y neuron sends the response to LM and LM, where one reporting the abstract location and the other confirms the abstract type. (e)
Some examples of goal-directed recognition by a trained WWN. “Context” means top-down context. A green square indicates the location
and type action outputs.
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in a series of general purpose WWN goal-directed perception:

...

⇒ Abstract concept in Z: action and/or goal arise

⇒ Internal updates in Y : goal-directed competition

⇒ Abstract concept in Z: action and/or goal arise

⇒ Internal updates in Y : goal-directed competition

...

As we explained earlier, the term “goal” is a special case of

top-down spatiotemporal context. This process involves not

only goal-directed perception, but also goal-directed recogni-

tion and goal-directed reasoning in the sense of from abstract

concept to another abstract concept. Goal-directed reasoning

while examining the bottom-up evidence is also called delib-

erative reasoning.
The first stage is “abstract concept in Z”. The top-down

context is an instance of motor action now, representing a

value of a query concept (location or type). It can be either

self-generated, externally injected (motor-end supervision or

sensory-end communication), or a mix of both. Fig. 5(b) shows

that the top-down concept is communicated via the ears (e.g.,

from a teacher). Recall why visual and auditory pathways

share the same action as we discussed earlier. The concept(s)

represented by the motor here is general-purpose, as it can be

any other human communicable concept (e.g., goal or criteria).

The firing TM neuron(s) sends boosting signals to all its SONs

in Y , using the Hextuple representation from TM (SEF). As a

special case of this stage is the top-down attention [17], [13],

[41] — location-based, type-based and more, via motor hubs.
The second stage is “internal updates in Y ” — computation

with (abstract) top-down context and (concrete) bottom-up

pixels (foreground and background) using the entire network’s

Hextuple representations (see Fig. 5(c)). All the above SONs

in Y are boosted, increasing their chance to win. The “originat-

ing” motor neurons together with the boosted and now firing

Y neurons conceptually correspond to what is called “motor

imagery” [60] during which a human mentally simulates a

given action. Further repeated neuronal computation for all

neurons in Y , LM, and TM using their SINs, MINs and

LINs results in what conceptually called the “mental imagery”

by Shepard & Metzler’s [75] where the top-down context

corresponds to an imaginary rotation action.
The third stage is “abstract concepts in Z”. The Y winners

send signals to MONs (e.g., now involving all related motor

areas) using the entire network’s Hextuple representations. The

motor areas (LM and TM) display the result of goal-directed

recognition as an instance of the emergent concepts and action

(see Fig. 5(d)) but it can represent an instance of any abstract

concept(s) in general. Koch & coworkers 2009 [64] reported

cells that have such multimodal invariance in the hippocampus

and the entorhinal cortex of the macaque monkey, as those

areas are multimodal like TM and LM in Fig. 5. The WWN

model gives a computational explanation for the emergence

of such multimodal invariant cells. The hippocampus and the

entorhinal cortex has access to effectors for, e.g., navigation.
This autonomous process goes on and on for an open-ended

long time. We propose that this process characterizes the most

basic mode of brain thinking, as argued by Weng 2011 [90].

The concepts that the network thinks about are emergent, this

thinking process is applicable to a wide variety of practical

concepts that can emerge. This thinking capability is rooted

in experienced associations through the emergent internal
Hextuple representation, instead of an externally handcrafted

symbolic representation. As we discussed earlier, a statistically

consistent sensorimotor association implies a meaning from

the physical world. Namely, this is “meanings-from-physics”.

In particular, it is not based on mathematical logic. A fuller

discussion as in Weng 2010 and 2011 [90], [91] about the

completeness of this thinking-and-reasoning process needs the

tool of automata and is beyond the spatial scope of this work.

We tested the above learned WWN for goal-directed recog-

nition with two competing objects in each retina image, at

four possible quadrants to avoid overlapping. As shown in

Fig. 4(c), the success rates are 96% from the type context to

reason location and 90% from the location context to reason

type.

To allow the network to self-generate its own top-down

contexts (i.e., abstract “thoughts”) like an autonomously “liv-

ing” animal, we use its homeostatic mode. The currently two

firing motor neurons in LM and TM get suppressed (simulating

temporal depletion of synaptic vesicles which package neural

transmitters) and relatively other neurons are boosted con-

currently (simulating the disappearance of lateral suppression

from the previous winner). WWN correctly recognized the

“runner-up” object (in LM and TM) under this homeostatic
mode with an average success rate 83% (see Fig. 4(c)).

L. Top-down Representational Effect

To understand this new subject, we need to see firstly how

neurons are distributed in the input space and then how top-

down signals sensitize relevant bottom-up components.

First, the earlier expression for neuronal learning can be

rewritten as vj ← vj +w(nj)(yp−vj). Thus, the amount of

vector change w(nj)(yp − vj) is proportional to the vector

difference yp − vj = p − vj when y = 1. We call it the
distance-sensitive property. With this property, we have the

square-like tiling theorem:

Theorem 2 (Square-like tiling): Suppose that the learning

rule in a self-organization scheme has the distance-sensitive

property. Then the neurons in the area move toward a uni-

formly distribution (tiling) in the space of areal input p if its

probability density is uniform.

Proof: We give a geometric proof. See Fig. 6. Suppose

that the density in S is uniform, as otherwise the same

proof holds if local area is weighted by probability density.

If an input p fall into the pink region in Fig. 6(a), the top

winner neuron is its nearest neighbor. The Voronoi region of

a point is the region in which every point has the point as

the nearest neighbor. Each segment of the Voronoi region is

the equal-distance border between the two points (neuronal

weight vectors). An elongated Voronoi region means that

statistical pullings are not isotropic. As explained in the goal-

directed recognition in Fig. 6, the statistical pulling from

observed samples move the points toward a distribution in
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Fig. 6. The square-like tiling property of the self-organization in a cortical area. In a uniform input space, neurons in an layer self-organize
until their Voronoi regions are nearly isotropic (square-like to nearly hexagons in 2-D) . (a) The Voronoi region of neuron c is very anisotropic
— elongated horizontally — resulting horizontal pulling is statistically stronger. (b) A horizontal perturbation leads to continued expected
pulling in the same direction (rightward in this case). (c) Through many updates, the Voronoi regions are nearly isotropic, ideally regular
hexagons but generally square-like.

which all Voronoi regions are all isotropic. With a finite

number of points, exact isotropy is impossible. In 2-D, squares

are sufficiently isotropic and hexagons are slightly more so.

In n-D, we call such nearly stable tiling square-like tiling.

Note that “move toward” does not state how fast. The speed of

self-organization depends on the optimality of the step sizes.

The temporal optimality of LCA deals with the speed.

Second, as shown in Fig. 7, learning using top-down inputs

sensitizes neurons to action-relevant bottom-up input compo-

nents (e.g., foreground pixels) and desensitize to irrelevant

components (e.g., leaked-in background pixels). This is true

during operation, when top-down input is unavailable during

free-viewing. This is called the top-down representational
effect. We have the top-down effect theorem:

Theorem 3 (top-down effect): Given a fixed number of neu-

rons in a self-organization scheme that satisfies the distance

sensitivity property, adding top-down input from motor Z in

addition to bottom-up input X enables the quantization errors

for action-relevant subspace Xr to be smaller than the action-

irrelevant subspace Xi, where X = Xr ×Xi.

Proof: Given input x = (xr,xi) ∈ X where xr ∈ Xr and

xi ∈ Xi, suppose the nearest matched vector is v = (vr,vi).
The quantization error e = x − v = (xr − vr,xi − vi) =
(er, ei), where er = xr − vr and ei = xi − vi. Consider

x ∈ R = [a − δ/2, a + δ/2] where the quantizer a is at the

middle of R and x uniformly distributed in R, the quantization

error is e = x − a. For uniform distribution of x in R, the

standard deviation of its quantization error is ρ =
√

Ee2 =
δ/
√

12. For each component ρr =
√

e2
r = δr/

√
12 and ρi =√

e2
i = δi/

√
12, where δr and δi are indicated in Fig. 7(a). A

square-like tiling gives δr = δi. Therefore ρr = ρi with top-

down input. Next, consider using the top-down input z ∈ Z
in learning and define p′ = (x, z). As z is independent of

xi, we have the nonlinear map of z = f(xr,xi) in Fig. 7(b).

Let ∂z/∂xr = a, we have δ′z = aδ′r. As z is not constant

‖a‖ > 0. As illustrated in Fig. 7(c), one side of a square tile

has a squared length δ′2r + δ′2z and the other side δ′2i . The

square tiling property gives δ′2r + δ′2z = δ′2i . As δ′z = ‖a‖δ′r,

we have (1 + ‖a‖)2δ′2r = δ′2i . Thus, δ′r/δ′i = 1/(1 + ‖a‖) <
1 = δr/δi. The larger the action relevance ‖a‖, the larger the

sensitization.

This theorem gives two consequences (due to δ′i > δ′r):

First, action-relevant bottom-up inputs are salient (e.g., toys

and other Gestalt effects). Thus, we need to reconsider the

conventional thinking that bottom-up saliency is static and

probably totally innate. Second, relatively higher variation

through a synapse gives information for cellular synaptic

pruning in all neurons, to delete their links to irrelevant

components.

M. Y Sub-areas

The internal area Y may contain multiple subareas. How-

ever, the forebrain is not a cascade of Brodmann areas, but a

network of many Brodmann areas.

An earlier area (e.g., V2) links with not only the next area

(e.g., V3) and previous area (e.g., V1), but also other later

areas (e.g., inferior temporal area IT, medial temporal area MT,

and the frontal cortex) and other earlier areas (e.g., LGN). This

is a connection pattern universally found in the visuomotor

pathways as the large tables in the survey of Felleman &

Van Essen [25]. This complex connection pattern of the vision

system has been puzzling in terms of computational reasons.

However, the “bridge-and-banks” theory here explains that

any two areas that are statistically correlated considerably

should be connected. Therefore, the brain shows the complex

connection pattern drawn by Felleman & Van Essen [25].

In particular, the brain is not a cascade of areas. Any two
neurons in the brain that are significantly correlated should
be connected for better prediction for all “banks”.

For example, a motor sub-area that reports a feature with a

small receptive field (e.g., a short edge) needs to be directly

connected bi-directionally with a sensory area where the scale

of the receptive fields are roughly correct (e.g., LGN and V1).

A motor sub-area that reports an object type (e.g., car) needs

to be directly connected bi-directionally with all sensory areas

whose receptive fields may contain an object of the type (e.g.,

V1, V2, V4, and IT). The WWN that deals with multiple

object scales is called WWN-5 reported in [78].

IV. EXPERIMENTAL EXAMPLES

In this section, we discuss how a general purpose DP

model here can be used to develop a variety of networks each

having different skills. In the future, a single, large, general-

purpose network could learn potentially all such skills. It could
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Fig. 7. The top-down representational effect — top-down inputs sensitize the response for relevant bottom components although which are
relevant is unknown. (a) Without top-down input, square Voronoi tiles in the bottom-up space give the same quantization width for irrelevant
component Xi and the relevant component Xr: δi = δr . All samples in each tile is quantized as the point (synaptic vector) at the center. (b)
With top-down inputs during learning, square tiles cover the observed “pink” manifolds, indicating the local relationships between Xr and
Z. (c) When top-down Z is not available during free-viewing, each tile is narrower along direction Xr than along Xi: δ′r < δ′i, meaning
that the average quantization error for relevant Xr is smaller than that for irrelevant Xi.

continue to learn more complex mental skills through scaffold-

ing — early simpler skills enable autonomous learning for

later more complex skills, with or without human interactive

supervision. This is largely a theoretical paper. For more detail

of each experiments, the reader is suggested to read the paper

cited.

A. Multiple Objects in Complex Background

This seems the first time using a general-purpose vision

system, without assuming a hand-crafted concept about the

environment (e.g., object, as the concept of object seems not

present at the birth, per Jean Piaget [61]). This has been made

possible by three tightly intertwined novelties: (1) un-modeled

concept (taught at motor instead handcrafted into the system),

(2) concepts as goals (emergent at the motor end as top-down

goals for perception), and (3) goal-directed perception (both

bottom-up x and top-down z are integrated in the internal

cognitive matching), as summarized in Table I.

Each input retina image has a foreground image patch of

scale 19 × 19 pasted into a randomly selected background

image of scale 38×38. Thus, 75% pixels were from unknown

backgrounds when a single foreground image is used. The

sizes of the network areas are as follows. Retina area: 38×38;

Y : 20 × 20; LM: 20 × 20; TM: 5 × 1, one for each of the 5

types of object. These numbers correspond to the required

motor resolution. PP and IT areas, with the same size as the

original Y , were inserted between the original Y and LM

and between the original Y and TM, respectively. A slightly

better performance was observed without PP and IT, better

than Fig. 4(b-c). However, PP and IT are probably useful for

actions with coupled motor neurons — multiple motor neurons

fire concurrently. All default inter-area connections are global,

two-way, except that only the bottom-up connections exist

between retina and Y , which is 19×19, the scale of the objects

trained and tested. (Variable object scales have been dealt with

in WWN-5 [78], where the Y area has sub-areas each of

which has a different scale for SRFs.) All default connections,

serving as early over-connections, are pruned automatically

during learning, leading to sparse connections as shown in

Fig. 2.

The training images and testing images used different

38×38 background images randomly extracted from large im-

ages available at http://www.cis.hut.fi/projects/ica/imageica/.

The training set consists of composite images, each consisting

of one of the 5 objects (image patches) pasted at one of

20× 20 locations of randomly extracted backgrounds images.

This amounts to 5× 20× 20 = 2000 images. Going through

these 2000 images corresponds to one epoch. The training is

fully incremental and supervised. Given each pair of input

image and supervised motor response, the network updates

three times, before the next pair is fed. The test set used the

same foreground object image patches but different randomly

extracted natural backgrounds.

For the Y area, bottom-up pre-screening is necessary for

practical performance. From each input image, there are many

moderate bottom-up matches (e.g., a car detector can get many

moderate matches from a bush background). Consequently, a

top bottom-up foreground match (e.g., a person match) can

lose to an incorrect bottom-up background match (e.g., car

match with bush) simply because the top-down bias boosts

the latter (e.g., car bias). This is called top-down halluci-
nation. There is also a similar need for pre-screening top-

down matches if many motors neurons fire concurrently. Pre-

screening is not a phenomenon of using rigid rules. Instead, it

seems the best “guess” for the statistics of bottom-up inputs

and top-down inputs so that biological structures are developed

to facilitate the quickest estimation of statistics (i.e., using

prior distributions in ancestor generations). Interestingly, the

cerebral cortex appears to develop highly adaptive 6-layer

architecture [25], [9], [19] to facilitate the quickest estimation

of statistics, called pre-screening here, as explained below.

The above match-and-competition mechanisms realize a
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function: y = fm,c(x) with input x and output y. The

subscripts m, c denote match and competition layers, respec-

tively, corresponding to specific laminar layers in the cortex.

The cortex has 6 layers, L1 to L6. L1 has mostly axons to

serve as information transmission “highway”. The bottom-up

input is matched in L4, with its competition through lateral

inhibition assisted by L6. Thus, the above fm,c is replaced by

L4 for m and L6 for c to generate the pre-screened bottom-
up input: y4 = fL4,L6(x), meaning that the bottom-up input

x is pre-screened at L4 with matching in L4 and lateral

inhibition generated through L6 [25], [9], [19]. Likewise, the

top-down input z is pre-screened in L2 whose lateral inhibition

is assisted by L5, to generate pre-screened top-down input:

y2 = fL2,L5(z). The integration of y4 and y2 is a neuron-

to-neuron integration with a narrow input field (e.g., 1 × 1)

in L2/3. For notational simplicity, we denote the bottom-

top integration layer as L3: y = fL3,L5(y2,y4). Recently,

highly narrow radial cones have been reported in L2/3 [107],

consistent with such small size of fL3,L5 input fields. Note

that the above functions fL4,L6, fL2,L5 and fL3,L5 use the

same match-and-competition mechanism as fm,c above.

In the WWN trained and tested, L4 and L2 have a thickness

of 3 — having three feature detectors at each pixel location.

However, there are 5 possible objects to be detected at each

pixel location. This situation of limited resource requires

a trade-off between type specificity and location specificity

among all the L4 neurons. This trade-off is realized optimally

through LCA.

The goal-directed recognition tests in Fig. 4(c) used disjoint

backgrounds and the same foreground object image patches.

The test data set consists of all combinations of two different

objects at two different quadrants.

To test the performance for dealing with larger variability

of each object class, we conducted another experiment. We

used 25 3-D objects such as different toy cars and animals.

Each is placed on a rotary table against a gray background

so that the object is roughly centered, simulating the situation

where overt attention (e.g., camera pan and tilt) has already

brought the object to the center of the field of view. The DP

developed WWN to recognize 3-D objects viewed from any

of the 360◦ viewing angles. The Y area has a single layer

without prescreening, as the background is not an issue in this

experiment. The number of Y neurons (20 × 20) is limited:

If each Y neuron is considered a quantizer of all the viewing

angles, on average 90◦ of object viewing angle variation has

only four Y neurons to quantize. With such a limited network

size, the network still reached a classification rate of 96.9%

(without using temporal context). When the size of Y area

was increased to 30 × 30 and 40 × 40, the 3-D recognition

rate reached 99.2% and 99.67%, respectively.

The remainder of this section serves as a summary of

other related experimental results to additionally support the

richness of the brain-inspired spatial processing presented

here. This paper is not the primary publication venue for the

experimental results below. Citations are provided for readers

who are interested in more detail.

As the theory predicted, the shape of the foreground object

contour does not have to be square. For example, WWN-2

[38] WWN-3 [51] used an octagon as the default shape of the

bottom-up receptive field. Hebbian learning further weaken

connections that do not correlate with the post-synaptic firing

because it is from the background. WWN-2 [38] has dealt with

a single object in complex backgrounds and WWN-3 [51] has

coped with multiple objects in complex backgrounds. WWN-4

reported that direct connections between earlier sensory areas

and motor areas gave better results (i.e., shallow connections,

instead of a cascade of areas). WWN-5 [78] handles different

object scales. To more accurately remove background pixels

from each neuron that detects an arbitrarily shaped object,

synapse maintenance has been incorporated into the WWN

[88].

In addition to type-based object detection, location-based

object recognition, and free-viewing object attention [51], the

DN has also been experimentally tested on stereo [77] where

the motor output corresponds to stereo disparities, natural

language processing using inputs from the Wall Street Journal

[102], and “thinking-like” transfer learning [56].

The richness of the tasks that a DN can perform depends

on the sensors, the effectors, the computational resources, and

the learning experience.

B. 25 3-D Objects with 360◦ of Viewing Variation

In Luciw & Weng [52], this theory was tested for the MSU-

25 Data Set — 25 3-D real objects taken from any of the

360◦ viewing angles. Each object was roughly centered in the

image, on a rotary base. Thus, only TM is used but not LM.

The image frames not used for training was used for testing

(disjoint test). A limited size network after 5 epochs of training

reached a 96% recognition rate if each image was fed into

the network individually — one shot recognition. However,

if the test images were treated as video through time and the

motor output is allowed to have multiple firing neurons to keep

the confidence of past recognition, the recognition rate further

increased to about 100%. This is an example of goal-directed

perceptual reasoning, using the confidence of past recognition

as a dynamically changing goal emerging from the TM area.

C. Outdoor Vehicles and Non-vehicles

This theory was also tested by Luciw & Weng [52] for

a data set from the video sequences taken from a driving

car in various driving and lighting conditions (e.g., under

an overpass). It contains 225 vehicle images and 225 non-

vehicle images, each sized 32× 32. The network was trained

to distinguish vehicles from non-vehicles. When 25% of the

data was used for training, the network reached around 95%

correct recognition rate. When the images are treated as video

and the network uses the last motor output as “goals”, the

network performed “goal-directed perception” and reached a

recognition rate of above 99%.

D. Stereo Perception without Explicit Stereo Matching

The theory here has also been tested by Solgi & Weng

[77] in a very different setting — stereo without performing

explicit stereo matching. We believe that without explicit
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stereo matching is the way the brain deals with binocular

vision. Each input to the network consists of two image rows

of 20-pixel long each, one from the simulated left eye and one

from the right, taken randomly from many natural images.

The left and right image (rows) are relatively shifted by a

stereo disparity from −8 to 8, which means that both two

images have unknown non-overlapping part, depending on

the underlying stereo disparity. In this experiment, LM is

used but not TM. LM is trained to produce the underlying

stereo disparities. All the tests are disjoint, from different

source images. Without using top-down “goal”, the network

reached an average error around 1.6 pixels. Using motor top-

down “goal” enabled the network to reach a sub-pixel average

accuracy — about 0.6 pixels.

E. Natural Languages with Each Word as an Image

If the network is fed with an image at a time, where the

image corresponds to a snapshot of a word, the network can be

taught to produce the context state (e.g., parallel meanings as

concepts) at the motor end, in a sense similar to the state of a

Finite Automaton (FA). However, FA cannot generalize. The

theory here has been tested for natural language processing

using corpora from the Wall Street Journal as reported in

Weng et al. 2009 [102] and early language acquisition and

generalization (e.g., subclass-to-class generalization, subclass-

to-subclass generalization) as reported in Miyan & Weng 2010

[56].

V. PRIOR MODELS

Existing models fall into two large categories, symbolic and

emergent. A symbolic model requires the human programmer

to provide a set of symbolic concepts about the extra-body

environment, e.g., objects to be dealt with, a model of every

object (e.g., parts and the relations among parts). In contrast,

an emergent model does not require such a set of symbolic

concepts. It uses numeric rules to enable internal represen-

tations to emerge from the sensory sources and the motor

sources. Since no static symbolic set is sufficient for an open

array of unknown tasks, it seems that only an emergent model

is potentially task-nonspecific.

Weng 2012 [92] argued that the term “connectionist” is

misleading and does not well characterize the more restrictive

emergent property of brain-like representations and suggested

the term “emergent representation” for brain-like representa-

tions.

A. Symbolic

Many computer vision methods [20], [87], [1], [106], and

robotic methods that simulate child learning (e.g., see the

symbolic methods reviewed in [6]) use symbolic represen-

tations, based on a monolithic 3-D model or a monolithic

2-D appearance model. Much of the intelligence of such

models is from the human programmer, instead of the machine,

since it is the human who understands each machine task

and translates his understanding to the task-specific design.

The machine that runs the programmer’s program does not

understand the handcrafted symbolic model, since the reasons

for the symbolic design are in the mind of the human designer,

but not understood by the machine. The machine is not able

to learn new concepts beyond a finite number of combinations

of hand-selected symbolic concepts. As we discussed earlier,

there is an exponential number of sensory states that need

to be distinguished in a real world environment, but only a

moderate number of symbols that a human can handcraft and

program. This seems to be the major reason that a symbolic

model is brittle in the real world.

B. Emergent

Cresceptron by Weng et al. 1992 [93], [94] appears to

be the first published visual learning self-organizing network

for recognizing and segment general objects from natural

backgrounds. The open problems that Cresceptron left to us

include optimal use of a limited number of neurons, optimal

use of learning experience, how to learn multiple concepts

concurrently without handcrafting any concept (e.g., not just

design a network for the type concept but use convolution to

forget location), top-down attention, goal emergence, and goal

directed perception. The theoretical work here addresses this

array of problems using a cortex-inspired and high integrated

architecture and representation, with a discussion of a series

of experimental results.

There have been several versions of networks that use

error back-propagation [103], [44], [22], [104]. We do not

think that the brain uses error back-propagation since there

seems no such biological evidence and further motor errors

are not available during autonomous practice and self-learning

through exploration. All error back-propagation networks,

including the versions that freeze part of the network [22],

do not have an effective method to dynamically distinguish

working memory from long-term memory while dynamically

maintaining a bounded amount of memory resource as LCA

does without “running out of memory”.

Olshaushen & Field [59] published an interesting compu-

tational work. They started from an objective function (cost

function) to minimize the image reconstruction error from a set

of (synaptic) weight vectors while encouraging fewer weight

vectors to contribute to the reconstruction of each image. They

used the learning rule derived from the objective function

to determine the weight vectors using many natural images.

Interestingly, their resulting weight vectors look spatially local

and oriented [59, Fig. 4a], like many local edge detectors.

Our model supports the sparse coding idea of Olshaushen

& Field [59] — each cortical area has few neurons to fire.

But our model is different in a number of important aspects.

Brain’s sparse internal coding is not just a style of over-

complete representation as some researchers suggested, but

more importantly, it affords the need for competition so

that only the best matched neurons are allowed to fire and

update, to avoid erasing long term memory. Instead of starting

from a hypothetical objective function, our model starts from

the cortical connection patterns experimentally observed in

many physiological studies, as surveyed and summarized by

Felleman & Van Essen [25]. The learning equation in our
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model is consistent with the experimentally observed Spike

Timing Dependent Plasticity (STDP) [7], [15], different from

the learning equation of Olshaushen & Field [59] which

requires hypothetically reconstructed images.

It seems reasonable to expect that evolutionary pressure on
the brain is about the behaviors from the brain, not directly
for reconstructing images. Our model does not consider sparse

coding as an objective but rather a result from the existence of

lateral inhibitory connections (simulated by top-k competition)

widely found in the cortex. The competition enables most

neurons to be stable (not firing and updating) at any time

to keep their weights as long-term memory, as explained in

Sec. II-K. The most fundamental point of our model, different

from Olshaushen & Field’s work is that each brain area uses

not only bottom-up input, but top-down input conjunctively

for behavior generation (not really for image reconstruction).

Tenenbaum et al. [84] published a technique, called Isomap,

inspired by the need for the brain to reduce the dimension d
(e.g., the number of optical nerves from the retina) of sensory

inputs. Their idea is to find a lower dimensional space in

which the geodesic distance between sensory data points in

the original space is maintained in the lower dimensional

space. They assume that the sensory data points lie in a single

continuous lower dimensional nonlinear manifold (e.g., on the

surface of a Swiss roll). In contrast, each motor neuron in

the WWN here automatically “finds”, using simple Hebbian

learning, a complex manifold of neurons in the internal Y
space which is not necessarily connected as Isomap requires.

Nor does WWN spend expensive computation to compute the

eigenvalues, eigenvectors, and geodesic distance that Isomap

requires.

The Locally Linear Embedding (LLE) by Roweis and Saul

[70] is similar to Isomap in terms of motivation, but uses a

discrete derivation which leads to a computational procedure

similar to the Isomap in principle, also computing the eigen-

values and eigenvectors of a monolithic data matrix, which

does not use motor information. In contrast, the computation

of WWN is incremental, in-place, and discriminative by using

motor information, in addition to the advantages in the above

comparison with Isomap.

The reduction of sensory dimension is necessary. Isomap

and LLE are two well known methods that maintain within-

manifold distance. Our model also reduces the sensory di-

mension, but it differs from Isomap and LLE in a number of

ways. The goal of Isomap and LLE is to represent the sensory

space. Our model finds an optimal bridge representation for

both bottom and top spaces, i.e., X×Z, for the goal to generate

desired behaviors, not primarily for representing the sensory
space. Isomap and LLE use eigenvectors to represent features,

which do not give sparse coding.

The Deep Belief Networks (DBN) of LeCun et al. 1998

[44], Mumford 2003 [45], Hinton et al. 2006 [34], use a

cascade of areas. They have not been shown to detect objects

from complex backgrounds. As discussed above, WWN does

not use a cascade of areas.

Isomap, LLE, the Olshaushen-Field features, and DBN are

all unsupervised, with a primary goal of learning internal pre-

sentation that can reconstruct input image well. The primary

goal of our brain-inspired model is to generate behaviors. The

new WWN uses supervised leaning and self-learning (learn

through self-practice and exploration as it generates its own

goals).

In terms of image input, the representation schemes of

the Olshaushen-Field features, Isomap, LLE, and DBN all

use global receptive field (entire retina) for every feature

neuron. A few other recurrent networks [68], [76] and the

ancestor of WWN, the recurrent Multilayer In-place Learning

Networks (MILN) [98], [99] also used global receptive field.

Our model here is different, as WWN uses a local receptive

field for each Y neuron, so that each individual object in

a complex background is reported individually by the best

matched neuron among those who have roughly the correct

receptive field. The automatic top-down wiring is critical for

a goal in Z to perform goal-directed perception inside the

network in the presence of multiple objects.

VI. CONCLUSIONS AND DISCUSSION

The theory, model, and algorithm presented in this paper

show that if the brain B is properly trained, a subpart in

the sensory end S (e.g., an object view regardless of the

background) and/or a subpart in the motor end (e.g., a par-

ticular type goal or location goal) is sufficient to regulate

the competition in brain B which allows the best matched Y
neuron for S and M to fire. In the next network update, this

firing Y neuron, as the pre-synaptic firing, predicts the firing

for all the post-synaptic neurons in Z as the corresponding

action in M (also predicts the firing in S if S computes like

M ).

In cognitive science and AI, symbolic (abstract), connec-

tionist (concrete), and behaviorist (acting) directions have their

strengths, although they collectively are not sufficient to close

the gap. It has been established [90] that given any FA, a

DN can learn such an FA incrementally through interactions

by representing the state as its motor output. An FA is

symbolic, handcrafted and static once designed without any

internal representation. In contrast, the DN is incrementally

taught and can autonomously practice and thus self-learn

by autonomously self-organizing its internal representations.

With the DN theory here and FA as a special case, we

propose that the age where connectionist models categorically

cannot perform goal-directed reasoning (including perception,

recognition and search) is over. Much exciting future lies

ahead. For example, it will be interesting to see how the model

scales up like the cerebral cortex.

Biologically, the work here predicts: Each neuron is not pure

linguistically in any human language due to its six diverse

sources of input. This is in contrast with all symbolic models

and symbolic-emergent hybrid models, which impose rigid

walls in the system between different linguistically expressed

meanings (symbols). Likewise, the function of any brain area

cannot be stated precisely using any concept of the extra-body

environment. This is in contrast with a common practice that

states that a brain area does X (e.g., detecting oriented edges

— an extra-body concept). Any human communicable concept

may be supervised at a corresponding motor area (e.g., verbal
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teaching), since it is a port where external teachers can sense,

influence, and calibrate.
Genetically, cellular mechanisms (e.g., the Hebbian mecha-

nism and the cellular scheduling of plasticity) seem sufficient,

in principle, to wire up through experience a sophisticated

“brain” that demonstrates abstract behaviors from concrete

receptors and muxels. Not being a holistically-aware central

controller, the DP of DN is sufficient to regulate the hextuple

network representations that enable goal-directed attention,

goal-perception and goal-recognition from pixels.
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[11] S. Carey. Précis of the origin of concepts. Behavioral and Brain
Science, 34:113–167, 2011.

[12] M. Cole and S. R. Cole. The Development of Children. Freeman, New
York, 3rd edition, 1996.

[13] M. Corbetta and G. L. Shulman. Control of goal-directed and stimulus-
driven attention in the brain. Nature Reviews Neural Science, 3:201–
215, 2002.

[14] M. C. Crair, D. C. Gillespie, and M. P. Stryker. The role of visual
experience in the development of columns in cat visual cortex. Science,
279:566–570, 1998.

[15] Y. Dan and M. Poo. Spike timing-dependent plasticity: From synapses
to perception. Physiological Review, 86:1033–1048, 2006.

[16] G. Deco and E. T. Rolls. A neurodynamical cortical model of visual
attention and invariant object recognition. Vision Research, 40:2845–
2859, 2004.

[17] R. Desimone and J. Duncan. Neural mechanisms of selective visual
attention. Annual Review of Neuroscience, 18:193–222, 1995.

[18] M. Domjan. The Principles of Learning and Behavior. Brooks/Cole,
Belmont, California, fourth edition, 1998.

[19] R. J. Douglas and K. A. C. Martin. Neural circuits of the neocortex.
Annu. Rev. Neurosci., 27:419–451, 2004.

[20] M. P. Dubuisson, J. S. Lakshmanan, and A. K. Jain. Vehicle segmenta-
tion and classification using deformable templates. IEEE Trans. Pattern
Analysis and Machine Intelligence, 18(3):293–308, 1996.

[21] J. L. Elman, E. A. Bates, M. H. Johnson, A. Karmiloff-Smith, D. Parisi,
and K. Plunkett. Rethinking Innateness: A connectionist perspective on
development. MIT Press, Cambridge, Massachusetts, 1997.

[22] S. E. Fahlman and C. Lebiere. The cascade-correlation learning
architecture. Technical Report CMU-CS-90-100, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, Feb. 1990.

[23] A. Fazl, S. Grossberg, and E. Mingolla. View-invariant object category
learning, recognition, and search: How spatial and object attention
are coordinated using surface-based attentional shrouds. Cognitive
Psychology, 58:1–48, 2009.

[24] L. Fei-Fei. One-shot learning of object categories. IEEE Trans. Pattern
Analysis and Machine Intelligence, 28(4):594–611, 2006.

[25] D. J. Felleman and D. C. Van Essen. Distributed hierarchical processing
in the primate cerebral cortex. Cerebral Cortex, 1:1–47, 1991.

[26] M. B. Feller, D. P. Wellis, D. Stellwagen, F. S. Werblin, and C. J. Shatz.
Requirement for cholinergic synaptic transmission in the propagation
of spontaneous retinal waves. Science, 272(5265):1182–1187, 1996.

[27] D. Fitzpatrick. Seeing beyond the receptive field in primary visual
cortex. Current Opinion in Neurobiology, 10(4):438–443, 2000.

[28] J. H. Flavell. Cognitive development: Past, present, and future. In
K. Lee, editor, Child Cognitive Development, pages 7–29. Blackwell,
Maden, Massachusetts, 2000.

[29] J. H. Flavell, P. H. Miller, and S. A. Miller. Cognitive Development.
Prentice Hall, New Jersey, 3rd edition, 1993.

[30] M. D. Fox, M. Corbetta, A. Z. Snyder, J. L. Vincent, and M. E.
Raichle. Spontaneous neuronal activity distinguishes human dorsal and
ventral attention systems. Proc. National Academy of Sciences U S A,
103(26):10046–10051, 2006.

[31] M. A. Goodale and A. D. Milner. Separate visual pathways for
perception and action. Trends in Neurosciences, 15:20–25, 1992.

[32] J. T. Green, R. B. Ivry, and D. S. Woodruff-Pak. Timing in eyeblink
classical conditioning and timed-interval tapping. Psychological Sci-
ence, 10(1):19–25, 1999.

[33] S. Grossberg and R. Raizada. Contrast-sensitive perceptual grouping
and object-based attention in the laminar circuits of primary visual
cortex. Vision Research, 40:1413–1432, 2000.

[34] G. E. Hinton, S. Osindero, and Y-. W. Teh. A fast learning algorithm
for deep belief nets. Neural Computation, 18:1527–1554, 2006.

[35] F. H. Hsu. IBM’s deep blue chess grandmaster chips. IEEE Micro,
19(2):70–81, 1999.

[36] L. Itti and C. Koch. Computational modelling of visual attention.
Nature Reviews Neuroscience, 2:194–203, 2001.

[37] L. Itti, G. Rees, and J. K. Tsotsos, editors. Neurobiology of Attention.
Elsevier Academic, Burlington, MA, 2005.

[38] Z. Ji and J. Weng. WWN-2: A biologically inspired neural network for
concurrent visual attention and recognition. In Proc. IEEE Int’l Joint
Conference on Neural Networks, pages +1–8, Barcelona, Spain, July
18-23 2010.

[39] Z. Ji, J. Weng, and D. Prokhorov. Where-what network 1: “Where”
and “What” assist each other through top-down connections. In Proc.
IEEE Int’l Conference on Development and Learning, pages 61–66,
Monterey, CA, Aug. 9-12 2008.

[40] E. R. Kandel, J. H. Schwartz, and T. M. Jessell, editors. Principles of
Neural Science. McGraw-Hill, New York, 4th edition, 2000.

[41] E. I. Knudsen. Fundamental components of attention. Annual Reviews
Neuroscience, 30:57–78, 2007.

[42] C. Koch. Being john malkovich: Personal control of individual brain
cells. Scientific American, pages 18–19, March/April 2011.

[43] T. Kohonen. Self-organized formation of topologically correct feature
maps. Biological Cybernetics, 43:59–69, 1982.

[44] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of IEEE,
86(11):2278–2324, 1998.

[45] T. S. Lee and D. Mumford. Hierarchical bayesian inference in the
visual cortex. J. Opt. Soc. Am. A, 20(7):1434–1448, 2003.

[46] T. S. Lee, C. F. Yang, R. D. Romero, and D. Mumford. Neural activity
in early visual cortex reflects behavioral experience and higher-order
perceptual saliency. Nature Neuroscience, 5(6):589–597, 2002.

[47] W. R. Lippe. Rhythmic spontaneous activity in the developing avian
auditary system. Journal of Neuroscience, 14(3):1486–1495, 1994.

[48] N. K. Logothetis and D. L. Sheinberg. Visual object recognition.
Annual Review of Neuroscience, 19:577–621, 1996.

[49] M. Luciw and J. Weng. Laterally connected lobe component analysis:
Precision and topography. In Proc. IEEE 8th Int’l Conference on
Development and Learning, pages +1–8, Shanghai, China, June 4-7
2009.

[50] M. Luciw and J. Weng. Top-down connections in self-organizing Heb-
bian networks: Topographic class grouping. IEEE Trans. Autonomous
Mental Development, 2(3):248–261, 2010.

[51] M. Luciw and J. Weng. Where What Network 3: Developmental
top-down attention with multiple meaningful foregrounds. In Proc.
IEEE Int’l Joint Conference on Neural Networks, pages 4233–4240,
Barcelona, Spain, July 18-23 2010.

[52] M. Luciw, J. Weng, and S. Zeng. Motor initiated expectation through
top-down connections as abstract context in a physical world. In IEEE
Int’l Conference on Development and Learning, pages +1–6, Monterey,
CA, Aug. 9-12 2008.



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

25

[53] R. Miikkulainen, J. A. Bednar, Y. Choe, and J. Sirosh. Computational
Maps in the Visual Cortex. Springer, Berlin, 2005.

[54] M. Minsky. Logical versus analogical or symbolic versus connectionist
or neat versus scruffy. AI Magazine, 12(2):34–51, 1991.

[55] M. Mishkin, L. G. Unterleider, and K. A. Macko. Object vision and
space vision: Two cortical pathways. Trends in Neuroscicence, 6:414–
417, 1983.

[56] K. Miyan and J. Weng. WWN-Text: Cortex-like language acquisition
with What and Where. In Proc. IEEE 9th Int’l Conference on
Development and Learning, pages 280–285, Ann Arbor, August 18-
21 2010.

[57] M. J. O’Donovan. The origin of spontaneous activity in developing
networks of the vertebrate nervous systems. Current Opinion in
Neurobiology, 9:94–104, 1999.

[58] B. A. Olshausen, C. H. Anderson, and D. C. Van Essen. A neuro-
biological model of visual attention and invariant pattern recognition
based on dynamic routing of information. Journal of Neuroscience,
13(11):4700–4719, 1993.

[59] B. A. Olshaushen and D. J. Field. Emergence of simple-cell receptive
field properties by learning a sparse code for natural images. Nature,
381:607–609, June 13 1996.

[60] L. M. Parsons. Imagined spatial transformations of ones hands and
feet. Cognitive Psychology, 19:178–241, 1987.

[61] J. Piaget. The Construction of Reality in the Child. Basic Books, New
York, 1954.

[62] W. K. Purves, D. Sadava, G. H. Orians, and H. C. Heller. Life: The
Science of Biology. Sinauer, Sunderland, MA, 7 edition, 2004.

[63] S. Quartz and T. J. Sejnowski. The neural basis of cognitive devel-
opment: A constructivist manifesto. Behavioral and Brain Sciences,
20(4):537–596, 1997.

[64] R. Q. Quiroga, A. Kraskov, 2 C. Koch, and I. Fried. Explicit encoding
of multimodal percepts by single neurons in the human brain. Current
Biology, 19(1):13081313, 2009.

[65] R. Rao and D. H. Ballard. An active vision architecture based on iconic
representation. Artificial Intelligence, 78:461–505, 1995.

[66] A. S. Reber, S. M. Kassin, S. Lewis, and G. Cantor. On the relationship
between implicit and explicit modes in the learning of a complex rule
structure. Journal of Experimental Psychology: Human Learning and
Memory, 6(5):492–502, 1980.

[67] M. Riesenhuber and T. Poggio. Neural mechanisms of object recogni-
tion. Current Opinion in Neurobiology, 12(2):162168, 2002.

[68] P. R. Roelfsema and A. van Ooyen. Attention-gated reinforcement
learning of internal representations for classification. Neural Compu-
tation, 17:2176–2214, 2005.

[69] P. S. Rosenbloom, J. E. Laird, and A. Newell, editors. The Soar Papers.
MIT Press, Cambridge, Massachusetts, 1993.

[70] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by
locally linear embedding. Science, 290(2319):2323–2326, 2000.

[71] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Upper Saddle River, New Jersey, 2nd edition, 2003.

[72] T. J. Sejnowski. What are the projective fields of cortical neurons?
In L. J. van Hemmen and T. J. Sejnowski, editors, Twenty Three
Problems in Systems Neuroscience, page 394405. Oxford University
Press, Oxford, 2006.

[73] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio. Robust
object recognition with cortex-like mechanisms. IEEE Trans. Pattern
Analysis and Machine Intelligence, 29(3):411–426, 2007.

[74] J. Sharma, A. Angelucci, and M. Sur. Induction of visual orientation
modules in auditory cortex. Nature, 404:841–847, 2000.

[75] R. N. Shepard and J. Metzler. Mental rotation of three-dimensional
objects. Science, 171:701–703, 1971.

[76] Y. F. Sit and R. Miikkulainen. Self-organization of hierarchical visual
maps with feedback connections. Neurocomputing, 69:1309–1312,
2006.

[77] M. Solgi and J. Weng. Developmental stereo: Emergence of disparity
preference in models of visual cortex. IEEE Trans. Autonomous Mental
Development, 1(4):238–252, 2009.

[78] X. Song, W. Zhang, and J. Weng. Where-what network 5: Dealing
with scales for objects in complex backgrounds. In Proc. Int’l Joint
Conference on Neural Networks, pages +1–8, San Jose, CA, July 31 -
August 5 2011.

[79] A. B. Steinmetz and C. R. Edward. Comparison of auditory and visual
conditioning stimuli in delay eyeblink conditioning in healthy young
adults. Learning and Behavior, 37:349–356, 2009.

[80] R. Sun, P. Slusarz, and C. Terry. The interaction of the explicit and
the implicit in skill learning: A dual-process approach. Psychological
Review, 112(1):59192, 2005.

[81] R. Sun and X. Zhang. Accounting for a variety of reasoning data within
a cognitive architecture. Journal of Experimental and Theoretical
Artificial Intelligence, 18:169–191, 2006.

[82] M. Sur, A. Angelucci, and J. Sharm. Rewiring cortex: The role of
patterned activity in development and plasticity of neocortical circuits.
Journal of Neurobiology, 41:33–43, 1999.

[83] M. Sur and J. L. R. Rubenstein. Patterning and plasticity of the cerebral
cortex. Science, 310:805–810, 2005.

[84] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric
framework for nonlinear dimensionality reduction. Science, 290:2319–
2323, 2000.

[85] A. M. Treisman. A feature-integration theory of attention. Cognitive
Science, 12(1):97–136, 1980.

[86] J. K. Tsotsos, S. M. Culhane, W. Y. K. Wai, Y. Lai, N. Davis, and
F. Nuflo. Modeling visual attention via selective tuning. Artificial
Intelligence, 78:507–545, 1995.

[87] Z. Tu, X. Chen, A. L. Yuille, and S. C. Zhu. Image parsing: Unifying
segmentation, detection, and recognition. Int’l J. of Computer Vision,
63(2):113–140, 2005.

[88] Y. Wang, X. Wu, and J. Weng. Synapse maintenance in the where-what
network. In Proc. Int’l Joint Conference on Neural Networks, pages
+1–8, San Jose, CA, July 31 - August 5 2011.

[89] J. Weng. Task muddiness, intelligence metrics, and the necessity of
autonomous mental development. Minds and Machines, 19(1):93–115,
2009.

[90] J. Weng. A 5-chunk developmental brain-mind network model for
multiple events in complex backgrounds. In Proc. Int’l Joint Conf.
Neural Networks, pages 1–8, Barcelona, Spain, July 18-23 2010.

[91] J. Weng. Three theorems: Brain-like networks logically reason and
optimally generalize. In Proc. Int’l Joint Conference on Neural
Networks, pages +1–8, San Jose, CA, July 31 - August 5 2011.

[92] J. Weng. Symbolic models and emergent models: A review. IEEE
Trans. Autonomous Mental Development, 3:+1–26, 2012. Accepted
and to appear.

[93] J. Weng, N. Ahuja, and T. S. Huang. Cresceptron: a self-organizing
neural network which grows adaptively. In Proc. Int’l Joint Conference
on Neural Networks, volume 1, pages 576–581, Baltimore, Maryland,
June 1992.

[94] J. Weng, N. Ahuja, and T. S. Huang. Learning recognition and
segmentation using the Cresceptron. International Journal of Computer
Vision, 25(2):109–143, Nov. 1997.

[95] J. Weng and S. Chen. Visual learning with navigation as an example.
IEEE Intelligent Systems, 15:63–71, Sept./Oct. 2000.

[96] J. Weng and W. Hwang. From neural networks to the brain:
Autonomous mental development. IEEE Computational Intelligence
Magazine, 1(3):15–31, 2006.

[97] J. Weng and M. Luciw. Dually optimal neuronal layers: Lobe
component analysis. IEEE Trans. Autonomous Mental Development,
1(1):68–85, 2009.

[98] J. Weng and M. D. Luciw. Optimal in-place self-organization for corti-
cal development: Limited cells, sparse coding and cortical topography.
In Proc. 5th Int’l Conference on Development and Learning (ICDL’06),
pages +1–7, Bloomington, IN, May 31 - June 3 2006.

[99] J. Weng, T. Luwang, H. Lu, and X. Xue. Multilayer in-place learning
networks for modeling functional layers in the laminar cortex. Neural
Networks, 21:150–159, 2008.

[100] J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur,
and E. Thelen. Autonomous mental development by robots and
animals. Science, 291(5504):599–600, 2001.

[101] J. Weng and N. Zhang. Optimal in-place learning and the lobe
component analysis. In Proc. IEEE World Congress on Computational
Intelligence, pages +1–8, Vancouver, BC, Canada, July 16-21 2006.

[102] J. Weng, Q. Zhang, M. Chi, and X. Xue. Complex text processing by
the temporal context machines. In Proc. IEEE 8th Int’l Conference
on Development and Learning, pages +1–8, Shanghai, China, June 4-7
2009.

[103] P. J. Werbos. The Roots of Backpropagation: From Ordered Derivatives
to Neural Networks and Political Forecasting. Wiley, Chichester, 1994.

[104] G. Westermann, S. Sirois, T. R. Shultz, and D. Mareschal. Modeling
developmental cognitive neuroscience. Trends in Cognitive Sciences,
10(5):227–232, 2006.

[105] A. K. Wiser and E. M. Callaway. Contributions of individual layer 6
pyramidal neurons to local circuitry in macaque primary visual cortex.
Journal of neuroscience, 16:2724–2739, 1996.

[106] B. Yao and L. Fei-Fei. Modeling mutual context of object and human
pose in human-object interaction activities. In Proc. Computer Vision



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

26

and Pattern Recognition, pages +1–8, San Francisco, CA, June 15-17
2010.

[107] Y. C. Yu, R. S. Bultje, X. Wang, and S. H. Shi. Specific synapses
develop preferentially among sister excitatory neurons in the neocortex.
Nature, 458(7237):501–504, 2009.

Juyang Weng (S85-M88-SM05-F09) received the BS degree in computer
science from Fudan University, Shanghai, China, in 1982, and M. Sc. and
PhD degrees in computer science from the University of Illinois at Urbana-
Champaign,in 1985 and 1989, respectively.

He is currently a professor of Computer Science and Engineering at
Michigan State University, East Lansing. He is also a faculty member of
the Cognitive Science Program and the Neuroscience Program at Michigan
State University. Since the work of Cresceptron (ICCV 1993), he expanded
his research interests in biologically inspired systems, especially the au-
tonomous development of a variety of mental capabilities by robots and
animals, including perception, cognition, behaviors, motivation, and abstract
reasoning skills. He has published over 250 research articles on related
subjects, including task muddiness, intelligence metrics, mental architectures,
vision, audition, touch, attention, recognition, autonomous navigation, natural
language understanding, and other emergent behaviors.

Dr. Weng is an Editor-in-Chief of International Journal of Humanoid
Robotics and an associate editor of the IEEE Transactions on Autonomous
Mental Development. He was a Program Chairman of the NSF/DARPA
funded Workshop on Development and Learning 2000 (1st ICDL), a Program
Chairman of the 2nd ICDL (2002), the chairman of the Autonomous Mental
Development Technical Committee of the IEEE Computational Intelligence
Society (2004-2005), the Chairman of the Governing Board of the Interna-
tional Conferences on Development and Learning (ICDLs) (2005-2007), a
General Chairman of 7th ICDL (2008), the General Chairman of 8th ICDL
(2009), an associate editor of IEEE Transactions on Pattern Recognition and
Machine Intelligence, and an associate editor of IEEE Transactions on Image
Processing.

Matthew Luciw received the M.S. and Ph.D. degrees in computer science
from Michigan State University (MSU), East Lansing, in 2006 and 2010,
respectively.

He was previously a member of the Embodied Intelligence Laboratory at
MSU. He is currently working as a researcher at the Dalle Molle Institute
for Artificial Intelligence (IDSIA), Manno-Lugano, Switzerland. His research
involves the study of biologically-inspired algorithms to enable autonomous
learning agents. He is a member of the IEEE Computational Intelligence
Society.


