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Abstract: Usage of effective classification techniques on Magnetic Resonance Imaging (MRI) helps in
the proper diagnosis of brain tumors. Previous studies have focused on the classification of normal
(nontumorous) or abnormal (tumorous) brain MRIs using methods such as Support Vector Machine
(SVM) and AlexNet. In this paper, deep learning architectures are used to classify brain MRI images
into normal or abnormal. Gender and age are added as higher attributes for more accurate and
meaningful classification. A deep learning Convolutional Neural Network (CNN)-based technique
and a Deep Neural Network (DNN) are also proposed for effective classification. Other deep learning
architectures such as LeNet, AlexNet, ResNet, and traditional approaches such as SVM are also
implemented to analyze and compare the results. Age and gender biases are found to be more useful
and play a key role in classification, and they can be considered essential factors in brain tumor
analysis. It is also worth noting that, in most circumstances, the proposed technique outperforms
both existing SVM and AlexNet. The overall accuracy obtained is 88% (LeNet Inspired Model) and
80% (CNN-DNN) compared to SVM (82%) and AlexNet (64%), with best accuracy of 100%, 92%, 92%,
and 81%, respectively.

Keywords: brain tumor; Magnetic Resonance Imaging (MRI); deep learning; Convolutional Neural
Network (CNN); Support Vector Machine (SVM); Deep Neural Network (DNN)

1. Introduction

The brain is the most complex organ present in the human body. It carries out different
functions and controls the activities of other systems of the body. Additionally, the brain
is comprised of complex structures including the cerebellum, cerebrum, and brain stem,
which constitute the central nervous system [1,2]. The histology of the brain consists of
brain cells and tissues. Brain cells are divided into neurons and neuroglia, and brain tissues
into gray matter and white matter [2,3]. When cells of the brain grow abnormally and are
not regulated correctly, it may result in a brain tumor. It is found that all variants of tumors
are not cancerous. Fundamentally, cancer is a term used for malignant tumors, not benign
tumors. Although benign tumors are less harmful than malignant tumors, the former still
presents various problems in the brain [4]. There are many tests and medical imaging
techniques that can be carried out for proper treatment. Some of the medical imaging
techniques are Computed Tomography (CT), Magnetic Resonance Imaging (MRI), X-ray,
etc. [5], but the standard way of evaluating a tumor is by using MRI due to its capability of
achieving detailed images of the brain. A variety of brain conditions can be detected using
MRI, including tumors, cysts, and other structural abnormalities. It can detect gray matter,
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white matter, and any damage or shunt present in the brain. Cerebrospinal fluids and the
surrounding of tumors can be assessed by an MRI scan, which has a higher sensitivity for
detecting the presence of a tumor. Detection of tumors at an early stage is essential, as it
can be risky in many cases and can cause death in unfortunate circumstances. Therefore,
prediction of the tumor using automated tools can be a great help in tumor identification
and be the safest mode.

Detection of tumors can be accomplished by means of meticulous manual human
analysis of MRI images one by one (slice by slice). This specific task needs to be performed
for accurate identification of the region and the type of tumor. Additionally, tumors in the
brain may affect certain other organs in a system (metastasis), which can be even more
harmful. Detection of such tumors at an early stage is essential in selecting treatments in
an efficient and effective decision-making capability on the part of the practitioner. Thus,
proper analysis of brain MRI images is required to obtain valuable information which may
be helpful in the early detection and diagnosis of diseases. In addition, early detection of
tumors can lead to better diagnosis; to achieve this, the use of automated tools is the most
reliable and aspiring contribution in medical science. Automated techniques have evolved
in past decades in image processing, where traditional methods were used to solve such
issues. This continues to shift towards more advanced techniques such as machine learning
and eventually to deep learning, and other proposed methodologies [6].

Keeping the necessity of manual examination, this paper includes state-of-the-art
automated approaches to classify MRI images as normal (nontumorous) or abnormal
(tumorous). For this purpose, a proposed deep learning based CNN methodology was used
and compared with the existing techniques due to their superior performance in Computer
Vision. We also divided the brain MRI images into different genders, male and female, and
different age groups for classification into normal or abnormal. We incorporated age and
gender as attributes for the first time, in contrast to earlier classification methodologies.
This is crucial in determining similarities and differences of the brain concerning shape
and size for different age groups and genders. This is in order to find out whether age and
gender can be the factors in achieving a better result in classification; by finding similar
patterns between images of the same category. A flowchart depicting the usages of age
and gender bias (depending on data availability) is shown in Figure 1, where the data are
taken and preprocessed using filtering and cropping. Based on available data obtained, the
images are divided into seven categories based on different age groups and gender. These
are then classified using proposed CNN models where output can be normal or abnormal.
The following categories of brain MRI images were considered: (i) Males between the ages
of 20 and 70, (ii) Females between the ages of 50 and 70, (iii) Females between the ages of
20 and 70, (iv) Males between the ages of 10 and 80, (v) Females between the ages of 10
and 80, (vi) Males and Females between the ages of 20 and 70, and (vii) Males and Females
between the ages of 10 and 80. This is then applied to various approaches for classification
as normal or abnormal.

1.1. Motivation

Previous research has focused on brain diagnosis as classified as either normal or
abnormal. In earlier attempts, SVM has been utilized and achieved effective results in
classification into normal or abnormal. Despite this, no higher attributes were used in its
implementation. Though the accuracy of the existing approach is satisfactory with 99.9%
accuracy, it may not be suitable for accurate prediction/classification of tumors, as human
brain structure varies based on age and gender [7,8]. The information obtained using higher
attributes is a reliable way to treat any kind of deformity. Such delicacy must be handled
precisely for the proper diagnosis of diseases. Therefore, usage of higher attributes such as
age, gender, etc., is much needed for accurate prediction, which leads to an appropriate
diagnosis. In this paper, age and gender are taken as attributes for predicting the presence
of tumors in the hope of obtaining an accurate result using CNN-based methodologies. In
order to keep the network computationally cheaper, a deeper CNN is not used here, and
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higher depth may lead to poor generalization. In contrast to previous spatial exploitation-
based CNNs such as AlexNet or VGGNets, a LeNet inspired model was chosen for its
simplicity and use of a lower filter (3× 3). This is more suited than other Nets due to less
training time and is more computationally inexpensive.

Figure 1. An overall flowchart, depicting proposed classification approach by using age and gender
as attributes.

1.2. Our Contributions

The main contributions of the paper are as follows:

1. Figshare [9], Brainweb [10], and Radiopaedia [11] datasets are readily available online
and can be used to classify brain MRI as normal or abnormal. We have taken all these
datasets to create a heterogeneous combination of data that address the heterogeneity
issue. A dataset from the same source is used for the majority of studies in brain-
related diagnosis. This form of heterogeneity has never been explored before, but it
could be the beginning of correctly distinguishing images from different sources.

2. Using higher attributes is always more informative with a higher expectancy of
reliable and efficient results. Here, work based on age and gender is considered as an
initiative to determine whether these can be helpful in further automated diagnosis.
It is inspired by the paper given in [12,13]. In addition to employing various data
to classify patients as normal or abnormal, Radiopaedia datasets are used to classify
patients by age and gender.

3. To categorize normal (absence of tumor) and abnormal (presence of tumor) images,
two proposed CNN-based methodologies are applied. One is a model that is in-
spired from LeNet and the other is a Deep Neural Network based method. These
proposed models are fast and more superficial compared to other comparable deep
learning methods.

4. Two alternative deep learning-based classifiers, LeNet and ResNet, are incorporated
in addition to the proposed methodology for classification. During their reign, these
two models were used for classification and had a significant impact. They are utilized
because they are not as deep as VGG19, MobileNet, Inception, and other state-of-the-
art deep learning approaches, which are not ideal for our data as they are not massive
and could lead to erroneous results and computational expense. To classify normal
and abnormal images, the results are compared with Support Vector Machine and
AlexNet, which were previously used to classify normal and abnormal images.
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5. Compared to traditional SVM (82% using age and gender attributes and 77% using
heterogenous data without any attributes), the parameters used in this paper are
higher with better results and accuracy (88% using age and gender attributes and
80% using heterogenous data). While comparing to AlexNet, the depth and number
of convolutions are lesser in the proposed method, making it simpler with more
efficient computation time. AlexNet obtained an accuracy of 64% using age and
gender attributes and 65% using heterogenous data without any attributes.

6. In this paper, data are not equally distributed for each group using age and gender.
Data are unbalanced data, and cross-validation is used to solve this issue. This work
is not clinically proven or tested, but it is performed to check the capability of a few
deep-learning methodologies, mainly spatial CNN. This model might not work or
perform well under different clinical settings, as data are obtained from online sources.

1.3. Organization of the Paper

This paper uses deep learning-based approaches to classify MRI images as normal or
abnormal in a hope to see if using higher attributes can be beneficial. Section 2 includes
works related to brain tumor classification and findings based on the anatomy of the brain
of different individuals. Section 3 explains the types of methodologies used as well as the
proposed method. Section 4 shows the result and findings, and in Section 5, the conclusion
of the paper is given.

2. Related Works

Several existing works classify brain images into normal (tumorous) and abnormal
(nontumorous). One such method can be seen in Rajesh et al. [14], where classification was
implemented using Feed Forward Neural Network, consisting of three layers with 50 nodes
in the hidden layer and one output node. Taie et al. [15] also performed the classification
using Support Vector Machine (SVM), and comparative analysis can be seen in [16,17]. In
another paper, Al-Baderneh et al. [18], also discussed the classification of brain MRI using
Artificial Neural Network and K-Nearest Neighbor (KNN) with texture features, using
181 images of the abnormal brains and 94 images of normal brains. Other methodology
includes Self Organizing Maps (SOM) which is discussed in [17,19]. Implementation of
feedforward backpropagation for classification into normal or abnormal MRI images can
be found in [20]. These methods are all supervised (classes are known), where features are
needed to be extracted before classification. All of the above mentioned use traditional
approaches with very few data with the efficient result but are not very informative and do
not include age and gender bias.

Along with these methods, other state-of-the-art techniques using deep learning-based
methodologies are evolving. Many of these works are not used to classify normal or
abnormal but were included as the work was performed on brain imaging on different
types of classification. In a paper by Pereira et al. [21] glioma detection was achieved using
CNN. Kamnitsas et al. [22] used a deep learning method for the classification of ischemic
stroke. In [23], a proposed method called Adaptive Network-based Fuzzy Inference System
(ANFIS) for classification into five types of tumors was investigated. Another work focused
on the classification and segmentation of tumors using pre-trained AlexNet, where features
were extracted using the Gray-Level Co-Occurrence Matrix (GLCM) [24]. Other works
include classification into different types of tumors using CNN [25–29], SVM [30], Graph
cut [31], Recurrent Neural Network (RNN) [32,33], AlexNet transfer learning network of
CNN [34], Deep Neural Network (DNN) [35–37], VGG-16, Inception V3 and ResNet50 [38],
SVM and KNN [39], and CNN ensemble method [40].

In addition, other works include the MICCAI BRATS challenge; the most recent can be
found in [41]. A comparative analysis of brain tumors can be seen in [42]. When it comes
to differences in the human brain, an article by Brown [12] published studies on the human
brain and differences in the structure of the brain and its morphology for individuals of the
same age. Based on this, a model was developed using Pediatric Imaging, Neurocognition,
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and Genetics (PING) data to predict ages between 3 to 20 years old. It can also be seen that
every individual brain measurement varies, even on a single brain at any specific time. This
finding inspired us to investigate the brain structure further using an automated technique
for identifying tumors according to gender and age. In the next section, we will discuss the
different existing methods used for the classification of MRI into normal and abnormal.

2.1. A Brief Description on Existing Techniques Used in Classification of MRI into Normal
and Abnormal

The most widely used machine learning algorithms for classification of brain MRI into
normal and abnormal are Support Vector Machine (SVM) [15–17] and AlexNet [43]. A very
brief description of each algorithm is presented in the next subsections.

2.1.1. Support Vector Machine (SVM)

The most recent existing method, SVM is one of the most widely used supervised
learning algorithms [15–17]. The advantages of using SVM are its memory efficiency and
effectiveness in high dimensional spaces. It can also be used for regression. The SVM
methodology was taken from [15]. The image was first converted into array. A label
is assigned for all the images, 0 for normal class and 1 for abnormal class. Using SVM
RBF kernel, an output of 0 or 1 is attained. The RBF kernel on two samples X and X′ is
represented as

K(X, X
′
) = exp(

−(|X− X
′ |2)

2σ2 ) (1)

It is non parameterized, but using of 2σ2 makes it parameterized and it is known as
Gaussian Radial Basis Function. It is commonly used as it is localized and it is a general
purpose kernel used when no prior information is available about the data. The output
obtained is 0 or 1, 0 for abnormal and 1 for normal class.

2.1.2. AlexNet

AlexNet was designed by Alex Krizhevsky and is an award-winning architecture of
ImageNet in 2012. It is a CNN based methodology that was originally used for classification
of cats and dogs. The architecture can be seen in [43] consisting of five convolutional layers
and three fully connected layers. A study which uses AlexNet as one of the steps in
classification and segmentation of abnormalities can be seen in [24].

In this paper, we are going to classify the brain MRI images into normal or abnormal
based on a specific range of ages, as it is already established by Brown [12] that the structure
of the brain varies according to age. This will indeed help in finding a similar pattern of
images of different ages. The main differences of our work from other existing works are the
use of data from different sources and using age and gender as attributes in classification
into normal or abnormal, which is the novelty of our work. Furthermore, compared to
other works, our data usage is higher even though it is still considered a small dataset.
Some comparisons based on related works are given in Table 1.

Table 1. Comparison of existing methodologies.

Paper and Year Method Classification Dataset Used Accuracy (%)

Al-Baderneh et al.
(2012) [18]

NN and KNN Normal/Abnormal 275 images 100 and 98.92

Rajesh et al. (2013) [14] Feed Forward
Neural Network

Normal/Abnormal 20 images 90

Taie et al. (2017) [15] SVM 80, 100, and 150 images 90.89 and 100
krishnammal et al.
(2019) [24]

AlexNet Benign/Malignant Not mention 100

Hanwat et al.
(2019) [25]

CNN Benign/Malignant/
Normal

94 images 71

Hamid et al.
(2020) [30]

DWT, GLM, and
SVM

Benign/Malignant Dicom images 95

Kulkarni et al.
(2020) [34]

AlexNet Benign/Malignant 75 Benign and 75 Malig-
nant images

98.44 (F measure)
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3. Classification of Brain MRI Images Using Deep Learning Architectures

Classification plays a crucial role as it organizes images into specific groups. It is
the initial step for predicting an area or region containing abnormalities in diagnosing
any disease. In this section, along with the proposed methodology, three other deep
learning architectures (LeNet, AlexNet, and ResNet50) are briefly discussed. The proposed
classification technique for brain MRI images was performed using CNN due to its effective
performance in image classification that automatically detects essential features. The brain
images were classified into normal or abnormal classes, and the whole process is depicted
in Figure 2. One method is a CNN-based approach with all the layers being used as
per observations and formulation based on Equations (2) and (3). Using this method,
classification was performed for different ages and genders to determine their similarities
and differences. The imaging technique utilized here is MRI Fluid Attenuated Inversion
Recovery (FLAIR) [44]. It is similar to a T2 image with a longer echo (TE) and relaxation
time (TR). This sequence is very sensitive to pathology and makes the differentiation
between Cerebrospinal Fluid (CSF) and an abnormality much easier [44].

3.1. Proposed Methodology
3.1.1. LeNet Inspired Model

The proposed classification is a CNN-based model where the convolutional, pooling,
and fully connected layers were used, as shown in Figure 2. It is inspired by LeNet
architecture with minute changes, which is simple and has five layers (convolution and
pooling layer). The input image (X) is in color format and has a size of N × N × 3. Original
images and augmented images are of different sizes. The images are cropped by selecting
only the brain region. Our first step involves preprocessing to remove noises present in
an image. It is carried out using median filtering. Median filtering is chosen to remove
the outliers without affecting the information present in an image. After median filtering,
the images are resized to a specific size of 194× 194× 1 to ensure the images are not too
small; this is in order to maintain the ratio and helps in better training if sizes are all the
same. The dimension of 194 is chosen as it is the smallest size of images available. The
images are converted into a grayscale image for better learning of features. These images
are then passed to the most important part of a CNN, which is the convolutional layer. In
each convolutional layer, stride varies, as can be seen in Figure 2. Mathematically, inputs
X1, X2, . . . XN with size N × N, using f × f filters will give an output of ∑N

i=1 Xl
i ×W l

i
where Wi is the window of the filter and output size can be obtained using N+2p− f

s + 1×
N+2p− f

s + 1 ( f is the filter, p is the padding, and s is the stride; p and s ≥ 0, f > 1).

Figure 2. LeNet inspired model (LIM).
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Wl+1 =
Wl − f

s
+ 1 (2)

Yi,j,d = max{0, Xl
i,j,d} (3)

where 0 ≤ i < Hl = Hl+1, 0 ≤ j < W l = W l+1, and 0 ≤ d < Dl = Dl+1 where H is
the height, W is width, and D is the depth of an image. As there is no parameter inside
ReLU, no parameter is learned during this layer. A stride of 2× 2 is used which moves two
positions of pixels vertically and horizontally. At each stride, a maximum of four numbers
are taken and replaced by a single value. For example, for a 94× 94× 16 input size, an
output of 46× 46× 16 is obtained, whereas a stride of 1 will not reduce much in size. Filter
size was taken as 3× 3 for local features learning and not a bigger filter size such as 11× 11.
Depth of 12 and 16, respectively, was chosen arbitrarily for deeper depth, as our image has
a depth of 1. As our dataset in not that huge, convolution is taken as per our requirements
with total of two convolutional layers. After every layer, the image is shrunk and edge
information may be reduced. This is reduced using padding. In our work, no padding
is applied as reduction is still needed until the last convolutional layer. Max pooling is
applied for reduction in sizes with stride of 2× 2. After the last convolutional layer, a
fully connected layer is followed with a total of 23× 23× 32 = 16,928 number of neurons,
which are then passed to another fully connected layer of size 800. Optimization was not
performed using Gradient descent (GD) but using Adam optimizer (adaptive moment
estimation). It is similar to GD, but it has an advantage over it as it maintains learning rate
for each weight in a network. Dropout, which is a regularizer, is used in fully connected
layers in our method. The rate of 0.5 is given for this purpose. A loss function that is used
was binary cross-entropy loss function (log loss) [45]. It can be calculated using:

Hp(q) = −
1
N

N

∑
i=1

yi.log(P(yi)) + (1− yi).log(1− p(yi)) (4)

where y is the label (1 for class 1 and 0 for class 2), p(y) is the probability of being a class 1 for
all N inputs, and p(yi) is the predicted probability for all N samples given any distribution
q(y). Probability of each point is 1

N . For each y = 1, it adds log(p(y)), the probability of being
in class 1 and for y = 0, log(1− p(y)) the probability of being in class 2. This gives a better
loss in comparison with any other loss in all cases. Lastly, with Adam optimizer, Softmax
is used for classification where value < 0.5 is classified into [1 0] (abnormal) otherwise
[0 1] (normal).

3.1.2. CNN Combined with DNN (CNN-DNN)

This method has been taken due to the simple approach, and it is not so widely used
but applicable in many fields of computer vision. The diagram showing CNN-DNN is
shown in Figure 3. The network starts with the input image being passed to a convolutional
layer with a filter size of 3× 3 stride of 2× 2 after resizing into 194× 194. Then, it is passed
to a ReLU layer with the dropout rate of 50%, which is then passed to a fully connected layer
with 962,312 nodes. It is then followed by a dense layer of 400 and 100 and a classification
layer that classifies into 0 or 1 using a Softmax classifier.

Other than the proposed architectures, we have also implemented a few known deep
learning architectures for effective comparison, which are provided next.
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Figure 3. CNN-DNN.

3.2. LeNet

LeNet is one of the most widely used and popular network architectures in deep
learning. This model is popularly implemented for the classification of objects in different
domains of computer vision and hand written text using MNIST dataset. The reason for this
is its simplicity and smaller number of layers. The architecture with the same parameters
are used with some minor changes. The changes made were based on batch size, loss
function, and the number of epoch. The architecture of LeNet can be seen in [46].

3.3. ResNet50 (Transfer Learning)

ResNet won first place on the ILSVRC 2015 classification task using ImageNet data. The
architecture can be seen in [47]. For this work, ResNet50, depth based CNN, is used as a
model for transfer learning. Transfer learning is flexible where the pre-trained model is used
directly for classifying images. The architecture stays the same with a flatten layer and two
additional dense layers. Using the dataset considered for our work, the model is trained and
modified into two-class problems where the output is class 0 (abnormal) and 1 (normal).

The parameters used are changed according to our dataset, and the same number
of epoch is taken for all the cases, which is 100 as output converges at this point. The
differences in parameters between our method and the others can be seen in Table 2.

A comparison can be made based on computational complexity. The computational
complexity (CC) of a convolutional network is measured in terms of the total number of
learnable parameters [48]. It can be expressed as:

CC = 2cwh(X− w + 1)(Y− h + 1) (5)

where X and Y are the height and width of the input image, respectively; w and h are the
width and height of the convolution kernel, respectively; and c is the number of channels.

Table 2. Parameter differences and number of layers used in proposed method, LeNet, AlexNet
and ResNet.

Parameter Name LeNet AlexNet ResNet LIM CNN-DNN

Number of convolu-
tion layer

2 5 48 2 1

Number of pooling
layer

2 (2× 2) 3 (2× 2) 24 (2× 2) 2 (2× 2) Nil

Depth 32 96 512 32 3
Filter size 5× 5 11 × 11, 3 × 3,

5× 5
3× 3, 7× 7 3× 3 3× 3

Loss function binary
crossentropy

binary crossen-
tropy

binary
crossentropy

binary
crossentropy

binary
crossentropy

Classifier Sigmoid Softmax Softmax Softmax Sigmoid
Number of Dropout 3 3 10 2 2
Dropout rate 0.5 0.5 0.5 0.5 0.5
Activation Function tanH ReLU ReLU ReLU Sigmoid
Optimizer Sgd Sgd Adam Adam Adam
Model type cascade cascade cascade cascade cascade
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Using this, ResNet has the highest computational complexity, and it is more time
consuming compared to any other methods used. In this work, based on computational
complexity, the Nets can be ranked as AlexNet > ResNet > CNN − DNN > LIM >
LeNet where trainable parameters values are approximately 30 million (M), 23 M, 3 M, 3 M,
and 2 M, respectively.

4. Experimental Results

A Python programming language is used to carry out the implementation. We are
using a web application Google Colab, which is an open-source application. Libraries used
are Keras and TensorFlow. SVM, LIM, CNN-DNN, LeNet, AlexNet, and ResNet50 are
implemented to classify the images as normal or abnormal. The implementation is carried
out in two parts; firstly, generalized classification into normal or abnormal without using
age and gender, and secondly, classification into normal or abnormal using age range and
gender. Two approaches are used, firstly, k fold cross-validation with k fold = 5 and 8
(arbitrarily chosen), and secondly, generalization approach, where the data in the training
phase are not used in the testing phase.

4.1. Performance Metrics

Many performance metrics are considered by researchers in classification, based on
which Accuracy is the popularly used performance metric. For checking the validity of
our result, the parameters used are Accuracy, Precision, Sensitivity, Specificity, Negative
Predictive Value, False Positive Rate, False Discovery Rate, False Negative Rate, F1 Score,
Matthews Correlation Coefficient, and Loss Function [49]. The different performance
metrics with their description are provided in Table 3.

Table 3. Performance metrics used.

No. Performance Metric Description

1 Accuracy Accuracy is a measurement that gives the correctness of classification and loss
is a measure indicating that how well a model behaves after every iteration.

2 Precision The fraction of true positives (TP) from the total amount of relevant result.
Precision = TP/(TP + FP).

3 Recall (Sensitivity) The fraction of true positives from the total amount of TP and FN.
Recall = TP/(TP + FN).

4 F1 Score The harmonic mean of Precision and Recall given by the following formula:
F1 = 2∗(TP∗FP)/(TP + FP)

5 Specificity Specificity = TN/(FP + TN)
6 Negative Predictive Value NPV = TN/(TN + FN)
7 False Positive Rate FPR = FP/(FP + TN)
8 False Discovery Rate FDR = FP (FP + TP)
9 False Negative Rate FNR = FN/(FN + TP)
10 Matthews Correlation Coefficient TP∗TN − FP∗FN/sqrt((TP + FP)∗(TP + FN)∗(TN + FP)∗(TN + FN))

4.2. Normal or Abnormal Classification

T1 weighted and FLAIR data were used in this work, collected from Figshare, Brain-
web, and Radiopaedia. A total of 1130 images were used in Figshare, which contains
abnormal data. Each slice of T1 weighted data in Brainweb contains 181 slices of normal
and abnormal data. Cropping was used to increase the number of slices, resulting in
362 slices per image. In addition, 768 T1 images and FLAIR data were taken from Radiopae-
dia. For this case, no data augmentation has been used. For k fold cross-validation, there
are 2530 images, with 806 and 1534 normal and abnormal images, respectively. A total of
506 images are utilized for testing purposes using the generalization approach. The output
obtained using k fold cross-validation and a generalization method for LeNet, AlexNet,
ResNet, SVM, LIM, and CNN-DNN is given in Table 4.
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Table 4. Output obtained for LeNet, AlexNet, ResNet, SVM, LIM, and CNN-DNN for classification
into normal or abnormal with best result highlighted in bold.

Methods Phase Parameters Five-
Fold

Eight-
Fold Generalization Methods Phase Parameters 5 Fold Eight-

Fold Generalization

Accuracy 0.79 0.82 0.83 Accuracy 0.80 0.81 0.83

Training Loss 0.44 0.37 0.42 Training Loss NA NA NA

Accuracy 0.77 0.79 0.84 Accuracy 0.71 0.78 0.82

Sensitivity 0.81 0.75 0.84 Sensitivity 0.72 0.74 0.87

Specificity 0.74 0.84 0.85 Specificity 0.69 0.81 0.78

Precision 0.75 0.84 0.85 Precision 0.72 0.82 0.76

NPV 0.80 0.75 0.84 NPV 0.69 0.73 0.89

FPR 0.25 0.15 0.14 FPR 0.30 0.18 0.21

FDR 0.24 0.15 0.14 FDR 0.27 0.17 0.23

FNR 0.18 0.24 0.15 FNR 0.27 0.25 0.12

F1 Score 0.78 0.80 0.85 F1 Score 0.72 0.78 0.81

MCC 0.55 0.60 0.69 MCC 0.41 0.56 0.66

LeNet Testing Loss 0.42 0.43 0.40 SVM Testing Loss NA NA NA

Accuracy 0.97 0.73 0.55 Accuracy 0.81 0.68 0.90

Training Loss 0.07 0.77 5.54 Training Loss 0.41 0.36 0.20

Accuracy 0.64 0.73 0.59 Accuracy 0.83 0.72 0.85

Sensitivity 0.66 0.69 0.57 Sensitivity 0.89 0.68 0.85

Specificity 0.62 0.80 0.63 Specificity 0.79 0.77 0.86

Precision 0.66 0.82 0.74 Precision 0.78 0.78 0.86

NPV 0.62 0.65 0.45 NPV 0.67 0.85 0.80

FPR 0.37 0.20 0.36 FPR 0.20 0.22 0.14

FDR 0.33 0.17 0.25 FDR 0.21 0.13 0.13

FNR 0.33 0.30 0.42 FNR 0.31 0.14 0.18

F1 Score 0.66 0.75 0.65 F1 Score 0.73 0.86 0.78

MCC 0.29 0.48 0.20 MCC 0.46 0.71 0.55

AlexNet Testing Loss 1.33 0.95 5.94 LIM Testing Loss 0.39 0.60 0.39

Accuracy 0.67 0.70 0.65 Accuracy 0.81 0.80 0.81

Training Loss 0.70 0.76 0.83 Training Loss 0.49 0.50 0.55

Accuracy 0.65 0.64 0.59 Accuracy 0.69 0.73 0.79

Sensitivity 0.66 0.60 0.58 Sensitivity 0.70 0.68 0.79

Specificity 0.63 0.70 0.61 Specificity 0.67 0.80 0.78

Precision 0.67 0.75 0.69 Precision 0.71 0.82 0.78

NPV 0.62 0.54 0.49 NPV 0.66 0.65 0.79

FPR 0.36 0.29 0.38 FPR 0.32 0.19 0.21

FDR 0.32 0.24 0.30 FDR 0.28 0.17 0.21

FNR 0.33 0.39 0.41 FNR 0.29 0.31 0.20

F1 Score 0.67 0.67 0.63 F1 Score 0.70 0.75 0.79

MCC 0.29 0.31 0.20 MCC 0.38 0.48 0.58

ResNet Testing Loss 0.74 0.64 0.83 CNNDNN Testing Loss 0.55 0.56 0.61

From the output shown in Table 4 and Figure 4 it is observed that, for five-fold cross-
validation, Accuracy, Specificity, Sensitivity, Precision, FPR, FDR, FNR, F1 score, and MCC
are better in the case of LIM, and NPV in the case of SVM. For an eight-fold comparison,
LeNet has better Accuracy, Specificity, Sensitivity, and Precision, whereas LIM has better
NPV, FPR, FDR, FNR, F1 score, and MCC. In generalization approach Accuracy, Specificity,
Sensitivity, Precision, and FDR are better in LIM; NPV and FNR in SVM; and FPR, F1
score, and MCC, are better in LeNet; in SVM, the Accuracy attained is relatively low in
some circumstances due to data heterogeneity. In most cases, employing a cross-fold
validation and generalization approach, LIM and LeNet produce better results than SVM
methodology. It is also worth noting that less dense Nets provide higher True Positive
values than a denser network such as ResNet.
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Figure 4. The graphs illustrate the Accuracy, Specificity, Sensitivity, Precision, Recall, F1 Score, NPV,
FPR, FDR, FNR, and MCC of AlexNet, ResNet, SVM, LeNet, LIM, and CNN-DNN for five-fold,
eight-fold, and generalization approach, respectively, with values ranging from −1 to 1.

4.3. Range Based Classification

For both normal (nontumorous) and abnormal (tumorous) images, the data were
collected from Radiopaedia [11]. The images obtained were not all from the same patient,
ensuring that distinct tumors were present. The images were divided into several age
groups to perform experiments based on male or female gender or both. The ranges are
not sequentially ordered and are repeated when data for a specific age are not available
or when there are not any data at all. In order to identify these images and conduct the
experiment, it was assumed that the data gathered came from the same MRI scan.

Based on their ages and gender, the images were divided into distinct ranges. This aids
in the identification of essential and robust logical conclusions about brain size similarities
across different ranges: Male (20–70), Male (10–80), Female (50–70), Female (20–70), Female
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(10–80), Male and Female (20–70), Male and Female (10–80), Male and Female (20–70),
and Male and Female (10–80). Due to the lower number of images used, these were all
cropped for data augmentation. There are 1205 images, 786 of which are abnormal and 411
of which are normal. The generalization approach uses 328 images from the aggregate data
for testing purposes. It becomes much more manageable by dividing it into ranges, and it
confirms that age and gender as attributes can be used to detect similarities and classify
into normal or abnormal class.

From Figure 5 and output obtained in Tables 5–10, it can be seen that, for Male (20–70)
using five-fold cross-validation, SVM gives a better result compared to LIM; LIM and
LeNet gives a second-best result, in the case of eight-fold cross-validation, LeNet provides a
better result compared to LIM and SVM which gives second best; and using generalization
approach LeNet gives a better result, followed by LIM. For Female (50–70) using five-fold
cross-validation, LIM gives the best result compared to all other methods; in the case of
eight-fold cross-validation, LeNet and LIM provide a better result compared to CNN-DNN
and SVM; and using generalization method, LIM gives a better result compared to LeNet,
SVM, and CNN-DNN. For Female (20–70), using five-fold cross-validation LIM and LeNet
give a better result compared to other methods. In the case of eight-fold cross validation,
LIM provides a better result, and using the generalization method, LIM gives a better result.
For Male (10–80), using five-fold cross validation, LIM gives a better result compared to
other methods; in the case of eight-fold cross validation, LIM and LeNet provide better
results; and using the generalization method, LIM gives a better result. For Male (10–
80), using five-fold cross-validation LIM gives a better result compared to other methods;
in the case of eight-fold cross validation, LeNet provides better results; and using the
generalization method, LeNet gives a better result, followed by LIM. For Female (10–80),
using five-fold cross-validation LIM gives a better result compared to other methods; in
the case of eight-fold cross validation, LeNet and LIM provide better results; and using the
generalization method, LIM gives a better result, followed by LeNet and then by SVM. For
Male + Female (20–70) using five-fold cross-validation, LIM gives a better result compared
to other methods; in the case of eight-fold cross-validation, CNN-DNN provides better
result, followed by LeNet and LIM; and using generalization method, CNN-DNN gives a
better result, followed by LIM. For Male + Female (10–50) using five-fold cross-validation,
LIM and SVM give a better result compared to other methods; in the case of eight-fold
cross-validation, LIM and SVM provide better results, followed by LeNet and LIM; and
using generalization method, LIM gives a better result compared to other methods.

Table 5. LeNet output using age and gender (Gen = Generalization approach).

Age and Gender Approach Training Testing

Accuracy Loss Accuracy Sensitivity Specificity Precision NPV FPR FDR FNR F1 Score MCC Loss

Male (20–70) Five-fold 0.93 0.28 0.88 0.94 0.75 0.88 0.85 0.25 0.11 0.05 0.91 0.71 0.38
Eight-fold 0.95 0.72 0.86 0.84 1 1 0.5 0 0 0.15 0.91 0.65 0.43
Gen 0.93 0.12 0.94 0.85 1 1 0.91 0 0 0.14 0.92 0.88 0.10

Female (50–70) Five-fold 0.92 0.41 0.78 0.90 0.33 0.83 0.50 0.66 0.16 0.09 0.86 0.28 0.43
Eight-fold 1 0.12 0.87 1 0.50 0.85 1 0.50 0.14 0 0.92 0.65 0.48
Gen 1 0.09 0.95 1 0.93 0.83 1 0.06 0.16 0 0.90 0.88 0.09

Female (20–70) Five-fold 0.96 0.15 0.92 0.90 0.94 0.90 0.94 0.05 0.1 0.1 0.90 0.84 0.14
Eight-fold 0.96 0.14 0.94 0.87 1 1 0.90 0 0 0.12 0.93 0.88 0.15
Gen 0.92 0.19 0.97 0.95 1 1 0.95 0 0 0.04 0.97 0.95 0.15

Male (10–80) Five-fold 0.89 0.37 0.90 0.88 0.91 0.94 0.84 0.08 0.05 0.11 0.91 0.79 0.43
Eight-fold 0.88 0.27 0.88 0.94 0 0.94 0 1 0.05 0.05 0.94 −0.05 0.21
Gen 0.88 0.20 0.93 0.90 0.95 0.95 0.92 0.04 0.05 0.09 0.92 0.86 0.17

Female (10–80) Five-fold 0.94 0.21 0.94 1 0.86 0.91 1 0.13 0.08 0 0.95 0.89 0.20
Eight-fold 1 0.09 0.91 0.92 0.88 0.92 0.88 0.11 0.07 0.07 0.92 0.81 0.18
Gen 0.95 0.14 0.92 1 0.83 0.88 1 0.16 0.11 0 0.93 0.85 0.14

Male +
Female
(20–70)

Five-fold 0.70 0.57 0.70 0.78 0.53 0.78 0.53 0.46 0.21 0.21 0.78 0.32 0.52

Eight-fold 0.76 0.51 0.72 0.68 0.77 0.84 0.58 0.22 0.15 0.31 0.75 0.44 0.55
Gen 0.76 0.31 0.68 0.64 0.71 0.68 0.67 0.28 0.31 0.35 0.66 0.36 0.37

Male +
Female
(10–80)

Five-fold 0.93 0.32 0.88 0.92 0.81 0.88 0.88 0.18 0.11 0.07 0.90 0.75 0.26

Eight-fold 0.96 0.16 0.92 0.90 0.94 0.95 0.90 0.05 0.04 0.09 0.93 0.85 0.23
Gen 0.91 0.19 0.89 0.84 0.94 0.93 0.87 0.05 0.06 0.15 0.88 0.79 0.19
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Figure 5. The graphs illustrate the Accuracy, Specificity, Sensitivity, Precision, Recall, F1 Score, NPV,
FPR, FDR, FNR, and MCC of LeNet, AlexNet, ResNet, SVM, LIM, and CNN-DNN for Male (20–70),
Female (50–70), Female (20–70), Male (10–80), Female (10–80), Male + Female (10-80), and Male +
Female (10–80), respectively. Represented as five-fold with ending 5, eight-fold with ending 8, and
generalization approach for each performance metrics with values ranging from −1 to 1.
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Table 6. AlexNet output using age and gender (Gen = Generalization approach).

Age and Gender
Approach Training Testing

Accuracy Loss Accuracy Sensitivity Specificity Precision NPV FPR FDR FNR F1 Score MCC Loss

Male (20–70) Five-fold 0.60 1.37 0.60 0.78 0.36 0.61 0.57 0.63 0.38 0.21 0.68 0.16 1.61
Eight-fold 0.83 0.67 0.60 0.77 0.33 0.63 0.50 0.66 0.36 0.36 0.22 0.12 1.51
Gen 0.72 0.90 0.60 0.43 0.73 0.58 0.60 0.26 0.41 0.56 0.50 0.18 1.58

Female (50–70) Five-fold 0.76 1.04 0.78 0.90 0.33 0.83 0.50 0.66 0.16 0.09 0.86 0.28 0.99
Eight-fold 0.62 1.72 0.75 1 0.33 0.71 1 0.66 0.28 0 0.83 0.48 0.96
Gen 0.78 1.02 0.50 0.30 0.70 0.50 0.50 0.30 0.50 0.70 0.37 0 0.98

Female (20–70) Five-fold 0.46 1.11 0.50 0.37 0.66 0.60 0.44 0.33 0.40 0.62 0.46 0.04 0.93
Eight-fold 0.88 0.24 0.52 0.42 0.60 0.42 0.60 0.40 0.57 0.57 0.42 0.02 0.84
Gen 0.56 0.84 0.50 0.42 0.47 0.59 0.40 0.52 0.40 0.48 0.55 −0.00 0.94

Male (10–80) Five-fold 0.68 0.57 0.60 0.55 0.61 0.38 0.76 0.38 0.61 0.44 0.45 0.16 0.79
Eight-fold 0.61 1.0 0.61 0.91 0 0.64 0 1 0.35 0.08 0.75 −0.17 0.84
Gen 0.68 1.04 0.57 0.52 0.63 0.60 0.56 0.36 0.40 0.47 0.55 0.15 1.78

Female (10–80) Five-fold 0.91 0.51 0.72 0.79 0.61 0.79 0.61 0.38 0.20 0.20 0.79 0.40 0.55
Eight-fold 0.50 0.82 0.65 0.71 0.55 0.71 0.55 0.44 0.28 0.28 0.71 0.26 1.15
Gen 0.68 0.76 0.63 0.80 0.50 0.57 0.75 0.50 0.42 0.20 0.66 0.31 0.81

Male +
Female
(20–70)

Five-fold 0.65 1.11 0.60 0.61 0.55 0.76 0.38 0.44 0.23 0.38 0.68 0.16 1.16

Eight-fold 0.68 0.96 0.68 0.66 0.70 0.76 0.58 0.30 0.23 0.33 0.71 0.35 0.90
Gen 0.80 0.75 0.75 0.75 0.75 0.62 0.84 0.25 0.37 0.25 0.67 0.48 1.18

Male +
Female
(10–80)

Five-fold 0.61 1.48 0.81 0.89 0.72 0.80 0.84 0.27 0.19 0.10 0.84 0.63 0.87

Eight-fold 0.81 0.77 0.70 0.71 0.70 0.71 0.70 0.30 0.28 0.28 0.71 0.41 0.94
Gen 0.81 0.52 0.77 0.81 0.73 0.74 0.80 0.26 0.25 0.18 0.77 0.54 0.62

Table 7. ResNet output using age and gender (Gen = Generalization approach).

Age and Gender
Approach Training Testing

Accuracy Loss Accuracy Sensitivity Specificity Precision NPV FPR FDR FNR F1 Score MCC Loss

Male (20–70) Five-fold 0.54 0.69 0.48 0.69 0.25 0.50 0.42 0.75 0.50 0.30 0.58 −0.06 0.73
Eight-fold 0.65 0.82 0.46 0.63 0 0.63 0 1 0.36 0.36 0.63 −0.36 0.74
Gen 0.45 0.70 0.45 0.29 0.61 0.41 0.47 0.38 0.58 0.70 0.34 −0.09 0.74

Female (50–70) Five-fold 0.15 1.20 0.21 0.60 0 0.25 0 1 0.74 0.40 0.35 0.54 0.86
Eight-fold 0.23 0.83 0.25 0.66 0 0.28 0 1 0.71 0.33 0.40 −0.48 0.79
Gen 0.61 0.68 0.40 0.20 0.60 0.33 0.42 0.40 0.66 0.80 0.25 −0.21 0.79

Female (20–70) Five-fold 0.21 0.71 0.35 0.21 0.50 0.30 0.38 0.50 0.70 0.78 0.25 −0.29 0.79
Eight-fold 0.46 0.69 0.35 0.25 0.44 0.28 0.40 0.55 0.71 0.75 0.26 −0.30 0.75
Gen 0.39 0.90 0.40 0.43 0.36 0.45 0.35 0.63 0.54 0.56 0.44 −0.19 0.87

Male (10–80) Five-fold 0.48 0.73 0.50 0.55 0.41 0.58 0.38 0.58 0.41 0.44 0.57 −0.02 0.77
Eight-fold 0.73 0.57 0.50 0.90 0 0.52 0 1 0.47 0.10 0.60 −0.21 0.73
Gen 0.34 0.81 0.48 0.43 0.54 0.50 0.48 0.45 0.50 0.56 0.46 −0.01 0.64

Female (10–80) Five-fold 0.61 0.68 0.51 0.61 0.27 0.66 0.23 0.72 0.33 0.38 0.64 −0.10 0.68
Eight-fold 0.55 0.68 0.52 0.60 0.37 0.64 0.33 0.62 0.35 0.40 0.62 −0.02 0.69
Gen 0.48 0.68 0.52 0.66 0.39 0.51 0.55 0.60 0.48 0.33 0.58 0.06 0.61

Male +
Female
(20–70)

Five-fold 0.53 0.75 0.48 0.64 0.25 0.57 0.30 0.75 0.42 0.36 0.60 −0.12 0.86

Eight-fold 0.59 0.71 0.48 0.50 0.42 0.69 0.25 0.57 0.30 0.50 0.58 −0.06 0.78
Gen 0.47 0.96 0.47 0.44 0.51 0.51 0.44 0.48 0.48 0.55 0.47 −0.04 0.95

Male +
Female
(10–80)

Five-fold 0.50 0.78 0.51 0.64 0.40 0.48 0.56 0.60 0.51 0.35 0.55 0.04 0.76

Eight-fold 0.69 0.68 0.46 0.47 0.45 0.47 0.45 0.55 0.52 0.52 0.47 −0.07 0.85
Gen 0.39 0.88 0.48 0.41 0.55 0.48 0.48 0.44 0.51 0.58 0.44 −0.02 0.80

Table 8. SVM output using age and gender (Gen = Generalization approach).

Age and Gender
Approach Training Testing

Accuracy Loss Accuracy Sensitivity Specificity Precision NPV FPR FDR FNR F1 Score MCC Loss

Male (20–70) Five-fold 0.91 NA 0.92 0.94 0.85 0.94 0.85 0.14 0.05 0.05 0.94 0.80 NA
Eight-fold 0.97 NA 0.86 0.90 0.75 0.90 0.75 0.25 0.09 0.09 0.90 0.65 NA
Gen 0.91 NA 0.91 0.90 0.91 0.83 0.95 0.08 0.16 0.09 0.86 0.80 NA

Female (50–70) Five-fold 0.96 NA 0.78 0.90 0.33 0.83 0.50 0.66 0.16 0.09 0.86 0.28 NA
Eight-fold 0.96 NA 0.75 1 0.33 0.71 1 0.66 0.28 0 0.83 0.48 NA
Gen 0.76 NA 0.75 0.57 0.84 0.66 0.78 0.15 0.33 0.42 0.61 0.43 NA

Female (20–70) Five-fold 0.99 NA 0.78 0.70 0.83 0.70 0.83 0.16 0.30 0.30 0.70 0.53 NA
Eight-fold 0.95 NA 0.88 0.85 0.90 0.85 0.90 0.10 0.14 0.14 0.85 0.75 NA
Gen 0.80 NA 0.76 0.80 0.72 0.72 0.80 0.27 0.27 0.20 0.76 0.52 NA

Male (10–80) Five-fold 0.93 NA 0.90 0.85 1 1 0.76 0 0 0.15 0.91 0.80 NA
Eight-fold 0.92 NA 0.88 0.93 0 0.93 0 1 0.06 0.06 0.93 −0.06 NA
Gen 0.86 NA 0.86 0.93 0.82 0.75 0.96 0.17 0.25 0.06 0.83 0.73 NA

Female (10–80) Five-fold 0.97 NA 0.83 0.87 0.76 0.87 0.76 0.23 0.12 0.12 0.87 0.64 0.20
Eight-fold 0.97 NA 0.84 0.84 0.84 0.84 0.84 0.15 0.15 0.15 0.84 0.69 NA
Gen 0.91 NA 0.92 1 0.83 0.88 1 0.16 0.11 0 0.93 0.85 NA

Male +
Female
(20–70)

Five-fold 0.69 NA 0.68 0.77 0.50 0.75 0.53 0.50 0.25 0.22 0.76 0.28 NA

Eight-fold 0.71 NA 0.68 0.69 0.66 0.69 0.66 0.33 0.30 0.30 0.69 0.35 NA
Gen 0.62 NA 0.63 0.60 0.66 0.62 0.64 0.33 0.37 0.40 0.61 0.26 NA

Male +
Female
(10–80)

Five-fold 0.95 NA 0.92 0.95 0.88 0.92 0.92 0.11 0.07 0.04 0.93 0.84 NA

Eight-fold 0.95 NA 0.92 0.95 0.90 0.90 0.95 0.09 0.09 0.05 0.92 0.85 NA
Gen 0.90 NA 0.83 0.78 0.88 0.86 0.82 0.11 0.13 0.21 0.81 0.67 NA
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Table 9. LIM using age and gender (Gen = Generalization approach).

Age and Gender
Approach Training Testing

Accuracy Loss Accuracy Sensitivity Specificity Precision NPV FPR FDR FNR F1 Score MCC Loss

Male (20–70) Five-fold 0.92 0.20 0.88 0.89 0.83 0.94 0.71 0.16 0.05 0.10 0.91 0.69 0.29
Eight-fold 0.93 0.16 0.86 0.90 0.75 0.90 0.75 0.25 0.09 0.09 0.90 0.65 0.13
Gen 0.91 0.51 0.91 0.84 0.95 0.91 0.91 0.04 0.08 0.15 0.88 0.81 0.50

Female (50–70) Five-fold 0.93 0.20 0.85 0.91 0.50 0.91 0.50 0.50 0.08 0.08 0.91 0.41 0.34
Eight-fold 1 0.15 0.87 1 0.50 0.85 1 0.50 0.14 0 0.92 0.65 0.29

Gen 1 0.11 1 1 1 1 1 0 0 0 1 1 0.11
Female (20–70) Five-fold 1 0.06 0.92 0.90 0.94 0.90 0.94 0.05 0.1 0.1 0.90 0.84 0.12

Eight-fold 1 0.22 0.94 0.87 1 1 0.90 0 0 0.12 0.93 0.88 0.27
Gen 0.92 0.17 1 1 1 1 1 0 0 0 1 1 0.10

Male (10–80) Five-fold 0.93 0.29 0.93 0.94 0.92 0.94 0.92 0.07 0.05 0.05 0.94 0.86 0.29
Eight-fold 0.94 0.24 0.88 0.94 0 0.94 0 1 0.05 0.05 0.94 −0.05 0.31
Gen 0.89 0.29 0.91 0.90 0.92 0.90 0.92 0.08 0.10 0.10 0.90 0.82 0.29

Female (10–80) Five-fold 0.97 0.18 0.97 1 0.92 0.95 1 0.07 0.04 0 0.97 0.94 0.12
Eight-fold 1 0.09 0.91 0.92 0.88 0.92 0.88 0.11 0.07 0.07 0.92 0.81 0.16
Gen 1 0.12 0.94 0.97 0.90 0.94 0.95 0.09 0.05 0.02 0.95 0.88 0.17

Male +
Female
(20–70)

Five-fold 0.73 0.44 0.70 0.76 0.54 0.82 0.46 0.45 0.17 0.23 0.79 0.29 0.46

Eight-fold 0.78 0.52 0.72 0.68 0.77 0.84 0.58 0.22 0.15 0.31 0.75 0.44 0.51
Gen 0.73 0.62 0.70 0.67 0.75 0.72 0.70 0.25 0.27 0.32 0.70 0.42 0.50

Male +
Female
(10–80)

Five-fold 0.97 0.17 0.92 0.95 0.88 0.92 0.92 0.11 0.07 0.04 0.93 0.84 0.22

Eight-fold 1 0.11 0.92 0.95 0.90 0.90 0.95 0.09 0.09 0.05 0.92 0.85 0.20
Gen 0.92 0.29 0.91 0.87 0.94 0.93 0.89 0.05 0.06 0.12 0.90 0.82 0.24

Table 10. CNN-DNN using age and gender (Gen = Generalization approach).

Age and Gender
Approach Training Testing

Accuracy Loss Accuracy Sensitivity Specificity Precision NPV FPR FDR FNR F1 Score MCC Loss

Male (20–70) Five-fold 0.73 0.66 0.68 0.81 0.44 0.72 0.57 0.55 0.27 0.18 0.76 0.27 0.35
Eight-fold 0.58 0.69 0.86 0.90 0.75 0.90 0.75 0.25 0.09 0.09 0.90 0.65 0.63
Gen 0.75 0.50 0.85 0.76 0.90 0.83 0.86 0.09 0.16 0.23 0.80 0.69 0.46

Female (50–70) Five-fold 0.84 0.42 0.78 0.90 0.33 0.83 0.50 0.66 0.16 0.09 0.86 0.28 0.44
Eight-fold 0.87 0.40 0.87 1 0.50 0.85 1 0.50 0.14 0 0.92 0.65 0.43
Gen 0.87 0.27 0.85 0.71 0.92 0.83 0.85 0.07 0.16 0.28 0.76 0.66 0.27

Female (20–70) Five-fold 0.75 0.43 0.67 0.55 0.73 0.50 0.77 0.56 0.20 0.44 0.52 0.28 0.51
Eight-fold 1 0.16 0.82 0.83 0.81 0.71 0.90 0.18 0.28 0.16 0.76 0.63 0.37
Gen 0.89 0.59 0.78 0.80 0.76 0.77 0.80 0.23 0.22 0.19 0.79 0.57 0.70

Male (10–80) Five-fold 0.88 0.27 0.80 0.82 0.76 0.82 0.76 0.23 0.17 0.17 0.82 0.59 0.40
Eight-fold 0.81 0.29 0.77 0.93 0 0.82 0 1 0.17 0.06 0.87 −0.10 0.36
Gen 0.86 0.28 0.82 0.87 0.79 0.70 0.92 0.20 0.30 0.12 0.77 0.64 0.20

Female (10–80) Five-fold 0.51 0.78 0.86 0.91 0.78 0.87 0.84 0.21 0.12 0.08 0.89 0.70 0.58
Eight-fold 0.88 0.39 0.86 0.85 0.87 0.92 0.77 0.12 0.07 0.14 0.88 0.71 0.47
Gen 0.83 0.43 0.92 0.96 0.86 0.91 0.95 0.13 0.08 0.03 0.94 0.84 0.37

Male +
Female
(20–70)

Five-fold 0.70 0.58 0.75 0.80 0.63 0.85 0.53 0.36 0.14 0.20 0.82 0.41 0.45

Eight-fold 0.84 0.41 0.76 0.73 0.80 0.84 0.66 0.20 0.15 0.26 0.78 0.52 0.49
Gen 0.88 0.40 0.79 0.76 0.81 0.79 0.79 0.18 0.20 0.23 0.77 0.58 0.36

Male +
Female
(10–80)

Five-fold 0.81 0.41 0.77 0.90 0.64 0.70 0.88 0.35 0.29 0.09 0.79 0.57 0.47

Eight-fold 0.88 0.42 0.75 0.73 0.77 0.80 0.70 0.22 0.19 0.26 0.77 0.51 0.49
Gen 0.81 0.41 0.83 0.80 0.86 0.82 0.84 0.13 0.17 0.20 0.81 0.67 0.37

4.4. Statistical Significance Test

The T-test and Analysis of Variance (ANOVA) test are two often-used statistical
tests [50]. Statistical tests show the significance of the model. Here, we have performed
the ANOVA test using Python programming library for statistical test (scipy.stats). From
Table 11, for classification into normal or abnormal, both the models are significant, as
the p-value is less than the significance level (0.05). There is a statistical improvement
using LIM and CNN-DNN over SVM, AlexNet, and ResNet, but no improvement over
LeNet. In the case of classification using gender and age, there seems to be a false discovery
rate producing conflicting results. LIM shows a significant difference over other models
considering majority cases, both values in green and bold, with no improvement over
LeNet. The test indicates that the proposed LIM can be considered equal to LeNet and
outperforms SVM. There is a difference between the groups, considering deeper networks
such as AlexNet and ResNet feature in both classifications with different variance and are
statistically significant.

It can be observed that the result using both males and females is more distinguishable,
and males or females of all ranges as separate inputs show statistical significance difference,
wherein we can say that age is a more dominating factor than gender. However, it is
not enough to conclude if any individual variable is significant from our output. The
p-value using the ANOVA test for samples between two models is high in age and gender
classification into normal or abnormal because samples have a value of 0 and 1 with fewer
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testing samples, unlike classification without using age and gender having heterogeneous
data with more testing samples.

Table 11. Statistical test (ANOVA) of LIM and CNN-DNN with respect to SVM, LeNet, AlexNet, and
ResNet where values marked as ** are p-values < 0.05 and * are p-values < 0.1.

Categories LIM vs.
SVM

LIM vs.
AlexNet

LIM vs.
LeNet

LIM vs.
ResNet

CNN-DNN
vs. SVM

CNN-DNN
vs. AlexNet

CNN-DNN
vs. LeNet

CNN-DNN
vs. ResNet

Normal/Abnormal
Classification Generalization ** 0.03 **

1.48× 10−3
0.94 ** 0.02 0.07 **

2.33× 10−6
0.70 ** 0.0009

Range Based Classification

Male (20–70) 0.24 * 0.06 0.34 ** 0.04 0.24 * 0.06 0.34 ** 0.04

Female (50–70) 0.10 * 0.06 0.11 * 0.06 1 0.35 0.33 0.17

Female (20–70) 0.35 ** 0.04 0.1 ** 0.04 0.21 * 0.09 0.18 0.18

Male (10–80) ** 0.02 * 0.06 0.76 ** 0.04 1 ** 0.03 0.13 ** 0.03

Female (10–80) * 0.08 * 0.08 * 0.08 ** 0.04 0.14 * 0.08 0.14 ** 0.03

Male + Female
(20–70) ** 0.03 ** 0.02 1 ** 0.02 1 ** 0.03 0.28 ** 0.03

Male + Female
(10–80) **0.02 * 0.08 0.86 ** 0.02 0.33 0.13 0.71 0.46

4.5. Benefits and Drawbacks of Our Methods

The benefits of the proposed methodologies are their simplicity and fast implemen-
tation. Though they are not as deep as other Nets available, they are still comparable to
LeNet and other basic CNNs. They are spatial exploitation-based approach CNNs, with
fewer layers, less training time, and less computational expense. The main aim of these
methods is to find the applicability of CNN in classification into normal or abnormal classes
in the simplest form. Dropout is used for overfitting purposes, similar to that of AlexNet
with ReLU and Softmax activation functions. This model has no advanced structures such
as residual networks, pathways, or deep and dense networks. It is as simple as LeNet and
AlexNet, with computational complexity in between the two.

Although this method proves to be equivalent to other machine learning approaches,
this method might not perform well when the data used are different under different
settings and different datasets. This work uses unbalanced data, which can also be different
from using balanced data. It is a quest in determining the capability of using deep learning
models that are not deeper or wider. This model is not dense enough, which is another
drawback. Additionally, this work is technical, not clinical, and not under the supervision
of an expert but based on the datasets provided on the websites. The data used were from
freely available online data.

A brief discussion and interpretation of comparison between the five methodologies
is given in the next section.

4.6. Summary

The following findings and discussion can be concluded based on the experimental results:

1. Using age and gender as attributes with a range of ages is more informative, as it
involves higher attributes and, as a result, is less biased. This helps in effective and
efficient analysis of the brain and its abnormalities.

2. In most instances, classification into normal or abnormal without using age and
gender as attributes yields less accurate results. This shows that using age and
gender attributes is relevant and valuable in the classification of brains into normal or
abnormal class.

3. The pattern obtained in the case of Female (20–70) and Male + Female (10–80) yielded
better results than that of other age range in almost all methodologies which signifies
that using age and gender as attributes are essential and can help in better classification
of a tumor. Furthermore, the same applies in the case of Male + Female, where age
acts as a significant factor in providing an efficient and reliable classification where,
taking gender as a factor, the result is accurate in most cases.

4. This can be interpreted as though the output is better differentiated when both male
and female are taken as separate inputs. It can be observed that assumptions of the
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same age range of the same gender are likely to have similar patterns, as output is
better in most cases. This is because brain volume varies by 50% even in the group of
the same age and varies differently for different genders [7,8]. Gender as a factor has
shown a more promising result.

5. From performance metrics and ANOVA tests, using gender can be considered a
relevant factor as the pattern and output are better when taking Male or Female as
a separate input; also, when combining the gender of all ages, the pattern does not
change much, which can imply that gender is a dominating factor over age. The
pattern obtained in the case of Male (10–80) and Female (10–80) does not provide a
better result than when combining the two genders in all methodologies (except in
a few cases using statistical test), which shows that similarities between males and
females could be differentiated better using gender as an attribute. Using both age
and gender attributes thus acts as an essential factor in providing better accuracy in
diagnosis as a whole.

6. In most cases, the output is better when CNN-based methodologies are applied instead
of the SVM method. In several cases, LIM is in first or second place. On the other
hand, CNN-DNN can be comparable to SVM in output provided by the generalization
and k fold cross-validation approaches. This shows that deep learning methodologies
have the potential to achieve reliable results through further experiments in the future.
The deep learning model has more layers and provides finer details at a deeper level
about the images, which act as a tool for a better prognosis.

7. Although gender is more dominating than age as per our utilized data and result,
it is not enough to say whether any variable is statistically significant based on the
ANOVA test. On the other hand, the model (LIM) is statistically significant. Using
higher variables as a relevant factor is reasonable based on performance metrics and
the ANOVA test.

5. Conclusions and Future Work

Finding a treatment for various types of brain tumors has become one of the most im-
portant areas of medical imaging. Considering Accuracy, Specificity, Sensitivity, Precision,
Recall, F1 Score, NPV, FPR, FDR, FNR, and MCC, LIM performs better in this paper for
the first case. In most cases, employing a cross-fold validation and generalization strategy,
LIM and CNN-DNN produce better results than SVM and AlexNet when dealing with
heterogeneous data. LIM follows a similar pattern to the original LeNet, but it is unable
to overcome it. In the second case, it was discovered that brain classification works better
for brains of different ages and genders than for the brains of the same gender using LIM,
CNN-DNN, and the other four methodologies. It is due to the similarities patterns between
the same genders. In other words, it can be concluded that the pattern and characteristic
features of the same gender are likely to be similar. Additionally, from statistical tests and
performance metrics, gender can be considered a factor in the future analysis of the brain,
with age as a factor as well. The accuracy is not high due to the presence of noise and
heterogeneity in the data, where the methods could not differentiate between normal and
abnormal images properly. An overall Accuracy using age and gender as attributes of
SVM, AlexNet, ResNet, LeNet, LIM, and CNN-DNN is 82%, 64%, 44%, 87%, 88%, and 80%,
respectively, and best accuracy of 92%, 81%, 52%, 97%, 100%, and 92%, respectively. Deeper
networks, such as AlexNet and ResNet, were unable to produce the desired results due
to their capacity for handling large amounts of data, which was limited in our case, and
different setting. In addition, the data used in our case are unbalanced data which usually
provide lower accuracy compared to using balanced data. Using gender as a factor, the
result was more promising and is a reasonably good factor to be taken into consideration in
the automated diagnosis of the brain. Overall, both age and gender are significant factors
for obtaining effective and efficient results. Classifying normal or abnormal brain MRI data
will be more informative and accurate with age as an attribute.
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The application of deep learning-based methodologies such as CNN outperforms
traditional methods, including SVM, which has the highest classification accuracy to date.
More tests on brain size may be performed using large amounts of data, taking gender and
suitable age range as attributes, as this can be used to reach a higher level of accuracy than
a generalized classification. Classification and segmentation-based works are engaging;
however, a more efficient method is needed for these purposes. Researchers are still looking
for a way to reduce human effort and make the processes of detecting brain tumors and
other abnormalities more efficient. Deep learning has the potential to tackle and provide
higher accuracy, dependability, and efficiency.
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