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Brain-Like Emergent Temporal Processing: Emergent Open States
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Abstract—Informed by brain anatomical studies, we present
the Developmental Network (DN) theory on brain-like temporal
information processing. The states of the brain are at its
effector end, emergent and open. A Finite Automaton (FA)
is considered an external symbolic model of brain’s temporal
behaviors but the FA uses handcrafted states and is without
“internal” representations. The term “internal” means inside the
network “skull”. Using action-based state equivalence and the
emergent state representations, the time driven processing of DN
performs state-based abstraction and state-based skill transfer.
Each state of DN, as a set of actions, is openly observable
by the external environment (including teachers). Thus, the
external environment can teach the state at every frame time.
Through incremental learning and autonomous practice, the DN
lumps (abstracts) infinitely many temporal context sequences into
a single equivalent state. Using this state equivalence, a skill
learned under one sequence is automatically transferred to other
infinitely many state-equivalent sequences in the future without
the need for explicit learning. Two experiments are shown as
examples: The experiments for video processing showed almost
perfect recognition rates in disjoint tests. The experiment for text
language, using corpora from the Wall Street Journal, treated
semantics and syntax in a unified interactive way.

Index Terms—Brain-mind architecture, representation, atten-
tion, transfer, perception, cognition, behavior, computer vision,
text understanding, time warping, sequential abstraction, regres-
sion, complexity.

I. INTRODUCTION

THE artificial intelligence community has largely followed

a path of handcrafted symbolic representation: Given a

task to be executed by a machine, it is the human designer who

understands the task and hand picks the concepts as symbols

required by the task before any machine learning can take

place.

The wave of artificial neural network (ANN) research in

the 1980’s represented the rise of the connectionist approach

[82], [63]. Using an ANN, the internal representation of the

network can emerge through incremental learning. The human

designer specifies the formats for the network input ports and

the output ports as well as the internal learning mechanisms,

but not the actual internal representations. The internal rep-

resentations generated by some ANN are distributed, instead

of symbolic. By “distributed” we mean that the presence of

an extra-body concept (e.g., “car”) does not have an iff (if

and only if) condition with the firing of any single internal

element (e.g., neuron or module), since such an iff condition

requires handcrafting. Note: an iff condition is not the same
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as one-to-one mapping, since many other neurons are also

allowed to fire when the concept is present. However, the

term “connectionist model” is misleading since it does not

effectively distinguish itself from symbolic networks (SNs),

especially probabilistic versions of SNs. In a probabilistic SN

(e.g., HMM), a variable about an extra-body concept is also

distributed over multiple nodes. Therefore, we use the term

“emergent networks” (ENs) here, which is stricter than ANNs

and connectionist approaches.

A. Autonomous mental development

From the viewpoint of biological development [19], [76],

[103], the representation inside the “brain” is epigenetically

generated throughout the lifetime of each individual life. “Epi”

here means “after”. By “epigenetic”, we mean that the genes

inside every cell regulate, but do not totally determine, the

developmental process of the body and the brain through

which the body and the brain interact with the internal and

external environments after the conception.

This implies that the representations inside the brain for

extra-body concepts fully autonomously emerge inside the

brain’s closed skull. Humans teachers, as part of the external

environment (i.e., outside the brain including the body), are

able to interact with the brain through only its sensory ports

and effector ports. Weng 2012 [99] argued that all repre-

sentations fall into two categories, symbolic and emergent.

Symbolic representations, as defined later, are task specific,

since it is requires that a task be given and it is the human

designer who understands the task and who handpicks a

static set of symbolic task concepts about the extra-body task

environments. Neural network seems the only known way

in which internal representations can autonomously emerge.

Therefore, neural networks are necessary for autonomous

mental development (AMD), not optional. We will discuss

below a new definition for emergent representation, which is

stricter than ANN and connectionist approaches. Those ANNs

that allow a human designer to impose symbolic extra-body

meanings into part of networks (e.g., handcrafted features

such as SIFT features and Gabor features) belong to symbolic

models by the new definition.

This line of reasoning further implies that the Developmen-

tal Program (DP) — the functions of the biological genome

— for an animal is task nonspecific, as argued by Weng et al.

2000 [103], because “task” is largely an extra-body concept.

The genome seems to reliably regulate the generation of infra-

body behaviors (e.g., inborn sucking behavior from a touch

on baby’s lip) but does not seem to rigidly determine the

representations for extra-body concepts (e.g., not for extra-

body concept “nipple” since sucking behavior also responds

to a touch by a stick on baby’s lip). In particular, the DP
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should not have a handcrafted model about the extra-body

world. The actual extra-body environment of a species at

any time is highly dynamic, highly unpredictable, and open-

ended. As argued in Weng 2012 [99], we hypothesize that

for an emergent model about the brain, the DP may embed

inborn behaviors for intra-body concepts (e.g., sucking on

a touch on the lip) but does not need to model any extra-

body concepts (e.g., oriented edge of an extra-body object).

All representations for extra-body concepts emerge through

interactions with the extra-body environment. Such extra-body

concepts include type, location, scale, owner, retail price, and

task goal.

Whether a developmental agent can successfully acquire

a mental skill (or knowledge) depends on 5 factors: (1) the

sensors, (2) the effectors, (3) the DP, (4) the computational

resource, and (5) the experience.

“Effector” is a general term that includes muscles and

glands. The term “motor” is often used to replace effector,

although its meaning is often restricted to motor effectors

(muscles), not necessarily including glands.

Regulated by a DP, the developmental agent has its “skull

closed” throughout the lifetime. The “skull” of the network

encapsulates the network from its external physical environ-

ment, leaving its sensory ends and its motor ends open to

the external environment (other than the brain). Note that the

body of the agent is also included in this external environment,

since it is outside the “skull”. A developmental agent must

incrementally develop mental skills for an open variety of tasks

without requiring a human to re-program the DP or to directly

manipulate inside the brain after the agent “birth”.

B. Prior temporal models

Marvin Minsky 1991 [65] and others argued that symbolic

models are logical and neat, but connectionist models are

analogical and scruffy. At the David Rumelhart Memorial talk

August 3, 2011 during the International Joint Conference on

Neural Networks, Michael Jordan correctly stated that prior

neural networks do not abstract well and symbolic models had

been better than prior neural networks in terms of abstraction.

With regard to temporal information processing, Buono-

mano & Merzenich [9] proposed a randomly connected net-

work that translates temporal information (i.e., sound) into

its spatial representation. The biologically recorded neuronal

learning phenomenon of Spike Timing-Dependent Plasticity

(STDP) [5], [14] spans a time interval of 50ms. However,

this short time span is not sufficient, as correctly pointed out

by Drew & Abbot [17], to explain how the brain deals with

longer temporal dependency. Mauk & Buonomano [62] argued

that the brain uses its intrinsic mechanisms to deal with time,

and it does not have explicit delay lines and does not have a

global clock. Drew & Abbott [17] proposed that the gradual

change in the level of membrane potential inside a neuron may

record some temporal information. However, this seems also

not sufficient and robust for long time dependency as pointed

out by Ito et al. 2008 [38]. How the brain deals with long time

context is still elusive, especially considerably beyond around

30 ms modeled by STDP.

Neuro-anatomic studies [24], [10], [11] have demonstrated

that the brain is not a cascade of brain areas, but a complex

network of areas. Between any two connected areas, the

connections are universally bi-directional, i.e., two unidirec-

tional bundles, with few exceptions (e.g., there is no top-down

connections from LGN to the retina in primates but not so with

other animals). Using such properties, the Multilayer In-Place

Learning Networks (MILN) [101], [102], [55] and the general-

purpose visual processing networks Where What Networks

(WWN) [45] have shown their properties of abstraction and

attention through the assistance of their motor signals. This in-

dicates that such a brain-inspired model seems to be a general

developmental model for processing spatial information.

The exiting SNs and ENs for temporal processing suffer

from some major problems, such as the long-term memory

loss problem, the lack of power for abstraction, and the lack

of power for transfer, as we will discuss later in Section IV.

C. Novelty and importance

This paper presents the Temporal Context Machine (TCM),

an experimental embodiment of a general brain-mind model

called Developmental Networks (DN) [94], [97], [98] which

deals with both space and time information. The embodiments

of DN include WWN-1 [45], WWN-2 [44], WWN-3 [56],

WWN-4 [57], WWN-5 [86], and TCM [105]. TCM is also

an extension to temporal domain from the spatial networks

MILNs [102]. This is an archival theoretical paper, growing

out of the theoretical work of Weng 2010 [95], citing as two

examples the visual experimental studies originally published

in Luciw & Weng 2008 [58] and the language experimental

studies first appeared in Weng et al. 2009 [105].

This work is a departure from (1) existing models in

traditional artificial intelligence that use handcrafted symbolic

representations (e.g., SNs) and (2) existing connectionist mod-

els that use emergent representations (e.g., ENs). Compared

with those models, the major novelty of the work includes the

following aspects.

Each state of TCM is open as input and output: By

default, a state here means primary state, at the motor end

of the TCM, open to the external world. The state of an

internal area is called internal state, but not primary. Based

on neuroanatomy (e.g., [24]) and cortical recordings (e.g.,

[6]), we hypothesize that a major purpose of the brain is

to generate actions that are open to the external world (i.e.,

outside the skull) — observable, teachable and calibratable.

Internal states in an adult brain serve the need of the states at

the motor end. A major origin of the internal representations

are the external environment, via the sensory end and the

motor end. The sensory end is largely “supervised” by the

external environment, although only a part of it is attended at

any time. Therefore, the states of TCM are at the effector end

which are open to the external world, so that the external world

(e.g., teachers) can observe, supervise, and calibrate the state

at each frame time whenever such an interaction is practical.

Namely, the effector ports are not only for outputs, but also for

inputs. This is in contrast with existing connectionist temporal

models, such as the Jordan Network [46], the Elman Network
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[18], the Long Short-Term Memory (LSTM) [35], the Liquid

State Machines (LSM) [61], the Echo State Networks (ESN)

[41], Continuous Time Recurrent Neural Networks (CTRNN)

[109], and the Reservoir Computing [60], whose recurrence

takes place inside an internal hidden area and, thus, their states

are hidden from the external world, not directly observable and

interactively teachable by the external world. This results in

their lack of effective mechanism for state equivalence and

skill transfer (discussed below). The theory here also includes

hidden internal states (i.e., the response of the hidden area Y
of TCM), but open states as actions are primary and physically

causal for the brain. In contrast, as we will see below, hidden

states are secondary and assistive to the open, primary states.

In our following discussion, states of TCM mean the primary,

open state by default.

TCM states are rich in meanings: All brain skills are

eventually expressed as the states of effectors — muscles and

glands. Psychologists argued that brain skills can be divided

into two categories, explicit (or declarative) and implicit (or

manipulatory) [80], [88]. Explicit skills can be expressed in a

natural language — written, said, or signed (e.g., the American

Sign Language). Implicit skills do not have a natural language

but their effects are delivered through manipulations (e.g., run,

grasp, and dance). Therefore, the effector ports of the brain are

hubs for meanings, as far as the entire brain is concerned. The

meanings include, but not limited to, goal, intent, value, spatial

context, temporal context, and actions. Each TCM state is not

limited to a single meaning, but represents multiple concurrent

meanings of an attended object (e.g., plant, fruit, apple, red, at

upper-left location). We hypothesize that major human brain

skills can be expressed through the states of effector ports (i.e.,

muscles and glands) since they are the major outputs of the

brain (other than negligible outputs such as EEG and heat).

TCM emulates Agent Finite Automata: Traditionally,

various automata as language acceptors [36] have been used

for checking syntax, not semantics. This work extends the

framework of deterministic finite automaton DFA (or FA

for short) to agent FA (AFA), which outputs its symbolic

state instead of yes or no for sentence acceptance. Each

symbol, either an input symbol or an output state, has a

set of associated meanings expressed by a natural language

in the design document. The AFA enables us to model and

understand how a TCM abstracts and reasons. Simulating any

AFA, the representation in the motor area of TCM as a state is

recursively used as temporal top-down context for subsequent

processing.

Network sequential abstraction: Motor outputs can be

abstract, where “abstract” means that each output depends

on only related spatiotemporal context of the input sequence.

Each TCM has a fully emergent internal representation. The

autonomy in the emergence of internal representation in neural

networks has posed a great challenge for network abstrac-

tion. However, unlike prior connectionist models criticized

by Minsky and Jordan, in principle a TCM can abstract as

well as any other Symbolic Networks (SN). By SN, we mean

a symbolic model that uses states as equivalent classes for

temporal contexts. As reviewed in Sec. III-B, many practical

symbolic models are SNs. The new work here shows that a

TCM can emulate any complex AFA. In other words, a TCM

can abstract as well as any SN. This seems the first theoretical

work that proves that an emergent network (TCM) can perform

abstraction at least as powerful as SNs. Such a departure from

symbolic models seems to be also useful for understanding

how the brain-mind abstracts through time.

Skill transfer: The emergent TCM can perform transfer:

transfer of a learned skill to many other settings without a need

of explicit learning. The state equivalence in the AFA theory

is the basis of transfer. Suppose that a TCM takes an input

word (e.g., “cat”), it generates an action (e.g., report “kitten”).

This is called a skill. However, such a skill is not necessarily

applicable to all context sequences. In our example, the skill

of reporting “kitten” upon input “cat” is applicable to context

“young”. A TCM forms equivalent spatiotemporal (numeric

vector) states and learns the skills conditioned on each state,

so that one skill learned from a particular context sequence

can be correctly transfer to infinitely many equivalent context

sequences in the future without a need for explicit learning.

TCM Properties: The new work here proves a series

of properties of TCM, including AFA simulation, context

dependent attention, active time warping, temporal attention,

time duration, skill transfer, and complexity.

Unified spatial and temporal processing. With this uni-

fication, this work makes the following prediction about the

brain network:

The spatial brain network seems not only a

general-purpose engine for developing rich capa-

bilities for spatial information processing but also

a general-purpose engine for developing rich capa-

bilities for temporal information processing, without

any components exclusively dedicated to time.

This prediction requires much future multi-disciplinary work

to fully verify.

For intuition in our discussion, we consider text as an

example of the sensory modality for our discussion. However,

in principle, this brain-inspired model is not limited to the

text modality as it is applicable to any sensory modality. We

will also discuss our corresponding visual processing studies

below. In contrast with traditional text processing methods

which treat each text input as a static symbolic string for batch

processing, the TCM discussed here scans its sensory input

port in time, as a binary image, like a brain’s eye. In the text

experiments, we assume that the sensory input port receives

a word at a time. This mode is suitable here before fully

autonomous robotic camera saccades become a reality in the

future, e.g., when a robot is mature enough to autonomously

read a book using its pan-tilt head.

We will mainly use motor-supervised learning to explain

how a TCM learns. For example, while a teacher holds a

child’s hand to teach drawing, the child is conducting motor-

supervised learning. Of course, motor-supervised learning is

tedious, but this mode must be realized by the brain-mind

before it can self-practice (self-generated motor teaching) and

use its motivational system (e.g., the dopamine and serotonin

systems modeled in [73], [13]). It seems also wrong to think

that a human agent is a completely autonomous agent, since

other humans supervise his motors (e.g., when shake hands)
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and his perception and cognition (e.g., parent teaching and

school education). A full autonomy is the self-organization

inside the brain (inside the skull), not outside the brain.

The remainder of this paper is organized as follows: First

the TCM algorithm is presented in Section II. Section III

discusses different types of representation to motivate the

emergent representation used by TCM. Section IV discusses

different temporal mechanisms. The TCM is further analyzed

in Section V. Several experimental results with video and

text data sets are presented in Section VIII to indicate the

performance. Finally, Section IX provides some concluding

remarks.

II. ALGORITHM

This algorithm describes a brain-like network TCM that

consists of three areas, X , Y , and Z, as illustrated in Fig. 1,

where the connection patterns are also shown.

The area X is Y ’s sensory area. For image input of m× n
pixels, X has d = m×n neurons. For text input, each word is

mapped to a different input pattern as an image. In general, X
can be any area that are closer to sensory inputs than Y . For

example, if Y is V2, then X can be LGN and V1 combined.

The area Z is Y ’s motor area. The number of neurons in Z
is the number of “muscles” elements or muxels for short. If Y
is the premotor area, then Z is the primary motor area. Using a

one-to-one symbol-vector mapping, the number of neurons in

Z is the limited resource in Z. In general, multiple neurons in

Z can fire to represent more firing patterns. In our experiments,

the human teacher in the external environment let each muscle

neuron in Z represent one concept value. This corresponds to

a simple language (e.g., raising the i-th figure to represent the

i-th meaning).

The area Y is the bridge for its two banks X and Z. The

major function of the bridge is to predict the signals in its two

banks. Y provides features in X×Z and reports top matches.

The more neurons an area Y has, the more finely the area

can tessellate the manifold of X × Z in which the observed

samples lie.

A biological network grows and operates (develops in gen-

eral) in the following way. Neurons in the brain fall into two

broad categories [47, p. 329], excitatory projection neurons

and inhibitory inter-neurons. Projection (i.e., feature) neurons

grow their dendrites and axons to near and far locations.

Within each area, there are many inter-neurons which can only

connect locally. Inhibitory inter-neurons turn their connected

pre-synaptic axon into its own “opposite” output: The neu-

ral transmitters from an inhibitory pre-synaptic inter-neuron

inhibit the firing of the post-synaptic neuron. Effectively,

inhibitory interneurons make projection neurons to inhibit

mutually so that at any time, in each area only few projection

neurons whose pre-response potentials are top can survive the

competition and fire. To avoid time-consuming back-and-forth

inhibitions through inter-neurons, we use a top-k competition

mechanism which quickly sorts out the top winner projection

neurons. Using the top-k competition in each area, by neurons

in the following, we mean excitatory projection neurons.

Each pyramidal neuron autonomously determines from

which pre-synaptic neurons to connect, based on its Hebbian

learning mechanism. Since the weights of each neuron are

random originally, its firing is also random to start with. As we

can see later mathematically, the Hebbian learning mechanism

of each neuron allows only synapses with those pre-synaptic

neurons that often co-fire with the post-synaptic neuron to

survive and all other synapses die out. The connection patterns

in Fig. 1 result after sufficient interactions with the external

environment after the birth.

We predict that this 3-area network is a simplified “brain”,

where the brain is represented by the area Y . We hypothesize

that the complex brain structure emerges through interactions

between the internal and external environments.

A. TCM Algorithm

Each TCM has three areas, X , Y and Z. Y is always hidden.

X is exposed to the external environment as it connects

with sensors. Likewise, Z is exposed as it is connected with

effectors. For each area A in {X,Y, Z}, let N = (V,G)
denote the adaptive part of area A, where V = (v1,v2, ...,vc)
contains the weight vectors of the c neurons in area A and

G = (n1, n2, ..., nc) contains the firing ages of the neurons

(the number of times a neuron has fired). The firing age nj of

a neuron j is the number of times the neuron has fired.

Algorithm 1 (TCM): Let fY indicate the area function of

every area of TCM.

1) At time t = 0, for each area A in {X,Y, Z}, initialize

its adaptive part N = (V,G) and the response vector

r, where V is the synaptic weights and G the neuronal

ages.

2) At time t = 1, 2, ..., for each area A in {X,Y, Z}, do

the following two steps repeatedly forever:

a) Every area A computes using area function f .

(r′, N ′) = f(b, t, N) (1)

where f is the unified area function; b and t are

area’s bottom-up and top-down inputs, respectively,

from the current network response; and r′ is the

new response of area A.

b) For each area A in {X,Y, Z}, A replaces: N ←
N ′ and r← r′.

Since we consider that the area X is supervised directly by

the external environment, we do not need to compute the

area function for X . However, if Y is a Brodmann area

inside the brain, X and Z are its two input areas. Then, X
computes so that Y predicts the signals in X . Likewise, some

or all components of Z can be supervised by the external

environment, typically as the temporal abstract context at that

time t. Therefore, if Y is the entire brain, X takes in a sensory

movie and Z outputs and inputs a motor movie, as illustrated

in Fig. 1.

B. The area function

Next, we describe the area function f in Eq. (1). We use v̇

to denote the unit vector of a vector v. v̇ = v/||v‖.
Each neuron in area A has a weight vector v = (vb,vt),

corresponding to the area input (b, t), if both bottom-up part
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Area X 

(sensory for Y )

Area Y 

(features of X and Z )

Area Z

(motor for Y )

Bottom-

up input

Predict X Predict Z

Top-down

input
Lateral

input

word1
word2

“Amazon” “Brazilian rainforest”S=“Brazilian rainforest Amazon”

Action for S

Fig. 1. The basic architecture of TCM. In this illustration, text as an image for text processing, but the area X can contain any sensory
modality in principle — visual, auditory, somatosensory, olfactory, and taste. The area Z can contain any effector modality in principle —
muscles and glands. Only input connections to the center neuron in area Y are shown, but all other neurons in X , Y and Z are connected in
a similar way. Area X gives the current bottom-up input (e.g., word as an image) x(t) to area Y . In general, x ∈ X is an image with many
neurons (pixels) firing. Area Z gives the previous response or externally supervised image z(t) as the spatiotemporal state (context). Area
Y takes input (x(t), z(t)) to generate response as y(t + 1). Within area Y , lateral connections are present, excitatory (green), inhibitory
(red), and none (white). Areas X and Z compute in a similar way. If Y is the entire brain, X does not have bottom-up source and Z does
not have top-down source. Each bi-directional arrow represents two connections in opposite directions.

and top-down part are applicable to the area. Otherwise, the

missing part of the two should be dropped from the notation.

Its pre-response value is the sum of two normalized inner

products:

r(vb,b,vt, t) = v̇ · ṗ, (2)

where v̇ is the unit vector of the normalized synaptic vector

v = (v̇b, v̇t), and ṗ is a unit vector of the normalized input

vector p = (ḃ, ṫ). Since the inner product measures the

degree of match between these two unit directions, the pre-

response value r(vb,b,vt, t) gives the “nearness” between v̇

and ṗ. This enables a match between two vectors of different

magnitudes (e.g., a weight vector from an object viewed indoor

to match the same object when it is viewed outdoor). The pre-

response value ranges in [−1, 1].
It is important that the area A only updates the best-matched

memory and keeps all memories as the long-term memory for

this input p. To do this, only top k winners fire and update.

To avoid slow iterative updates in sorting out the winners in

A, we use explicit sort in our simulation. Considering k = 1
(necessary when the memory is small), the winner neuron j
is identified by:

j = arg max
1≤i≤c

r(vbi,b,vti, t). (3)

The winner fires with rj = 1 (a spike). All other neurons

in A do not fire, ri = 0 all i 6= j. In an ideal case later,

the top-1 match is always perfect: v̇j = ṗ. The winner-take-

all corresponds to the situation that all lateral connections are

inhibitory (i.e., all other neurons in the same area are red in

Fig. 1).

C. Learning of the area function

TCM learns while performing. That is, the learning is in-

cremental, online, in real time, and on the fly. It is impractical

for the brain, natural or artificial, to store sensory frames as a

batch before learning takes place.

All the synapses of each neuron learn incrementally based

on Hebbian learning — cofiring of the pre-synaptic activity

ṗ and the post-synaptic activity r of the firing neuron. The

synaptic vector of a firing neuron has a gain rṗ. Other non-

firing neurons do not modify their memory. When a neuron j
fires, its weight is updated by a Hebbian-like mechanism:

vj ← w1(nj)vj + w2(nj)rjṗ (4)

where w2(nj) is the learning rate depending on the firing age

nj of the neuron j [100] and w1(nj) is the retention rate with

w1(nj) + w2(nj) ≡ 1.

The simplest version of w2(nj) is w2(nj) = 1/nj , which

has a “zero” momentum even when vj is initialized by a

random vector which is what we did in the experiments. When

a neuron learns for the first time, nj = 1, w2(nj) = 1 so

that vj = 0 + 1 · 1 · ṗ = ṗ, immediately memorizing the

input vector ṗ so that the neuron must be the winner in the

next practice, perfectly responds to the ṗ. This fast learning

mechanism contributed to the surprisingly fast learning results

in experiments, reported in Section VIII, when the number of

neurons in TCMs is significantly smaller (about 60% short)

than the number of Y neurons needed to perfectly memorize

all the ṗ vectors.

The age of the winner neuron j is incremented nj ← nj +
1. All other neurons in the area do not respond and do not

advance their firing ages.

D. Explanation of the area function

From Eqs.(2) and (3), we can see that if the number of neu-

rons is sufficiently large, the nearest neighbor vj = (vbj ,vtj)
typically matches each unobserved input ṗ = (ḃ, ṫ) well

v̇bj ≈ ḃ and v̇tj ≈ ṫ (5)



6

and each observed input perfectly. In other words, for a neuron

to fire, the bottom-up vector and top-down vector must both

match well. As we will see, using three areas X , Y , and Z
each of which computes in the above way, the TCM becomes

a content addressable memory for bottom-up input x and

top-down input z. Furthermore, a partial x or a partial z as

input will enable other parts of x and z to pop up with the

corresponding recall, where “partial” means many components

are left “free”.

However, the above conclusion also depends on how the

c neurons in area A distribute, which is the subject of the

following subsection.

E. Optimality of the area function

The theory behind the area function is the Lobe Component

Analysis (LCA), which is a dually optimal model for updating

a neuronal area A using Hebbian learning. LCA is similar to

SOM in what it does, but LCA is optimal. It incrementally

learns the weights using the best direction of change and

the best amount of change to minimize the expected error in

representing the incoming high dimensional inputs of the area

in relation to its previous experience. In doing so, it optimally

deals with the two conflicting needs during incrementally

learning: the need to immediately learn the current area input

ṗ by altering the limited memory in the area A and the need

for area A to keep the long-term memory stable for past

experience.

As analyzed and proved in [100], the c vectors in V move,

in the best incremental way under limited training experience,

to the best target in the lower dimensional manifold of the

input space P of ṗ in which the observed samples lie. In

particular, the regions in P from which no samples arise do

not waste neurons.

The rate profile w2(nj) = 1/nj means that vj is the

recursive mean of input ṗ:

vj =
1

nj

nj∑

i=1

ṗ(ti) (6)

where ti is the firing time of the neuron. A component in

the gain vector rjṗ is zero if the corresponding component in

ṗ is zero. Thus, all those potential connections in which the

presynaptic neuron has never co-fired with the post-synaptic

neuron do not really exist, resulting in the typical sparse

connections illustrated in Fig. 1. Incrementally computed this

way, each component in vj is the estimated probability for

the pre-synaptic neuron to fire under the condition that the

post-synaptic neuron fires.

Supported by the above property, the area function has the

following two optimality properties proved by [100]:

1) Spatial optimality: The theoretical target of the set V ∗

of synaptic vectors of area A is the best in minimizing

the representation error of the area input space P using

a limited number of c neurons. For area Y , P = X×Z,

the parallel input space of ascending input space X and

the descending input space Z.

2) Temporal optimality: The update direction and step

size for the winner neuron j are best to minimize the

expected distance between the estimated V (t) at time t
and its theoretically best, but unknown, target V ∗.

The spatial optimality implies that each area A as the bridge

has the smallest possible expected error in representing its

two banks. The temporal optimality means that the area A
learns fastest using a limited amount of learning experience

up to time t. A full review of the LCA theory, e.g., firing age

dependent Hebbian learning, is beyond the scope of this paper.

The reader is referred to Weng & Luciw 2009 [100].

This seemingly simple TCM algorithm is very challenging

to understand, having rich properties, and is of general purpose

in dealing with time. In the remainder of this paper, we discuss

these subjects.

III. REPRESENTATIONS

We first discuss some basic concepts that are closely related

to representations.

A. Basic concepts

1) Embodiment: The term embodiment means having a

body. A brain in a vat [8] is disembodied. Sensors and effectors

are important body organs for an embodied brain. Much of the

remaining body organs provide the energy and service needed

for the normal operation of the brain and the body. The work

here addresses how an embodied brain, natural or artificial,

can interact with its external environment via its sensors and

effectors on its body. The scope of the work here includes

theory, algorithm, and robot simulations, but not including

experimental tests on a real robot.

2) Grounding: Another concept is grounding, which means

that the sensors and effectors must interact directly with

the actual external task environment — the real physical

environment — without a human in between. However, the real

physical world does not provide a means for precise timing

and performance evaluation. Thus, realistic robotic simulations

are necessary for our examples of performance evaluation.

3) Discrete time: A grounded life, biological or artificial,

lives in the real physical environment in real time. Emulated

by a digital computer, we require that the brain is sampled

at discrete times t = t0, t1, ..., tn, where t0 is the conception

time, tn is the death time, ti+1 = ti + ∆, i = 1, 2, ...n − 1,

and ∆ is a constant. For notation simplicity, we write t =
0, 1, ..., n.

4) Discrete time vs. continuous time: It is important to

know that when ∆ is small enough (e.g., ∆ = 1ms),

a discrete brain model can model the brain at a desired

temporal precision. Although not using all infinitely many

time instances between two consecutive time samples, the

discrete-time models here seem to be more mathematically

accurate than the continuous-time counterparts, since it does

not use derivatives to approximate differences. For example,

the discrete-time approach in TCM is more accurate than

the discrete-time approach in LSM, at least in terms of the

applicability of the formulation to practice.
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5) The sensory-movie-and-motor-movie loop: Through the

life, the agent acquires a sensory movie as {x(t), t = 0, 1, ...}
and produces a motor movie as {z(t), t = 0, 1, ...}. But these

two movies are grounded and embodied in the real physical

world, highly dependent on each other and highly dependent

on the external environment. For developmental reasons above,

the DN should not use a handcrafted model about the world,

but the sensory movie is greatly affected by the motor-movie

as actions change what is sensed in a complicated way. First,

the agent only acquires p(t) = (x(t), z(t)) recursively via

the physical world, meaning that p(t + 1) is not possible

without getting p(t) first, t = 1, 2, ..., n − 1 (e.g., an action

must apply before one can sense the effect of the action).

Second, each x(t) is a consequence of past physical experience

{(x(i), z(i)) | i = 0, 1, ..., t − 1} (e.g., an object in x(t) is

occluded partially by a moving arm while the arm moves up

because of z(t − 1)). Third, each z(t) is a consequence of

past physical experience {(x(i), z(i)) | i = 0, 1, ..., t − 1}
(e.g., after receiving x(t−1) which indicates that the arm has

reached the target object, the arm stops indicated by z(t)).
6) Learning modes: Psychometrics is a field that stud-

ies experimental evaluation of the performance of a human

using the fact that a human has a rich set of capabilities

of autonomous learning. By autonomous learning, we mean

that the brain inside the skull is fully autonomous from the

time of conception. By rich set, we mean that the brain is

able to handle any different modes of learning, from motor-

supervised learning (called passive learning in psychology),

to reinforcement learning (called instrumental conditioning

in psychology), and to many other modes of communicative

learning (called non-associate learning, cognitive learning,

sequence learning, etc. in psychology).

7) Eight learning modes: Weng 2007 [93] argued that

existing categorization of learning modes is not sufficient for

modeling brain-like learning. [93] defined 8 types of learning,

corresponding to all 8 combinations of three factors:(1) i:
whether internal representation is handcrafted (i = 1 means

yes and i = 0 means no), (2) e: whether the effector is

supervised (e = 1 means yes and e = 0 means no) and (3)

b: whether biased sensors are involved (b = 1 means yes and

b = 0 means no). By biased sensor, we mean that the brain at

birth time already has developed preference to its signals (e.g.,

pain receptor and sweet receptor). Therefore, the four learning

modes with i = 1 belong to machine learning using symbolic

models, while the other four modes with i = 0 belong to

developmental learning (AMD) using emergent models. For

the purpose of the theory here, it seems that the learning

mode of emergent, effector-supervised, and communicative

(i, e, b) = (0, 1, 0) is the most basic and easy to understand.

This learning mode is also used throughout this paper.

8) Experiments discussed in this work: This theory is based

on embodiment and grounded mode of operation, regardless

the effector is supervised (i.e., during training) or not (i.e.,

during practice). From the above discussion, we can see that

we should not superficially consider that all embodiments must

involve a real robot. For precise timing and evaluation of

performance with the ground truth, we must use a simulated

task environment but our experimental data include natural

“well”

“kitten”

“kitten”

“looks”

“stares”

“young” “young”

“young”
“young”

“meal”

“cat”

“time” “full”

“hungry”
“hungry”

z1

z1: report “start”   z2: report “young”

z3: report “kitten-equiv.” z4: report “kitten-looks equiv.” 

z5: report “meal”  z6: report “hungry-equiv.” and eat 

z1z5 z6

z2 z3 z4

other
other

other
other

to

z2to

Fig. 2. An agent finite automaton (AFA) for a symbolic world. An
FA can be extended to an agent which, at each time, inputs a symbol
σ ∈ Σ and outputs its state q ∈ Q. It starts from state z1. From a state
q ∈ Q, it takes an input σ ∈ Σ and transits to a new state q′ ∈ Q.
A label ‘other’ means any symbol other than the symbols marked
from the state. For example, state z4 means the equivalent meaning
of the attended last subsequence is “kitten looks” or equivalent. The
“other” transitions from the lower part are omitted for clarity. The
AFA does not include the text (e.g., “cat”) for σ ∈ Σ and the text
for q ∈ Q (e.g., report “hungry-equiv.” and eat). Such meanings (text
in natural language in this example) are only in the mind of human
designer.

video and text from the Wall Street Journal. The TCM relies on

real-time embodied sensorimotor experience. Without actions,

the TCM learns nothing. Our video sequence is from a robotic

setting and its action sequence simulates real-time robot-

human interactions. Human is a part of the physical ground.

Each text word is sensed as an image. Motor inputs-outputs

are real-time, interactive and grounded. Real verbal actions

(i.e., a talking vocal tract) from an emergent model are harder

actions that roboticists need to investigate in the future.

B. Handcrafted representations: SN

Some major differences among the traditional symbolic

approaches to intelligence, many prior neural networks and

the TCM are summarized in Table I. The columns of the table

will be further discussed below, but we present the table early

so that the reader can have a global picture when he reads on.

Finite Automata (FAs) [36] are one of the most popular

symbolic temporal models that deal with time warping, se-

quential reasoning, and sequential actions. By “symbolic,” we

mean that the human designer hand picks the contents for,

and handcrafts the boundaries of, the zones (modules) in the

internal representations where each zone corresponds to an

extra-body concept, as illustrated in Fig. 3. In an emergent

model, however, there is no such static zones of extra-body

concepts, since signals from sensors and effectors can poten-

tially reach every neuron. That is, an emergent representation

arises from receptors and effectors, not rooted in meanings of

extra-body concepts.

By definition, a (deterministic) FA is a 5-tuple

(Q,Σ, q0, δ, A) where Q is a finite set of sates, Σ is

a finite set of input symbols, q0 ∈ Q the initial state,

δ : Σ×Q 7→ Q is the state transition function and A ⊂ Q is

the set of accepting states.
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TABLE I
COMPARISON AMONG TEMPORAL METHODS

Methods
Neural network strengths Symbolic network strengths TCM new strengths

Representation
Incremental Sequential Immediate Un-modeled Un-modeled

learning abstraction transfers concept states event states

Symbolic networks (SN) Handcraft No Yes Yes No No
Prior neural networks Emergent Yes No No No No

TCM (also brain) Emergent Yes Yes Yes Yes Yes

Agent

Skull open
“scene”
“car”

Symbol
boundary

Body

Extra-body environment

Objects and

background

Brain

Effector

Effector

Sensor

Sensor 

(a)

Agent

Skull closed

Body

Extra-body environment

Objects and

background

Brain

Effector

Effector

Sensor

Sensor 

(b)

Fig. 3. Agents using (a) symbolic representation and (b) emergent
representation. In (a) the skull is open during manual development
(or this is an outside model for representations inside the skull) —
the human programmers handpicked a set of task-specific concepts
using human-understood symbols and handcraft the boundaries that
separate concepts. In (b) the skull is closed during autonomous
development — the human programmers only design task-nonspecific
mechanisms for autonomous mental development and the internal
representations autonomously emerge from experience. Many neural
networks do not use the top-down connections in (b).

An FA with n states partitions all possible sequences Σ∗

from an alphabet Σ into n classes, each represented by a state.

Thus, each state defines an equivalent class of many input

sequences, since all the sequences falling into a state q will

be treated the same in the future, regardless how the sequence

arrives at the state. Such a class is typically infinite in size

because of various loops.

The classical definition of (deterministic) FA is for a lan-

guage acceptor. The class of all FA corresponds to a particular

category of languages, called regular language [36]. We need

to extend the definition to agent FA:

Definition 1 (agent FA): An agent FA (AFA) M for a finite

symbolic world is a 4-tuple M = (Q,Σ, q0, δ), where Σ is

the set of input symbols (alphabet), Q is the set of states for

output, q0 is the starting state, δ : Q × Σ 7→ Q is the state

transition function.

An example of AFA is shown in Fig. 2. Since we consider

states as also agent’s outputs, each state contains a set of

actions. A cognitive state can be considered a special case

of action, as cognition can be reported by a reporting action.

It is important to note that the AFA does not “know” the

meanings of input and output symbols, since the text that is

associated with each input symbol σ ∈ Σ and q ∈ Q is only in

the design documentation of the AFA that is understandable

only by the human designers. In fact, the exact meanings of

such documentation are not exactly the same across the minds

of human designers. Humans are typically satisfied if such

text documents appear to reach a consensus among human

communicators. Namely, text symbols are consensual.

FA is the basis of many language processing systems, such

as CYC, WordNet, and EDR [52]. Many cognitive models and

knowledge-based models are also based on FA, such as ACT-R

[2] and Soar [50].

FA has its many probabilistic variants, called SNs, to han-

dle uncertainties using parametric learning, e.g., the Hidden

Markov Model (HMM) [77], [78], Markov Decision Process

(MDP) [75], Partially Observable Markov Decision Process

(POMDP), [54], Markov Field (2-D version), and various

Bayesian nets (also called belief nets and semantic nets) [83].

The handcraft nature is also true for these probability variants

of FA. For example, a human designs a network composing

of many HMMs in which each HMM detects a word (i.e.,

a symbolic meaning) [77] or an object [29] but the nodes

within each HMM are subsymbolic. The meaning of a node

in HMM is typically not rigidly determined, but through a

pre-processing batch technique (e.g., k-mean clustering) before

parameter refinement (e.g., using the Baum-Welch algorithm).

However, the meaning of each HMM is predefined (e.g., rep-

resent a word “Tom”). For language processing, handcrafted

syntactical rules have been used [12], [42].

What about other types of automata [36], such as Non-

deterministic FA, minimum state FA, Pushdown Automaton,

Linear-bounded Automaton, and Turing machine? All types of

automata have been used to deal with primarily syntax in the

traditional theories of language acceptors, not much semantics.

For a language acceptor automaton, its language acceptance

action is only in terms of syntax. Extended by the design doc-

uments as semantics associated with an AFA, the framework

of AFA seems sufficient for modeling general purpose state-

based symbolic relationships between input strings in Σ∗ and

symbolic actions in Q. In Section VII, we will see that the

AFA theory is useful for modeling TCM external behaviors,

but not sufficient for the internal representations of TCM.

C. Brittleness of input symbols

The high brittleness of an FA arises from the symbolic

nature of input set Σ and output set Q. We first consider the

symbolic nature of the input set Σ here. The symbolic nature

of the output set Q will be considered in Sec. V-F.
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The human designer needs to handcraft Σ to well represent

all possible inputs to an acceptable precision. The number of

inputs is intractably too large and handcrafting Σ is complex.

If each input involves c concepts and each concept has v
possible values, the potential number of input symbols is vc,

exponential in c. Suppose that we have c = 22 concepts and

each concept has v=4 values (e.g., unknown, low, high, do-

not-care), the number of possible input symbols is vc = 422 =
1611, larger than the number of neurons in the brain. Here is

an example of 23 extra-body concepts: name, type, horizontal

location, vertical location, apparent scale, physical size, pitch,

yaw, weight, material, electrical conductivity, shape, color,

surface texture, surface reflectance, deformability, fragility,

purpose, having life, edibility, usage, retail price, and owner.

Although the number of real-world inputs is infinite, a hu-

man designer only considers symbolic inputs such as the those

above. Since the number is exponentially many, the human

designer further manually groups these exponentially many

original symbols into a tractable number of sets, each set being

denoted by a symbol σi. This gives Σ = {σ1, σ2, ..., σn},
where each σi, i = 1, 2, ..., n, is a symbol, defined by a set

of handcrafted conceptual conditions as feature set. However,

the number of original inputs is exponential, too many to be

checked exhaustively by the human designer for the validity

of every input symbol σi.

This results in the well known high brittleness of sym-

bolic inputs, regardless how the human designer (1) tries

to iteratively improve handcrafted conditions for Σ or (2)

uses probability (e.g., joint distribution of (σ1, σ2, ..., σn)).
For (1), iterative improvements of the definition of Σ are

ineffective since the human designer cannot check the validity

of handcrafted conditions for each symbol σi because the

number of original inputs vc is exponential in the number of

concepts c. For (2), probability will only reduce, but cannot

sufficiently, the chance of errors in each symbolic input σi

due to wrongly handcrafted conditions. The effectiveness of

probability diminishes even when the number n of input

symbols is moderate — the number of samples required to

estimate joint distribution in (σ1, σ2, ..., σn) is exponential in

the number n.

For example, the weight concept of an apple can be disre-

garded in the Σ design if the current task is to find apples in a

scene. However, such a Σ design breaks down when the robot

needs to pack the found apples and move them because the

weight concept becomes necessary. In other words, the high

brittleness of SN is intrinsic, in terms of the design for its Σ.

Furthermore, such a static design for Σ is not viable for

autonomous development, since the tasks that the agent will

learn are unknown to the programmer before the agent “birth”

and the internal representation of the agent is not accessible

to the human programmer after the agent “birth” [103]. For

example, the human programmer cannot simply design Σ as all

the words in the Merriam-Webster Dictionary, since a human

needs to learn new words in his life, beyond those in the

Merriam-Webster Dictionary.

D. Emergent representations

The brain and artificial neural networks share the same

characteristic in representation. Their internal representations

emerge from learning experience, regulated by the genome

or human programmed learning mechanisms [19], [76], [89],

[66], [90].

Definition 2 (Symbolic and emergent): In a symbolic rep-

resentation of an agent, each zone (often also called module)

represents a symbol (e.g., text as label) about a concept about

the extra-body environment. It is a human designer who

handcrafts the contents of each zone and the rigid boundaries

of the zones. An emergent representation does not allow

such human handcrafted contents or boundaries, since the

representations emerge through interactions between the brain

and its external environments.

For example, many artificial evolutionary algorithms use a

symbolic representation and they bypass development.

An emergent representation is harder for humans to under-

stand, as it is distributed in the sense that each internal element

(e.g., neuron) does not represent a pure linguistic meaning

and a linguistic meaning is not necessarily constrained within

a fixed subset of neurons. A neuron is typically involved in

representing many meanings. Partially due to this distributed-

ness, the internal representation of an area in the brain has

been largely an open problem.

Many networks are feed-forward in operation (perfor-

mance), e.g., Fei-Fei 2006 [22] and Serre et al. 2007 [84].

The Self-organization Maps [49], [64] were used mainly for

unsupervised learning. Many artificial neural networks are

also feedforward in operation, and use error back-propagation

during a separate, non-operational learning phase [106], [51],

[21]. Learning and operation are two different phases.

Other networks are recurrent in operation. Grossberg &

Coworkers [30], [31], Deco & Rolls [15], Roelfsema & van

Ooyen [81] have used top-down connections in their networks.

The Wake-Sleep algorithm [33] and the Deep Belief Nets [34]

used unsupervised learning. The bottom-up and top-down con-

nection weights are “tied” and they are learned using a greedy

algorithm through up-pass phases and down-pass phase. Sit

& Miikkulainen [85] and Weng et al. [101], [102] used top-

down connections in their laterally interactive self-organization

networks. Inspired by the top-down connections in the laminar

cortex, the Multi-layer In-place Learning Networks (MILN)

[101], [102] was originally proposed as a model for cortical

spatial pattern recognition, instead of processing temporal

information. MILN is the early spatial cortical model for TCM.

MILN and TCM do not use error back-propagation, to

avoid the lack of long-term memory in error back-propagation

methods. Like the cortex, the motor signals are directly pro-

jected into early areas for internal self-organization, because

action errors are not available during animal’s autonomous

development (e.g., trials and practice).

Interestingly, as the motor signals can be imposed by

teachers at will, this learning model allows semi-supervised

learning. As soon as the motor port is not supervised by

the teacher, the network generates its own motor signals for

practice for autonomous learning without supervision.
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Furthermore, the learning method in MILN and TCM is

in-place. The in-place learning concept is more strict than

the well known but loose concept of local learning. By in-

place, we mean that each neuron is responsible for its own

learning and computation, and there is no need for any extra-

cellular mechanisms that many local network learning methods

require. For example, there is no need for computing the cross-

correlation matrix for the input vector of every neuron. This is

important for both the biological plausibility and the brain-size

tractability in engineered systems.

E. Emergent representation with states

A state represents a temporal context in a system, like an

FA. It should represent spatiotemporal context in general, but

this work focuses on temporal processing.

As reviewed by Ivry & Schlerf [40], there are two frame-

works with regard to how the brain (or a network) deals with

time, one using dedicated temporal components and the other

using a network without dedicated temporal components.

In the first framework, called time-dedicated framework,

the main scheme for longer time dependency is to create a

sequence of delay units. Examples of such scheme include

Hochreiter & Schmidhuber 1997 [35], Lin et al. 1996 [53],

Wiemer 2003 [107], and Drew & Abbott 2006 [17]. All these

models explicitly model time in the internal representation and

network behaviors.

In the second framework, called time-nondedicated frame-

work, the temporal behaviors of brain (or network) are con-

sidered an emergent outcome of intrinsic cellular mechanisms.

We discuss the second framework below.

F. Emergent time-nondedicated framework

Intracellularly and extracellularly, the concentration of a

type of molecules (e.g., morphogens, neural transmitters, and

neural modulators) takes time to build, and the concentration

tends to dissipate spatially through time. Such graded temporal

mechanisms are involved in the operation of a cell, as well as

the development of tissues, organs, and the wired structure of

the brain. They arise from the interactions of multiple cells,

each using its intrinsic intracellular mechanisms. Nevertheless,

they seem unlikely the major players in generating fast-

changing brain responses that have a long-term dependency

on environmental events.

Two types of models have been proposed within the time-

nondedicated framework: (1) the internal state type where

states are not directly observed and shaped by the external

environment; (2) the external state type where states are

directly observed and shaped by the external environment.

The internal state type includes randomly connected units in

a hidden area, such as the Buonomano-Merzenich network [9],

LSM [61], LSTM [35], ESN [41], and Reservoir Computing

[60]. The basic idea is that a randomly and recurrently

connected internal hidden area H should respond sequentially

to an input sequence. If every different moment of the state

sequence is represented by a unique firing pattern of H ,

the firing pattern of H should can represent all temporal

information of the input sequence without ambiguity. The

output area can then “read out” the firing pattern of H using

a logic-OR like mechanism. However, as we will discuss

in Sec. V-F, the number of sequences is exponential in the

temporal length of the input sequence. A finite number of

neurons in H causes some different sequences to have a very

similar firing pattern, causing unpredictable “collapses” (or

near “collapses” in the numerical space) between sequences

that require different action outputs. The longer the required

time dependence, the more “collapses” may occur.

Another problem is also severe: Such internal states are

“concrete” — depending on actual sensory forms instead of

actions. Such internal states do not “collapses” when they

should, different from the recurrent abstract states of FA which

enable skill transfers discussed in Sec. VII-F.

G. The trap of internal interference by human designer

For the above reason, LSTM [35] and oscillator-based

models [67] introduce task-specific (handcrafted) logic-like

mechanisms into internal hidden area H to maintain some

handcrafted short-term memories over long time periods; but

this belongs to manual internal interference by the human de-

signer, resulting in a task-specific symbolic network, although

some components of the area H are emergent.

H. Emergent and time-nondedicated: External states

DN is an emergent and time-nondedicated brain model [97],

[98]. TCM is its temporal name. The states of TCM are how-

ever externalized — open to the external environment. Since

the external states are observable, teachable and shapeable by

the external environment, TCM allows external supervision

(which is emergent too!) to recursively and incrementally map

different sequences into the same state, analyzed using the FA

theory here. Interestingly, such external supervisions arise not

only from the external human teachers and the deeper causality

of the physical external world (e.g., when the earth shakes, it

shakes me too), but also from the brain’s own actions resulting

in autonomous self-learning (e.g., trials and errors). Thus,

TCM is a temporal model that both the external environment

and the internal environment (i.e., the brain itself) can teach.

Yet, no neuron or any module inside TCM has a dedicated

identification with respect to time. For example, TCM can

maintain or disregard temporal information dynamically de-

pending on context. For example, in a context the time duration

information must be disregarded (e.g., text reading discussed

below); but in another context the time duration information

must be precisely counted (e.g., perceiving the duration of a

visual event [40]).

As far as the authors know, the TCM here is the first

published emergent method that has demonstrated not only

long term dependency in behaviors but also incorporation

of both duration-insensitive behaviors and duration-sensitive

behaviors.

IV. TEMPORAL MECHANISMS

This section provides a conceptual overview of existing

mechanisms for temporal processing before presenting the
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Sensory bank of Y
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 Basic unit as a bridge:

representation
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Fig. 4. Two types of temporal architectures using emergent represen-
tations. (a) Hidden feedbacks: the hidden area H has local feedbacks.
(b) Bridge with sensory and motor banks: Each cortical area Y serve
as a “bridge” that helps to predict the signals in its two banks X and
Z.

concept of the TCM new temporal mechanism. They are

mechanisms used by some practical models.

All temporal mechanisms fall into two categories, symbolic

and emergent. In the first category, the unit of temporal

windows is symbolic in nature. In the second category, there

are two existing temporal approaches, (i) temporal windows

and (ii) feedbacks that are local and hidden. The new temporal

mechanism of TCM does better than all those existing mech-

anisms. It belongs to the emergent category, and it is a new

temporal approach: (iii) feedbacks that are global and open.

Shown in Section VII, the new TCM mechanism is logically

as clean as symbolic models.

We first discuss, in the following three subsections, major

existing techniques to deal with time.

A. Background: Symbolic state-based models

An FA with word labels as inputs is shown in Fig. 2. It

drops stop word “well,” to map phrases of different lengths to

equivalent context states. For example, state z4 indicates that

a legal noun phrase (NP) followed by a verb phrase (VP) of

an equivalent class (meaning “kitten looks” or the alike) has

been detected. However, this FA is static once handcrafted.

It cannot deal with new words or new sentences [103].

Thus, this temporal mechanism is not suited for autonomous

development.

B. Background: Temporal windows in emergent models

An intuitive way to deal with time is to use a temporal

window of a certain length n as a working memory [93].

However, such an intuitive way cannot deal with time of

arbitrary length and time warping. The number of cases

observable in a temporal window of length n is exponential in

n: O(kn), where k is the size of the vocabulary. Each eye has

only one retina which cannot store n images for a moderate

n. This mechanism is not scalable to long temporal context.

C. Background: Hidden feedbacks in emergent models

For a neural network, we denote X as its vector input port

and Z its vector output port. A major temporal mechanism

for output Z to depend on multiple frames in X is to create

a local feedback as illustrated in Fig. 4(a).

Examples of such local recurrence include the Hopfield

network 1982 [37] (X-to-X feedback where X = Z), the

Boltzmann machine 1985 [1] (the stochastic counterpart of

Hopfield network), the Jordan Network 1986 [46] (Zd as Z
node-wise delay, Zd node-wise recursive delay loops, and H
takes input from X and Zd), and the Elman Network 1990 [18]

(Yd as Y node-wise delay, and H takes input from X and Hd).

Such local loops provide a context of only a limited temporal

length, since the temporal context fades away exponentially

as the delayed vector is recursively mixed with the current

inputs.

For a longer time dependence, the Buonomano-Merzenich

network 1995 [9], LSTM [35], LSM [61], ESN [41], CTRNN

[109], and the Reservoir Computing [60] extended the hidden

area H to a large randomly locally connected recurrent area.

The memoryless output port Z reads the response from the

hidden network H in a task-specific fashion through an explicit

search [9] or an implicit search via a gradient-based technique

[61], [41] for H-to-Z connection weights. RTRNN [109], [72]

further used two different subareas of H , one with a fast, and

another with a slow, leaky current of the unit’s membrane

potential. Since the hidden H network is randomly generated

and has a larger number of neurons, the H network serves as

a separator of temporal sequences from X . Such a separator

suffers from the memory fading problem — the current firing

pattern in H depends increasingly less on older values in X .

LSTM [35] and oscillator-based models [67] handcrafted task-

specific mechanisms in the network H so that certain short-

term temporal memory can be kept for as long as the task

needs. Reservoir Computing [60] extended the ideas of the

above networks by considering the hidden network H as a

reservoir, which is randomly connected and can also be learned

using some gradient-based techniques.

We will see in Sec. V-B that the number of sensory

sequences of length n that must be distinguished is exponential

in n. Since the above schemes require the hidden area H
to learn in an unsupervised way, an exponential number of

sensory sequences needs to be distinguished by H , which is

impractical for a task of a moderate sequence length.

Another major limitation of such hidden-area schemes is

the lack of generalization power, because of the absence of

systematic state equivalence and state-based skill transfer.

D. New emergent model: Open and global motor feedbacks

Our basic TCM architecture theory is based on the following

scheme. The concepts of sensor and motor are relative. If

two areas A and B are directly connected to each other bi-

directionally and A is closer to sensors and B is farther, B
is then the motor area of A and A is the sensory area of B.

Fig. 4(b) shows a basic unit of TCM, with its internal area

Y bidirectionally connecting with its sensory area X and its

motor area Z.

The above TCM architecture is based on extensive neu-

roanatomical studies available as early as early 1990s [24],

[108], [10]. Almost all connections between two brain areas
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are bi-directional. Both types of feedbacks exist, cortical

feedbacks (within a cortical area) and cortico-cortical (between

cortical areas).

Cortical feedbacks (within a cortical area) have been mod-

eled by the LCA [100] theory, which models how a cortical

area A deals with its cortical connections within its area while

taking its cortico-cortical inputs from other areas. As shown

in Fig. 4(b), the input space to Y area is the space X × Z,

defined as {(x, z) | x ∈ X, z ∈ Z}.
Cortico-cortical (between cortical areas) feedbacks have

been reported by extensive neuroanatomical studies [24],

[108], [10]: Later cortical areas extensively feedback to earlier

cortical areas. For example, not only V1 connects to V2 in

both ways, but also V2 connects to V3 in both ways. Further,

V1 connects to V3 also in both ways, although the amount of

connections is relatively minor, because, we predict, that the

statistical correlation between V1 and V3 are not as strong as

those between consecutive areas.

We use the intuitive term “brain” to refer to the central

nervous system, which includes the spinal cord, the lower

brain, the mid brain and the forebrain. These different brains

deal with different sensory and motor modalities, as well

as their integration. For example, the spinal cord at Y area

handles the somatic sensory port as its sensory bank and the

limb effector port as its effector bank. The forebrain seems

to integrates all sensory modalities (e.g., visual) and all motor

modalities, while taking all sensory ports, all lower brains, and

all effector ports as its banks.

Therefore, in general, we model a brain area Y (e.g., a

Brodmann area [47, pp. 325-328]) to have its sensory area

X and its motor area Z as illustrated in Fig. 4(b), regardless

where it is in the brain, the spinal cord, cerebellum, brain stem,

or cerebral cortex. Often, it is not obvious which area is closer

to sensors, e.g., an area (e.g., LIP) between two pathways (e.g.,

the dorsal and ventral pathways). As we will see, the learning

mechanisms for two connected banks X and Z are largely

symmetrical. Thus, between X and Z, which is sensory and

which is motor is immaterial.

If the sensory area X is the retina and the motor area Z
consists of all the muscle neurons, the basic cortical unit Y is

the entire brain. The detailed structure in Y emerges to reflect

the statistics of the signals in X and Z. The more resources the

brain Y has, the better approximation the two-way mapping

can predict between its sensory area X and its motor area Z,

and thus, more sophisticated capabilities the brain can acquire.

For simplicity in understanding and in experiments, we

will use a canonical symbol-vector mapping: Each symbol

is mapped to a different neuron in X and Z. Thus, in the

mind of human observer, the highest responding neuron in

X and Z represents the corresponding symbol. However, this

canonical representation is wasteful. In general, multiple motor

neurons are allowed to fire concurrently in X and Z. For

a d dimensional space X , the number of different binary

patterns is 2d, exponential in d. Therefore, the input area X
can represent virtually any practical number of inputs. For

Z, different muscles can be active concurrently to generate

complex action sequences.

As far as we know, the scheme of motor-assisted temporal

abstraction further analyzed below seems the first computa-

tional model that explicitly models how the spatial brain deals

with time without explicit mechanisms that are dedicated ex-

clusively to time. The early idea and preliminary experimental

results where first published in 2008 [58] and 2009 [104],

[105].

V. ANALYSIS OF THE TEMPORAL PROBLEMS

This section provides deeper insight into the challenges of

temporal information processing and the daunting computa-

tional complexity that a general-purpose temporal brain faces.

It explains why prior temporal mechanisms are not as effective

as TCM from an analytical point view.

We need to first discuss the modalities of sensory input first

so that the analysis is applicable to various sensory modalities.

A. Generality for sensory modality

A sensory input or a motor output at any time t can

be considered an image, a receptor firing pattern in retina,

cochlea, or skin. A motor response vector is also an image of

the responses from an array of muscle neurons. An image is

represented as a vector, where components are indexed either

along a 1-D axis, on a 2-D plane, or in a 3-D volume. The

brain-inspired TCM is applicable to any sensing modality and

any effecting modality, as long as the sensory port and the

motor port are properly defined for the agent.

The same is true for a text input modality, e.g., printed

or hand-written. However, unlike traditional processing tech-

niques that treat text inputs as a sequence of symbolic words,

TCM treats such inputs as a sequence of temporal images,

like an eye scanning text in time. For example, each word

may be “fixated on” by the “eye” of TCM for a duration

that spans multiple discrete time frames. This consideration is

important to deal with the well known problem of temporal

time warping: At different times you read a given page, your

eye scans the text on the page with a different speed.

For simplicity, we assume electronic word inputs, through

which a unique electronic code is received representing a

predefined word. An English sentence s is composed of a

series of word labels: s = (w1, w2, . . . , wl), where l is the

length of the sentence. A space after a word is a word

terminator, but more than one consecutive space are treated

as a single space. All normal English punctuation marks are

also treated like words. Each word is represented as an image.

B. Recursive temporal abstraction for sensory inputs

What representations should TCM generate internally when

it receives one word at a time? At one extreme, every

subsequence from the first word of a book corresponds to

a different context state and needs a different motor action.

This type of representation is not very useful as such a state

is hardly shared by another experience. At another extreme,

every single word corresponds to a different internal state and

a different motor action regardless the words preceding it. This

type of representation is not powerful either as the machine is

only a word-based reflex agent. It cannot make sense from a



13

sequence of multiple words. Thus, we must consider an input

sequence of an arbitrary length but enable a temporal action

to be generalizable.

Suppose that a temporal action is based on n image frames,

x1,x2, ...,xn where xi ∈ X , i = 1, 2, ..., n, and X = Rd.

A direct batch estimation of probability density of this

sequence deals with joint probability density p(x1,x2, ...,xn)
in (nd)-dimensional space directly. This is intractable for even

a moderate n because of the exponential complexity: Suppose

that there are m different vectors in X , the number of sensory

sequences of length n in the form of x1,x2, ...,xn above is

mn, exponential in n. In Sec. III-C, we have derived that the

number of potential input symbolic objects in X is m = vc.

Then, the number of different sensory sequences of length n
is mn = (vc)n = vcn, growing exponentially in cn.

In a recursive manner, we can factor the probability density

p(x1,x2, ...,xn) = p(x1)
n∏

i=2

p(xi | x1,x2, ...,xi−1).

This is recursive estimation of temporal distribution of sensory

inputs. However, it is still impractical to estimate the condi-

tional probabilities p(xi | x1,x2, ...,xi−1) because the number

of sequences in the form of x1,x2, ...,xi−1 is vc(i−1).

In syntactic language processing [42] and in temporal

Bayesian networks [91] it is typical to hand label the equiv-

alent class of word string x1,x2, ...,xi−1 as equivalent tem-

poral state φ(x1,x2, ...,xi−1) so that the probability above is

equivalently replaced by

p(x1,x2, ...,xn) ≈ p(x1)

n∏

i=2

p(xi | φ(x1,x2, ...,xi−1)).

This corresponds to recursive estimation of temporal dis-

tribution using recursive abstraction of sensory inputs —

from many concrete sequences in x1,x2, ...,xi−1 to a single

abstract class φ(x1,x2, ...,xi−1).
Many existing formulations of (symbolic and connectionist)

language processing models belong to this framework (e.g.,

[20] and the review therein), in the sense that they are

classifiers for input sequences.

C. Abstraction from input batch to the action

The behavior is the major goal for the brain, instead of its

representation of sensory space. Many parts of sensory inputs

(e.g., the exact duration of each syllable or stop words) are not

relevant to actions. With the TCM model, the major goal of

development is to produce the most likely actions zn, a vector

for actions, that are appropriate for the agent age group. That

is, it is the behavioral distribution

p(zn | φ(x1,x2, ...,xn−1)), n = 1, 2, ... (7)

that is the focus of development, instead of the estima-

tion of the higher dimensional distribution of sensory inputs

p(xi | φ(x1,x2, ...,xn−1)).
The following aspects further motivate the above formula-

tion.

First, motor actions can be externally observable, but

the same is not necessarily so for the temporal abstraction

φ(x1,x2, ...,xn−1) for sensory inputs, as the agent is “skull-

closed”. Not all the details in φ(x1,x2, ...,xn−1) are necessary

for the desired motor actions from an agent at certain age.

Only information (e.g., excluding the absolute vector length)

that are necessary for generating actions should be considered.

Second, the action zn−1 can be abstract. Each action vector

zn−1 from TCM is one of many instances of the abstract class

(e.g., reporting a class label). The motor action zn−1 lumps

many different but equivalent spatiotemporal input sequences

of various temporal lengths (e.g., various ways of expressing

“jealousy”) into a single instance zn−1 that belongs to the

abstract class (e.g., saying “jealousy”). This is because TCM

produces different action values almost all the time, even

with the canonical motor representation. For canonical motor

representation, e.g., we consider the abstract action as the

component that has the highest response value in the action

vector zn−1. Thus, although each action instance itself is

concrete, in the mind of the human observer each action

is abstract, representing the abstract meaning of the highest

responding motor neuron (muscle).

Third, each action zn−1 can represent any human communi-

cable abstract concepts. All such concepts are coded abstractly

by a human language (e.g., “anger” or “jealousy”) and can be

said, written and signed though motor actions.

Fourth, part of each action zn−1 can be covert. When you do

not want other to hear your voice, you can say very softly so

that only yourself hear it as a rehearsal. However, your overt

action is still going on. Thus, TCM can privately rehearse

using its covert part of actions.

D. Recursive action abstraction

Eq. (7) corresponds to batch processing, for every sample

time, t = 1, 2, .... The brain cannot collect and keep all inputs

from the birth x1, ...,xn−1 and produce an action zn.

However, as discussed above, zn−1 can be abstract and

sufficiently rich so that zn can use zn−1 as attended temporal

context instead of the intractable x1, ...,xn−1. The TCM

network recursively converts an intractable problem on the

left below to a tractable one on the right:

max
zn∈Z

p(zn | x1, ...,xn−1) = max
zn∈Z

p(zn | zn−1,xn−1) = z∗n

where zn−1 recursively abstracts like zn. Although such an

agent is reflexive with states [83], the abstract nature of zn−1

makes this much simpler agent to be equivalent to the very

complex agent on the left side. Of course, the learning of zn−1

is critical for the effectiveness.

E. Prediction for both actions and inputs

Recursively, the TCM treats the best z∗n as the action to be

attended in this context.

z∗n = fz(zn−1,xn−1) = max
zn∈Z

p(zn | zn−1,xn−1) (8)

where fz : Z ×X 7→ Z is the action prediction function for

the continuous spaces X and Z. It is important to note that

the action z∗n includes also the cognitive state, as illustrated

in Fig. 2.
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Fig. 5. Sequential decision making or spatiotemporal motor action
using framewise motor-assisted temporal abstraction by a basic 3-area
unit TCM. At each temporal unit shown above, three basic operations
are possible: link, drop prefix, and drop postfix. After proper training,
the TCM is able to attend any possible temporal context.

We call this temporal scheme, the framewise motor-assisted

abstraction scheme for the prediction of zn. It uses a spatial

network to deal with general temporal contexts.

Likewise, the prediction can also be done for xn to predict

the attended part in the sensory input xn, to relatively suppress

the unattended part in xn, and to reduce the noise in the

attended part in xn:

x∗
n = fx(zn−1,xn−1) = max

xn∈X
p(xn | zn−1,xn−1), (9)

where fx : Z×X 7→ X is the sensory prediction function for

the continuous spaces X and Z.

Now, considering continuous time but sampled at discrete

times, t = 0, 1, 2, ..., mathematically, Eqs. (8) and (9) com-

bined give the temporal function below.

X(t− 1)× Z(t− 1)
f
−→ X(t)× Z(t). (10)

where f is a recursive function for temporal processing where

Z has a full freedom of representation — representing the

necessary, often abstract, spatiotemporal state which can be

supervised by the external and internal environments.

Furthermore, as we will see, the response function f of

TCM approximates the underlying probability, because the

optimality of z∗n and x∗
n as the next zn and xn, respectively.

The TCM model relates to probability variants of FA, such as

HMM, MPD, POMDP, and Bayesian nets.

However, the internal representations in a TCM are emer-

gent instead of handcrafted. As we will see next, because

internally TCM is based on top winners from competition,

it does not need to require that all the responses sum to 1, an

idea also used in fuzzy logic. This more flexible framework

is inspired by the lateral inhibition mechanisms found in the

cortex. Olshausen & Field [69], [70] proposed that the cortex

uses sparse coding in the sense that few neurons in each

cortical area fire at any time. Our argument here, based on

the LCA theory, is that sparse coding is not only useful for

generating local features (i.e., only a part of the receptive

field is non-zero) as argued by Olshausen & Field, but more

critically, necessary for allowing all other neurons do not fire

and update so that their long-term memories are kept.

At this point, our analysis has not addressed the internal

representation yet. Let us analyze what will happen if we do

not use internal representation.

F. Brittleness of symbolic states

Using symbolic networks (SNs), a human handcrafts sam-

ples in X and Z as symbols in Σ and Q, respectively. Using

such symbolic coding, Eq. (8) corresponding to the state

transition function of a handcrafted SN. An SN does not

predict input symbols in Σ and therefore it does not do fx
in Eq. (9).

Suppose that we need to handcraft an SN to understand

text in a natural language [4]. Each xi in (x1,x2, ...,xn−1) is

classified by a symbolic word σ. For simplicity, we consider

FA first. Then, Eq. (8) becomes deterministic. Suppose that

each xi represents an typewriter symbol, one of “A” to “Z”

and punctuation symbols, etc. However, this means that the

FA has to deal with misspelled words, desirable but intractable

by our human designer. Instead the human designer handcrafts

only meaningful strings that form valid English words. Eq. (8)

becomes

q(tn) = δ(q(tn−1), σ(tn−1))

where we use symbolic input σ to classify the real vector

input x, the symbolic state q to classify the real vector output

z, and δ to denote the symbolic function corresponding to fz .

We will see in the next subsection that the above expression

corresponds to the transition function q′ = δ(q, σ) of FA.

Then, the handcrafted state q must contain all the necessary

information of the equivalence label φ(x1,x2, ...,xn−2) so

that q and σ are sufficient for δ to find the unique q′.
We now consider the brittleness of Q of all SNs discussed in

Sections III-B. A human manually merges multiple symbolic

sequences in the form x1,x2, ...,xn−2 into each handcrafted

symbolic state q = φ(x1,x2, ...,xn−1) in Q, so that Q
becomes a set of output states.

As we discussed in Sec. III-C, the number of different

symbolic inputs in x ∈ X is m = vc for c concepts. The

number of sensory sequences in the form of x1,x2, ...,xn−1

is then mn−1 = (vc)(n−1) = vc(n−1), exponential in c(n−1).
Therefore, it is intractable for a human designer to check

the consistency of every q ∈ Q, for all the vc(n−1) sensory

sequences. This corresponds to the high brittleness of an SN

in terms of its handcrafted symbolic states in Q.

HMM and POMDP use probabilities for q ∈ Q to alleviate

the problem with wrongly handcrafted states. Nevertheless, as

we discussed earlier for input symbols, probability in terms

of q can only reduce but cannot eliminate errors in each

inappropriately handcrafted state q.

Therefore, due to the brittleness of Σ and Q, the high

brittleness of SNs is intrinsic, seemingly unsolvable.

G. Collapse of sequences in unsupervised hidden area

The exponential number of sequences in x1,x2, ...,xn−2

above also account for the lack of sequence generalizability

of all prior temporal neural networks reviewed in Sec. IV-C,

such as Hoffman nets, Jordan nets, Elman nets, LSM, LSTM,
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ESN, and Reservoir Computing. Regardless whether the in-

ternal hidden area H is randomly constructed, handcrafted,

or learned using a gradient based method, the number of

temporal sequences in the form (x1,x2, ...,xn−2) that must

be distinguished is exponential in the length n − 2. Suppose

x is represented by symbolic σ, and each σ is a word.

Suppose that Σ contains 1000 English words, the number of

all possible 4-word phrases in the form of (σ1, σ2, σ3, σ4)
is 10004 = 1012, more than the number of neurons in the

brain. The human designer must partition all 1012 4-word

phrases into a moderate number m of states. Again, the human

designer is not able to check all these 1012 4-word phrases to

be meaningful ones and meaningless ones (to output to a state

q representing “nonsense sentence”), leading to the brittleness

of states in Q.

H. Using internal representations

Eq. (10) does not address whether internal representation is

used.

An FA does not use any internal representation, as its Σ and

Q are all handcrafted, static and rigid. Because of the incon-

sistencies observed in real applications, HMM and POMDP

extended from FA so that their state transition δ : Q×Σ 7→ Q
becomes probabilistic. Bayesian nets are special forms in the

sense that nodes have additional symbolic conditions of other

nodes. The probability values of state transitions are learned

based on the handcrafted boundaries inside the FA base. In

such SNs, there are two layers of probabilities, those of each

σ ∈ Σ and those of each q ∈ Q. The HMMs, POMDP, and

Bayesian nets typically treat the uncertainty of σ ∈ Σ as that

of q ∈ Q (hence the term “hidden”).

Fig. 5 illustrates how TCM uses internal representation as

Y area to conduct this two-way prediction for both X and Z.

The concept of internal representation of TCM does not

apply to SN because SNs are not developmental. Although

the internal connections of TCM have close relationships

with probability as we will see, they are for components

of emergent vector representations in general, instead of a

symbolic concept of the external environment.

Only developmental agents have “skull” closed network

(e.g., brain or network) whose development is autonomous

throughout the lifetime. For example, the cortical areas X , Z
and Y of TCM use distributed representation which is dynamic

and adaptive. The areas X and Z have their external ports open

to the environment, The Y area and its connections with X
and Z are internal representations inside the “skull”.

Computationally the expression in Eq.(8) is achieved by

in-place computation of three areas X , Y and Z. Suppose

that Y bi-directionally connects X and Z. We consider Y a

bridge between X and Z. From each input from both sources

p = (x, z) ∈ X × Z, the area Y uses is emergent memory

V = (v1,v2, ...,vc) to compute its response vector y as a

representation of the top-k matches among V :

y = f [top-k max
1≤i≤c

r(vi,p)] (11)

where r(vi,p) is the pre-response which measures the good-

ness of match between vi and p, and f is a dynamic nonlinear

function [100] that takes top-k pre-responses and maps each to

a standard response range (0, 1] according to its rank among

the top-k winners so that y is a sparse vector — only a

small number k of its components in y are non-zeros and

the top one neuron always give a response value 1. Such

a basic cortical unit is illustrated in Fig. 1. The top-k like

competition is probably realized by lateral inhibition among

neurons through fast network updates. Using slower software,

we take advantage of top-k sorting to find the top-k winners

in each network update. This shows an advantage of digital

computer, although top-k sorting itself is not in-place.

Let us consider text sequence. Given a sentence s =
(w1, w2, . . . , wl), the TCM scans one frame (or word) wi

at a time, learns and operates incrementally. Occasionally, its

actions are supervised. During the testing phase, the adaptive

part of the network (weights and neuronal ages etc.) can be

fixed to avoid update during testing.

Consider the three-area network in Fig. 1, running at dis-

crete times t = 0, 1, 2, .... This is without loss of generality,

as well known in digital signal processing — an appropriate

sampling rate can always sample any continuous flow to

a required finite precision. The area Y takes the top-down

input z(t − 1) from Z as the top-down temporal context

and the bottom-up input x(t) from X which represents the

current image or word. Its area function implemented by LCA

maps x(t),y(t), z(t), based on its area memory Ny(t), to its

response y(t+1) and updates the area memory to Ny(t+1):

(y(t+ 1), Ny(t+ 1)) = f(x(t),y(t), z(t), Ny(t))

where f indicates the generic area function in Eq. (1). The

areas X and Z compute in the same way.

During the next network update, area Z takes bottom-up

input y(t+1) from Y , based on its area memory Nz(t+1), to

its response z(t+2) and updates the area memory to Nz(t+2):

(z(t+ 2), Nz(t+ 2)) = f(y(t+ 1), z(t+ 1), Nz(t+ 1))

where f indicates the generic area function in Eq. (1). If the

teacher wants to supervise the motor, impose the desired value

z(t+ 2). The areas X and Z compute in the same way.

Viewed internally, each area Y update realizes X×Z 7→ Y
internally, there X and Z are its two connected areas. Viewed

externally, two network updates realize not only the forward

mapping X × Z 7→ Z for action generation but also the

backward mapping X × Z 7→ X for attention selection.

This 3-area TCM seems to be applicable to a generic brain

area. For example, if X is V1 and Z is V3, then Y is V2. If

X is all receptors and Z is all the motor neurons and glands,

Y is the entire brain (central nervous system). However, this is

a theoretical computational prediction. Extensive neuroscience

studies are needed to verify this prediction.

I. Temporal attention

At each frame time, there are three basic operations of

temporal attention as illustrated in Fig. 5, determined by what

is learned at motor output z(t+ 2):

1) Link: If z(t+2) represents the context z(t) followed by

x(t), the network “links” contexts to make the temporal
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context longer. For example, if z(t) = φ(abc) and

x(t) = d, then z(t + 2) = φ(abcd), linking the class

of abc with the class of d.

2) Drop prefix: If z(t+ 2) represents the equivalent class

of x(t), the network “drops” the prefix. For example,

if z(t) = φ(abc) and x(t) = d, then z(t + 2) = φ(d),
dropping the prefix abc.

3) Drop postfix: If z(t + 2) = z(t), the network “drops”

input x(t) as it keeps the last context z(t). For example,

if z(t) = φ(abc) and x(t) = d, then z(t+ 2) = φ(abc),
dropping the postfix d.

Fig. 5 indicates that it takes two network updates for the

effect of x(t) to start to show up at the motor end as z(t+2).
When the teacher likes to supervise the action at the motor

end, he should consider this effect.

J. Observations

Unlike the “ bag of words” approaches where the order of

words is not considered to avoid otherwise the exponential

complexity, we will use the text scan mode and reduce the

exponential complexity to linear complexity. As far as we

know, TCM is the fist system that uses actions to abstract

for fully automatically generated spatiotemporal internal rep-

resentations. In natural systems, such actions are not always

correct, but can be corrected through interactions. This is in

contrast with, e.g., HMM based speech recognition methods

which use a static handcrafted structure of multiple HMMs.

VI. FUNCTIONS OF REPRESENTATION

Unlike an SN, TCM uses emergent representation as shown

in Fig. 4(b). Instead of a single symbolic state at any time as

illustrated in Fig. 2, a 3-area TCM has 3 levels of distributed

representation, one for each area A ∈ {X,Y, Z}.

A. Internal neurons as soft AND of X and Z

Given any input pair p = (x, z), LCA finds the top

neuron(s) who gives the highest pre-response r(p,vj) (i.e.,

best matching). Thus, the best matched neuron j serves as the

representative of unknown input p. As indicated in Eqs.(2)

and (3), both components of x and z must match well with

top-k v’s:

p ≈ vj1 ,p ≈ vj2 , ...,p ≈ vjk .

Thus, the Y area serves as a soft AND: All the corresponding

components in x and z must match well with the top v. This

soft AND is due to (1) there is a sufficiently large number c
of neurons in Y and (2) that the response of Y is sparse (i.e.,

k/c is very small), so that only the best matched neurons can

fire.

B. X and Z neurons as soft OR of Y cases

Consider a motor neuron i in the motor area Z. Whenever

the neuron i is supervised to fire at value 1 at time t, a neuron

j in area Y has the highest value 1. Then the weight that links

these two neurons, j in area Y and i in area Z, is strengthened.

Therefore, the more often neuron j fires conditioned on that

neuron i fires, the higher the weight from j to i. Therefore,

all the neurons in area Y that have co-fired with neuron i in

area Z have non-zero weights. Therefore, either of them may

cause the motor neuron:

Any of connected Y neurons fires ⇒ Motor neuron i fires.

This soft OR relationship is due to (1) that y in area Y is

sparse at any time and (2) multiple cases of y vectors fit the

same neuron in area Z.

It is worth noting that the motor area does not use top-

k competition since any number of motor neurons can be

supervised to fire at any time. Similarly, multiple “pixel”

neurons can fire concurrently in X . In other words, since

X and Z are exposed to external environment, there is no

guarantee that their responses are sparse. In contract, the top-

k mechanism for Y can always guarantee the sparseness.

C. Prediction for image and motor

The above two properties combined enable TCM to predict

patterns in X and Z based on temporal context. That is,

the correspondence from temporal context to the desired Z
output is based on case-based recall, as a brain inspired content

addressable memory. The Theorem 6 in Section VII indicates

that such a temporal context can be learned to be highly

selective spatially and temporally, and of any temporal length.

The prediction for X reduces noise, stabilizes images,

and suppresses unattended regions; and the prediction for Z
generates learned external behaviors as outputs from Z and

abstract states as input from Z.

D. Almost no local minima

Intuitively, as long as there are a sufficient number of

neurons in area Y and there is a sufficient amount of training

experience, the trained TCM can approximate and predict

high dimensional signals in X × Z to a desired precision

based on temporal context learned from past experience.

This TCM scheme seems to largely avoid the problem of

local minima with the existing methods, such as the error

back-propagation methods [106] and other explicit nonlinear

search methods [59]. This is because the TCM does not have

an objective function which generates very complex rough

nonlinear “terrains” through which a maximum location is

sought. The generative version of TCM learns immediately

and error-free as established by Theorem 1.

E. Internal sensing and actions

Weng 2007 [93] proposed a Self-Aware Self-Effecting

(SASE) mental architecture, which contains internal sensors

and internal effectors, in addition to external sensors and

external effectors that sense and act on external world (outside

the brain). With the TCM, internal actions (e.g., internal

attention) involve all top-down projections from the area Z
to the area Y and from the area Y to the area X but they

also require other two types of connections (bottom-up and

lateral) to function. External and internal sensing involve all

bottom-up connections in TCM, but they also require other
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types of connections (lateral and top-down) to function. The

reader is referred to Weng 2007 [93] for the meaning and the

importance of internal sensing and internal action.

VII. PROPERTIES

Based on the above discussion, we are ready to present

major properties that are of paramount importance to temporal

processing in TCM.

Let us first gain an overall perspective. The representation

in the motor area of TCM is recursively used as a temporal

state for subsequent cortical processing. For example, in Fig.

2, “young cat” and “kitten” should lead to the same equivalent

state. If the state was not open and supervised (calibrated in

general) by the teacher, there is no guarantee that internally

“young cat” and “kitten” lead to the same state. If the state was

not used as a top-down condition for the next internal cortical

processing, there is no guarantee that all equivalent context

sequences (e.g., “young cat” and “kitten”) are treated exactly

the same in all future processing so that the current skill is

transferred to all equivalent context sequences in the future.

However, due to the “skull closed” nature of autonomous

development, the required internal representations inside the

“skull” of TCM must emerge, and such emergence must be

fully autonomous inside the skull.

A. For any AFA there is a learning TCM

In a static symbolic world, a static AFA can be handcrafted

to model the complex symbolic decision process of an agent

working in the symbolic world.

Learning an FA by a network has been an extensively

studied subject. Although it has been known that a feedforward

network is a general approximater, this theoretical result was

proved based on an existence proof. How a network can

effectively approximate an FA has been of keen interest in the

artificial neural network community. In addition to the neural

network models for temporal processing discussed above,

some studies have investigated how a network can approximate

an FA.

All the existing models on simulating an FA by a traditional

neural network (TNN) require a handcrafted encoding of every

state q ∈ Q and a handcrafted encoding of every input symbol

σ ∈ Σ. In other words, the states of the TNN cannot arbitrarily

emerge like the Z area of DN. DN allows a naturally emergent

representation in Z and Σ because of each internal neuron in

Y learns the pattern of every σ ∈ Σ and every q ∈ Q.

Frasconi et al. 1995 [26] used a feed-forward network to

explicitly compute the state transition function δ : Q×Σ 7→ Q
of an FA. Their network requires (1) a special canonical

binary coding of the states so that the Hamming distance

is 1 between any source state q and any target state q′, (2)

an additional intermediate state is added if the source state q
and target state q′ are the same, (3) the entire state transition

function δ is known a priori so that their algorithm can directly

compute all the weights as a batch (i.e., compiled, instead of

learned incrementally). This compiled network uses a layer

of logic-AND nodes followed by a layer of logic-OR nodes.

Frasconi et al. 1996 proposed a radial basis function as an

alternative compiled feed-forward network for the above logic

network [27] since a finite number of samples is sufficient for

completely characterizing the FA due to its symbolic nature.

Omlin & Giles 1996 [71] proposed a second-order network

for computing the state transition function of a fully given FA.

By 2nd order, the neuronal input contains the sum of weighted

multiplications (hence the 2nd order) between individual state

nodes and individual input nodes. The multiplication in a 2nd

order network serves as a logic AND between the state and the

input symbol in the required encoding scheme. The network

Omlin & Giles 1996 is also statically “programmed” by a

human programmer based on a fully given FA. Forcada &

Carrasco 2001 [25] gave a good survey of the related work.

The above studies aimed to successfully compute the

state transition function using a programmed network from

a statically given FA, but they do not generate emergent

representations, do not learn, do not deal with natural input

images, and do not deal with natural motor images, let alone

incremental learning. In our text-based experiments discussed

in Sec. VIII-B, we used an encoding for σ ∈ Σ and q ∈ Q but

the DN works for any naturally emergent σ ∈ Σ and q ∈ Q.

Obviously, the FA is large if it represents all the knowledge

that a human has learned in his life. It seems impractical

for the teacher to handcraft such an overly large FA. Dur-

ing autonomous development, the TCM should incrementally

learn the FA though observation of FA operations, one state

transition at a time. We have the following theorem.

Theorem 1 (TCM emulates AFA): Through the observation

of the operations of any AFA, a TCM incrementally learns

and emulates the AFA. This TCM has |Q| of Z neurons and

at most |Σ||Q| of Y neurons. Its Y neurons are initialized

incrementally by each newly observed vector in (x, z). The

TCM emulates the AFA state transition exactly (error free)

and immediately after observing each AFA state transition.

Here is a sketch of the proof while the fully detailed proof

is longer than appropriate for this paper and will appear

elsewhere. This proof is constructive, since its corresponds

to a DP algorithm that constructs the TCM in the theorem.

Proof: First, without loss of generality, X uses a canon-

ical representation for Σ: The i-th component of xi ∈ X
represents the i-th symbol σi ∈ Σ. We say that xi corresponds

to σi, denoting as xi ≡ σi. However, any representation for

X is valid for the proof, as long as every σ ∈ Σ corresponds

to a unique xi ∈ X . Similarly, also without loss of generality,

use a canonical representation for Q.

The TCM is mapped from the AFA as follows: Its X area

corresponds to Σ. Its Z corresponds to Q. The areas Y and

Z use the top-1 firing rule.

To emulate exactly, its Y area memorizes all observed pairs

(q, σ) with q ∈ Q and σ ∈ Σ, as all possible inputs of δ :
Σ×Q 7→ Q. This is done incrementally. At each time frame,

observing AFA as q
σ
→ q′. Feed (x, z) ≡ (σ, q) to the TCM. If

(σ, q) is new to the Y area, indicated by v̇ · ṗ < 1 for the top

winner in Y , a new Y neuron j is generated which is initialized

by age 0 and vj = ṗ for p = (ẋ, ż). The Y area computes

after the neural genesis, and the new Y neuron must fire as it

is the perfect winner. Otherwise, the top winner vj updates.

Since the Y winner neuron matches the input p perfectly,
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during its Hebbian learning the winner neuron advances its

age but does not change its weight vector vj .

It can be proved that every winner Y neuron matches input

ṗ perfectly. Therefore, every winner neuron only advances its

age but never changes its weight vector once initialized.

Since the best match in Y is always perfect, the firing

neuron in Y is always unique and correct. This is also true for

the firing neuron in Z because each Y neuron only links to

a single correct Z neuron through Hebbian learning because

of the following reasons. Whenever a Z neuron i fires as the

top winner in Z, supervised during training z ≡ q′ or during

testing where z is left free, only one pre-synaptic neuron j in

Y fires and it must be correct. From Eq. (4), the connection

from the Y neuron j to the Z neuron i receives a positive gain

(connects if it has not).

Because the firing Y is always correct and every Y neuron

only links to a single correct Z neuron, all the firing compo-

nents in the Z area are always those that should fire and all

components in Z that do not fire should not indeed.

From the above reasoning, we can see that when the AFA

has displayed all its |Σ||Q| state transitions, the number of

Y neurons generated is exactly |Σ||Q| and will not increase.

Each AFA state transition needs to be supervised only once.

The TCM learns this transition immediately without any error.

The TCM does not have any error for every state transition

as soon as it has been observed from the AFA and learned by

TCM through its Z supervised learning.

From this proof, we know that the teacher should teach the

motor end of the TCM using the state of the corresponding

AFA. This enables the TCM to perform state-based reasoning

in the sense of the AFA. Every learned transition is success-

fully performed by the TCM immediately before the entire

AFA is learned.

For incrementally learning the AFA which as a finite |Σ||Q|,
the number of Y neurons needed is finite. For a real physical

world where the Y input p = (ẋ, ż) is real sensory and motor

inputs, the number of possible inputs is infinite. Therefore,

for a real world, TCM has a large but a bounded number

of Y neurons. As soon as Y has run out of its neurons, the

resource-bounded optimality in TCM kicks in.

Interestingly, the AFA that a TCM learns resides in the

physical world (rooted in its physical causality) and in the

behaviors of human teachers (e.g., based on human discovery

of science). It is important to note that the entire AFA does

not need to complete at any time, since the TCM agent only

observe one state transition at a time from the AFA. Therefore,

unlike CYC project whose goal is to construct ontology (the

entire collection of human common sense knowledge), the

TCM does not require that such an AFA to be completed by

any human group at any time. Each human teacher knows only

a part of the AFA, but that is sufficient for the TCM agent to

learn a single state transition at a time from a single teacher.

The TCM agent also learns directly from the physical world

as part of AFA, potentially leading to discovery.

One important condition from the AFA definition is that all

state transitions are consistent. This is our temporal restriction

in this work. As pointed out by Weng 2011 [98], the TCM al-

lows inconsistent supervisions at the effector end and responds

optimally, but this subject is beyond the scope of this work.

In the brain of the TCM agent, internal self-organization

is fully autonomous. The programmer of the DP for the

TCM does not need to know what subjects that the TCM

will end up learning in its “life”. This is very different

from an AFA agent, which is static and handcrafted by the

programmer who must know the task that the AFA is supposed

to execute. In this sense, the DP for many possible TCMs is

an automatic programmer, programming the brains (TCMs)

through interactions with the physical world like the brain

does.

The AFA does not have any internal representation but the

TCM has. The internal representation inside TCM provides

not only a capability for handling uncertainty for each neuron,

but also the internal hidden states of Y area that an SN does

not have. For example, the open state of each AFA does not

remember what is exactly read, but the hidden states as the

internal responses of Y keep a short history of input sequence

(but should not include the entire sequence). SLM, ESM, and

reservoir computing have hidden states. Because they do not

have open states as actions, their hidden states are not rooted

in open states and therefore have very different contents.

The following properties can be systematically understood

by considering a teacher who properly teaches a set of actions

(i.e., concepts) that corresponds to each open state — a set of

values of the active concepts, e.g., where-and-how (procedure

memory) in the location motor area LM (reporting location)

and the type motor area TM (reporting object type, properties,

type of a spatiotemporal event, etc.) of the WWN. If the

motor area TM includes vocal muscles, it does report the type

information (verbally saying the type).

B. Context dependent attention

Corollary 1 (Context-dependence): Given external bottom-

up input x(t) and top-down context z(t), the 3-area TCM

network has three classes of internal behaviors, external (E),

internal (I) and mix (M), which means that the motor output

z(t+2) is dependent on external input x(t) only, dependent on

internal top-down context z(t) only, and dependent on both,

respectively.

Proof: Referring to Fig. 5, from the previous proof for

AFA as a special case of TCM, we can see all we need to

prove is the following: For the AFA that the TCM learns to

emulate, δ(σ, q) is designed by the teacher to be dependent

on the first argument σ only, the second argument q only, and

both, respectively. This design is clearly accomplishable.

C. Active time warping

The phenomenon that a dynamic event can proceed at

different speeds at different time points is called time warping.

It is desirable that physical events with different time warpings

but the same meaning are recognized as the same type of

event (e.g., in speech recognition and dynamic visual event

recognition). The way of TCM to deal with time warping is

active in the sense that it is the learned active behaviors of

TCM that deal with time warping.
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For example, the following two sequences should be recog-

nized as the same sequence at the motor area:

|w|w|w|w|w|w|_|u|u|u|_|u|u|_|_|z|z|z|z|_|

|w|w|_|u|u|u|u|_|u|u|u|u|_|z|z|_|_|_|_|_|

where w, u, z are words and | is a delimiter of time frames,

each of which corresponds to a different t.
For this property, we have the following theorem:

Theorem 2 (Active Time Warping): The motor area of

TCM can be taught to carry out active time warping.

Proof: Use the proof for Corollary 1. The teacher can

design the corresponding AFA that deals with active time

warping. When receiving multiple consecutive inputs that

should be treated the same (e.g., silence, or stop words), the

AFA stays in the same state.

Note that this scheme will not confuse one w sequence with

two w sequences separated by a space _, since the space

causes the AFA to enter a new state.

D. Temporal attention

Our major goal is to interactively train TCM so that it make

sequential context-dependent decisions (actions) that require

spatiotemporal, attended context in a dynamic range of the

past.

Theorem 3 (Context of any temporal length): A TCM can

learn contexts of any finite temporal length.

Proof: Again, like the proof of Corollary 1, the teacher

designs an AFA which enters a new state after receiving each

attended segment of input. Thus, the AFA can use new states

to memorize the context of a sequence of any finite length.

As we can see, many new states result in a large AFA. In

practice, equivalent states should use the same (or similar) z

vector.

In practice, some time frames that should be disregarded and

other frames should be considered as context. For example, in

speech recognition, silence frames and frames of stop words

should be disregarded.

Theorem 4 (Context of any temporal subset): The tempo-

ral context of top-down context zt of TCM can represent any

subset of the bottom-up stimuli.

Proof: Drop the frames that do not belong to the subset,

using the “drop” function shown in Fig. 5. Link the other

frames using the “link” function shown in Fig. 5.

In terms of AFA, “drop” an input corresponds to a loop to

the same state and “link” corresponds to a transition to another

state.

Theorem 5 (Flush): The temporal context of top-down con-

text zt of TCM can forget (flush) all the past history by enter a

state that represents only the last bottom-up input, depending

on learned attention.

Proof: For the AFA, enter the state that corresponds to

the last bottom-up input. For the TCM, use the “drop prefix”

Fig. 5.

Combining above three theorems gives the following theo-

rem.

Theorem 6 (Any context): The temporal context of top-

down context zt of TCM can represent any subset of the

bottom-up stimuli of any length of the history.

Proof: Combining the above three theorems, use Theo-

rem 5 to start at a desired frame of the history, use Theorem 4

to keep the desired subset, and use Theorem 3 to keep context

of any desired length.

Theorem 6 implies that the TCM agent can learn to attend to

any part of spatiotemporal context, a necessity for recognizing

complex visual events and understanding complex languages.

E. Time duration

The time duration task is an opposite problem of time

warping. The goal of the task is to count the length of time

between two events a and b.

Drew & Abbot [17] suggested to translate the membrane

potential of a neuron to time. Buonomano & Merzenich [9]

and Karmarkar & Buonomano [48] used a locally-recurrent

network with randomly distributed, excitatory and inhibitory

synapses. Their simulations showed that the states of such a

network, later called Liquid State Machine (LSM) [61], after

the “kick off” from a, experiences a sequence of transitions

through randomly generated states. It is unlikely that all such

states are guaranteed different throughout the duration, which

may cause a collapse of time counting. If there is no collapse,

such type of random state methods can detect a temporal

window of a specified length, but seems unable to deal with

general temporal contexts, such as equivalence of states. The

analog fading memory [17] does not explain how the brain

can hold a state for long and keep it stable.

Oscillatory patterns have been observed in EEG signals

recorded either from inside the brain or from electrodes glued

to the scalp. Greek letters θ, α, β, δ and γ have been used

to classify EEG waves falling into frequency ranges of 4-

7.5Hz, 7.5-14Hz, 14-40Hz, 0.5-4Hz, above 40Hz, respectively.

From our theory, those waves are emergent phenomena of

mutual inhibition and excitation among cells. They are side

effects when the brain tries to sort out the winner neurons.

The main point is to sort out the winners, not the side effects.

Our model contains such side effects using top-k competition

among neurons. Such waves can be thought of the fluctuations

when the brain “sorts”.

Different from the above models, TCM learns to count

using self-generated counting states, as its learned behavior

of estimating time duration.

Theorem 7 (Time duration): The action zt of TCM can

represent any finite length of time between two specified

events.

Proof: Without loss of generality, suppose zt = i means

time i, from a. The TCM starts to count using is action zt as

soon as it senses a, and terminates counting when it senses b.

Suppose ∗ is a distracter, other than a and b. The TCM needs

to keep counting time when it sees a distracter. The following

shows how TCM responds.

x:|*|*|a|*|*|*|*|*|*|*|b|*|*|...

z:|_|_|_|1|2|3|4|5|6|7|8|9|_|...

In AFA, counting means entering a new state for each input.
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F. Skill transfer to new sequences

The above results can be used to understand how to use

state equivalence to transfer a skill to infinitely many new

sequences that the system has never learned, as the Table I

column 5 summarizes.

Skill transfer is a notation well studies in psychology [16]

but in machine learning this notion was still novel by the time

DARPA Transfer Learning Program was established in 2005.

DARPA program director Daniel Oblinger 2011 [68] wrote:

“Creating a formal theory of transfer remains a critical, yet

difficult, direction for future work.” We attempt our theory of

transfer here.

Suppose that TCM has learned qi
α
−→ qj , meaning that at

state qi, the input string α ∈ Σ∗ leads to state qj . Stimuli

sequence α leading to behavior qj , denoted as
α
−→ qj , is a

skill, perceptual, cognitive, or behavioral, depending on the

nature of α and qj . qi
α
−→ qj means that the skill

α
−→ qj is

applicable to state (setting) qi. We define skill transfer below.

Definition 3 (Skill transfer): Suppose a skill
α
−→ qj is

learned conditioned on a string β: q0
β
−→ qi

α
−→ qj . Then, we

say that the skill is immediately transferred to another string

β′ if q0
β′

−→ qi
α
−→ qi.

We have the following theorem.

Theorem 8 (state-based transfer): A skill
α
−→ qj condi-

tioned on string β is immediately transferred to every string

β′ in the set B = {β′ | q0
β′

−→ qi} = [β].
Proof: All these transfers for strings in B are valid

because for any β′ ∈ B, we have q0
β′

−→ qi, based on the

definition of B. Then we have q0
β′

−→ qi
α
−→ qj . From the

definition of transfer, we conclude that the skill is transferred

to all strings in set B.

The stings in the set B can be learned in the past but B can

be further expanded in the future life of the agent.

It is important to note that in SN, the states are handcrafted

and thus, skill transfer is based on handcrafted definition of

states. In DN, however, state equivalence requires attention

(because of distractors in the real world), and so does the

success of skill transfer.

Let us look at an example called New Sentences. It is related

to how we can understand a new book that we have never

read. Assume that the TCM agent arrives at a ready state Λ
before reading, q0 −→ Λ. Suppose that there are four word

meanings, A, B, C, D. Each word meaning i has ten synonyms

{wij | j = 1, 2, ..., 10}, i = 1, 2, 3, 4, Then, there are 10000
equivalent 4-word sentences in the form of w1hw2iw3jw4k,

h, i, j, k = 1, 2, ..., 10. How does the TCM agent learn skills

and transfer the skills?

This problem is addressed in the following way, as illus-

trated by the corresponding AFA in Fig. 6. In Lesson 1, learn

individual words. The x-row below denotes sensory input at

each time frame, while the z-row below denotes motor output

(label) at the corresponding time frame.

x:|a1|a1|_|_|a2|a2|a2|_|a3|a3|_|a4|a4|...

z:|_ |A |A|_|_ |A |A |A|_ |A |A|_ |A |...

The delay in the corresponding motor output is due to the fact

Λ A AB ABC

other

other
other other

a1

a10

a2
..
.

b1

b10

b2
..
.

c1

c10

c2
..
.

Fig. 6. The corresponding AFA for the New Sentence problem. The
state “ABCD” is omitted.

that it takes two updates for the signal of sensory input to pass

the area Y and appear in Z. Do the same for B, C and D. In

Lesson 2, learn two-word sentences:

x:|a1|b1|_ |a1|b2|_ |a1|b3|_ |a1|b4|...

z:|_ |A |AB|_ |A |AB|_ |A |AB|_ |A |AB|...

In Lesson 3, learn 3-word sentences in a similar way. In Lesson

4, learn 4-word sentences:

x:|a1|b1|c1|d1 |_ |a1|b1|c1|d2 |_ |...

z:|_ |A |AB|ABC|ABCD|_ |A |AB|ABC|ABCD|...

The number of sentences learned in these lessons are 40,

10, 10, 10, respectively. The number of new sentences to be

recognized are 0, 100 − 10, 1000 − 10, 10000 − 10, respec-

tively. Totally, the TCM learns 70 sentences, but recognizes

90 + 990 + 9990 = 11070 new sentences. Of course, no two

English words are exactly synonyms. The subtle difference is

represented in area Y response, but the motor outputs are the

same.

In our experiment discussed below, we used 64 × 64
neurons in area Y . We tested the updated TCM after every

epoch through the training set. The TCM perfectly (100%)

recognized all the 70 trained senses and all the 11070 new

sentences from epoch 23.

Additionally, for image-based 3-D object recognition from

images, the spatiotemporal network in [58] is an example

of TCM. It showed that an almost perfect recognition rate

has been achieve in disjoint image tests by a limited size

spatiotemporal TCM. A drastic performance different between

using time and not using time in object recognition from

images has also been demonstrated in [58].

G. Complexity

Theorem 9 (Exponential Capacity): The number of distin-

guishable patterns by a cortical area with n neurons is expo-

nential O(2n).
Proof: Each neuron has least two status, firing and not

firing. The number of binary firing patterns of n neurons is at

least O(2n). Considering k > 1 gives more patterns.

It appears that each cortical area uses sparse coding [69], [100]

where relatively few neurons survive the competition to fire

so that only true “expert” neurons “vote.” If only k neurons

are allowed to fire, the number of distinguishable patterns by

a cortical area with n neurons is on the order of nk.

This is a great advantage of distributed representation

compared to a symbolic representation. While a symbolic

representation potentially requires an exponential number of
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symbols, no symbol is needed for these 2n patterns using an

emergent, distributed representation.

What about the state complexity that AFA faces? TCM

uses emergent representations in the motor area, instead of

symbolic ones. Suppose that there are n concepts and each

concept has k values. The TCM has n motor subareas, each

area has k neurons. This amounts to nm motor neurons,

instead of the exponential kn states with an AFA.

Theorem 10 (Complexity): The amount of computations re-

quired by a cortical area with c neurons is linear O(sc+ kc),
assuming a constant number s of average synapses per neuron

and the top-k competition.

Proof: There are c neurons that need to be computed

and learned. Each neuron has s synapses on average. As the

computation of pre-response of each neuron requires O(s)
computations, a total of c neurons requires O(sc) compu-

tations to generate all the pre-responses. Sorting for top-

k winners for a small k/c can use the simple bubble sort

algorithm, which requires a total of O(kc) computations. Thus,

the total computations is O(sc+ kc).
With learning time t, the time complexity is O((s+ k)ct).

The above theorem indicates that the time complexity of

TCM is extremely low — linear in time, if s, k and c are

constant. The number c typically depends on the complexity

of the tasks to be learned and the requirements of precision.

The larger the c, the more resource the area has to tessellate

the observed manifolds of X × Z.

Theorem 11 (Exponential AFA vs lower manifold TCM):

For a task with c concepts where each concept has v values,

the number of all possible symbolic states in AFA is vc,

exponential in c. The number of neurons in the motor area of

TCM is vc.
Proof: To determine the number of states for the AFA,

one needs to do c things. For each thing, there are v possi-

bilities (e.g., v values of the height concept). Therefore, the

number of possible states is then vc, exponential in c. In

contrast, a TCM uses c motor subareas — one motor subarea

for each concept. If each concept has v values, the TCM needs

a total of vc motor neurons, linear in c if v is constant.

This is in contrast with the brittleness of Σ and Q in the

design of an AFA. The c motor areas of the corresponding

TCM fire according to the experience from the environment.

They are emergent, emerging from interactions with the ex-

ternal environments. In other words, the patterns in Z emerge

automatically, without a need for a human designer to predict

correctly.

Next, consider the number of transitions in the AFA and the

Y neurons in TCM. In contract with AFA where the human

designer of the AFA must manually select an appropriate

set of transitions among the intractable underlying vc ones,

TCM automatically track the data manifolds in (x, z) through

observations. The TCM seems scalable for the number of

Y neurons, which could vary significantly across different

species. While different symbols in an SN are simply different,

the emergent representations in X and Z have natural distance

defined by the pre-response value of Y — the space of inner

product between normalized vectors in Eq. (2). In other words,

the bounded number of Y neurons automatically interpolate

across many vectors in X and Z using the inner product

distance, but a symbolic representation cannot. The more

Y neurons, the more details in X and Z can be predicted

precisely.

VIII. EXPERIMENTAL EXAMPLES

As examples for the theory presented above, we discuss the

results of the TCM network for two categories of inputs —

video streams and text streams.

The architecture in Fig. 1 is independent to the sensory

modality. For example, it is applicable to both video processing

and text processing. For video streams, each frame is an image,

considered as a pattern sampled from a long temporal stream.

For text streams, each frame is a sample of the word that the

TCM currently stares at, also considered as a pattern sampled

from a long temporal stream.

Language processing typically is not treated as an issue of

temporal processing, as the input unit is often considered as

a logic unit of word. In contrast, we regard each word as a

pattern from a temporal stream, as in Fig. 1. During natural

book reading, it is possible to allow the eyes to fixate at each

word for different durations of time. How does the brain knows

the termination of a word? The brain perceives a pattern of

multiple words at a time during reading [23]. For example, a

space between two consecutive words indicates the termination

of the first word. In the text processing experiment here, we

used a simpler setting: We provide each word persistently for

a fixed amount of time to allow the network to update twice

before the next word is supplied. This is because the network

needs to update twice for the input information in the sensory

area X to reach the internal area Y and then the motor area Z.

Each input in X consists of only a single word. The number

of exposures to every word is the same (twice). The desired

output is supplied at the motor end Z, always at the correct

time (two-frame delay). Thus, the system does not need to

sense an inter-word space to sense the termination of each

word.

In all the experiments reported here, the training mode

corresponds to motor-supervised learning, with which the

desired action vector is imposed at motor area Z at the desired

time step. Reinforcement learning of DN has been reported in

[73].

A. Video processing as temporal processing

Suppose that a robot “baby” is watching an object on a

rotating table while the human caregiver (teacher) interactively

teaches it to sign the name of the object using its fingers, each

finger being represented by a muscle neuron. As we discussed

above, this is called motor-supervised learning. While the

teacher lets the hand go free, the robot immediately demon-

strate its performance using its fingers. The physical grounding

is reflected by the realistic images from the real world and the

timing between each image and the teacher supervised action.

However, for precise records of performance evaluation, we

chose not to use a real robot. In the real world, it is likely

that the teacher makes mistakes, especially when she is tired.

However, as our emphasis is on testing the simulated robot
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“baby” instead of the teacher, we assume that the teacher does

not make errors. This is reasonable when the object is not

changed too quickly as discussed below.

In the physical world, objects come and go continuously as

long as they do not move faster than the brain can update.

Does top-down context assist the brain to perceive seemingly

irrelevant object views as a single object [74]? On the other

hand, as far as we are aware of, in pattern recognition with

natural sensory inputs, there has been no report about trained

systems that almost perfectly recognize a large number of

unobserved natural samples1 that are similar to, but not the

same as, trained samples. Our experimental results support a

positive answer for the former and created the first surprising

case for the latter. That is, an almost perfect recognition rate

is possible in disjoint tests if we use time.

For video processing, x(t) ∈ X represents each image

frame at time t and z(t) ∈ Z represents the action that reports

the cognitive supervision (input for teaching) and cognitive

action (e.g., verbal output).

We used MSU-25 objects as shown in Fig. 7(a). Each object

was placed on a rotary base which rotated horizontally in the

full range of 360 degrees. 200 images of 56× 56 pixels each

were taken in sequence for each object. At the experimenter’s

rate of rotation, the 200 images covered about two complete

rotations of 360◦. The capturing process was intentionally not

too controlled, so an object varies slightly in position and size

throughout its sequence. Including an additional empty (no

object) class, there were 200 × 25 + 1 = 5001 images total.

Every fifth image in each object sequence was set aside for

testing. To increase the difficulty level, only gray scale images

were used.

The TCM networks discussed here are fully connected:

Each Y neuron is fully connected to all the neurons in X and

Z. Area X , the image input (no computation), has 56 × 56
receptor neurons (pixels). Area Y has 20×20 = 400 neurons.

Area Z, the motor area, has 26 + 1 neurons. Thus, if the

neurons in Y are considered features for many different visual

views from 25 objects, each of the 400 neurons in the area

needs to handle 25 × 360/400 = 90/4 degrees of viewing

angle variability. In other words, a 90◦ of viewing angle

variation is covered by only 4 neurons in Y . This is a task of

great challenge considering the very limited neuronal resource

compared with many unseen views.

The human teacher chose and taught a simple “language”

for motor outputs for TCM video processing. Each motor

neuron i directly outputs its pre-response value at each frame

time, which indicates the confidence for recognizing object

i. Therefore, during training sessions, the motor supervised

vector is a binary vector, but the motor output vector during

disjoint test sessions is not necessary binary. Regardless its

value, the motor vector z ∈ Z in TCM is the temporal context.

In this case, it represents the accumulated confidences for the

types. The teacher treats the motor neuron whose pre-response

value is the highest among all the motor neurons in Z to be

the object class that the TCM recognizes at each time frame.

As there is no guarantee that such a “winner” Z neuron does

1Not those synthesized from training samples [43].

not change during the entire presentation period for each test

object, the teacher treats the object class that the TCM reports

most often during each object presentation period to be the

object reported.

The number of neurons (k in top-k competition) allowed to

fire is 15 for area Y and 8 for area Z in its testing phase. We

train the networks by presenting the training sequence multiple

times (epochs). The images were presented in sequence, with

a few empty (no object) frames in between consecutive object

sequences to mimic an object being placed in and then taken

away.

A parameter α, 0 ≤ α < 1, called top-down rate, used for

all neurons in area Y , is the relative energy of the top-down

input, and 1− α is that of the bottom-up input. Thus, α = 0
corresponds to a network that does not use top-down context

and α = 0.9 indicates a network that uses a lot of top-down

input. In Eq. (2), α = 0.5.

After each epoch of training, these networks were tested

using the disjoint test set (i.e., none of the tested images is

in the training set), also presented in object sequences with a

few empty frames in between objects. Initialized by random

weights, the networks all learned fast, thanks to the double

optimality of LCA discussed below. They reached 90% of

the final recognition rate after the first epoch and about 99%

after the second. The performance after 10 epochs is shown

in Fig. 7(b). With α = 0.7, an almost perfect recognition rate

has been reached for disjoint tests.

Recently, we [96] have developed a generative version of

TCM which generates Y neuron as long as the top pre-

response value is less than 1. It has been proved that such

a generative TCM (called Generative DN, GDN) immediately

gives zero error for all the training experiences and optimal

(in the sense of maximal likelihood) for new test data. That is,

GDN does not need a second practice to reach the theoretically

best possible performance.

What is interesting is that at each time step the networks

with top-down context generate a different top-down attention

control which selects new features from the bottom-up input.

As shown in Fig. 7(b), the network takes every time step to

“think” with top-down attention while different views of the

unknown object flow in. As shown in Fig. 7(b), the network

with α = 0.7, took an average of 5 additional views (about

200 ms if the images are updated at 30Hz) of the same object

to be almost perfect in classification all the unseen views. 2 It

is somewhat surprising that top-down context based “thinking”

can eliminate almost all the errors in one-shot recognition (i.e.,

without self-generated top-down context α = 0).

As it takes at least two time steps (frames) for the infor-

mation from each image to go through the Y area and reach

the motor output, the first testable frame is the 2nd frame.

The plot shows that without top-down context α = 0, there is

an over 4% error. When top-down feedback takes about 70%

energy (α = 0.7), the recognition is almost perfect after the

seventh sequential decision (internal attention). With more top-

down energy, an almost perfect recognition rate also arrived,

2If the brain updates at 1k Hz and a human needs 100 ms to produce an
action, the brain took 100 time steps.
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Fig. 7. Sequential attentive thinking makes recognition almost
perfect. (a) Some sample images of MSU-25 3-D objects plus a
background used for training and testing. (b) Self-generated top-
down context during testing makes the recognition almost perfect
for unseen views. The vertical axis indicates the average recognition
rate for unseen views by the trained limited-size network, averaged
over all the test frames from the n-th frame. The horizontal axis
indicates the frame number n, the frame counted after the input image
stream transits to the next object. n = 2 is the earliest time for the
information of a new image to reach the output area.

but later.

The results indicate that α = 0.8 or larger requires relatively

more views to reach an almost perfect recognition rate because

the injected momentum of top-down context is larger (too

“subjective” when it thinks); yet α = 0.5 or lower does not

inject a sufficient amount of top-down context to enable an

almost perfect recognition (not sufficiently “subjective” when

it thinks). This is the first time, where disjoint tests reach

almost perfect recognition by a network .

B. Text processing as temporal processing

Suppose that a caregiver teaches a robot “baby” to read

sentences using “word cards”. One single-word card is shown

to the robot at a time, while the teacher uses motor supervised

mode to raise one of its fingers as output. Each finger

corresponds to a meaning. The grounding is reflected by the

timing between the card and the teacher’s motor supervision.

Again, we assume that the teacher does not make errors. For

precise records of performance evaluation, we chose not to

use a real robot.

To concentrate on temporal processing instead of spatial

visual recognition, in simulations we used canonical repre-

sentations for “word card” images and motor states — one

pixel representing a different word card, and one motor neuron

representing a finger. More sophisticated natural language

production, where each action is represented by multiple time

frames, is one of the future research goals.

In general, when real images of “word cards” are used,

a very large number of “word cards” can be represented in

an image of m × n pixels, with m and n fixed. Likewise,

when multiple motor neurons are allowed to fire to use action

pattern to show states, the number of states is exponential in

the number of motor neurons. Our theory and algorithm are

for such general cases. Thus, x(t) ∈ X represents a word

(represented as a vector) at time t and z(t) ∈ Z represents

the action input-output — action supervision for teaching or

“verbal” action.

As we discussed above, emergent representations in TCM

do not use explicitly hand-craft semantics (symbols). Further-

more, semantics and syntax are not separable in the TCM

theory. The TCM theory regards that semantics and syntax

are manifested in the actions. This seems consistent with the

process of earlier language acquisition by children [74], [92],

[39] who could not tell clearly which is semantics and syn-

tax. Our theory gives a brain-like approach to understanding

languages. Our theory does not consider a language to be

fundamentally different from other sensorimotor skills. This

seems reasonable, as human languages have many forms:

visual (e.g., American Sign Language), spoken, written, and

braille.

In the experiments, the human teacher supervises the TCM’s

actions as states, appropriate for abstraction and skill transfer.

The equivalence of such states are essential for the demon-

strated TCM performances.

To show the effectiveness and efficiency of the proposed

TCM, the following four tasks were learnt and evaluated. All

the experiments took the size of input area X as the number of

words. The hidden area Y had 64×64 neurons, except for the

task B which is 10× 10. Neurons in the 3× 3 neighborhoods

around the winning neuron were updated to generate smooth

neuronal areas. The size of the output area Z was a 1-D

array and equals to the number of desired outputs, which is

dependent on the task being taught.

Task A: New Sentences This is the task in Problem 1. The

area Z is taught with the equivalent state of the corresponding

AFA in Fig, 6. Experimentally, we compared TCM with MILN

which classifies inputs but does not deal with time [102], [55],

[58], [45]. The performances TCM are shown in Fig 8. From
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the results, one can see that without the temporal context,

MILN cannot obtain correct outputs for all the 2-word, 3-

word and 4-word sentences. However, TCM achieved 100%

classification accuracy3 from epoch 23 (i.e., 23 practices),

including 30 learned multi-word sentences and all 11070 new

multi-word sentences. This is a dramatic demonstration that

many new subsequences and new sequences (that have not

been learned) have been perfectly mapped to the correct motor

actions — the power of the recursive abstract (i.e., many to

one) states.
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Fig. 8. Motor output accuracy versus the number of training epochs for Task
A: New Sentences. All the 11070 new sentences were correctly recognized
by the TCM from epoch 23.

Task B: Word sense disambiguation (WSD) This is a task

for identifying which sense of a word is used in a particular

context. Usually, the context (such as neighboring words)

provides an evidence for disambiguation. Without context

information, the WSD task could hardly achieve an acceptable

performance. For example, “Apple” represents a company

name or a kind of fruit. In order to show the ability of TCM

to solve this task, we build a corpus with a number of logic

words. Word “a1”, “a2” and “a3” have one sense “A”. Word

“b1” has two senses “B” and “AB”. When word b1 follows

word “a1”, “a2” or “a3”, its sense is “AB”. Words “b2” and

“b3” are synonyms of “b1”. Word “c1” also has two senses

“C” and “ABC”. When “c1” follows the two words “AB”,

the sense becomes “ABC”. Based on this task, we built a

training corpus which contains 24 instances, such as a1 → A,

a1b1 → AB, a1b2c2 → ABC, and so on. All the other

combinations (e.g. a2b1c1, a1b2c3) are used as test data.

In the experiment, we trained the network with the 9

distinctive words and 5 distinctive meaning outputs as the

states of the corresponding AFA. The result is shown in Fig. 9.

From the figure one can see that the recognition accuracies

provided by TCM is much better than those by MILN that does

not consider time. In fact, TCM reached 100% recognition rate

after epoch 34.

Fig. 10 shows the response of areas Y and Z in the two

training stages of TCM, before contexts of multiple words

have been learned and after, respectively. As shown in the

figure, when an ambiguous word (b1 or c1) was received, the

3The brain updates very fast, about 1kHz, and it also needs reviews.

output at the motor area Z depends on the context so the sense

of the word is disambiguated based on the word context.
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Fig. 9. Motor output accuracy versus the number of epochs through the
training set for Task B: Word Sense Disambiguation.
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Fig. 10. The responses of area Y (shown as 10 × 10 images) and area Z
(shown as 6-D column vectors), when the corresponding word was presented
(marked below each block). The first three rows: the responses of TCM trained
with single synonyms without contexts of multiple words. The last row: the
responses of TCM trained with contexts of multiple words.

Task C: Part-of-speech tagging. Part-of-speech (POS)

tagging, a task in natural language processing, is the process

of assigning the words in a sentence to the corresponding

part of speech. This is an ambiguous task without temporal

context, since the same word can have two different tags in

two different sentences. For example:

1) This book collects images of cat.

2) The students book the tickets from this Web site.

In the first sentence, “book” is a noun, the subject of the

sentence, while in the second sentence, “book” is a verb,

whose subject is “the students”. The correct POS tag of a

word should be determined by its context.

In this experiment, we incrementally trained a TCM network

to classify words into 40 POS tags as action outputs from

Z according to the Penn Treebank Tag set. The corpus we
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used was extracted from the CoNLL-2000 shared task4, which

contains 8711 sentences and 211,727 tokens. Tagged from the

Wall Street Journal corpus (WSJ), each token has been labeled

POS tag and chunk tag. Limited by memory and time, the

first 100 sentences were used for training and test, containing

a total of 2,446 instances of words and 921 distinctive words.

Using the canonical representation, the size of the output area

Z is 1× 40 (40 POS tags).

In the training phase, the network received the stream of

text, with a few space characters between every two consec-

utive sentences. The TCM obtained drastically better training

accuracies than MILN and reached 99.6% from the 21st epoch

while MILN has reached only about 81%. This shows the

effectiveness of processing temporal context in TCM for a

large data set.

Task D: Chunking. The goal of chunking is to group

sequences of words together and classify them by syntactic

labels as action outputs from the area Z. Various NLP tasks

can be seen as a chunking task, such as English base noun

phrase identification (base NP chunking), English base phrase

identification, and so on. The chunk tag of the current token

is mainly determined according to the context. For example,

the sentence Mr. Carlucci served as the defense secretary in

the Reagan administration. can be divided into:

[NP Mr. Carlucci] [VP served] [PP as] [NP the defense

secretary] [PP in] [NP the Reagan administration]. The chunk

tags are composed of the name of the chunk type and position

tag, e.g., B-NP for the first word of the noun phrase words and

I-VP for each of the other words in the verb phrase words.

The O chunk tag represents tokens which do not belong to any

chunk. The corpus above contains eight phrase types, such as

noun phrase, verb phrase and so on. Including the O tag, there

are a total of 8× 2+ 1 = 19 chunk tags. Thus the area Z has

19 neurons. The above example is converted into the following

training format:

Mr. B −NP
Carlucci I −NP
served B − V P
as B − PP
defense B −NP
secretary I −NP
in B − PP
the B −NP
Reagan I −NP
administration I −NP
. O

In the experiment, we trained the network with the top 100

sentences in the corpus used in Task C. Using the canonical

representation, the input area X has 921 dimensions.

The TCM reached 95.2% accuracy after epoch 18. This

task also shows that using temporal context can significantly

increase the prediction accuracy. Since the outputs of some

words are intrinsically ambiguous even with the temporal

context, the accuracy cannot reach 100%. In contrast, the

MINL has only reached about 86% accuracy.

Although the temporal scan is from time t to t+1, always

advancing in time, the TCM also allow back-scan of text like

a human does during normal reading if the TCM is connected

4The corpus is available at http://www.cnts.ua.ac.be/conll2000/chunking/

with a pan-tilt head. Of course, scanning text this way requires

the agent to learn more sophisticated pan-tilt behaviors and to

relate the direction of the head with the text being read. In

the experiments here, the agents do not have an active pan-tilt

head to actively scan the text, making its “reading” simpler.

We expect that in the future, a developmental robot using DN

will be able to learn autonomous book reading using its pan-

tilt head.

In the above two examples, although each action from TCM

affects the next TCM internal operations, each action does

not directly alter the next sensory inputs, which is the case

with, e.g., visual navigation using a general-purpose regressor

[111]. This dependency is related to the complexity of tasks

that TCM learns, not a necessary condition for embodiment

nor grounding, as we defined earlier. TCM allows such a

dependency as one of many other possible task properties

since its DP is not task specific. As we reviewed earlier, many

existing methods require the human designer to hand-craft

such a task-specific dependency into a learning program but

TCM does not due to its task nonspecific nature.

IX. CONCLUSIONS AND DISCUSSIONS

The theory introduced here has proposed a set of new tem-

poral mechanisms for both the brain-mind and the machines.

AFA: TCM is the first emergent and incremental version of

AFA. By emergent, we mean that TCM is a distributed AFA,

as all the representations in X , Y and Z are distributed, instead

of symbolic as in AFA. By incremental, we mean that TCM

is further an incremental AFA, since the underlying AFA is

not handcrafted at the programming time, but is incrementally

enriched from experience, using fully autonomous internal

self-organization. In contrast, a modification of a symbolic

AFA requires manual redesign, which is error-prone and

tedious if the problem size is large.

Bayesian framework: Because each of its synapse records

a scaled version of the probability, conditioned on the post-

synaptic neuron, TCM is further an incremental and distributed

HMM (class labels as output) and MDP (actions as output).

The base AFA network of HMM or MDP is handcrafted based

on the given task information. Such a hand static design is not

capable of dealing with complex, dynamic, and open-ended

environments and tasks.

TCM: In contrast, the internal structures of TCM emerge

autonomously so that the human programmer does not need to

know about tasks to learn. Further, the features in each area of

TCM are dually optimal in the sense of LCA, but the meaning

boundaries in an HMM and DMP network are handcrafted

and do not have such an optimality. The temporal context of

any length and of any subset can be attended by the TCM,

through “postnatal” learning. The exponential complexity, in

terms of the scan window length in online sensory processing,

is converted by TCM into a linear time complexity and linear

space complexity.

Many prior neural networks: The emergent represen-

tations in prior recurrent networks for temporal processing

are not rooted in open motor states, limiting their power of

abstraction and sequential reasoning. Although it is a neural
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network, TCM is not a black box and can be taught to abstract

the attended temporal context at its motor end.

Learning speed: quickset possible: Unlike prior neural net-

works, TCM appear to learn fast from random initial weights,

around 20 practices to almost reach the peak performance. As

reported in Weng 2012 [99], the GDN learning is optimal in

the sense of maximum likelihood: Quickest possible toward

this peak performance under limited neuronal resource and

under limited training experience.

Vision: In terms of video processing, this work gives the

first general framework for spatiotemporal events detection

through developmental visual learning. This is a major de-

parture from the currently model-based vision methods [22],

[79], [3], [32], [110].

Language: In terms of language processing, this work

represents a departure from the traditional computational mod-

eling of language processing, pioneered by Noam Chomsky

[12] and others. The language grammar is not central in the

processing by TCM, but interactive associative sensorimotor

experience is. We argue that such association experience

by a grounded body means meaning — semantics in terms

of linguistics. Many existing studies have demonstrated that

sensory and motor experience played a central rule in language

acquisition [28], [7], [87].

Brain: The brain’s internal representations are regulated

by biological mechanisms that evolved through millions of

years. In the Newtonian physics, space and time are two dif-

ferent concepts. However, Albert Einstein’s general relativity

revealed that the time and space are not separable after all.

Our theory here predicts how:

Inside the brain, space and time are inseparable.

The framework reported here suggests that it is computa-

tionally feasible for the brain to have no static meaning

“walls” between space and time — the spatial and temporal

information is dynamically mixed almost everywhere inside the

brain network. This space-time mixture scheme is consistent

with the qualitative arguments of Mauk & Buonomano [62]

about the apparent absence of dedicated temporal mechanisms

in the brain.

The future work includes applying TCM to other sensing

modalities, such as audio streams and touch streams, to inves-

tigate its cross-modality power and possible limitations. Big

data training and testing implied by autonomous development

are also exciting future work.
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