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Abstract.

BACKGROUND: Motor paralysis after stroke has devastating consequences for the patients, families and caregivers.

Although therapies have improved in the recent years, traditional rehabilitation still fails in patients with severe paraly-

sis. Brain-machine interfaces (BMI) have emerged as a promising tool to guide motor rehabilitation interventions as they can

be applied to patients with no residual movement.

OBJECTIVE: This paper reviews the efficiency of BMI technologies to facilitate neuroplasticity and motor recovery after

stroke.

METHODS: We provide an overview of the existing rehabilitation therapies for stroke, the rationale behind the use of BMIs

for motor rehabilitation, the current state of the art and the results achieved so far with BMI-based interventions, as well as

the future perspectives of neural-machine interfaces.

RESULTS: Since the first pilot study by Buch and colleagues in 2008, several controlled clinical studies have been conducted,

demonstrating the efficacy of BMIs to facilitate functional recovery in completely paralyzed stroke patients with noninvasive

technologies such as the electroencephalogram (EEG).

CONCLUSIONS: Despite encouraging results, motor rehabilitation based on BMIs is still in a preliminary stage, and further

improvements are required to boost its efficacy. Invasive and hybrid approaches are promising and might set the stage for the

next generation of stroke rehabilitation therapies.
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1. Introduction

Even the most basic behavioral responses are cre-

ated through the integrative activity of large networks

in cortical and sub-cortical brain systems. Distur-
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bances in the dynamic structures that constitute the

motor network result in disorders of movement. The

most frequent example of such a break-down con-

sists of limb paralysis in stroke after the interruption

of fiber tracts connecting intentional motor systems

with the peripheral motor pathways.

Stroke, caused by ischemic or hemorrhagic injury

to the brain, is one of the main causes of long-term

motor disability worldwide, and in more than 85%

of these cases, functional deficits in motor control
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remain (Langhorne, Bernhardt, & Kwakkel, 2011).

These deficits result in major changes in the quality

of life of the patients and their families as patients will

require a support in their daily life that can range from

occasional to full-time assistance. Furthermore, the

treatments after a stroke cause enormous economic

costs for the families and the health care systems

(Kolominsky-Rabas et al., 2006; Lee, Hwang, Jeng,

& Wang, 2010).

Promoting the autonomy of these patients is key to

improve their quality of life and their re-integration in

the work force and social networks. Compensation or

substitution of the lost motor function can sometimes

help those with stroke to become more independent,

by changing the remaining motor patterns or by using

technical aids such as canes or walkers (Rupp, 2017).

On the other hand, rehabilitation programs try to

restore the original or compensatory motor function.

Physical and behavioral therapy is the accepted

method of motor rehabilitation for stroke patients.

Bilateral arm training and constraint-induced move-

ment therapy (CIMT) are two representative

examples of therapies to promote motor recovery

in people with stroke (Belda-Lois et al., 2011).

However, sometimes motor rehabilitation treatments

and their efficacy are limited, and their long-term

effect is controversial (Bell, Wolke, Ortez, Jones,

& Kerr, 2015; Kwakkel et al., 2004; Wu, Guar-

ino, Lo, Peduzzi, & Wininger, 2016). For instance,

patients with severe motor impairment have very lim-

ited treatment options and often remain with severe

activity limitations at the chronic stage (Byblow, Stin-

ear, Barber, Petoe, & Ackerley, 2015; Winters, van

Wegen, Daffertshofer, & Kwakkel, 2015). There-

fore, there remains a clear need for better motor

rehabilitation interventions, tested in well-designed

randomized clinical trials (RCTs). Furthermore, ini-

tiating the intervention early after stroke to exploit

neuroplastic mechanisms is likely the best strategy

to maximize recovery potential (Stinear & Byblow,

2014).

In order to improve the success of traditional

motor rehabilitation, novel therapies have been pro-

posed, trying to reactivate brain functional plasticity

mechanisms and to promote neuronal repair and

regeneration in lesioned neural networks, even in the

chronic stage of stroke. One efficient and feasible

way to stimulate the central/peripheral nervous sys-

tem that might assist reactivating functional plasticity

mechanisms are brain-machine interfaces (BMI). A

BMI translates brain signals into computerized com-

mands, which can be then used to stimulate the

paralyzed limbs of the body, establishing a contingent

link between the brain and the movement. These

closed-loop neural interfaces activate neuroplastic

mechanisms (e.g., Hebbian learning) (Jackson &

Zimmermann, 2012). This is especially relevant for

stroke patients, as the neuroplasticity effects are rein-

forced by the fact that the brain-controlled limb

movements generate natural proprioceptive activity

via the remaining afferents, facilitating instrumen-

tal learning. BMI-mediated motor recovery in stroke

patients could therefore induce rewiring, reconnec-

tion or reactivation of silent pathways at any level of

the nervous system.

2. Stroke rehabilitation

2.1. Existing stroke rehabilitation therapies

Brain reorganization in chronic stroke patients

results normally in the over-use of the contralesional

hemisphere and the limited-use of the lesioned hemi-

sphere, leading to an increased inhibitory activity

from the contralesional to the ipsilesional hemi-

sphere. The increased inhibitory influence blocks

excitatory reorganization of the remaining intact

areas around the lesion and retards recovery of the

affected motor system (Ward & Cohen, 2004). Behav-

iorally, individuals with stroke often choose to use the

intact limb to achieve functional goals, neglecting to

incorporate the impaired limb in any activity. This

learning concept (i.e., learned non-use) created by

Edward Taub explains the positive effects of thera-

pies that force the patients to use the paretic arm and

hand and “strengthen” the excitatory neural activity

in the lesioned hemisphere.

Bilateral arm training (BAT) and constrained-

induced movement therapy (CIMT) are the two most

established methods to treat stroke-related motor

impairments (for a comparison see (Lin, Chang, Wu,

& Chen, 2009)). BAT engages both arms simulta-

neously in symmetrical or alternating patterns (Luft

et al., 2004), whereas CIMT restraints the intact limb

to force a patient to use the paretic one (Taub, Crago,

& Uswatte, 1998). These rehabilitation strategies are

bottom-up approaches, and rely on manipulating the

limbs at the distal level to elicit a subsequent change

in the neural circuits, in order to generate motor

recovery (Belda-Lois et al., 2011).

Injury-related and treatment-related hetero-

geneities lead different patients to exhibit a wide

range of responses to various rehabilitation therapies.
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Nonetheless, those with severe injuries generally

present with limited or no recovery in response to

traditional therapies (Belda-Lois et al., 2011). For

this reason, many of the bottom-up approaches are

not suitable for stroke patients with very low upper-

limb motor ability (e.g., Fugl-Meyer score <20)

and who display limited residual hand movement.

For instance, CIMT has been proven inefficient

for patients without residual movement one year

after stroke (Wolf et al., 2008), and residual active

movement is often a necessary prerequisite for such

interventions (Birbaumer, Ramos-Murguialday, &

Cohen, 2008).

As a consequence, there is no single rehabilitation

technique that has been identified as being completely

effective (Langhorne et al., 2011). It is generally

accepted that task-specific rehabilitation strategies,

when delivered in the appropriate context, are more

efficacious than conventional rehabilitation therapies

(Langhorne et al., 2011); yet conversely, the thera-

peutic effect of such techniques does not generalize

to unrelated tasks (Belda-Lois et al., 2011).

To prime the effects of upper-limb therapy after

stroke, intensive exercise and augmented feedback is

usually suggested (with not much evidence behind

this suggestion). Newer technologies are now avail-

able to facilitate standard therapy approaches to arm

and hand recovery post-stroke (Ası́n Prieto et al.,

2014). Robotic devices allow providing therapy for

long periods of time in a consistent and measurable

manner (Kwakkel, Kollen, & Krebs, 2008; Turner,

Ramos-Murguialday, Birbaumer, Hoffmann, & Luft,

2013). Functional electrical stimulation (FES) can be

used to generate action potentials in the motor nerves

of the affected muscles, exercising the paralyzed limb

and promoting the activation of the somatosensory

cortex involved in the motor neural control loop

(Barsi, Popovic, Tarkka, Sinkjaer, & Grey, 2008;

Jackson & Zimmermann, 2012; Quandt & Hummel,

2014). Virtual reality environments are now being

used to improve patients’ engagement and motiva-

tion by providing an enriched feedback, which can

facilitate achieving the outcomes of standard reha-

bilitation therapies (Lohse, Shirzad, Verster, Hodges,

& Van der Loos, 2013; Weiss, Kizony, Feintuch, &

Katz, 2006).

Recent trends in stroke rehabilitation have begun

to focus on assisting the reorganization of neural

circuits in order to restore motor function. These

top-down rehabilitation methods assume that the

recovery is partly a consequence of peripheral mech-

anisms, but mostly due to the mechanism of brain

plasticity (Belda-Lois et al., 2011). Therefore, the

main challenge is to find the optimal ways to boost

neuroplasticity during the therapy, to reinforce the

peri-infarct connections and to potentiate the gener-

ation of new ones to improve long-term functional

recovery.

2.2. Neuroplasticity and stroke rehabilitation

Neuroplasticity has been defined as the ability of

the nervous system to re-structure as a consequence

of learning and stimulation (Cramer et al., 2011). One

of the key learning mechanisms by which neuronal

activity drives plasticity was first explained by Don-

ald Hebb in 1949. According to his words: “When

an axon of cell A is near enough to excite a cell B

and repeatedly or persistently takes part in firing it,

some growth process or metabolic change takes place

in one or both cells such that A’s efficiency, as one

of the cells firing B, is increased” (Hebb, 1949). His

theory suggested that the connectivity between two

neurons is strengthened when their activities have a

persistent associative relationship, which was sum-

marized in “cells that fire together, wire together”.

The reorganization of the neural structures can be

due to the modification of the strength in existing

synapses or the formation of new synapses (Gaz-

zaniga, 2006; Gould, Tanapat, Hastings, & Shors,

1999; Sampaio-Baptista et al., 2013).

Neural reorganization processes occur at multiple

temporal and spatial levels during learning (e.g., by

increasing the efficacy of information transfer or to

boost control efficiency and accuracy), as a means

to cope with injuries to the central nervous system

(CNS) (Oweiss & Badreldin, 2015). During motor

recovery after a stroke, different molecular, cellu-

lar and physiological changes have been identified

(Ganguly, Byl, & Abrams, 2013). However, their spe-

cific contributions to different functional neuroplastic

changes remain unclear.

Synapse-based learning rules are necessary to

create compensatory circuits that allow regaining

the lost motor function (Murphy & Corbett, 2009).

More specifically, Hebbian mechanisms might play

a fundamental role in generating activity-dependent

plasticity. Coincident activation of presynaptic and

postsynaptic neurons activates these Hebbian mech-

anisms. Depolarizing responses in the peri-infarct

region induced by prolonged sensory inputs can

therefore boost the excitability of those neurons.

Neurons become more prone to generate action

potentials when exposed to functionally related
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inputs, and those coincident activations can reinforce

behaviorally-relevant circuits (Murphy & Corbett,

2009).

These changes in synaptic connectivity can be

artificially imposed by using three stimulation

paradigms: repetitive stimulation, paired stimulation,

and closed-loop stimulation (Jackson & Zimmer-

mann, 2012). The most precise way to induce this

activity-dependent plasticity would be to carefully

identify the two neural populations whose connec-

tions we want to reinforce and force them to excite

in synchrony. In fact, it has been shown that reha-

bilitation paradigms based upon the generation of

activity-dependent plasticity can improve long-term

functional recovery (McPherson, Miller, & Perl-

mutter, 2015). Recovery of the motor function in

stroke requires readjustment in the damaged net-

works responsible for coordinating motor tasks. One

way is to maximize the likelihood of coincident acti-

vation of all the components of the motor network.

To that end, we need a robust system to measure

and decode the brain activity related to motor inten-

tions and a precise timing of activation of motor

and sensory nerves. Brain-machine interfaces con-

stitute a promising technology for rehabilitation,

since they can associate volition and action, excit-

ing the motor network and reinforcing its synaptic

elements.

3. Brain-machine interfaces

A brain-machine interface (BMI) is a system that

records, decodes, and ultimately translates brain sig-

nals into an effector action or behavior, without

necessarily involving the motor system (see Fig. 1).

Over the past 2 decades, an increasing number of BMI

systems have been developed for communication,

control of different types of devices and for rehabilita-

tion (Chaudhary, Birbaumer, & Ramos-Murguialday,

2016; Lebedev & Nicolelis, 2017; Millán et al.,

2010; Wolpaw, Birbaumer, McFarland, Pfurtscheller,

& Vaughan, 2002).

In the context of motor rehabilitation or substitu-

tion, the brain activity originated during movement

intentions can be used to control external devices.

These devices can perform those movements them-

selves with the purpose of substituting the lost motor

function (e.g., a robotic arm). On the other hand, the

devices can be used to guide the paralyzed limb of a

patient (e.g., a mechanical orthosis), so that a desired

movement can be performed, which in turn stimulates

the damaged neural network and might have a neu-

roplastic and rehabilitative effect, as explained in the

previous section.

3.1. Signal acquisition techniques

Technologies to record the brain activity include

invasive approaches, which offer high-quality sig-

nals with good spatial resolution, and noninvasive

approaches, preferred for their lower cost and for not

requiring a surgical intervention.

Existing invasive BMI systems have used intracra-

nial microelectrode arrays, recording single-unit

spiking activity and local field potentials, and

electrode arrays for electrocorticography (ECoG)

recordings. Microelectrodes have been successfully

used in BMI experiments in the laboratory for the

closed-loop control of robotic arms and electrical

stimulation (Bouton et al., 2016; Collinger et al.,

2013; Hochberg et al., 2012). ECoG recordings have

been used for BMI research by using subdural elec-

trodes (Schalk et al., 2007, 2008; Scherer, Graimann,

Huggins, Levine, & Pfurtscheller, 2003), or epidural

electrodes (Ramos-Murguialday et al., 2011), even in

chronic stroke patients (Spüler et al., 2014). However,

all these invasive recordings have yielded limited suc-

cess outside the laboratory (Mestais et al., 2015). This

is mainly due to problems with the long-term robust-

ness of the signals (Suner, Fellows, Vargas-Irwin,

Nakata, & Donoghue, 2005), making the efficacy of

life-long implantation questionable. In fact, most of

the studies relying on implantable systems to record

brain activity are limited to short-term experiments,

generally in patients with implants prior to epilepsy

or surgery (Mestais et al., 2015). Fully implantable

devices are currently under development (Borton,

Yin, Aceros, & Nurmikko, 2013; Hirata et al., 2011;

Mestais et al., 2015; Schuettler, Kohler, Ordonez, &

Stieglitz, 2012), and great hope is placed in them

for their potential to expand BMI technology to a

large number of completely paralyzed patients, such

as those with locked-in syndrome.

Noninvasive signal recordings for BMIs usually

employ electroencephalography (EEG) due to its

safety, portability and lower cost. It requires the

user to wear a cap with multiple electrodes that

is repositioned every session, and in general, con-

ductive gel is applied to reduce the impedances

between the electrodes and the skin. Wireless EEG

systems are gaining importance as they simplify the

setups and reduce artifacts generated by movements

of the wires (Lee, Shin, Woo, Kim, & Lee, 2013).
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Fig. 1. General diagram of a brain-machine interface for upper-limb motor rehabilitation. During the BMI therapy, the patient with upper-

limb paralysis would be asked to imagine/attempt to move his/her paralyzed arm, and those intentions would be translated into the actual

movement of the patient’s limb. The activity from the brain is recorded with noninvasive or invasive electrodes. Then, it is processed in a

computer that extracts relevant features and decodes information from the imagined/attempted motor task, based on a calibration procedure

performed with previously-recorded examples of movement imaginations/attempts. The information decoded from the brain activity is

translated into control commands for the robotic or prosthetic device, which mobilizes the paralyzed limb of the patient, exciting his/her

afferent pathways.

Dry or semi-dry electrodes have also been recently

proposed to reduce the time necessary to prepare the

recordings (Grozea, Voinescu, & Fazli, 2011; Zan-

der et al., 2011), although they still need to reach

comparable levels of signal quality and response to

contamination as gel-based electrodes (Rupp, 2014).

Other noninvasive approaches used in BMI stud-

ies are magnetoencephalography (MEG) (Buch et

al., 2008), blood-oxygen-level dependent functional

MRI (Weiskopf et al., 2003), and near infrared spec-

troscopy (NIRS) (Sitaram et al., 2007).

3.2. Signal processing and decoding

In a standard closed-loop BMI scenario, the

recorded brain signals are processed with spectral

and spatial filters; some features are extracted from

the filtered signals to discriminate between the dif-

ferent actions to be decoded; and finally, a pattern

recognition algorithm translates those features into

information that can be used to control the external

device, such as movement commands.

There are several papers reviewing the most rep-

resentative algorithms that can be used to improve

the performance of BMI systems (Bashashati,

Fatourechi, Ward, & Birch, 2007; Bashashati, Ward,

Birch, & Bashashati, 2015; Lotte, Congedo, Lécuyer,

Lamarche, & Arnaldi, 2007). However, the element

that has the largest influence on the precision and

function of the BMI is still the recording of the neural

activity.

On the one hand, invasive recordings have a

high signal-to-noise ratio and allow the decoding

of different movements of the same limb (Pis-

tohl, Schulze-Bonhage, Aertsen, Mehring, & Ball,

2012; Spüler et al., 2014) and even permit recon-

struction of 2D and 3D trajectories (Collinger et

al., 2013; Hochberg et al., 2006, 2012). On the

other hand, noninvasive technologies have been used

to discriminate single movement commands from

rest. For instance, the onset of movements of the

upper- and lower-limbs can be decoded (Ibáñez

et al., 2014; Jiang, Gizzi, Mrachacz-Kersting, Drem-

strup, & Farina, 2015; Niazi et al., 2011; Sburlea et

al., 2015), with performances that vary depending

on the type of movement classified (López-Larraz,

Montesano, Gil-Agudo, & Minguez, 2014). More

recent works are proposing methodologies to decode
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different movements from the same limb (Ofner,

Schwarz, Pereira, & Müller-Putz, 2017; Shiman

et al., 2017), although their integration in closed-loop

scenarios is yet to be demonstrated.

Two of the main challenges for the estab-

lishment of this technology in clinical practice

or for neuroprosthetics control, especially with

noninvasive recordings, are the session-to-session

non-stationarities (i.e., the characteristics of the sig-

nals change with time) (López-Larraz et al., 2018;

Shiman et al., 2017) and the signal contaminations

by artifacts. These artifacts can be generated by

the devices controlled with the BMI (e.g., noise

generated by actuators based on electric/magnetic

neurostimulation, or on robotic devices) (Insausti-

Delgado et al., 2017; Walter et al., 2012) or have a

physiological origin (e.g., compensatory movements,

cranial and neck muscle activity, eye movements,

swallowing, etc.) (López-Larraz, Bibián, Birbaumer,

& Ramos-Murguialday, 2017).

3.3. Device control

The objective of neuroprostheses applied in a

motor rehabilitative context is to excite the specific

peripheral nervous systems responsible for a partic-

ular movement in order to facilitate neuroplasticity,

especially by engaging proprioceptive mechanisms

(Mrachacz-Kersting, Kristensen, Niazi, & Farina,

2012; Ramos-Murguialday et al., 2012). Decoding

simple binary commands from EEG activity has

allowed to control different rehabilitative devices,

and in fact, is a methodology that has already shown

some efficacy in a laboratory setting for inducing

functional recovery in stroke patients (Ang et al.,

2015; Ono et al., 2014; Pichiorri et al., 2015; Ramos-

Murguialday et al., 2013).

Robotic systems are available to guide the move-

ments of paralyzed limbs of the patients. They

constitute a very relevant clinical tool as they allow

performing repetitive tasks with a very fine preci-

sion (Krebs et al., 2003). Since the appearance of

the MIT Manus in the early 90s (Hogan, Krebs,

Charnnarong, Srikrishna, & Sharon, 1992), hundreds

of robotic devices have been proposed with dif-

ferent degrees of freedom and complexity. Robotic

exoskeletons controlled with EEG have also been

used in the upper-limb to open and close the hand

of the patients (Pfurtscheller, Guger, Müller, Krausz,

& Neuper, 2000; Ramos-Murguialday et al., 2013),

flex their arm (Ang et al., 2015), or perform complex

reaching movements (Sarasola-Sanz et al., 2016);

and in the lower-limb to facilitate gait, with and

without body-weight support (Do, Wang, King,

Chun, & Nenadic, 2013; K. Lee, Liu, Perroud,

Chavarriaga, & Millán, 2017; López-Larraz et al.,

2016).

Functional electrical stimulation (FES), also called

neuromuscular electrical stimulation (NMES), uti-

lizes surface electrodes and electrical discharges

above motor-threshold to artificially activate the

nerves and muscles (Lynch & Popovic, 2008).

For upper-limb paralysis, this technology has been

used to facilitate grasping (Pfurtscheller, Müller,

Pfurtscheller, Gerner, & Rupp, 2003; Trincado-

Alonso et al., 2017) and reaching movements (Ibáñez

et al., 2017), and even to assist walking in patients

with lower-limb paralysis (King et al., 2015). Recent

trends also propose the use of low-intensity NMES

(i.e., below the motor threshold) to provide an

enriched sensory feedback (Corbet, Iturrate, Pereira,

Perdikis, & Millán, 2017), enough to stimulate the

skin and joint mechanoreceptors that might also

support neuroplasticity.

Virtual reality environments have been integrated

in BMI systems to engage and motivate patients

(Ron-Angevin & Dı́az-Estrella, 2009). In fact, visual

feedback-mediated BMI therapies can be used to

guide motor imagery training, which has positive

effects in stroke recovery (Pichiorri et al., 2015).

3.4. BMI control and learning

Learning to control a BMI entails changes in the

brain activity, which can be reflected, for instance,

as the enhancement of slow cortical potentials (Bir-

baumer, 1999), focusing of sensorimotor-rhythms

(Buch et al., 2008; McFarland, Sarnacki, & Wol-

paw, 2010) and BOLD topographies (Enzinger et al.,

2008; Ramos-Murguialday et al., 2013). Although

it has been shown that it is possible to change the

neural network involved in motor recovery (Ramos-

Murguialday et al., 2013), further experimental work

needs to be done to link neurophysiological changes

and motor function recovery at a behavioral level.

In order to learn a neuroprosthetic skill, the brain

modifies the connections to the neurons involved

in the BMI (i.e., causally related to motor out-

put) and minimizes the error in the motor output

through a process of cortical plasticity (Carmena

et al., 2003). Enacting skillful control of a pros-

thetic device (i.e., achieving control and dexterity

comparable to natural movements) involves the incor-

poration of a disembodied device in the brain. Recent
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advances highlight the importance of the acquisition

and retention of neuroprosthetic skills, i.e., accu-

rate, readily-recalled neural control of disembodied

actuators, irrespective of natural physical movements

(Carmena, 2012). These concepts might be differ-

ent for brain-controlled actuators moving the user’s

body (e.g., using an exoskeleton), because the causal

connection between brain and motor output is artifi-

cial but generates feedback comparable to the natural

case; i.e., the neuroprosthetic skill will be more

“natural”.

Each hemisphere of the motor cortex (i.e., the side

of the brain typically believed to control the contralat-

eral limb) contains significant information about the

state of the ipsilateral limb (Ganguly et al., 2009).

This is paramount for stroke patients, since the activ-

ity of the contralesional hemisphere can be used as

control signals for BMI in cases when the ipsilesional

hemisphere is severely damaged (Antelis, Monte-

sano, Ramos-Murguialday, Birbaumer, & Minguez,

2017; López-Larraz, Ray, et al., 2017). However, the

role of the contralesional hemisphere in motor reha-

bilitation after stroke is still not well understood, and

to our knowledge, no study has proven the efficacy

of using the contralesional hemisphere activity only

in a BMI based rehabilitation trial.

The performance of the rehabilitative BMI system

linking movement-related brain activity and move-

ment is assumed to play a pivotal role in recovery. For

this reason, research is being conducted to maximize

the BMI effectiveness, in which brain and machine

adaptation are key. On the one hand, neuroprosthetic

motor memory is facilitated through cortical plastic-

ity. On the other hand, the adaptation can also take

place in the machine instead of the brain, with the

BMI adapting itself to the specific characteristics of

each particular patient to optimize performance (Itur-

rate, Chavarriaga, Montesano, Minguez, & Millán,

2015). The optimal and synergistic combination of

both adaptive mechanisms might constitute a break-

through for the skillful and naturalistic control of

disembodied devices, comparable to natural move-

ments (Dangi, Orsborn, Moorman, & Carmena, 2013;

Orsborn, Dangi, Moorman, & Carmena, 2012), espe-

cially to elicit motor functional plasticity.

4. BMIs for motor rehabilitation in stroke

At the heart of the BMI paradigm lays the oper-

ant (“volitional”) control of neural activity, initially

proposed by Fetz and collaborators (Fetz, 1969;

Fetz & Baker, 1973). Recent experiments have

demonstrated corticospinal synaptic plasticity in vivo

at the level of single neurons by the use of a recur-

rent neural interface (Nishimura, Perlmutter, Eaton,

& Fetz, 2013). Furthermore, artificial afferent feed-

back can reorganize motor cortex outputs, suggesting

that, under normal conditions, cortico-muscular rela-

tions are maintained through physiological feedback

loops (Lucas & Fetz, 2013). These results sug-

gest that artificial neural connections involving

afferent and efferent contingency (bidirectionally

consistent) activate neuroplastic mechanisms. Motor

rehabilitative BMI systems rely on a neurofeedback

training paradigm, establishing such a contingent

link between the brain and the paralyzed limbs to

re-establish the damaged pathways, which might

facilitate the recovery of lost motor functions (Chaud-

hary et al., 2016; Daly & Wolpaw, 2008).

4.1. Current results of BMI-based stroke

rehabilitation

The first pilot study applying a BMI in the context

of stroke rehabilitation appeared in 2008 (Buch et al.,

2008). An MEG-based BMI was used to measure the

amplitude of the mu rhythm originated in the sen-

sorimotor cortex and link it with a visual feedback

in the form of a cursor on a screen. Somatosensory

feedback was provided to the patients only at the end

of each trial, as long as the trial had been success-

ful: i.e., if the patient had been able to modulate the

mu rhythm long enough. Therefore, in this case the

somatosensory feedback was not provided online and

in a contingent manner, which might be the reason

why the 8 studied patients did not experience any

clinical improvement (Buch et al., 2008).

It was not until the year 2013 that the first

double-blinded controlled clinical trial demonstrat-

ing the rehabilitative efficacy of a BMI for completely

paralyzed stroke patients was published (Ramos-

Murguialday et al., 2013). In this study, the

EEG-based BMI intervention was conducted imme-

diately before behavioral physiotherapy. Thirty-two

patients were recruited and assigned to two matched

groups: the intervention group received contingent

proprioceptive feedback associated to the modula-

tion of their ipsilesional mu rhythm, while the control

group received sham feedback unrelated to their

brain activity. The proprioceptive feedback was pro-

vided by means of arm and hand robotic devices,

supporting reaching and hand opening movements.

The patients learned over 20 sessions to control the
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BMI by decreasing the power of the mu rhythm

of the ipsilesional motor cortex while attempting

to move their paralyzed arm, even if no movement

was possible. Both groups received identical phys-

iotherapy treatment right after the BMI sessions.

Only the experimental group showed significant

motor learning (i.e., increase in orthosis brain con-

trol), significant improvement in motor function (i.e.,

Fugl-Meyer upper limb scores), significant improve-

ment in muscle control and significant brain activity

reorganization reflected by BOLD activity (Ramos-

Murguialday et al., 2013).

Subsequent studies have confirmed these positive

results, providing more evidence of the rehabilita-

tive potential of BMI for stroke. Table 1 summarizes

some of the most relevant and recent articles on BMIs

for stroke motor rehabilitation. In this review of the

state of the art, we present studies published up to

September 2017 of BMI therapies for stroke motor

rehabilitation, involving (at least) a control group and

reporting clinical scales pre- and post-intervention.

4.1.1. Sample characteristics

The number of subjects included in the reviewed

studies varied widely from 1 to 74 (mean ± std:

25.15 ± 17.01; median: 22). Eight out of the thir-

teen studies involved chronic patients only (Ang et

al., 2014, 2015; Kasashima-Shindo et al., 2015; Kim,

Kim, & Lee, 2016; Mrachacz-Kersting et al., 2016;

Mukaino et al., 2014; Ono et al., 2014; Ramos-

Murguialday et al., 2013), whereas one included

chronic and subacute (Rayegani et al., 2014), and

four included subacute patients only (Frolov et al.,

2017; Li et al., 2014; Mihara et al., 2013; Pichiorri

et al., 2015). The results in chronic stroke patients do

not have the confound of spontaneous recovery that

may be seen in the sub-acute and acute phases. For

this reason, most of the studies try to demonstrate the

efficacy of BMIs in chronic patients, despite know-

ing that the spontaneous activation of neuroplastic

mechanisms could potentially boost the BMI effect.

Since the main advantage of a BMI is that it

can provide patients having no residual movement

with a movement-related control signal, most of the

studies, i.e., eight out of thirteen, recruited only

severely paralyzed stroke patients (Frolov et al., 2017;

Kasashima-Shindo et al., 2015; Li et al., 2014; Mihara

et al., 2013; Mukaino et al., 2014; Ono et al., 2014;

Pichiorri et al., 2015; Ramos-Murguialday et al.,

2013); two studies recruited patients with moderate

or severe stroke (Ang et al., 2014, 2015), while three

studies recruited only patients with moderate stroke

(Kim et al., 2016; Mrachacz-Kersting et al., 2016;

Rayegani et al., 2014), where some residual voluntary

movement was present.

4.1.2. Type of intervention

The duration of the interventions ranged from 1

week (Mrachacz-Kersting et al., 2016) to 8 weeks (Li

et al., 2014) and each of the sessions lasted between

30 and 90 minutes. Twelve out of the thirteen studies

targeted the upper limb, while only one focused on the

lower limb (Mrachacz-Kersting et al., 2016). Regard-

ing the technology used to record the brain activity,

only one study used NIRS (Mihara et al., 2013), while

all the others relied on EEG because of its time res-

olution, cost and ease of use. The type of actuator

used to provide feedback varied between studies, with

six utilizing robotic or orthotic devices (Ang et al.,

2014, 2015; Frolov et al., 2017; Kasashima-Shindo

et al., 2015; Ono et al., 2014; Ramos-Murguialday et

al., 2013), four using electrical stimulation (Kim et

al., 2016; Li et al., 2014; Mrachacz-Kersting et al.,

2016; Mukaino et al., 2014), and three using visual

feedback only (Mihara et al., 2013; Pichiorri et al.,

2015; Rayegani et al., 2014). Four of the studies

requested subjects to attempt to move their paralyzed

limb to elicit a signal for the BMI (Mrachacz-Kersting

et al., 2016; Mukaino et al., 2014; Ono et al., 2014;

Ramos-Murguialday et al., 2013), and the remaining

nine relied on motor imagery, which does not include

top-down descending volleys reaching the muscles.

The variability in experimental design between

studies is also evident. Nine of the studies followed

randomization procedures to allocate the patients into

different experimental groups (Ang et al., 2014, 2015;

Frolov et al., 2017; Kim et al., 2016; Li et al., 2014;

Mihara et al., 2013; Pichiorri et al., 2015; Ramos-

Murguialday et al., 2013; Rayegani et al., 2014).

With respect to blinding procedures, we studied three

parameters: 1) if patients were blinded to the inter-

vention they were performing; 2) if the clinicians

performing the clinical assessment of each patient

were blinded to the subject’s group assignment; and

3) if the experimenters conducting the BMI ther-

apy were blinded to group assignment. In four of

the studies the patients were blinded to the type of

intervention provided (Frolov et al., 2017; Mihara

et al., 2013; Mrachacz-Kersting et al., 2016; Ramos-

Murguialday et al., 2013). The personnel performing

the clinical assessment were blinded in eleven of the

studies (Ang et al., 2014, 2015; Frolov et al., 2017;

Kasashima-Shindo et al., 2015; Kim et al., 2016;

Mihara et al., 2013; Mrachacz-Kersting et al.,
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2016; Mukaino et al., 2014; Pichiorri et al., 2015;

Ramos-Murguialday et al., 2013; Rayegani et al.,

2014), and the experimenters were blinded in only

two of the studies (Mihara et al., 2013; Ramos-

Murguialday et al., 2013).

Several types of control conditions were included.

Some of the studies included a control condition in

which the actuator was moved without involving a

BMI (Ang et al., 2014, 2015; Li et al., 2014; Mukaino

et al., 2014); in these cases, the patients were never

blinded to the intervention. Perhaps a better control

strategy was used in studies where patients in the con-

trol group performed a pseudo-BMI blinded therapy,

where the movement of the actuator was not linked

to the brain activity, but rather to a sham feedback

(Frolov et al., 2017; Mihara et al., 2013; Mrachacz-

Kersting et al., 2016; Ramos-Murguialday et al.,

2013). Three of the studies compared the BMI therapy

with conventional physical or occupational therapy

(Ang et al., 2014; Kim et al., 2016; Rayegani et al.,

2014). The rest of the studies used other approaches

for study control: comparing proprioceptive BMI ver-

sus visual BMI (Ono et al., 2014); motor imagery

BMI with visual feedback versus motor imagery

without feedback (Pichiorri et al., 2015); BMI ver-

sus EMG-based biofeedback (Rayegani et al., 2014);

and comparing the combination of BMI and transcra-

nial direct current stimulation (tDCS) with BMI only

(Kasashima-Shindo et al., 2015).

4.1.3. Outcome measures and improvement

Eleven out of the thirteen studies reported Fugl-

Meyer score as the primary outcome measure (Ang

et al., 2014, 2015; Frolov et al., 2017; Kasashima-

Shindo et al., 2015; Kim et al., 2016; Li et al., 2014;

Mihara et al., 2013; Mrachacz-Kersting et al., 2016;

Mukaino et al., 2014; Pichiorri et al., 2015; Ramos-

Murguialday et al., 2013), although there were some

differences in the sub-scale presented. The other two

studies reported the Stroke Impairment Assessment

Set (SIAS) (Ono et al., 2014) or the Jebsen Hand

Function Test (JHFT) (Rayegani et al., 2014) to assess

the impairment of the patients.

All the studies reported improvements of the

motor function after the use of the BMI. Only two

of the studies reported significant motor improve-

ments (e.g., Fugl-Meyer) in the patients undergoing

BMI therapy and no improvements in the control

group (Mrachacz-Kersting et al., 2016; Ramos-

Murguialday et al., 2013). Four of the studies

reported significant improvements both in the inter-

vention (i.e., BMI therapy) and in the control group,

but significantly higher improvements in the BMI

intervention (Kim et al., 2016; Li et al., 2014; Mihara

et al., 2013; Pichiorri et al., 2015). Five studies

showed significant improvements in the intervention

and control groups, with no significant differences

between groups (Ang et al., 2014, 2015; Frolov

et al., 2017; Kasashima-Shindo et al., 2015; Rayegani

et al., 2014). From these studies, and excluding the

one by Rayegani et al., 2015 that did not include

Fugl-Meyer values, the patients in the intervention

groups presented an average improvement in Fugl-

Meyer of 5.9 points, while the patients in the control

groups showed an average improvement of 5.6 points.

The remaining two studies lacked statistical compar-

isons. In the study by Ono et al., the authors reported

improvements in the Stroke Impairment Assessment

Scale (SIAS) in three out of six patients within the

intervention group and in none of the six in the control

group (Ono et al., 2014). In the case study performed

by Mukaino and colleagues with an A-B-A-B design,

they observed greater improvements in the patient

during the two two-week BMI intervention phases

than during the two control (i.e., electrical stimulation

irrespective of the brain activity) phases (Mukaino

et al., 2014).

4.1.4. Summary

In general, the BMI experimental interventions

led to better recovery than the control conditions,

resulting in higher gains in Fugl-Meyer score or

other clinical scales. From the thirteen studies pre-

sented in this review, no direct conclusion can be

extracted regarding the best type of feedback or BMI

modality for achieving better functional outcomes.

The six studies demonstrating higher improvements

in the intervention group than in the control group

include therapies based on FES (Kim et al., 2016; Li

et al., 2014; Mrachacz-Kersting et al., 2016), robotics

(Ramos-Murguialday et al., 2013) or visual feed-

back (Mihara et al., 2013; Pichiorri et al., 2015);

utilizing EEG (Kim et al., 2016; Li et al., 2014;

Mrachacz-Kersting et al., 2016; Pichiorri et al., 2015;

Ramos-Murguialday et al., 2013) or NIRS (Mihara

et al., 2013); relying on motor attempt (Mrachacz-

Kersting et al., 2016; Ramos-Murguialday et al.,

2013) and motor imagery (Kim et al., 2016; Li

et al., 2014; Mihara et al., 2013; Pichiorri et al.,

2015); and with the feedback being continuous dur-

ing several seconds (controlling online movement of

the robot or cursor) (Mihara et al., 2013; Pichiorri

et al., 2015; Ramos-Murguialday et al., 2013) or

discrete, triggering a preprogrammed activation of
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a robot or FES (Kim et al., 2016; Li et al., 2014;

Mrachacz-Kersting et al., 2016). The duration of the

intervention might not be a critical issue either, since

the studies with the shortest (Mrachacz-Kersting

et al., 2016) and longest (Li et al., 2014) duration are

also part of these six selected works showing BMI

superiority over control intervention. From these

studies, the typology of the patients who respond

best to BMI with respect to chronicity and sever-

ity was not conclusive, as they included chronic

(Kim et al., 2016; Mrachacz-Kersting et al., 2016;

Ramos-Murguialday et al., 2013) and sub-acute (Li

et al., 2014; Mihara et al., 2013; Pichiorri et al.,

2015) patients, with severe (Li et al., 2014; Mihara

et al., 2013; Pichiorri et al., 2015; Ramos-

Murguialday et al., 2013) or moderate (Kim et al.,

2016; Mrachacz-Kersting et al., 2016) paralysis.

Experimental rigor and methodology might influ-

ence the interpretability of the studies presented in

this literature review. There is a clear need for more

randomized controlled BMI interventional clinical

trials in stroke patients. Future trials would greatly

benefit from a larger sample size and a standardized

control condition/group that could be used as a ref-

erence for any variation in the BMI concept tested.

Furthermore, correlations between neurophysiologi-

cal changes, BMI performance (i.e., brain-to-muscle

link) and functional clinical scores are needed

to understand the differences in results among

studies, and to better characterize the functional

neuroplastic changes involved in motor recovery.

The feedback and signal processing methodolo-

gies, experimental protocols and subject instructions

are key elements of BMI clinical trials for motor

rehabilitation, and larger consensus regarding the

technological approach to be used in research (i.e.,

innovating in one front only in the next clinical

trials) in the field is needed in order to progress

adequately.

5. Conclusions and future perspectives

Although significant and promising, the functional

motor recovery achieved with novel BMI technology

remains modest. Studies involving BMI interventions

that included sham feedback, in which stimulation

may or may not coincide with the brain activity

(Frolov et al., 2017; Mihara et al., 2013; Mrachacz-

Kersting et al., 2016; Ramos-Murguialday et al.,

2013), showed that the measured improvements are

better when the afferent stimulation is associated with

the degree of brain activation. This underlines the

importance of having a precise and accurate feedback

to boost the learning.

5.1. Cortico-muscular hybrid BMIs

There is a general consensus about the need of

new methodologies to improve the contingent link

between the brain and the paralyzed muscles in order

to maximize Hebbian plasticity and subsequent motor

recovery. The improvement of such cortico-muscular

link would require a precise identification of the

intended motor task, to link the activation of the

neural populations responsible for that task with the

proprioceptive feedback in the form of the actual

movement. There is evidence showing that differ-

ent neural populations modulate movements of the

arm in different directions (Georgopoulos, Schwartz,

& Kettner, 1986), and recent invasive studies have

shown that the brain activity of different movements

of the same limb can be decoded (Collinger et al.,

2013; Spüler et al., 2014). Classification of differ-

ent motor tasks of the same limb with EEG has been

recently demonstrated (Ofner et al., 2017; Shiman

et al., 2017), although performances are still far from

providing a natural and skilled control.

The electromyography (EMG) has shown its fea-

sibility for decoding arm, wrist and individual finger

movements (Irastorza-Landa et al., 2017; Parker,

Englehart, & Hudgins, 2006; Sarasola-Sanz et al.,

2015; Tenore et al., 2009). It has been used for

the control of prosthetic and robotic rehabilitative

devices (Hesse et al., 2005; Zecca, Micera, Carrozza,

& Dario, 2002; Zhou, Wang, Bao, Lü, & Wang,

2016). However, EMG activity of stroke patients dur-

ing motor attempts is not easy to decode, and might

not be a feasible option for all of them (Cesqui,

Tropea, Micera, & Krebs, 2013). A recent study

demonstrated that movement decoding using EMG

is possible in approximately 45% of severely para-

lyzed chronic stroke patients (Ramos-Murguialday et

al., 2015). These patients can also present pathologic

muscle synergies (Garcı́a-Cossio, Broetz, Birbaumer,

& Ramos-Murguialday, 2014), and therefore, rein-

forcing them might result in maladaptive plasticity.

Therefore, cortico-muscular hybrid BMIs (hBMIs)

have been recently devised, aiming at building more

robust rehabilitation systems that overcome the lim-

itations of BMI and isolated myoelectric interfaces.

Such hBMIs include residual muscle activity in the

BMI control, and hence, in the contingent connection

between perilesional cortical areas and movement
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related afferent feedback. These enriched hBMI

systems can lead to a higher decoding accuracy

(Kiguchi & Hayashi, 2012; Leeb, Sagha, Chavar-

riaga, & Millán, 2011; Li et al., 2017) and

more degrees of freedom (Kiguchi, Lalitharatne, &

Hayashi, 2013), reflected in a richer and smoother

control of actuators. A recent study proposed a

biologically-inspired hybrid strategy, involving brain

and muscle activity, to control a 7 degrees-of-freedom

robotic arm, and demonstrated its viability in a mod-

erately paralyzed stroke patient (Sarasola-Sanz et al.,

2017). The hierarchical control used the EEG activ-

ity to monitor the intended movement of the subject

(Sarasola-Sanz et al., 2016), and when the attempt

of movement was detected, the EMG activity was

sequentially used to estimate the kinematics of the

robot (Sarasola-Sanz et al., 2015).

Despite the encouraging results, hBMIs are still in

a preliminary development stage, and further exper-

iments in larger number of patients are necessary to

assess their effectiveness in eliciting motor rehabili-

tation.

5.2. Current challenges

Neural interfaces have provided us with knowledge

of how the brain generates behavior and the mecha-

nisms involved in functional neural plasticity. Recent

data in severely impaired chronic stroke patients indi-

cate that contingent neural linkage between brain

activity and movements of the paralyzed extrem-

ity can induce significant functional motor recovery.

However, full motor function recovery has not been

achieved yet. These neural interfaces are in their early

stage of development and present several limitations.

From the signal recording point of view, the abil-

ity to accurately decode all the degrees of freedom

of the arm and leg to provide dexterous and nat-

ural control (e.g., grasping and manipulation of

different objects) still remains a challenge. While

implantable electrodes can provide a very accurate

decoding of movement intentions, user acceptance

of invasive BMIs is still low, mainly due to the

risks related to the neurosurgery and postsurgical

complications (Waldert, 2016). On the other hand,

noninvasive approaches have generally provided low

accuracies. Hybrid BMIs might be able to improve

the results achieved so far with EEG-based BMIs

linking brain and residual muscle activity with move-

ments, although they still have to be tested in real

rehabilitation interventions to show their potential.

The way the neural activity is processed to extract

relevant information from a generally noisy signal

plays a key role in the rehabilitative outcome. The

huge variability in how the brain is damaged after

a stroke, added up to the already-unique corti-

cal patterns of each individual, results in diverse

cortical activities among patients during the perfor-

mance of the same task (López-Larraz, Ray, et al.,

2017; Park, Kwon, Kim, Lee, & Kim, 2016; Ray,

López-Larraz, Figueiredo, Birbaumer, & Ramos-

Murguialday, 2017; Stępień et al., 2011). Detailed

screenings of each patient for the personalization of

the BMIs and the therapies to the specific character-

istics of each individual might be key to boost the

effect of these therapies.

Another key mechanism to enhance the rehabil-

itative effects of BMI therapies is the contingent

stimulation of afferent pathways. Somatosensory

and proprioceptive feedback is a critical component

of motor control and learning (Ramos-Murguialday

et al., 2012). Stroke patients present relatively well

preserved afferent pathways that should be used

to exploit functional neuroplastic mechanisms. A

better understanding of how the motor networks

are stimulated and combined feedback modalities

(e.g., a robotic exoskeleton and electrical stimu-

lation) might allow a more precise stimulation of

the neural network involved in movement (Del-Ama

et al., 2012; Hortal et al., 2015; Resquı́n et al., 2016).

Furthermore, stimulation at the brain level might

also address the pathological stroke-related inter-

hemispheric imbalances, boost the effects of BMI

therapies, and facilitate plasticity and recovery (John-

son et al., 2017).

The efficacy of the BMI intervention, as any

other rehabilitative interventions, might also be

increased by exciting the neural networks involved in

the sensorimotor integration to facilitate functional

neuroplasticity (Krakauer, Carmichael, Corbett, &

Wittenberg, 2012). There are many groups working

on cell therapies or brain stimulation as means to re-

activate the neuroplasticity mechanisms that facilitate

neuroplastic changes the first weeks after the stroke

allowing spontaneous recovery. The combination of

plasticity enhancement or reactivation methods with

BMI therapy and physiotherapy strategies, hold great

promise to boost stroke recovery interventions.
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Insausti-Delgado, A., López-Larraz, E., Bibián, C., Nishimura, Y.,

Birbaumer, N., & Ramos-Murguialday, A. (2017). Influence

of trans-spinal magnetic stimulation in electrophysiological

recordings for closed-loop rehabilitative systems. In 39th

Annual International Conference of the IEEE Engineering

in Medicine and Biology Society (EMBC) (pp. 2518-2521).

http://doi.org/10.1109/EMBC.2017.8037369

Irastorza-Landa, N., Sarasola-Sanz, A., López-Larraz, E.,
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Ray, A. M., López-Larraz, E., Figueiredo, T. C., Bir-

baumer, N., & Ramos-Murguialday, A. (2017). Movement-

related brain oscillations vary with lesion location in

severely paralyzed chronic stroke patients. In 39th Annual

International Conference of the IEEE Engineering in

Medicine and Biology Society (EMBC) (pp. 1664-1667).

http://doi.org/10.1109/EMBC.2017.8037160

Rayegani, S. M., Raeissadat, S. A., Sedighipour, L., Mohammad

Rezazadeh, I., Bahrami, M. H., Eliaspour, D., & Khosrawi,

S. (2014). Effect of Neurofeedback and Electromyographic-

Biofeedback Therapy on Improving Hand Function in Stroke

Patients. Topics in Stroke Rehabilitation, 21(2), 137-151.

http://doi.org/10.1310/tsr2102-137
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