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The segmentation of MR (magnetic resonance) images is a simple approach to create Pseudo CT images
which are useful for many medical imaging analysis applications. One of the main challenges of this pro-
cess is the bone segmentation of brain MR images. Deep convolutional neural networks (CNNs) have been
widely and efficiently applied to perform MR images segmentation. The aim of this work is to propose a
novel excitation-based CNN by recalibrating the network features adaptively to enhance the bone seg-
mentation by segmenting the brain MR images into three tissue classes: bone, soft tissue, and air. The
proposed method combines two types of features excitation mechanisms namely: (1) spatial squeeze
and channel excitation block (cSE) and (2) channel squeeze and spatial excitation block (sSE). The two
blocks are combined sequentially and integrated seamlessly into a 3D convolutional encoder decoder
network. The novelty of this work emerges in the combination of the two excitation blocks sequentially
to improve the segmentation performance and reduce the model complexity. The proposed approach is
evaluated through a comparison with computed tomography (CT) images as ground truth and validated
with other methods in the literature that applied deep CNN approaches to perform MR image segmenta-
tion for PET attenuation correction. Brain MR and CT datasets which consist of 50 patients are used to
evaluate the proposed method. The segmentation performance of the three brain classes is evaluated
using precision, recall, dice similarity coefficient (DSC), and Jaccard index. The presented method
improves the bone tissue segmentation compared to the baseline model and other methods in the liter-
ature where the DSC is improved from 0.6278 � 0.0006 to 0.6437 � 0.0006 with an improvement per-
centage of 2.53% for bone class. The proposed excitation-based segmentation network architecture
demonstrates promising and competitive results compared with other methods in the literature and
reduces the model complexity thanks to the sequential combination of the two excitation blocks.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

The increase use of magnetic resonance (MR) imaging in clinical
routine thanks to its advantages over computed tomography (CT)
images requires methods for creating pseudo CT images by obtain-
ing the CT numbers from MR images. The synthesis of pseudo CT
images is an essential step in the integrated process of many neu-
rological images analysis such as positron emission tomography
(PET) attenuation correction using MR images (MRAC) [1–3].
Commonly, the PET attenuation is corrected using the attenua-
tion coefficients from CT images by rescaling the Hounsfield units
to linear attenuation coefficients maps. However, the CT scan
exposes the patient to radiation dose and generates images with
low soft tissue contrast [4]. Recently, various learning based meth-
ods using deep learning have been proposed to learn the complex
mapping from the tissue details of MR images to CT images in the
same patients [5–12]. Another way to generate pseudo CT images
is to segment MR images into different tissue classes. It has been
proven that the MR image segmentation based method for PET
quantification is a simple and robust approach which has been
applied in commercial PET/MR scanners [13].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2022.03.039&domain=pdf
https://doi.org/10.1016/j.neucom.2022.03.039
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Deep convolutional neural network (CNN) has been applied
successfully to perform segmentation tasks in different medical
imaging applications [14–18]. Various fully convolutional segmen-
tation network architectures have been proposed, yet few of them
emphasis on the characterization of spatial-wise and channel-wise
features and patterns.

In this research, an adaptive features recalibration mechanism
is applied using squeeze and excitation (SE) block that can be
embedded at any stage of any network architecture. This mecha-
nism has been introduced firstly for 2D images classification appli-
cation by [19] then proposed for 2D images segmentation
application by [20]. The 3D squeeze and excitation block is intro-
duced in this work to segment 3D MR images. Additionally, the
concept of combining the channel and spatial excitation blocks
sequentially is proposed to recalibrate the features more efficiently
and reduce the model complexity.

The main objective of this research is to improve the MR images
segmentation method to generate segmented CT images which can
be converted to pseudo CT. The proposed approach aims to inte-
grate the SE block with CNN architecture to influence the features
extraction process. Another objective is studying the impact of
each type of the SE blocks on the segmentation results to find
the optimal network architecture that improves the segmentation
performance and reduces the model complexity as well as the
required computing resources. The main contributions herein are
designing a 3D encoder decoder convolutional network with 3D
SE blocks and the combination of two SE blocks sequentially to
firstly excite the useful channels then focus the spatial attention
on certain regions with informative details. Moreover, the pro-
posed CNN is trained using the dice similarity coefficient as an
objective function to overcome the issue of the voxels unbalancing.
The proposed network architecture is evaluated using clinical MR
and CT brain datasets to enhance the bone segmentation in brain
MR images with minimal increase of model complexity.

The paper is structured as follows. Section 2 reviews briefly the
related work on MR images segmentation using deep learning and
excitation mechanisms. The data description and the applied
methodology are defined in Section 3. The experimental setup is
presented in Section 4.The conducted experiments with the seg-
mentation results and the limitations are discussed in Section 5.
Finally, the conclusion and future work are given in Section 6.
2. Related work

Deep learning has been applied slightly to address the problem
of segmentation based MR attenuation correction for brain PET
images and has shown its superiority compared to the conven-
tional machine learning techniques. For instance, deep learning
guided segmentation methods perform better than Dixon-based
soft-tissue and air segmentation using machine learning [14].

Fully CNN has been applied to generate segmented MR images
using segmented CT images as ground truth to create pseudo CT
images. Liu et al. [21] have applied the vanilla implementation of
Segnet architecture using a dataset of 40 T1-weighted volumes.
The main drawback of this architecture is the use of cross entropy
loss as an objective function which does not take into account the
class unbalancing issue. The number of bone voxels is much less
than the air and soft tissue voxels in the brain volume; Hence,
the classifier will be biased towards the majority class. There is a
need to consider using an objective function which deals with
the class unbalancing issue while training the network. This
method shows promising results, yet the results are not cross val-
idated and the segmentation results need further validation and
testing.
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Later, Jang et al. [22] have applied the pretrained network with
T1-weighted images to segment ultrashort echo time (UTE) MR
sequences. The combination of the segmented UTE images with
Dixon images are used to generate the pseudo CT images. They
have also enhanced the segmentation results using the conditional
random field technique as a post processing step. Although this
method shows good results, it consists of complicated aspects such
as the use of UTE sequences and the application of a post process-
ing step which increases the method complexity.

In addition to fully CNN, there are other networks architectures
that have been applied to learn the mapping from MR to CT images
to generate pseudo CT with continuous values such as generative
adversarial network [5–9], U-Net [10], residual U-Net [11], and
HighRes3DNet [12].

Focusing on the applied CNNs for MR images segmentation,
there are some studies that aim at improving the network architec-
ture by proposing features recalibration mechanisms to boost the
features and improve the segmentation results. Hu et al. [19] were
the first who have introduced the features recalibration approach
using channel excitation block for ILSVRC 2017 classification com-
petition. Since then, this mechanism has been widely and success-
fully applied to solve different applications such as breast density
categories classification [23], action detection [24], and sea ice
images classification [25]. The spatial squeeze and channel excita-
tion also has been applied for various medical images segmenta-
tion applications such as brain tumor segmentation [26], prostate
zonal segmentation [27] and pancreas segmentation using CT
images [28]. Moreover, this excitation mechanism has been pro-
posed as a feature fusion module using public datasets by
[29,30]. Roy et al. [20] were the first who have introduced the spa-
tial excitation mechanism and combined it with channel excitation
using different fully CNNs architectures. The two types of excita-
tions have been used successfully for white matter hyperintensi-
ties segmentation using parallel combination [31].

The channel and spatial excitation mechanisms have shown
substantial improvement in the segmentation of medical images.
However, to the best of our knowledge, no literature study has
applied this technique to improve the bone segmentation in MR
images for pseudo CT images generation. Moreover, this is the first
study that combines the channel and spatial excitation mecha-
nisms sequentially to improve the segmentation and reduce the
model complexity.
3. Materials and methods

3.1. Data acquisition

The objective of this study is to build an efficient segmentation
method using the most conventional MR sequences such as T1-
weighted and T2-weighted. These sequences can be acquired more
frequently in the clinical routine in contrast to other sophisticated
MR sequences (e.g., ZTE and UTE) which have the drawbacks of the
long acquisition time and the challenging implementation [32,33].

The brain imaging datasets consist of 50 patients that have
acquired CT and MR images after giving informed consent. The
patients have been diagnosed with different clinical conditions
such as epilepsy, brain tumor, and neurodegenerative diseases.

The MR images have been acquired using a 3 T MAGNETOM
Skyra (Siemens Healthcare, Erlangen, Germany) with a 64-
channel head coil. The MR scans are 3D T1-weighted
(magnetization-prepared rapid gradient-echo (MP-RAGE))
sequence that have been acquired using the following parameters:
TE = 2.3 ms, TR = 1900 ms, T1 = 970 ms, flip angle 8�, NEX = 1, and
matrix dimension of 255 � 255 � 250 with voxel size of 0.86 � 0.
86 � 1 mm.
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The CT scans have been acquired using two different Siemens
scanners where 15 patients underwent the Biograph mCT scanner
(Siemens Healthcare, Erlangen, Germany) and 35 patients under-
went the Biograph 64 True Point scanners (Siemens Healthcare,
Erlangen, Germany). The matrix size of the CT images is
512 � 512 � 150 with voxel size of 0.97 � 0.97 � 1.5 mm. The
research protocol has been approved by the research ethics com-
mittee of the college of engineering, design and physical sciences
at Brunel University London. An example of a single slice of T1-
weighted MR image, CT image, and MR overlaid on CT are illus-
trated in Fig. 1 in transverse, coronal, and sagittal views.

3.2. Data preprocessing

The processing of each patient volume of both T1-weighted and
CT images is performed in 2D fashion by firstly identifying the
region of interest and selecting 48 slices from each volume. The
process of slices selection is performed manually by removing
the noisy slices that do not include any details of the brain. The
removed slices reside either at the beginning or at the end of each
volume. Secondly, the number of pixels of the background are
reduced by cropping each slice into 256 � 256 � 48 matrix dimen-
sion. Due to the usage of different scanners, some of the volumes
are resampled to 300 � 300 matrix using bilinear interpolation
then cropped into 256 � 256 � 48 to obtain the same dimensions
for all patients. Local contrast normalization technique is applied
on MR images only to downscale the range of the pixel’s values.
CT images are used as ground truth for this supervised learning
approach where each MR volume is co-registered with its corre-
Fig. 1. An illustration of a single slice of MR, CT, and MR ov
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sponding CT volume to overcome the temporal gap (within 2–
3 days) between the acquisition of MR and CT images. The registra-
tion process combines the rigid Euler transformation followed by
the non-rigid B-spline transformation using Elastix tool [34].

The labelling of CT images is performed by applying a simple
pixel intensity-based thresholding to segment the brain into three
tissue classes which are air, bone, and soft tissue. Hounsfield values
which are greater than 600 HU are labelled as bone, lower than
�500 HU are labelled as air, and other pixels are labelled as soft
tissue.

3.3. Methods

3.3.1. Encoder Decoder convolutional network
The baseline architecture follows the well-known 2D U-Net

architecture [35] that has been applied widely in various medical
applications. This network is a fully convolutional architecture that
takes the shape of an encoder decoder path with the inclusion of
additional paths from the high-resolution to the low-resolution
features. The additional paths increase the resolution of the output
and improve the localization. The U-Net architecture is amended
by converting 2D layers to 3D layers, decreasing the number of
down-sampling layers which cause loss of some features, and
increasing the number of convolutional layers at each depth. It
consists of 21 3D convolutional layers, each three convolutional
layers are followed by the batch normalization layer, the
rectified-linear unit (ReLU) activation function, and one 3D max-
pooling layer with stride size of 2. The number of filters of the first
layer is 64 and doubles in size as the depth of the network
erlaid on CT in transverse, coronal, and sagittal views.
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increases. The decoder path is the mirror of the encoder path with
replacing the maxpooling layers with deconvolution layers. The
use of the deconvolution layer is another modification to the U-
Net architecture to allow the network to learn the weights of the
upsampling process. The last layer of the network is a fully con-
nected layer that consists of three neurons that represent the num-
ber of classes with a multiclass sigmoid activation function. The
CNN hyper-parameters are selected based on a grid search proce-
dure. Fig. 2 illustrates the baseline proposed architecture.

Another modification is the application of the dice similarity
coefficient (DSC) as an objective function to train the network to
overcome the problem of classes unbalancing which leads to a
biased classification towards the majority class. The cross-
entropy loss function that is applied in U-Net does not address this
problem. The dice coefficient loss for multi-class segmentation is
defined as:

Ldice ¼ 1�
XC

c¼1

2
XH

h¼1

XW

w¼1

XD

d¼1

pðc;h;w; dÞgtðc; h;w;dÞ þ s

XH

h¼1

XW

w¼1

XD

d¼1

pðc;h;w;dÞ2gtðc;h;w;dÞ2 þ s

ð1Þ

where h is the index of the height, w is the index of the width, d is
the index of the channels, p is the probability of each voxel (output
of the segmentation), gt is the one hot encoded value of the ground
truth for class c, C is the number of tissue classes, and s is a smooth-
ing variable to avoid division by zero.

3.3.2. Features recalibration mechanism
The down-sampling layers of the convolutional network cause

loss of useful features by taking the maximum or average values
of each patch of the features map. This drawback initiates the
exploration of the features recalibration mechanism that aims at
capturing the meaningful and distinguishable features and sup-
pressing the less useful ones. The recalibration is represented by
a generic and resilience component that consists of few blocks
and can be integrated within any convolutional network architec-
ture. The recalibration mechanism is the resultant of squeezing the
features along the spatial or the channel domain then exciting the
same set of features spatially or channel wise. This technique iden-
tifies a relationship between the number of channels, the spatial
locations, and the features maps.

Channel Excitation Mechanism. This type of excitation uses the
channels interdependencies by squeezing the features maps along
the spatial domain then exciting along the channel domain to
recalibrate and reweight the features that flow to the next layers.
This type of recalibration is called spatial squeeze and channel
excitation (cSE). It squeezes the global spatial features into a chan-
nel descriptor. It is more adapted for classification applications as it
enables the extraction of global context information and improves
the channel interdependencies. The components of this mecha-
nism are a global average pooling to shrink the features maps spa-
tially followed by two fully connected layers to reduce the model
Fig. 2. The architecture of the convolutional encoder decoder network that follows
the U-Net.
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complexity then the ReLU activation function to add nonlinearity
and introduce generalization. The last layer is a sigmoid activation
function to rescale the features to the interval [0,1]. The resultant
vector is then multiplied by the original features maps for excite-
ment and recalibration. Considering a feature map U with c
channels:

U ¼ ½u1;u2; . . . ;uc�; ð2Þ
the spatial squeezing is calculated by vector z with k elements:

zk ¼ 1
H �W

XH

i¼1

XW

j¼1

ukði; jÞ; ð3Þ

where H andW are the height and width of the feature map. By add-
ing the two fully connected layers and the activation functions, z
transformed to:

sk ¼ rðW2ðdðW1zkÞÞÞ ð4Þ
where r and d refer to sigmoid and ReLU activation functions

respectively,W1 2 R
c
rxc and W2 2 R

c
r . The parameter r is the reduction

ratio that compresses the c channels to c
r channels that can be

selected empirically,W1 andW2 are the weights of the first and sec-
ond fully connected layers. The vector s is multiplied by the features
map U to excite and recalibrate the features and produce the final
vector:

XcSE ¼ ½u1:s1;u2:s2; . . . ;uc:sc� ð5Þ
The architecture of this block is illustrated in Fig. 3.
Spatial Excitation Mechanism. The channel squeeze and spatial

excitation mechanism (sSE) squeezes the features maps on the
channel wise to produce a scalar value then excites spatially. This
mechanism preserves the global semantic information and enables
the representation capabilities of feature maps. It is a useful mech-
anism for image segmentation as it enhances the salient spatial
locations. The architecture of this mechanism is shown in Fig. 4
where the spatial squeeze part is represented by the convolution
operation using convolutional layer with size 1 � 1 � 1:

q ¼ w� uði;jÞ ð6Þ
where w is the weight and u is a single spatial location (i,j) at the
features map. The output vector q combines all channels for a spa-
tial location then passes through the sigmoid activation function to
rescale the features in the scale [0,1]. The resultant is multiplied by
the feature maps u to excite and adaptively recalibrate the features.
The spatially excited feature map is calculated as:

XsSE ¼ ½rðq1Þ:u1;rðq2Þ:u2; . . . ;rðqðH;WÞÞ:uðH;WÞ� ð7Þ
where H and W are the height and width of the feature map.

Combined Spatial and Channel Excitation mechanisms (scSE). The
exploitation of the two excitation mechanisms channel and spatial
wise is conducted by combining both of the blocks. This combina-
tion helps to achieve the full potential of recalibrating the features
and capturing the useful information. The combination has two
different configurations: parallel scheme and sequential scheme.

Parallel scheme. The parallel combination has been proposed on
2D domain by [20] where the input feature map passes through the
cSE and sSE blocks concurrently. Then the output is aggregated
using different strategies such as max-out, addition, multiplication,
and concatenation. This parallel combination is applied herein on
the 3D domain using the concatenation aggregation method as it
provides the best performance. Fig. 5 depicts the architecture of
the parallel combination on 3D domain.

Sequential scheme. The sequential combination of the cSE and
sSE blocks is introduced in this work to decrease the model com-
plexity and the required computing resources. Additionally, the
rationale behind this combination structure is to create an empha-



Fig. 3. The architecture of the spatial squeeze and channel excitation block (cSE).

Fig. 4. The architecture of the channel squeeze and spatial excitation block (sSE).

Fig. 5. The architecture of the parallel combination of channel and spatial
excitation blocks.

Fig. 6. The architecture of the sequential combination of channel then spatial
excitation blocks (cSE then sSE).
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sis on the recalibration mechanism by passing only the excited
useful features to the next excitation mechanism. The order of
the combination matters where each SE block receives different
excited features either channel or spatial wise. It has been shown
that the spatial excitation is more efficient than channel excitation
to perform segmentation tasks [20]. Thus, performing the spatial
excitation at the end of the excitation process (cSE then sSE) tends
to emphasis on the spatial locations that consist of useful inter
channel information that enable the distinguish of the most useful
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spatial locations of the feature maps. Fig. 6 illustrates the architec-
ture of the sequential combination of SE blocks which starts with
channel then spatial excitation. Fig. 7 shows the excitation based
network architecture.
4. Experimental setup

4.1. Input and training setup

The volume size of each patient is 256 � 256 � 48 where 48 is
the number of selected slices per patient. This huge number of pix-
els overwhelm the graphical processing unit (GPU) memory and
creates limitations when designing the network architecture such
as selecting the number of filters per convolutional layer. To over-
come this situation, each volume is divided into overlapped
patches to minimize the input size and increase the size of the
training datasets. The application of overlapped patches preserves
the spatial contextual information for each volume. Each volume is
divided into 9 overlapped patches with the size of 128 � 128 � 48.

The deep network is trained from scratch using four folds cross-
validation where the size of each fold is 10 volumes. For each trial,
the training and validation datasets consist of 30 and 10 patients,
respectively. The testing dataset is fixed and consists of 10 patients
used to evaluate the results of each trial. The layers weights are ini-
tialized using Glorot Uniform initialization scheme and updated
using Adam optimizer with a moving learning rate that starts with
0.0001 then reduces by a factor of 0.75 on plateau mode when the
training accuracy is not increasing for 5 continuous epochs. The
batch size is 2 and the training stops after 100 epochs or when
the validation loss stops decreasing. The only hyperparameter that
is changed while training the parallel combination is the batch size
that is set to 1 to solve the memory allocation issue of the utilized
GPU.

MATLAB and Python programming languages are used to build
the proposed method. The data preprocessing is performed using
MATLAB while Python libraries: Keras and TensorFlow are used
for the implementation of CNN architecture. The deep CNN is
trained using Tesla V100 GPU with 16 GB RAM.
4.2. Evaluation metrics

The segmentation results are evaluated by comparing the seg-
mented MR image with the ground truth CT image. The calculated
evaluation metrics are precision (PRE), recall (REC), dice similarity
coefficient (DSC), and Jaccard index (JAC). Moreover, the segmenta-
tion performance is assessed with 95% confidence intervals.



Fig. 7. The architecture of the convolutional encoder decoder network with multiple squeeze and excitation blocks.
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5. Results and discussion

5.1. Segmentation results

The impact of each type of the excitation blocks is studied by
placing the SE block at the same location using the same network
architecture and comparing the evaluation metrics which are gen-
erated from the confusion matrix. The average of the evaluation
metrics from the obtained results using four folds cross-
validation for bone, soft tissue, and air classes are shown in Tables
1–3, respectively which represent the pixel-wise comparison of the
testing datasets for various methods. Table 4 demonstrates the
evaluation results per patient using the cSE then sSE (sequential)
method without the use of validation set where the training and
testing sets consist of 40 and 10 patients, respectively. The results
show that the addition of any type of SE improves the segmenta-
tion results of the bone class. The spatial excitation outperforms
the channel excitation as it enables the global contextual informa-
tion on the spatial domain. The two types of the sequential combi-
nation (cSE-sSE and sSE-cSE) outperform the parallel combination.
The performance of the spatial excitation approach for bone seg-
mentation is very similar to the sequential combination of spatial
then channel excitation (cSE-sSE).

Another important observation is that placing the cSE block
before the sSE block in the sequential configuration shows superi-
ority in terms of segmentation evaluation metrics. Starting with
recalibrating the features in channel wise helps to emphasis on
the most useful inter-channel features that will be excited spatially
in the next stage. This helps the model to identify the spatial loca-
tions of the most useful channels.

The box plots of different evaluation metrics which are shown
in Fig. 8 indicate a high variability on the segmentation results of
the bone class with high standard deviation. Additionally, the
Table 1
The average of four folds cross validation for the evaluation metrics of the bone class from t

Model PRE

Baseline 0.7197 � 0.0006 0.557
+ cSE 0.7366 � 0.0006 0.553
+ sSE 0.7228 � 0.0006 0.587

+ cSE and sSE (parallel) 0.7219 � 0.0006 0.506
+ cSE then sSE (sequential) 0.7373 � 0.0006 0.572
+ sSE then cSE (sequential) 0.7223 � 0.0006 0.563
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intrasubject variability percentage values for each tissue class are
shown in Table 5. The intrasubject variability is calculated by
dividing the standard deviation over the mean of the DSC obtained
from the four folds cross-validation experiments. The results reveal
that the intrasubject variability of the air and soft tissue classes are
negligible. However, there are some variations on the bone class.
For some patients the bone class variability is very low such as
patient 9 (0.81%), yet it is higher in patient 7 (51.43%). One reason
of this high variability is the inhomogeneity of the datasets that
include patients with different neurological clinical diagnosis such
as epilepsy, brain tumor, and other neurological diseases. In fact,
different neurological diseases can impact bone health differently
[36]. Hence, the segmentation of each neurological condition
should be addressed separately where a model should be trained
and tested with datasets that include patients with the same clin-
ical diagnosis. For instance, the DSC value of the bone class of
patient 7 in Table 4 is very low (DSC = 0.2947) compared to patient
9 (DSC = 0.8744). The proposed model has the capability to seg-
ment the bone class accurately for some patients while it fails with
others. The variability of the results of bone segmentation does not
provide any guarantee that this method is robust for patients with
different anatomical structures. Moreover, there are few outliers
values of the air and soft tissue classes in terms of precision, recall,
DSC, and Jaccard score. These outliers belong to the data of patient
10 which records low values compared to other patients as shown
in Table 4.

The proposed method is compared with other segmentation
studies that have applied deep convolutional network to segment
MR images for PET attenuation correction [21,22]. The method pro-
posed by [21] follows the SegNet architecture while a pretrained
SegNet with conditional random field (CRF) technique is applied
by [22]. These methods are re-implemented using our datasets
and the segmentation results of the bone, soft tissue, and air
he confusion matrix of the testing datasets using different configurations of SE blocks.

Bone

REC DSC JAC

5 � 0.0006 0.6278 � 0.0006 0.4578 � 0.0007
8 � 0.0006 0.6319 � 0.0006 0.4620 � 0.0007
5 � 0.0006 0.6474 � 0.0006 0.4789 � 0.0007
5 � 0.0007 0.5928 � 0.0006 0.4222 � 0.0006
2 � 0.0006 0.6437 � 0.0006 0.4750 � 0.0007
1 � 0.0006 0.6326 � 0.0006 0.4628 � 0.0007



Table 2
The average of four folds cross validation for the evaluation metrics of the soft tissue class from the confusion matrix of the testing datasets using different configurations of SE
blocks.

Soft tissue

Model PRE REC DSC JAC

Baseline 0.8932 � 0.0001 0.9283 � 0.0001 0.9104 � 0.0001 0.8355 � 0.0002
+ cSE 0.8941 � 0.0001 0.9297 � 0.0001 0.9115 � 0.0001 0.8375 � 0.0002
+ sSE 0.8972 � 0.0001 0.9274 � 0.0001 0.9120 � 0.0001 0.8382 � 0.0002

+ cSE and sSE (parallel) 0.8959 � 0.0001 0.9310 � 0.0001 0.9131 � 0.0001 0.8400 � 0.0002
+ cSE then sSE (sequential) 0.8956 � 0.0001 0.9311 � 0.0001 0.9130 � 0.0001 0.8399 � 0.0002
+ sSE then cSE (sequential) 0.8933 � 0.0001 0.9293 � 0.0001 0.9109 � 0.0001 0.8365 � 0.0002

Table 3
The average of four folds cross validation for the evaluation metrics of the air class from the confusion matrix of the testing datasets using different configurations of SE blocks.

Air

Model PRE REC DSC JAC

Baseline 0.9630 � 0.0001 0.9636 � 0.0001 0.9633 � 0.0001 0.9291 � 0.0001
+ cSE 0.9590 � 0.0001 0.9622 � 0.0001 0.9606 � 0.0001 0.9242 � 0.0001
+ sSE 0.9639 � 0.0001 0.9636 � 0.0001 0.9638 � 0.0001 0.9301 � 0.0001

+ cSE and sSE (parallel) 0.9618 � 0.0001 0.9717 � 0.0001 0.9667 � 0.0001 0.9356 � 0.0001
+ cSE then sSE (sequential) 0.9631 � 0.0001 0.9633 � 0.0001 0.9632 � 0.0001 0.9290 � 0.0001
+ sSE then cSE (sequential) 0.9636 � 0.0001 0.9628 � 0.0001 0.9632 � 0.0001 0.9290 � 0.0001

Table 4
The evaluation metrics of the brain segmentation of the three tissue classes of each patient in the testing datasets using the sequential configuration of cSE then sSE blocks.

Bone Soft tissue Air

Model PRE REC DSC JAC PRE REC DSC JAC PRE REC DSC JAC

Patient 1 0.8209 0.5072 0.6270 0.4566 0.9197 0.9606 0.9397 0.8863 0.9731 0.9921 0.9825 0.9656
Patient 2 0.8791 0.6871 0.7713 0.6278 0.9325 0.9488 0.9406 0.8878 0.9564 0.9488 0.9406 0.8878
Patient 3 0.6654 0.3154 0.4280 0.2722 0.9033 0.9368 0.9198 0.8514 0.9513 0.9703 0.9607 0.9244
Patient 4 0.6882 0.3086 0.4261 0.2708 0.8518 0.9491 0.8978 0.8146 0.9772 0.9814 0.9793 0.9594
Patient 5 0.9173 0.7404 0.8194 0.6940 0.9350 0.9667 0.9506 0.9058 0.9808 0.9914 0.9861 0.9725
Patient 6 0.4966 0.5041 0.5003 0.3336 0.9187 0.8914 0.9048 0.8262 0.9701 0.9910 0.9804 0.9616
Patient 7 0.3977 0.2341 0.2947 0.1728 0.9394 0.9176 0.9283 0.8663 0.9514 0.9937 0.9721 0.9457
Patient 8 0.6312 0.6080 0.6194 0.4486 0.9385 0.9280 0.9333 0.8749 0.9815 0.9921 0.9868 0.9738
Patient 9 0.9098 0.8417 0.8744 0.7769 0.9644 0.9725 0.9684 0.9388 0.9869 0.9926 0.9897 0.9796
Patient 10 0.6549 0.5020 0.5683 0.3970 0.6758 0.9084 0.7750 0.6327 0.9208 0.7516 0.8277 0.7060

Mean 0.7061 0.5249 0.5929 0.4450 0.8979 0.9380 0.9158 0.8485 0.9650 0.9605 0.9606 0.9277
SD 0.1759 0.1990 0.1878 0.1985 0.0835 0.0265 0.0536 0.0841 0.0201 0.0748 0.0490 0.0827
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classes are depicted in Tables 6–8, respectively. It is worth men-
tioning that the application of CRF [22] as a post processing tech-
nique has not shown any enhancement in the segmentation
results compared to the use of SegNet solely [21].

The segmentation results of some 2D slices are illustrated in
Fig. 9 which includes the input MR images, CT images as ground
truth, the segmentation results of the proposed network, and the
segmentation results of other studies.
5.2. Position of SE block

The position of SE block has an impact on the performance of
the CNN. Different configurations are tested to find the optimal
place of the SE component by calculating the DSC. The sequential
combination of spatial and channel excitation is placed after each
3 convolutional layers at the encoder part, the bottleneck part,
the decoder part, and after the classifier layer. The different config-
urations are illustrated in Fig. 10 and the DSC of different configu-
rations is recorded in Table 9.
5.3. Combining mechanism

The comparison between the sequential and the parallel combi-
nation of channel and spatial excitation components is evaluated
by calculating the DSC of each configuration. One drawback of
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the parallel combination is the need to train large number of
parameters which require a large GPU memory. Due to this limita-
tion, two different architectures are tested to minimize the number
of parameters that can be trained with the available GPU memory.
The first experiment is conducted by inserting the csSE block into a
network that consists of only ten convolutional layers and two
downsampling layers using the batch size of 2. The second exper-
iment is conducted by inserting the csSE block into the baseline
architecture (shown in Fig. 7) with the batch size of 1. The segmen-
tation results are recorded using the DSC as shown in Table 10. The
sequential combination not only reduces the number of training
parameters but also shows superiority of the segmentation results
in terms of DSC using two different architectures. The DSC of the
brain class shows substantial improvement compared to other
classes which are slightly improved. The sequential combination
mechanism is capable of recalibrating the features in channel wise
then spatial wise significantly by helping the network to recali-
brate the useful spatial regions of the most dominant channels.
5.4. The relation between SE block and convolution layers

The design of placing the SE block after n convolutional layers is
studied and evaluated by conducting some experiments. In theory,
the addition of one SE block after each convolutional layer is the
optimal design especially with shallow convolutional networks



Fig. 8. The box plot of the evaluation metrics of the three tissue classes of the testing datasets using the sequential configuration of cSE then sSE blocks.

Table 5
The intrasubject variability based on the calculated DSC of the three tissue classes
which are segmented using the sequential combination method (cSE-sSE).

Intrasubject variability

Patient Bone % Soft tissue % Air %

Patient 1 5.72 0.36 0.22
Patient 2 5.12 0.46 1.60
Patient 3 8.86 0.34 0.12
Patient 4 14.04 0.83 0.18
Patient 5 3.53 0.57 0.14
Patient 6 3.78 0.57 0.20
Patient 7 51.43 0.40 0.17
Patient 8 10.29 0.56 0.09
Patient 9 0.81 0.19 0.20
Patient 10 2.01 0.18 0.21
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that have few trainable parameters. However, due to GPU memory
limitation, it is not possible to add one SE block after each convo-
lutional layer in deep networks as proposed in this study where 21
convolutional layers are used to enable the extraction of dominant
features. The tradeoff between the number of convolutional layers
and the number of SE blocks leads to include one SE block after
each three convolutional layers. This design produces the optimal
results experimentally as shown in Table 11. The results show that
the inclusion of more SE blocks can substitute the addition of more
convolutional layers to the model. Thus, using less convolutional
Table 6
The comparison of the bone class results using the sequential excitation method (cSE-sSE

Model PRE REC

SegNet[21] 0.6278 � 0.0006 0.3649 �
SegNet + CRF[22] 0.6278 � 0.0006 0.3649 �
Proposed method 0.7373 � 0.0006 0.5722 �
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layers with the addition of one SE block after each convolutional
layer is able to generate better features rather than using more
convolutional layers with less SE blocks.

5.5. Model complexity

The additional excitation blocks increase the number of train-
able parameters of the network and increases the model complex-
ity as well. The additional number of parameters of using the cSE
block is given by:

I ¼ 2
r

XS

s¼1

NsC
2
s ð8Þ

where r is the reduction ratio that is set to 16 in all experiments, S is
the number of stages/blocks in the network, N is the number of
repeating the cSE block which is 1 in all experiments, and C is the
number of channels in the feature map. On the other hand, the
sSE block only introduces Cs additional parameters. The overall
model complexity is given by:

X ¼ 2
r

XS

s¼1

NsC
2
s þ Cs ð9Þ

The number of parameters of different architectures and config-
urations along with the increase rate of the model complexity are
illustrated in Table 12. The results show that the sequential combi-
) with other techniques reported in the literature.

Bone

DSC JAC

0.0006 0.4616 � 0.0007 0.3000 � 0.0006
0.0006 0.4616 � 0.0007 0.3000 � 0.0006
0.0006 0.6437 � 0.0006 0.4750 � 0.0007



Table 7
The comparison of the soft tissue class results using the sequential excitation method (cSE-sSE) with other techniques reported in the literature.

Soft tissue

Model PRE REC DSC JAC

SegNet[21] 0.8696 � 0.0002 0.8810 � 0.0002 0.8753 � 0.0002 0.7783 � 0.0002
SegNet + CRF[22] 0.8696 � 0.0002 0.8810 � 0.0002 0.8753 � 0.0002 0.7783 � 0.0002
Proposed method 0.8956 � 0.0001 0.9311 � 0.0001 0.9130 � 0.0001 0.8399 � 0.0002

Table 8
The comparison of the air class results using the sequential excitation method (cSE-sSE) with other techniques reported in the literature.

Air

Model PRE REC DSC JAC

SegNet[21] 0.9083 � 0.0002 0.9510 � 0.0001 0.9291 � 0.0001 0.8677 � 0.0002
SegNet + CRF[22] 0.9083 � 0.0002 0.9510 � 0.0001 0.9291 � 0.0001 0.8677 � 0.0002
Proposed method 0.9631 � 0.0001 0.9633 � 0.0001 0.9632 � 0.0001 0.9290 � 0.0001

Fig. 9. Some slices of the testing data. MR image (a), CT image(ground truth) (b), Segmented MR image with the proposed deep network (c), Segmented MR image generated
by [21] (d), Segmented MR image generated by [22](e). The colors in columns b–e refer to the following classes: green is the air, yellow is the soft tissue, and purple is the
bone.
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nation of SE components can be added to any architecture with
almost no cost. Although the parallel combination mechanism
requires more computing resources with high computation cost,
the runtime of the conducted experiments for both parallel and
sequential (cSE-sSE) mechanisms is very similar.
5.6. Limitations

There are some limitations of the proposed work such as the
obtained segmentation results rely on co-registered MR-CT pairs
which makes the produced results very sensitive to any registra-
tion error [37]. Another limitation is the generation of pseudo CT
images with constant values by assigning a predefined attenuation
240
coefficient to each class in the segmented CT images. Moreover, the
segmentation of the brain into three tissue classes (air, soft tissue,
and bone) might be an inadequate approximation for attenuation
correction. Therefore, there is a consideration of segmenting the
brain into more classes in the future work.
6. Conclusion

This work presents an improved approach that segments the
brain into three tissue classes using an excited-based fully CNN
by embedding squeeze and excitation blocks. These blocks recali-
brate the features by capturing the most useful and distinguishable
ones in channel and spatial wise in sequential structure. The pro-



Fig. 10. Different network architectures (a–f) of placing the SE block at different locations.

Table 9
The dice similarity coefficient of the three tissue classes which are segmented using
different models with different positions of the csSE block.

Model DSC
(bone)

DSC(soft
tissue)

DSC
(air)

without csSE block 0.6179 0.9070 0.9623
csSE at the encoder 0.6258 0.9078 0.9629
csSE at the encoder + bottleneck layer 0.6393 0.9089 0.9624
csSE at the decoder 0.6273 0.9074 0.9621
csSE at the encoder + decoder 0.6393 0.9055 0.9624
csSE at the encoder + decoder + bottleneck

layer
0.6484 0.9123 0.9633

csSE at the encoder + decoder + bottleneck
layer + classifier layer

0.6429 0.9087 0.9616

Table 10
The comparison of the segmentation results which are generated using different combination mechanisms of SE blocks.

Combination mechanism Conv layers Downsampling layers Batch size DSC (bone) DSC(soft tissue) DSC(air)

Parallel 21 3 1 0.6069 0.9086 0.9640
Sequential (cSE-sSE) 21 3 1 0.6236 0.9094 0.9660

Parallel 10 2 2 0.6368 0.9104 0.9635
Sequential (cSE-sSE) 10 2 2 0.6402 0.9111 0.9634

Table 11
The results of studying the relation between the number of SE blocks and the convolutional layers.

SE type Conv SE DSC (bone) DSC(soft tissue) DSC(air)

cSE 7 7 0.6249 0.9097 0.9610
cSE 14 7 0.6108 0.9077 0.9601
cSE 21 7 0.6302 0.9090 0.9614
cSE-sSE 7 7 0.6394 0.9095 0.9620
cSE-sSE 14 7 0.6192 0.9080 0.9629
cSE-sSE 21 7 0.6484 0.9123 0.9633

Table 12
The number of parameters and the complexity increase rate of the model using
different excitation mechanisms.

Model Number of
parameters

Complexity
increase rate

Baseline 37, 834, 115
Baseline with cSE 37, 942, 659 0.3%
Baseline with sSE 37, 835, 530 0.004%

Baseline with cSE and sSE combined
in parallel

55, 438, 154 47%

Baseline with cSE and sSE combined
sequential

37, 889, 802 0.15%
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posed approach shows its efficiency to improve the bone class seg-
mentation while minimizing the model complexity and the
required computing resources. The results also show that the fea-
tures recalibration mechanism enhances the segmentation results
by comparing the segmented MR images with the ground truth
CT images and other proposed methods in the literature. The
experiments are conducted using the brain datasets that consist
of patients with different conditions and diagnosis. The variability
of the obtained segmentation results does not provide any guaran-
tee that the proposed method is robust for patients with anatomic
variability.
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