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Abstract

MicroRNAs, the non-coding single-stranded RNA of 19–25 nucleotides are emerging as robust players of gene regulation.

Plethora of evidences support that the ability of microRNAs to regulate several genes of a pathway or even multiple cross

talking pathways have significant impact on a complex regulatory network and ultimately the physiological processes and

diseases. Brain being a complex organ with several cell types, expresses more distinct miRNAs than any other tissues. This

review aims to discuss about the microRNAs in brain development, function and their dysfunction in brain tumors. We

also provide a comprehensive summary of targets of brain specific and brain enriched miRNAs that contribute to the

diversity and plasticity of the brain. In particular, we uncover recent findings on miRNA-128, a brain-enriched microRNA

that is induced during neuronal differentiation and whose aberrant expression has been reported in several cancers. This

review describes the wide spectrum of targets of miRNA-128 that have been identified till date with potential roles in

apoptosis, angiogenesis, proliferation, cholesterol metabolism, self renewal, invasion and cancer progression and how this

knowledge might be exploited for the development of future miRNA-128 based therapies for the treatment of cancer as

well as metabolic diseases.
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Introduction
MicroRNAs are small non-coding RNAs of 19–25 nucleo-

tides in length and are known to regulate several protein-

coding genes both in plants and animals. The first miRNA,

lin-4 that controlled developmental timing in Caenorhabdi-

tis elegans was identified by two different groups in 1993

[1,2]. Later, let-7 miRNAs were found to control the timing

of fate specification of neuronal and hypodermal cells dur-

ing larval development [3-5]. Subsequently, numerous miR-

NAs have been implicated in a variety of cellular processes

including differentiation, apoptosis, cell proliferation, em-

bryonic development, stem cell renewal, stress response

and metabolism [6-11]. Their profound impact on the regu-

lation of numerous cellular processes clearly suggests that

any aberration in miRNA biogenesis pathway or its regula-

tion contributes to several human diseases such as cancer

[12-14], cardiovascular diseases [15], schizophrenia [16],

psoriasis [17], diabetes [18], chronic hepatitis [19], AIDS

[20], and obesity [21].

MicroRNAs (miRNAs) interfere with target gene ex-

pression by binding to the 3′ UTRs of their target mRNAs

and act primarily at the level of translation. Complete

complementarity between miRNA and 3′UTR of its target

leads to the degradation of mRNA targets as shown in

plants whereas partial complementarity leads to inhibition

of translation as seen in mammals [22-24]. Literature re-

veals that a single miRNA can target several mRNAs to-

gether, and a single mRNA can be targeted by different

miRNAs in a concerted manner. Large number of micro-

RNAs and the capacity of each miRNA to target several

transcripts suggest a complex regulatory network to fine

tune the gene expression and a mechanism by which they

are thought to regulate various processes during health

and disease [25].

The advancement of high-throughput sequencing tech-

niques has led to the rapid growth in the number of an-

notated miRNA. The most recent miRBase Sequence

Database, Release 20 (http://www.mirbase.org/), harbours
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24521 entries representing hairpin precursor miRNAs and

expressing 30424 mature miRNA products in 193 species

[26]. The sequences of most miRNAs are conserved across

large evolutionary distances, suggesting a conserved role

in regulation of various physiological processes [27].

The diversity and gene-regulatory capacity of miRNAs

is particularly valuable in the brain, where persistent flow

of information and functional specialization of neurons re-

quires constant neuronal adaptation to environmental cues

[28]. The brain expresses more distinct and largest number

of miRNAs than any other tissue in vertebrates as it has

wide variety of cell types, neuronal and nonneuronal (for

e.g. astrocytes) [29]. In this review, we summarize present

knowledge on the microRNA expression and functions

in the brain and their potential involvement in relation

to brain tumors. Herein, we also give an overview of the

functions and targets of brain-enriched and brain-specific

miRNAs before delving into specific example of miRNA-

128, the most abundant brain-enriched miRNA. We believe

that the understanding of the impact of microRNA-128 on

regulation of proliferation, apoptosis and metabolic pro-

cesses is still at its dawn and needs further research for the

development of future miRNA-based therapies for the

treatment of metabolic diseases and cancer.

MiRNA biogenesis and mechanism of action

Approximately, 50% of the mammalian miRNAs have

found their location in introns or exons of protein-coding

genes or introns of long non-coding RNAs [30,31]. Their

expression is either derived by independent transcriptional

units or by protein-coding gene transcriptional units [32].

As shown in Figure 1, miRNAs are transcribed from gen-

omic DNA by RNA polymerase II or III into long, primary

transcripts (pri-miRNAs) just like other protein coding

genes. These pri-miRNAs are several kilobases in length

and usually possess a 5′ CAP and a 3′ poly (A) tail. These

pri-miRNAs are processed by a microprocessor complex

which consists of a ribonuclease III (RNase III) named

Drosha, a RNA-binding protein DiGeorge syndrome crit-

ical region 8 (DGCR8/Pasha) and a variety of co-factors

[DEAD box helicases p68 and p72 and the heterogeneous

nuclear ribonucleoproteins (hnRNPs)] which are thought

to promote the specificity and/or activity of Drosha cleav-

age [32-35]. Drosha processing occurs co-transcriptionally

in most mammalian miRNAs i.e. before splicing of host

RNA (canonical pathway). However, Drosha pathway can

be evaded by miRtrons (a subset of intronic miRNAs) and

are made by splicing and debranching of short hairpin in-

trons [36,37]. The product of Drosha cleavage is a 70–100

nucleotide hairpin-shaped precursor referred to as pre-

miRNA. These pre-miRNAs are exported to the cytoplasm

by Ran-GTP and Exportin-5 dependent mechanisms [38].

In cytoplasm, these pre-miRNAs are excised by the RNase

III enzyme Dicer into a double-stranded RNA of ~22

nucleotides in length, referred to as the miRNA:miRNA*

duplex or by Ago2, an Argonaute protein that is part of

the RISC complex and aligns the miRNA and messenger

RNA [39,40]. The criteria for binding and cleavage by Ago2

after the 30th nucleotide are short stem and spanning of the

loop by miRNA sequence. The duplex produced by either

Dicer or Ago2 is loaded onto an Argonaute protein where

one strand, i.e. guide strand, complementary to the target

mRNA, is selected and subsequently forms the miRNA ef-

fector as part of a miRISC (miRNA-induced silencing com-

plex), while the remaining strand (the “passenger strand”) is

released and degraded [41]. Similar to Drosha and Dicer

assisting proteins, the formation of the miRISC and the

execution of its activity involve many additional factors

[42]. The two key factors involved in the assembly and

function of miRISCs are Argonaute (AGO) proteins, which

directly interact with miRNAs, and glycine-tryptophan pro-

tein of 182 kDa (GW182), which act as downstream effec-

tors in the repression. miRNA then guides the miRISC to

recognize the partially complementary binding sites located

in the 3′UTR of their target mRNAs.

The perfect binding between seed region (5′ 2–8 nu-

cleotides 3′) of mature miRNA and 3′UTR of their tar-

get by Watson-Crick base-pairing is considered to be

the major determinant in blocking the target mRNA ei-

ther by translational repression or mRNA degradation

[43]. However other 3′- supplementary and 3′- compen-

satory binding sites in miRNA sequence also play a sig-

nificant role during interactions [24]. Although miRNA

binding sites are most common in 3′UTRs of mRNAs,

yet there are some reports of miRNA interaction within

the 5′UTR, mRNA coding region and intron-exon junc-

tions [44,45]. The detailed mechanisms underlying the

inhibition of protein synthesis by miRNAs are not well

understood, but literature suggests sequestration of mRNA

into P bodies from ribosomes, blockage of translational

initiation, translational repression or target deadenylation

coupled to transcript degradation [23,46]. However, it is

now believed that miRNA regulate gene expression in ma-

jority of cases by mRNA decay rather than translational

repression [47]. Epigenetic modifications and transcription

factors also play a decent role in the regulation of miRNA

function. Recent reports also depict the role of pseudo-

genes as miRNA sequestering sponges or decoys in the

regulation of miRNA function [48,49].

MicroRNAs in brain development and function

The brain is a complex organ, with various types of cells

(neurons and non-neurons) that form an intricate com-

munication network. Literature reveals that 70% of known

miRNAs are expressed in the brain [50]. Surprisingly, only

a handful of microRNAs are expressed in a brain specific

or brain-enriched manner [51]. Since these miRNAs are

dynamically regulated during brain development, have
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different targets and perform different functions in brain,

herein we provide a comprehensive list of the recent vali-

dated roles of brain-enriched and brain-specific micro-

RNAs along with their targets in brain in Tables 1 and 2.

The increasing variety of miRNAs being identified in the

brain suggests a sheer connection between the biogenesis,

dynamics of action and regulatory potential of miRNAs

and the complexity of the brain. Numerous studies on de-

pletion of the Dicer gene in the nervous system of animal

models further demonstrate that microRNAs play essential

roles in controlling neuronal proliferation, migration and

precursor fates [167-171] and serve important roles in de-

velopment and function in the brain [172,173]. Stark et al.

in their study, have illustrated the contribution of defects

in miRNA biogenesis to brain abnormalities in Dicer defi-

cient mice and mouse model of schizophrenia [174].

An expression profiling study by Sempere et al. showed a

group of 17 miRNAs were expressed in mouse and human

brain (miR-7, -9, -9*, -124a, -124b, -125a, -125b, -128, -

132, -135, -137, -139, -153, -149, -183, -190, -219). All

these miRNAs have been found to regulate neuronal differ-

entiation, maturation, and/or survival in mouse and hu-

man. Conservation of these miRNAs between mouse and

human suggests that they may play a conserved role in the

establishment and/or maintenance of a cell or tissue type

of brain [52,55,106,175]. Specific expression of miR-9 and

miR-132 is restricted to hippocampus and medal frontal

gyrus [176] whereas miR-124 and miR-128 are unique for

neurons and miR-23, miR-26 and miR-29 are specifically

expressed in astrocytes [177]. In addition miR-195 displays

a moderate to low expression level in the mammalian em-

bryonic brain, with the highest level at the preadult brain

developmental stage [178].

Studies have further shown that miR-9 expression is

necessary for neurogenesis in cultured stem cells and

miR-132 plays a role in neurite extension and neurogen-

esis [52,179]. MiR-132 has also been linked to BDNF (a

member of the nerve growth factor family that is neces-

sary for survival of striatal neurons in the brain) and

MeCP2 (methyl-CpG DNA binding protein that plays an

Figure 1 miRNA biogenesis pathway and function: miRNAs are transcribed in the nucleus either from introns or exons of protein-coding

genes or introns of long non-coding RNAs into primary transcripts (pri-miRNAs). Pri-miRNAs are then processed in two steps in the nucleus and

cytoplasm, catalyzed by the RNase III type endonucleases Drosha and Dicer, in complexes with dsRNA-binding domain proteins, DGCR8 and TRBP

respectively. In the canonical pathway, Drosha-DGCR8 processes the transcript to a stem loop-hairpin precursor (pre-miRNA). Intron derived miRNAs,

called miRtrons, evade canonical pathway and processed by the spliceosome and the debranching enzyme into pre-miRNAs. Both canonical miRNAs

and miRtrons are exported to the cytoplasm via Exportin 5, where they are further processed by Dicer-TRBP or by Ago2 to yield 20-25-bp miRNA

duplexes. Dicer processing adds 5′ phosphate groups and two-nucleotide overhangs at the 3′ ends of the mature strands. The duplex produced by

either Dicer or Ago2 is loaded onto an Argonaute protein of RISC where one strand is selected to function as mature miRNA while the partner miRNA*

strand is preferentially degraded. The mature miRNA produced by these two mechanisms leads to translational repression or mRNA degradation.
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essential role in mammalian development) by a negative

feedback loop [81]. Interestingly, miR-124 when overex-

pressed in non-neuronal HeLa cells shifts the gene ex-

pression profile from an immature cervix cell into a

neuronal phenotype, suggesting that miR-124 downregu-

lates mRNAs directing cells into a non-neuronal pheno-

type [180]. Recently, it has been observed that MiR-124

targets REST, BTBP and Sox9, all proteins have been

known to antagonize the formation of neuronal cells

during development [106,113,114]. Similar to miR-124,

miRNA-128 is induced during brain development and in

differentiating neuronal cells; leading to repressed NMD

(Nonsense-mediated decay) and the consequent upregu-

lation of batteries of mRNAs encoding proteins import-

ant for neuron differentiation and function [56]. MiR-23

is implicated in neural specification while miR-26 is re-

quired during neuronal cell differentiation. Report by

Kole et al. showed that miR-29b is markedly induced

during neuronal maturation and functions as a inhibitor

of neuronal apoptosis [181]. Apart from development,

aberrant microRNA expression has been discovered in

human CNS (central nervous system) diseases including

brain tumors in the past decade.

Dysfunction of microRNAs in brain tumors

Gliomas are the primary brain tumors that are made up

of glial cells which provide important structural support

for the nerve cells in the brain. Malignant gliomas are

the most common and lethal tumors arising in the central

nervous system and are classified by the World Health

Organization (WHO) into four different grades based on

malignancy (I, II, III, IV) [182,183]. Grade IV glioblastoma

multiforme (GBM) is the most common lethal primary

brain tumor in adults that is characterized by aggressive

vascular proliferation, invasiveness, stem cell-like behav-

iour and chemoresistance to new and traditional therapies

[183]. Accumulating evidences indicate the presence of

different miRNAs with pro-oncogenic and anti-oncogenic

properties in glioblastomas. Koshkin et al. recently ob-

served gradual increase in miR-21 and miR-23a levels in

all tumor grades and significant decrease of miR-7 and

miR-137 depending on the glioma grade [184]. Further,

Table 1 Comprehensive list of brain enriched microRNAs and their targets and functions related to brain

Brain enriched
miRNAs

Target Function Ref

miR-9* SOX2 Induces neuronal differentiation, affects both proliferation
and differentiation

[52-54]

miRNA-128 Reelin, DCX, SUZ12, neurofibromin 1, BMI1, RTK, EGFR,
PDGFRαUPF1, MLN51, NTRK3, WEE1, Bax, E2F3a, SNAP25

Synaptogenesis; reduces neuroblastoma cell motility and
invasiveness; suppressor of PRC activity; renders glioma
stemlike cells less radioresistant; suppressor of the colony
formation ability and invasiveness of pituitary tumor cells;
suppressor of growth and mediates differentiation;
regulates Nonsense-mediated decay; regulates apoptosis,
inhibits proliferation and self-renewal,

[55-68]

miR-7 KLF4, α-synuclein, Sepp1b, EGFR, IRS-2 Suppresses brain metastasis, control neurite outgrowth,
protects against oxidative stress, potential tumor
suppressor, decreases viability and invasiveness of
primary glioblastoma

[65,69-74]

miR-125 a-b NR2A, SMG1, SMAD4 regulates synaptic plasticity; regulates
Nonsense-mediated decay.

[52,75-77]

miR-23 laminB1,X-linked inhibitor of apoptosis (XIAP) regulates oligodendrocyte development and myelination,
regulates cerebral ischemia and neural specification

[78,79]

miR-132 PTBP2, AChE, FoxP2, Sirt1, MeCP2, ATA2, DPYSL3, STAT4;
p250RhoGAP, Mecp2, Ep300, Jarid1a, Btg2, Paip2a,
For more targets view [80]

Regulates progressive supranuclear palsy, regulator of the
brain-to-body resolution of inflammation, contribute to
neurodevelopmental and neuromorphological pathologies,
neuronal cell development, regulate synaptic plasticity,
neuronal maturation, regulates basal and activity-induced
neurite outgrowth, regulates recognition memory and
synaptic plasticity, regulates Circadian Clock.

[52,80-93]

miR-137 CDK6, MindBomb-1, CSMD1, C10orf26, CACNA1C, TCF4,
ZNF804A, neurofibromin 1, CSE1L, Cox-2, LSD1, MITF,
EZH2, KLF4, SPTLC1, For more targets view [94]

Inhibit proliferation of glioblastoma multiforme cells and
induce differentiation of brain tumor stem cells, neuronal
maturation, regulates differentiation of neural stem cells,
suppress growth and invasion of oligodendroglioma and
glioma cells,

[52,67,94-102]

miR-139 Mcl-1, C-X-C chemokine receptor type 4 (CXCR4),
FoxO1, CPG1, Bcl2

Suppressor of the proliferation and enhances drug induced
apoptosis, Reduced invasion and metastasis, Regulates
Transcriptional activity.

[52,88,103-105]
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miR-210 has been found to be highly expressed in human

gliomas and confers a poor prognosis in glioma patients

[185]. MicroRNA-206 has been found to be a tumor sup-

pressor in human malignant cancers. Low miR-206 expres-

sion is associated with poor overall survival in patients with

malignant astrocytomas, hence it could become a valuable

marker of astrocytoma progression [186]. Apart from these,

several independent studies observed that the expressions

of miR-16, miR-503, miR-203, miR-34c-3p, miR-34c-5p,

miR-106a, Let-7a, miR-218, miR-223, miR-34a, miR-329,

miR-145, miR-124, miR-137, miR-138, miR-219-5p, miR-

495, miR-383, miR-200b, miR-134, miR-153, miR-195,

miR-143, miR-107, miR-326, miR-204 and miR-214 were

significantly reduced in high WHO grade glioma tissues

relative to low WHO grade glioma tissues and normal brain

tissues [115,135,152,160,187-208]. The expression of most

of these miRNAs decreases with increasing degrees of ma-

lignancy. The low expression of Let-7a was correlated with

poor prognosis of primary glioblastoma patients [192]. Fur-

ther, miR-708 and miR-17 ∼ 92 cluster were downregulated

in GBM tumor cell lines whereas three miR-17 ~ 92 cluster

miRNAs (miR-2, -19a and −20) were upregulated in human

medulloblastoma with aberrantly activated sonic hedgehog

(SHH) signaling pathway [209-211]. Another group by

Skalsky and Ciafre et al. in their cluster analysis further re-

vealed that miR-139, miR-95 and miR-873 were down-

regulated specifically in glioblastomas and miR-137 and

miR-181a/b were down-regulated in gliomas whereas miR-

7, miR-124 and miRNA-128 were down-regulated in both

[212,213]. Interestingly, miRNA-128 and miR-124 are not

Table 2 Comprehensive list of brain specific microRNAs and their targets and functions related to brain

Brain specific
miRNAs

Target Function Ref

miR-9 KCNMA1, cyclicAMP response element-binding protein (CREB),
neurofibromin 1 (NF1), Hes1, FoxP2, prelamin A

Promotes Neuronal differentiation, Inhibits
proliferation, Promotes migration, Control neural
stem cell differentiation

[65,87,106-112]

miR-124 a-b SNAI2, NR3C2, SOS1, CDK4, Usp14, inhibitory member of the
apoptosis-stimulating proteins of p53 family (iASPP), AMPA2
and AMPA3, SCP-1, PTBP1, Sox9, Ephrin-B1, JAG1, BAF53a,
CDK6, p38α mitogen-activated protein kinase, CEBPa, RhoG,
anachronism (ana), SNAI2, Lhx2, Ctdsp1, BACE1, NeuroD1

Promotes neuronal transcriptome/neurogenesis;
inhibit proliferation of glioblastoma multiforme
cells and induce differentiation of brain tumor stem
cells, regulation of renin-angiotensin-aldosterone
system, radiosensitize Glioblastoma multiforme
cells, promotes neuronal survival under ischemic
conditions, induce differentiation into neurons,
regulates the migration of glioma cells and the
self-renewal of GSCs, inhibits growth of
medulloblastoma xenograft tumors, regulates
neuroblast proliferation, alleviates cell death.

[53,65,95,113-134]

miR-134 Nanog, LRH1, Forkhead Box M1 (FOXM1), μ-opioid receptor
(MOR), DPD gene (DPYD), Xenopus LIM kinase 1 (Xlimk1), cMYC,
Pum2, Dcx and Chrdl-1, CREB, splicing factor SC35, Limk1

Controls dendritic spine development, control
synaptic protein synthesis and plasticity, inhibits
cell proliferation, invasion and migration capability
and promotes apoptosis, inhibits epithelial to
mesenchymal transition, guidance of nerve growth
cones, growth-promoting effect on dendritogenesis;
inducer of pluripotent stem cell differentiation;
stage-specific modulation of cortical development,
regulates memory, modify both alternative splicing
and cholinergic neurotransmission

[135-147]

miR-135 Focal Adhesion Kinase (FAK), EB1, NR3C2, Smad5, APC Decreased cell invasion and increased drug
sensitivity, regulation of immunity, regulation of
renin-angiotensin-aldosterone system, inhibit
differentiation of osteoprogenitors, regulates Wnt
signaling pathway.

[52,118,148-151]

miR-153 SNCA, BSN, PCLO, amyloid-β (Aβ) precursor protein (APP),
APLP2, alpha-synuclein, Bcl-2 and Mcl-1, SNAI1 and ZEB2

Promote neuronal differentiation, impairs
self-renewal ability and induces differentiation,
repress growth and induce apoptosis of GBM-stem
cells, decreases cell proliferation and increases
apoptosis in GBM cell line, regulates
epithelial-mesenchymal transition and tumor
metastasis, regulate gliomagenesis.

[52,152-159]

miR-219 EGFR, PLK2, Sox6, FoxJ3, PDGFRα, ZFP238,
ELOVL7, CaMKIIgamma

Inhibits the proliferation, anchorage independent
growth and migration of glioma cells, promote
oligodendrocyte differentiation and myelination,
modulates NMDA receptor-mediated neurobehavioral
dysfunction, maintenance of lipids and redox
homeostasis in mature Olligodendrocytes, regulates
circadian rhythms of expression.

[52,160-166]

Adlakha and Saini Molecular Cancer 2014, 13:33 Page 5 of 18

http://www.molecular-cancer.com/content/13/1/33



only down regulated in gliomas but also other brain cancers

including medulloblastomas and neuroblastomas [212,214].

Li et al. reported that decreased miR-146b-5p expression

was strongly correlated with chromosome 10q loss in gli-

omas, especially glioblastomas [215]. The significance of

the sequence of miRNA can be illustrated by the example

of miR-23 in brain. The expression of miRNA-23b was

gradually downregulated with the malignancy of glioma

whereas miR-23a was upregulated in malignant glioma tis-

sues [216,217]. Further, miR-328, miR-106b-5p, miR-155,

miR-650, miR-92b, miR-30a-5p, miR-10b, miR-372, miR-

183, miR-486 and miR-17 were found to be upregulated in

invading glioma cells in vivo and glioma tissues respectively

as revealed by miRNA expression profiling of microdis-

sected human tumor biopsy specimens [218-228]. MiR-650

expression can be used as a significant prognostic indicator

in glioma. MiR-19a, -19b and miR-9 have been found to be

overexpressed in glioma cell lines and astrocytic glioma tis-

sues, and their expression level is positively correlated with

tumor grades [107,229]. Several studies showed that miR-

21 and miR-10b are upregulated in glioblastomas and has

recently been shown to be a significant contributor for

tumor growth in vivo [230,231]. Wu et al. have recently

documented that overall patient survival for those with low

miR-21 expression was significantly longer than those

patients with high miR-21 expression [232]. Further,

miRNA-21, 221, 222, 181b, 181c, and 128a were found

to be significantly deregulated in GBM tissues by Slaby

et al. and Zhou et al. It was also observed that miRNA-

181b and 181c were the most down regulated miRNAs

in patients who responded to radiation therapy (RT) and

temozolomide (TMZ) and hence could serve as predictors

for RT/TMZ response. Several differentially expressed miR-

NAs such as miR-124, miR-21, -128, -181, -221 and −222

could serve as potential biomarkers in GBM in general

since they play common role in the etiology of malignant

brain tumors [233,234].

Role of pro-neural miRNA-128 in brain related disorders

MiRNA-128 is transcribed by two distinct genes, miRNA-

128-1 and miRNA-128-2 in two primary transcripts, which

are processed into an identical mature miRNA sequence.

MiRNA-128-1 and miRNA-128-2 are both present in the

intronic regions of two genes on two different chromo-

somes. MiRNA-128-1 is embedded in the R3HDM1 (R3H

domain containing 1) gene on chromosome 2q21.3 and

miRNA-128-2 is in the ARPP21 (cyclic AMP-regulated

phosphoprotein, 21 kDa) on chromosome 3p22.3 [57]. Evi-

dences in the literature reveal that miRNA-128 has tissue

specific and developmental specific expression patterns.

Apart from brain, miRNA-128 has also been found in the

skeletal muscle and thymus and is highly expressed during

neuronal differentiation. Down regulation of miRNA-128

has been reported in several brain cancers for example-

glioblastoma [213] and medulloblastoma [235]. Allelic loss

in chromosome 3p, where miRNA-128-2 is present, has

also been associated with the most aggressive forms of

neuroblastoma [213].

Cui et al. demonstrated that the down-regulation of

miRNA-128 inversely correlates with tumor grade. They

also observed that the decrease of miRNA-128 is coupled

with significant increase in the expression of Bmi-1, the

transcription factor E2F-3a and angiopoietin-related growth

factor protein 5 (ARP5; ANGPTL6). Increased expression

of these factors may explain the undifferentiated, self-

renewing state of brain cells and de-regulated cell-cycle

signaling pathways that support cellular proliferation

in glioma and GBM [236]. Zhang et al. in his study

showed that brain-enriched miRNA-128 was also down

regulated in glioma tissues and cell-lines and overex-

pression of miRNA-128 inhibited cellular proliferation

through negatively regulating E2F3a, which is highly

expressed in glioma and important for cell cycle pro-

gression (Figure 2) [58]. Papagiannakopoulos et al. re-

cently showed that miRNA-128 represses growth and

enhances neuronal differentiation of glioma-initiating

neural stem cells (giNSCs) by downregulating onco-

genic receptor tyrosine kinases (RTKs), epithelial growth

factor receptor (EGFR) and platelet-derived growth factor

receptor-α (PDGFRα) (Figure 2) [59]. In an independent

study, Godlewski et al., reported that overexpression of

miRNA-128 reduces glioma cell proliferation by downreg-

ulating Bmi-1 (B lymphoma mouse Moloney leukemia

virus insertion region 1), decrease in histone methylation

Figure 2 Roles of miRNA-128 in different cellular processes:

The role of miRNA-128 in the different biological processes and

multistep events that lead to cancer are shown. The

experimentally validated target genes of miRNA-128 are depicted

along with the respective biological processes.
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(H3K27me3) and Akt phosphorylation and up-regulation

of p21CIP1 levels [60]. As Bmi-1 is also known to pro-

mote the stem cell renewal, a process that is important in

glioma, hence miRNA-128 may be used against the “stem

cell-like” characteristics of glioma cells [237]. These data

suggest that miRNA-128 may suppress cancer pathogenesis

by inducing differentiation out of a stem cell-like state. Roth

et al. recently reported upregulation of miRNA-128 in the

blood samples of glioblastoma patients compared to healthy

controls and speculated that this miRNA fingerprint may

be used as suitable biomarker for glioblastoma [238].

Besides these, levels of miRNA-128 have been reported

to be deregulated in autism, prion-induced neurode-

generation, Huntington disease, Parkinson disease and

Alzheimer disease [239-242]. Several evidences in the lite-

rature show that under different biological conditions,

expression patterns of miRNA-128 varies i.e. in some in-

stances, it is up regulated whereas in some, it is down

regulated (Table 3). Furthermore, Eletto et al. in his study

showed that miRNA-128a inhibits expression of the

pre-synaptic protein SNAP25 by binding to its 3′UTR

(Figure 2). They observed Tat mediated deregulation of

miRNA-128, in primary cortical neurons during the

infection of neurons by HIV-1. However, the role of

miRNA-128a in regulating synaptic activity in normal and

in neurodegenerative disorders including HIV-1 Encephal-

opathy (HIVE) needs to be determined [61].

Expression of pro-neural miRNA-128 in cancers other

than brain

Cancer occurs due to accumulation of several genomic

alterations and is characterized by unrestricted prolifera-

tion, invasion, and metastasis. miRNAs normally negatively

regulate their transcript targets and recent evidence indi-

cates that miRNAs may function as tumor suppressors (by

binding to oncogenes and suppressing them) or oncogenes

(by binding to tumor suppressor genes and suppressing

them) and alterations in miRNA expression may play a crit-

ical role in the cancer initiation and progression [255,256].

Within the past few years, profiling of the miRNome

Table 3 The pathological conditions in which miRNA-128 is implicated [243] (u - up, d – down; hsa-miRNA-128- refers

to both hsa-miRNA-128a and b)

miRNA Disease Status Reference Year

hsa-miRNA-128a Acute lymphoblastic leukemia (ALL) u [244] 2007

hsa-miRNA-128a Acute myeloid leukemia (AML) d [244] 2007

hsa-miRNA-128a Alzheimer’s disease u [242] 2007

hsa-miRNA-128a Autism spectrum disorder (ASD) u [239] 2008

hsa-miRNA-128a Glioblastoma d [213] 2005

hsa-miRNA-128a Glioblastoma multiforme (GBM) d [95] 2008

hsa-miRNA-128a Malignant melanoma d [245] 2008

hsa-miRNA-128a Oral Squamous Cell Carcinoma (OSCC) d [246] 2008

hsa-miRNA-128a Pituitary adenoma d [247] 2007

hsa-miRNA-128a Breast cancer u [248] 2008

hsa-miRNA-128b Lung cancer d [249] 2008

hsa-miRNA-128b Acute lymphoblastic leukemia (ALL) u [244] 2007

hsa-miRNA-128b Acute myeloid leukemia (AML) d [244] 2007

hsa-miRNA-128b Breast cancer u [250] 2005

hsa-miRNA-128b Chronic pancreatitis u [251] 2007

hsa-miRNA-128b Colorectal cancer u [252] 2006

hsa-miRNA-128b Lung cancer u [252] 2006

hsa-miRNA-128b Malignant melanoma d [245] 2008

hsa-miRNA-128b Pancreatic cancer u [252] 2006

hsa-miRNA-128b Hepatocellular carcinoma (HCC) u [253] 2009

hsa-miRNA-128b Acute promyelocytic leukemia (APL) d [254] 2009

hsa-miRNA-128 Glioma d [58] 2008

hsa-miRNA-128 Neurodegeneration u [240] 2008

hsa-miRNA-128 Neuroblastoma d [55] 2009

hsa-miRNA-128 Huntington’s disease d [241] 2010
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(global miRNA expression levels) is common and abun-

dant miRNome data are currently available for various

cancers. MiRNA expression can be correlated with can-

cer type, stage, and other clinical variables which may

be useful for the classification, diagnosis, or prognosis

of some human malignancies [257]. With respect to

miRNA-128, it is known that miRNA-128 may act as a

tumor-suppressor. Kotani et al. in his study reported

down regulation of miRNA-128 in MLL-AF4 Acute

Lymphocytic Leukemia and Khan et al. revealed down

regulation of miRNA-128 in invasive prostate cancer

cells as compared to benign prostate epithelial cell lines,

where its levels are elevated [254,258]. In addition,

miRNA-128 was significantly reduced in chemoresistant

breast tumor-initiating cells (BT-ICs) enriched from breast

cancer cell lines and primary breast tumors (P < 0.01), ac-

companied by an overexpression of Bmi-1 and ABCC5,

which were identified as targets of miRNA-128 [259]. In

contrast to these studies, strong induction of miRNA-128

has been observed in endometrial cancer [260] as well as

in acute lymphoblastic leukemia (ALL) [244]. Up regula-

tion of miRNA-128 not only suppressed the colony forma-

tion ability and invasiveness of pituitary tumor cells but

also suppressed pituitary GH3 tumor growth in xenografts

via, Bmi-1. MiRNA-128 found to regulate its direct target

Bmi-1 and PTEN-AKT pathway in pituitary tumors [62].

Allelic loss in chromosome 3p (where miRNA-128-2 is

present) has been shown to be associated with the most ag-

gressive form of lung carcinogenesis. Furthermore, it was

observed that loss of heterozygosity (LOH) of MicroRNA-

128b in tumor samples correlated significantly with clinical

response and survival following Gefitinib via EGFR [249].

Although the increase/decrease of miRNA-128 has been

reported in a number of the studies related to cancer but it

is not known whether it is a cause or effect of the disease.

Pro-neural miRNA-128 as regulator of apoptosis

Alterations in susceptibility to apoptosis is a key factor

for the survival of a malignant cell [261] and it enhances

resistance to conventional anticancer therapies [262]. As

the altered expression of pro-neural miRNA-128 was found

in several cancers, numerous studies were undertaken to

delineate the mechanism for the inhibition of cell prolif-

eration and induction of apoptosis by miRNA-128. Sean

Lawler’s laboratory demonstrated that ectopic expres-

sion of miRNA-128 in human glioma neurosphere cul-

tures (having stem-like properties) led to reduction in

glioma neurosphere number and volume by down regulat-

ing Bmi-1 (Figure 2) [60]. In addition to this, several inde-

pendent studies have illustrated the anti-proliferative role

of miRNA-128 in glioma cells and glioblastoma cell lines

[58,236]. Infact, ginsenoside Rh2, a triterpene saponin has

also been found to inhibit glioma cell proliferation by up-

regulating microRNA-128 [263]. Further, over expression

of miRNA-128 leads to an alteration in the expression

of genes implicated in cytoskeletal organization (via

truncated isoform of NTRK3) as well as genes involved

in apoptosis, cell survival and proliferation, including the

anti-apoptotic factor BCL2 in SH-SY5Y neuroblastoma

cells [63]. In our laboratory also, we recently observed that

miRNA-128 overexpression induced apoptosis by down

regulation of Bax and up regulation of p53 and Bak [57].

Furthermore, transcriptome analysis of miRNA-128 overex-

pressed cells revealed that miRNA-128 inhibits SIRT1

expression directly through a miRNA-128 binding site

within the 3′UTR of SIRT1 (Figure 2). Finally, we found

that miRNA-128 induces apoptosis in wild type (WT)

p53 as well as in mutant p53-expressing cells in a p53-

dependent and -independent manner via induction of

PUMA in MCF7, MDA-MB-231, HCT116 p53 +/+ and

HCT116 p53 −/− cells respectively [264]. In our study,

we also demonstrated that miRNA-128 augments the an-

titumor effects of compounds (Etoposide and Cisplatin).

Contrary to our findings, Yolanda’s group has shown that

ectopic expression of miRNA-128 downregulated genes

that induce apoptosis and upregulated genes implicated in

cell survival [63]. In an another recent study, miRNA-128

was found to target Bax in breast cancer cell line MDA-

MB-231 and downregulation of miRNA-128 sensitised

MDA-MB-231 cells to chemodrugs [265]. Furthermore,

Donzelli et al. observed that miRNA-128-2 expression in

lung cancer cells inhibits apoptosis and confers increased

resistance to cisplatin, doxorubicin and 5-Fluorouracyl

treatment via E2F5 (Figure 2) [266]. Based on the above

information, we can say that depending upon the cell

type; miRNA-128 can have anti-apoptotic as well as

pro-apoptotic functions. It seems that miRNA-128 can

be targeted to facilitate cancer cell death and/or inhibit

cancer cell growth; however, this aspect warrants fur-

ther investigation.

Role of miRNA-128 in cell motility, angiogenesis

and senescence

Ability to migrate and eventually disseminate to distal sites

is one of the key characteristic of tumor cells, which is also

responsible for the relative aggressiveness of the tumor.

Data from several independent studies showed that over-

expression of miRNA-128 inhibits cell motility and inva-

siveness. Evangelisti et al. proved that overexpression of

miRNA-128 reduces neuroblastoma cell motility and inva-

siveness by targeting Reelin and DCX (Figure 2) [55]. DCX

is a microtubule-associated protein required for neuroblas-

tic migration during cerebral cortex development [267]

while Reelin is a high-molecular-weight secreted glycopro-

tein, which is thought to play its role as a guide for migra-

tory neurons [268]. Messi et al. described DCX as a

marker of SK-N-SH neuroblastoma cells that show high

motility and invasiveness [269]. DCX expression is also
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detectable in some tumors of the nervous system, such

as GBM and neuroblastoma. Reelin has been shown to

be a positive marker for prostate carcinoma aggressive-

ness [270] and is overexpressed in retinoblastoma and

esophageal carcinoma and its expression is directly cor-

related with tumor aggressiveness [271,272]. Khan et al.

investigated the proteomic alterations in a cohort of 15

prostate-derived tissues from adjacent benign prostate

(Benign), clinically localized prostate cancer (PCA) and

metastatic disease from distant sites (Mets). By coupling

multidimensional protein fractionation and quantitative

mass spectrometry with bioinformatics-based enrichment

analysis, they demonstrated the involvement of miRNA-

128 in the stages of prostate cancer progression. They have

shown using qRT-PCR that miRNA-128 levels were re-

duced in invasive prostate cancer cells as compared to be-

nign prostate epithelial cell lines. Further, over expression

of miRNA-128 attenuated invasion in prostate cancer cells

while its knockdown induced invasion in benign prostate

epithelial cells as revealed by matrigel invasion assay [258].

These findings suggest that miRNA-128 reduces cell mo-

tility and invasiveness of tumor cells and thus prevents

angiogenesis. In an independent study, Shi et al. observed

that miRNA-128 overexpression inhibited tumorigenesis

and angiogenesis through targeting p70S6K1 and sup-

pressing downstream molecules of p70S6K1 such as HIF-1

and VEGF [273]. Their study identified a link between

miRNA-128 and p70S6K1 axis, which plays a vital role in

glioma angiogenesis (Figure 2).

Over expression of Bmi-1 oncogene has been found to

promote NSC self-renewal by repressing the p16Ink4a

and p19Arf senescence pathways [274]. As miRNA-128

directly targets Bmi-1 oncogene, the role of miRNA-128

in senescence is also evident. Observation by Venkatra-

man’s group of increased methylation of histone 3 lysine

9 (H3K9me2) (a mark of repressed gene expression me-

diated by the Bmi-1 polycomb repressor complex) after

overexpression of miRNA-128 further confirms the role

of miRNA-128 in promoting cellular senescence. They

also observed that overexpression of miRNA-128a in

medulloblastoma alters the intracellular redox state of

the tumor cells. In our study also, over expression of

miRNA-128 in HEK293T cells led to an increase in re-

active oxygen species [57]. This is quite interesting for

therapeutic scenario where miRNA-128 can be used as

therapeutic modality for treating cancer, as cancer stem

cells are more resistant to therapy due to a lower overall

redox state, where it can induce ROS [235].

Insights into regulation of cholesterol metabolism

by miRNA-128: a new key player in cholesterol

related disorders

Aberrant regulation of cholesterol homeostasis is associ-

ated with obesity as well as multiple types of cancer. The

regulation of cholesterol homeostasis pathways is com-

plex with transcriptional regulation by sterol-regulatory

element-binding protein (SREBP) and liver X receptor/

retinoid X receptor (RXR) transcription factors but poorly

understood at the post-transcriptional levels [275,276].

While investigating the mechanism of miRNA-128 induced

apoptosis, we observed that besides regulating the genes of

apoptosis, miRNA-128 also regulates cholesterol metabol-

ism and fatty acid biosynthesis pathways. In our study, we

discovered that miRNA-128 up-regulated cholesterol syn-

thesis genes and down regulated fatty acid biosynthesis

genes. miRNA-128 further affected cholesterol efflux path-

way by direct targeting ABCA1, ABCG1 and RXRα

(Figure 2). We provided the first evidence of miRNA-

128-2 to be a new regulator of cholesterol homeostasis

[277]. Our invitro results present a novel opportunity

to investigate microRNA related interactions invivo and

their role in cholesterol regulation. We believe validation

using invivo model should not only provide novel insights

into understanding of cholesterol regulation by miRNAs

but should also help us to combat a variety of cholesterol

related pathologies.

Biological relevance of miRNA-128 as revealed by

bioinformatic analysis

The overall cellular functions and pathways affected by

this miRNA remains still undiscovered due to lack of high

throughput target validation methods. To reveal biological

significance of miRNA-128, a list of predicted targets of

miRNA-128 was made using the miRNA target prediction

software, TargetScan 5 program (Table 4) [278]. From this

list, we discovered that 90 targets of miRNA-128 were

conserved among 9 species (Human, Mouse, Chimpanzee,

Rhesus, Cow, Chicken, Frog, Rat, Opossum); thereby indi-

cating possible mechanistically conserved functions of this

miRNA (Figure 3). To evaluate the specific pathways or

processes that are targeted by miRNA-128, we used the

list of these ninety conserved targets to find enriched

pathways by the PANTHER and GeneCodis [279,280]

analysis. Insulin/IGF pathway-mitogen activated protein

kinase kinase/MAP kinase cascade, TGF-beta signaling

pathway, Angiogenesis, Insulin/IGF pathway-protein kin-

ase B signaling cascade, PI3 kinase pathway, Wnt signaling

pathway were found to be the most enriched biological

pathways as revealed by the PANTHER analysis (Figure 4).

Interestingly, we observed that the Insulin signaling path-

way and chemokine signaling pathway were the enriched

categories (p-value < 0.05) in both PANTHER and Gene-

Codis analysis. Till now, only one study by Motohashi et al.

describes about the regulation of Insulin signaling pathways

by miRNA-128a via the regulation of INSR (insulin recep-

tor), IRS1 (insulin receptor substrate 1) and PIK3R1 (phos-

phatidylinositol 3-kinases regulatory 1) [281]. There are a

few reports which have talked about the involvement of
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miRNA-128 in TGF-β signaling [282] and PI3 kinase path-

way [60]. The reports which have revealed the associ-

ation between miRNA-128 and angiogenesis, have been

described by us in the above section. However, regulation

of Wnt signaling and chemokine signaling pathways by

miRNA-128 needs further validation. Surprisingly, meta-

bolic process came out to be the highest rated biological

process with maximum number of genes during PAN-

THER Analysis (Figure 5). Our recent work on the regula-

tion of cholesterol metabolism by miRNA-128 point

towards a possible link between miRNA-128 and metabolic

processes which is just beginning to be revealed and cer-

tainly merits further studies. Such discoveries not only pro-

vide new insights into mode of action of miRNA-128, but

also raise hopes for translating miRNA-128 for therapy.

Future directions/conclusions

MiRNA-128 is encoded by two distinct genes, viz.,

R3HDM1 and ARPP21. Interestingly, insilico analysis of

transcription factor binding sites of these two genes re-

veals almost similar pattern of transcription factors

(unpublised data). This suggests that these two genes

may presumably resulted from a gene duplication event.

Until now, neither transcription factors binding proteins

of hsa-miRNA-128 gene nor epigenetic factors, have

been identified that interact with the regulatory region

of this miRNA. However, Monteys et al. have recently

suggested dual regulation of miRNA-128-2 by both in-

tronic (pol III) and host gene (Pol II) promoters in acute

Table 4 List of ninety conserved targets of miRNA-128

among nine species

C1orf144 FOXP2 RELN ARFGEF1

AFF4 CORO1C ENAH C5orf41

EYA4 WSB1 hCG_1757335 JMJD1C

PLK2 PLAG1 IRS1 NDUFS4

ONECUT2 NRP2 RNF38 UPF1

RYBP HAPLN1 PDE7B SPRY2

SOCS6 CDH11 MAPK14 ELL2

UBR5 ZHX1 UBE2N DLL4

LBH STK39 MED13 MLL3

C6orf60 PDS5B GRIA3 MEIS2

SYT1 SEMA6A RAP1B SPOPL

BAZ2B ZNF827 UBE2W RAPGEF2

APBA2 FLRT3 ZNF618 MARCKS

ISL1 KLF4 TMEFF1 ARID2

UNC13C DNAJC13 tcag7.1228 ZFHX4

FRYL SERTAD2 AFF3 CPEB3

C5orf13 INSM1 CITED2 TMEM189-UBE2V1

WNK1 SATB2 NARG1 UBE2V1

FBXO33 HOXA10 TSC1 CPEB4

TNPO1 OTX2 MED14 EN2

ABL2 APPBP2 FUBP3 PDE3B

PPP1CC PELI2 NIPBL MAN2A1

ARID1B ATP2B1

Figure 3 Strategy for filtering common genes among nine species: Total targets of miRNA-128 have been extracted using TargetScan 5

program for nine species (Human, Mouse, Chimpanzee, Rhesus, Cow, Chicken, Frog, Rat, Opossum). Data was arranged in a tabular format

where the union of all genes from the mentioned species were represented as first column in each row (row head). The subsequent columns in first

row had species names in them (column head). For every gene, 1 was written under the species where it was found to be present and zero

otherwise. This way, a matrix of 1 and zeroes was populated for every gene where 1 means presence and zero means absence. In the last column,

sum across the row was taken to count the number of species in which a particular gene was present. We chose only those genes with presence in

all nine species. This led to a list of ninety genes which we called high confidence set and were conserved among these species. The total green area

specifies ninety common targets whereas red specifies the absence of a particular target in a particular species out of nine species.
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lymphoblastic leukemia [283]. The fact that miRNA-128

plays multiple roles - a pro-apoptotic molecule, a anti-

apoptotic molecule as well as a regulator of cholesterol

homeostasis, raise the possibility of exploiting miRNA-

128 for therapeutic intervention and development of

novel therapies. Further, therapeutic modalities either

using replacement strategy by miRNA-128 mimetics (for

upregulation of miRNA-128) or using antisense miRNA

oligonucleotides (AMOs or antagomirs), LNAs (Locked

nucleic Acid) (for downregulation) may now be pursued

Figure 4 Biological relevance of miRNA-128 as revealed by bioinformatic analysis: The biological pathways affected by miRNA-128

were revealed by the PANTHER and Gene Codis analysis using the list of common ninet y targets as input. Insulin signaling pathway and

chemokine signaling pathway were the enriched categories in both PANTHER and GeneCodis analysis (p-value < 0.05).

Figure 5 GO biological processes by PANTHER analysis: The highest rated biological process being affected by miRNA-128 came out

to be metabolic process with maximum number of genes during PANTHER analysis.
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in an effort to target a particular disease. We believe that

there are several fundamental questions that still need to

be answered and are open for investigation which will

help in the development of miRNA-128 as therapeutics.
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