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Abstract 

Alzheimer’s disease is an incurable, progressive neurologicalbrain disorder. Earlier detection of Alzheimer’s disease 

can help with proper treatment and prevent brain tissue damage. Several statistical and machine learning models 

have been exploited by researchers for Alzheimer’s disease diagnosis. Analyzing magnetic resonance imaging (MRI) is 

a common practice for Alzheimer’s disease diagnosis in clinical research. Detection of Alzheimer’s disease is exact-

ing due to the similarity in Alzheimer’s disease MRI data and standard healthy MRI data of older people. Recently, 

advanced deep learning techniques have successfully demonstrated human-level performance in numerous fields 

including medical image analysis. We propose a deep convolutional neural network for Alzheimer’s disease diagnosis 

using brainMRI data analysis. While most of the existing approaches perform binary classification, our model can iden-

tify different stages of Alzheimer’s disease and obtains superior performance for early-stage diagnosis. We conducted 

ample experiments to demonstrate that our proposed model outperformed comparative baselines on the Open 

Access Series of Imaging Studies dataset.
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1  Background

Alzheimer’s disease (AD) is the most prevailing type 

of dementia. �e prevalence of AD is estimated to be 

around 5% after 65  years old and is staggering 30% for 

more than 85 years old in developed countries. It is esti-

mated that by 2050, around 0.64 Billion people will be 

diagnosed with AD [1]. Alzheimer’s disease destroys 

brain cells causing people to lose their memory, mental 

functions and ability to continue daily activities. Initially, 

Alzheimer’s disease affects the part of the brain that 

controls language and memory. As a result, AD patients 

suffer from memory loss, confusion and difficulty in 

speaking, reading or writing. �ey often forget about 

their life and may not recognize their family members. 

�ey struggle to perform daily activities such as brush-

ing hair or combing tooth. All these make AD patients 

anxious or aggressive or to wander away from home. 

Ultimately, AD destroys the part of the brain controlling 

breathing and heart functionality which lead to death.

�ere are three major stages in Alzheimer’s disease—

very mild, mild and moderate. Detection of Alzheimer’s 

disease (AD) is still not accurate until a patient reaches 

moderate AD stage. For proper medical assessment of 

AD, several things are needed such as physical and neu-

robiological examinations, Mini-Mental State Examina-

tion (MMSE) and patient’s detailed history. Recently, 

physicians are using brain MRI for Alzheimer’s disease 

diagnosis. AD shrinks the hippocampus and cerebral 

cortex of the brain and enlarges the ventricles [2]. Hip-

pocampus is the responsible part of the brain for episodic 

and spatial memory. It also works as a relay structure 

between our body and brain. �e reduction in hippocam-

pus causes cell loss and damage specifically to synapses 

and neuron ends. So neurons cannot communicate any-

more via synapses. As a result, brain regions related to 

remembering (short-term memory), thinking, planning 
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and judgment are affected [2]. �e degenerated brain 

cells have low intensity in MRI images [3]. Figure 1 shows 

some brain MRI images with four different AD stages.

For accurate disease diagnosis, researchers have devel-

oped several computer-aided diagnostic systems. �ey 

developed rule-based expert systems from 1970s to 1990s 

and supervised models from 1990s [4]. Feature vectors 

are extracted from medical image data to train super-

vised systems. Extracting those features needs human 

experts that often require a lot of time, money and effort. 

With the advancement of deep learning models, now we 

can extract features directly from the images without the 

engagement of human experts. So researchers are focus-

ing on developing deep learning models for accurate dis-

ease diagnosis. Deep learning technologies have achieved 

major triumph for different medical image analysis tasks 

such as MRI, microscopy, CT, ultrasound, X-ray and 

mammography. Deep models showed prominent results 

for organ and substructure segmentation, several disease 

detection and classification in areas of pathology, brain, 

lung, abdomen, cardiac, breast, bone, retina, etc. [4].

As the disease progresses, abnormal proteins (amy-

loid-β [Aβ ] and hyperphosphorylated tau) are accu-

mulated in the brain of an AD patient. �is abnormal 

protein accumulation leads to progressive synaptic, neu-

ronal and axonal damage. �e changes in the brain due to 

AD have a stereotypical pattern of early medial temporal 

lobe (entorhinal cortex and hippocampus) involvement, 

followed by progressive neocortical damage [5]. Such 

changes occur years before the AD symptoms appear. It 

looks like the toxic effects of hyperphosphorylated tau 

and/or amyloid-β [Aβ ] which gradually erodes the brain, 

and when a clinical threshold is surpassed, amnestic 

symptoms start to develop. Structural MRI (sMRI) can 

be used for measuring these progressive changes in the 

brain due to the AD. Our research work focuses on ana-

lyzing sMRI data using deep learning model for Alzhei-

mer’s disease diagnosis.

Machine learning studies using neuroimaging data for 

developing diagnostic tools helped a lot for automated 

brain MRI segmentation and classification. Most of 

them use handcrafted feature generation and extrac-

tion from the MRI data. �ese handcrafted features are 

fed into machine learning models such as support vector 

machine and logistic regression model for further analy-

sis. Human experts play a crucial role in these complex 

multi-step architectures. Moreover, neuroimaging stud-

ies often have a dataset with limited samples. While 

image classification datasets used for object detection 

and classification have millions of images (for example, 

ImageNet database [6]), neuroimaging datasets usually 

contain a few hundred images. But a large dataset is vital 

to develop robust neural networks. Because of the scar-

city of large image database, it is important to develop 

models that can learn useful features from the small data-

set. Moreover, the state-of-the-art deep learning models 

are optimized to work with natural (every day) images. 

�ese models also require a lot of balanced training data 

to prevent overfitting in the network. We developed a 

deep convolutional neural network that learned features 

directly from the input sMRI and eliminated the need 

for the handcrafted feature generation. We trained our 

model using the OASIS database [7] that has only 416 

sMRI data. Our proposed model can classify different 

stages of Alzheimer’s disease and outperforms the off-

the-shelf deep learning models. Hence, our primary con-

tributions are threefold:

  • We propose a deep convolutional neural network 

that can identify Alzheimer’s disease and classify the 

current disease stage.

  • Our proposed network learns from a small dataset 

and still demonstrates superior performance for AD 

diagnosis.

  • We present an efficient approach to training a deep 

learning model with an imbalanced dataset.

�e rest of the paper is organized as follows. Section  2 

discusses briefly about the related work on AD diagno-

sis. Section  3 presents the proposed model. Section  4 

reports the experimental details and the results. Finally, 

in Sect. 5, we conclude the paper with our future research 

direction.

2  Related work

Detection of physical changes in brain complements clin-

ical assessments and has an increasingly important role 

for early detection of AD. Researchers have been devot-

ing their efforts to neuroimaging techniques to measure 

pathological brain changes related to Alzheimer’s disease. 

Machine learning techniques have been developed to 

build classifiers using imaging data and clinical measures 

for AD diagnosis [8–17]. �ese studies have identified 

Fig. 1 Example of different brain MRI images presenting different 

Alzheimer’s disease stages. a Non-demented; b Very mild dementia; c 

Mild dementia; d Moderate dementia
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the significant structural differences in the regions such 

as the hippocampus and entorhinal cortex between the 

healthy brain and brain with AD. Changes in cerebro-

spinal tissues can explain the variations in the behavior 

of the AD patients [18, 19]. Besides, there is a significant 

connection between the changes in brain tissues con-

nectivity and behavior of AD patient [20]. �e changes 

causing AD due to the degeneration of brain cells are 

noticeable on images from different imaging modalities, 

e.g., structural and functional magnetic resonance imag-

ing (sMRI, fMRI), position emission tomography (PET), 

single photon emission computed tomography (SPECT) 

and diffusion tensor imaging (DTI) scans. Several 

researchers have used these neuroimaging techniques for 

AD Diagnosis. For example, sMRI [21–26], fMRI [27, 28], 

PET [29, 30], SPECT [31–33] and DTI [34, 35] have been 

used for diagnosis or prognosis of AD. Moreover, infor-

mation from multiple modalities has been combined to 

improve the diagnosis performance [36–47].

A classic magnetic resonance imaging (MRI)-based 

automated AD diagnostic system has mainly two build-

ing blocks—feature/biomarker extraction from the MRI 

data and classifier based on those features/biomarkers. 

�ough various types of feature extraction techniques 

exist, there are three major categories—(1) voxel-based 

approach, (2) region of interest (ROI)-based approach, 

and (3) patch-based approach. Voxel-based approaches 

are independent of any hypothesis on brain structures 

[48–51]. For example, voxel-based morphometry meas-

ures local tissue (i.e., white matter, gray matter and 

cerebrospinal fluid) density of the brain. Voxel-based 

approaches exploit the voxel intensities as the classifica-

tion feature. �e interpretation of the results is simple 

and intuitive in voxel-based representations, but they suf-

fer from the overfitting problem since there are limited 

(e.g., tens or hundreds) subjects with very high (millions)-

dimensional features [52], which is a major challenge for 

AD diagnosis based on neuroimaging. To achieve more 

compact and useful features, dimensionality reduction is 

essential. Moreover, voxel-based approaches suffer from 

the ignorance of regional information.

Region of interest (ROI)-based approach utilizes the 

structurally or functionally predefined brain regions 

and extracts representative features from each region 

[21, 25, 28, 30, 53–55]. �ese studies are based on spe-

cific hypothesis on abnormal regions of the brain. For 

example, some studies have adopted gray matter volume 

[56], hippocampal volume [57–59] and cortical thick-

ness [21, 60]. ROI-based approaches are widely used due 

to relatively low feature dimensionality and whole brain 

coverage. But in ROI-based approaches, the extracted 

features are coarse as they cannot represent small or sub-

tle changes related to brain diseases. �e structural or 

functional changes that occur in the brain due to neuro-

logical disorder are typically spread to multiple regions 

of the brain. As the abnormal areas can be part of a sin-

gle ROI or can span over multiple ROIs, voxel-based or 

ROI-based approaches may not efficiently capture the 

disease-related pathologies. Besides, the region of inter-

est (ROI) definition requires expert human knowledge. 

Patch-based approaches [23, 61–66] divide the whole 

brain image into small-sized patches and extract feature 

vector from those patches. Patch extraction does not 

require ROI identification, so the necessity of human 

expert involvement is reduced compared to ROI-based 

approaches. Compared to voxel-based approaches, 

patch-based methods can capture the subtle brain 

changes with significantly reduced dimensionality. Patch-

based approaches learn from the whole brain and better 

captures the disease-related pathologies that results in 

superior diagnosis performance. However, there is still 

challenges to select informative patches from the MRI 

images and generate discriminative features from those 

patches.

A large number of research works focused on develop-

ing advanced machine learning models for AD diagnosis 

using MRI data. Support vector machine SVM), logistic 

regressors (e.g., Lasso and Elastic Net), sparse represen-

tation-based classification (SRC), random forest classi-

fier, etc., are some widely used approaches. For example, 

Kloppel et al. [50] used linear SVM to detect AD patients 

using T1 weighted MRI scan. Dimensional reduction and 

variations methods were used by Aversen [67] to analyze 

structural MRI data. �ey have used both SVM binary 

classifier and multi-class classifier to detect AD from MRI 

images. Vemuri et  al.  [68] used SVM to develop three 

separate classifiers with MRI, demographic and geno-

type data to classify AD and healthy patients. Gray  [69] 

developed a multimodal classification model using ran-

dom forest classifier for AD diagnosis from MRI and PET 

data. Er et al.  [70] used gray-level co-occurrence matrix 

(GLCM) method for AD classification. Morra et al.  [71] 

compared several model’s performances for AD detec-

tion including hierarchical AdaBoost, SVM with manual 

feature and SVM with automated feature. For develop-

ing these classifiers, typically predefined features are 

extracted from the MRI data. However, training a classi-

fier independent from the feature extraction process may 

result in sub-optimal performance due to the possible 

heterogeneous nature of the classifier and features [72].

Recently, deep learning models have been famous for 

their ability to learn feature representations from the 

input data. Deep learning networks use a layered, hier-

archical structure to learn increasingly abstract feature 

representations from the data. Deep learning architec-

tures learn simple, low-level features from the data and 
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build complex high-level features in a hierarchy fashion. 

Deep learning technologies have demonstrated revolu-

tionary performance in several areas, e.g., visual object 

recognition, human action recognition, natural language 

processing, object tracking, image restoration, denoising, 

segmentation tasks, audio classification and brain–com-

puter interaction. In recent years, deep learning models 

specially convolutional neural network (CNN) have dem-

onstrated excellent performance in the field of medical 

imaging, i.e., segmentation, detection, registration and 

classification [4]. For neuroimaging data, deep learning 

models can discover the latent or hidden representation 

and efficiently capture the disease-related pathologies. 

So, recently researchers have started using deep learning 

models for AD and other brain disease diagnosis.

Gupta et al. [62] have developed a sparse autoencoder 

model for AD, mild cognitive impairment (MCI) and 

healthy control (HC) classification. Payan and Mon-

tana  [65] trained sparse autoencoders and 3D CNN 

model for AD diagnosis. �ey also developed a 2D CNN 

model that demonstrated nearly identical performance. 

Brosch et al. [73] developed a deep belief network model 

and used manifold learning for AD detection from MRI 

images. Hosseini-Asl et al. [74] adapted a 3D CNN model 

for AD diagnostics. Liu and Shen [75] developed a deep 

learning model using both unsupervised and supervised 

techniques and classified AD and MCI patients. Liu 

et al.  [76] have developed a multimodal stacked autoen-

coder network using zero-masking strategy. �eir tar-

get was to prevent loss of any information of the image 

data. �ey have used SVM to classify the neuroimag-

ing features obtained from MR/PET data. Sarraf and 

Tofighi  [77] used fMRI data and deep LeNet model for 

AD detection. Suk et  al.  [23, 42, 78, 79] developed an 

autoencoder network-based model for AD diagnosis and 

used several complex SVM kernels for classification. �ey 

have extracted low- to mid-level features from magnetic 

current imaging (MCI), MCI-converter structural MRI, 

and PET data and performed classification using multi-

kernel SVM. Cárdenas-Peña et al. [80] have developed a 

deep learning model using central kernel alignment and 

compared the supervised pre-training approach to two 

unsupervised initialization methods, autoencoders and 

principal component analysis (PCA). �eir experiment 

shows that SAE with PCA outperforms three hidden lay-

ers SAE and achieves an increase of 16.2% in overall clas-

sification accuracy.

So far, AD is detected at a much later stage when treat-

ment can only slow the progression of cognitive decline. 

No treatment can stop or reverse the progression of 

AD. So, early diagnosis of AD is essential for preven-

tive and disease-modifying therapies. Most of the exist-

ing research work on AD diagnosis focused on binary 

classification problems, i.e., differentiating AD patients 

from healthy older adults. However, for early diagnosis, 

we need to distinguish among current AD stages, which 

makes it a multi-class classification problem. In our pre-

vious work [81], we developed a very deep convolutional 

network and classified the four different stages of the 

AD—non-demented, very mild dementia, mild demen-

tia and moderate dementia. For our current work, we 

improved the previous model [81], developed an ensem-

ble of deep convolutional neural networks and demon-

strated better performance on the Open Access Series of 

Imaging Studies (OASIS) dataset [7].

3  Methods

3.1  Formalization

Let x = {xi, i = 1, . . . ,N } , a set of MRI data with 

xi ∈ [0, 1, 2, . . . , L − 1]
h∗w∗l

 , a three-dimensional (3D) 

image with L grayscale values, h ∗ w ∗ l voxels and 

y ∈ {0, 1, 2, 3} , one of the stages of AD where 0, 1, 2 and 3 

refer to non-demented, very mild dementia, mild demen-

tia and moderate dementia, respectively. We will con-

struct a classifier,

which predicts a label y in response to an input image x 

with minimum error rate. Mainly, we want to determine 

this classifier function f by an optimal set of parameters 

w ∈ R
P (where P can easily be in the tens of millions), 

which will minimize the loss or error rate of prediction. 

�e training process of the classifier would be an iterative 

process to find the set of parameters w, which minimizes 

the classifier’s loss

where xi is ith image of X, f (xi,w) is the classifier func-

tion that predicts the class ci of xi given w, ĉi is the 

ground-truth class for ith image xi and l(ci, ĉi) is the pen-

alty function for predicting ci instead of ĉi . We set l to the 

loss of cross-entropy,

3.2  Data selection

In this study, we use the OASIS dataset [7] prepared by 

Dr. Randy Buckner from the Howard Hughes Medical 

Institute (HHMI) at Harvard University, the Neuroinfor-

matics Research Group (NRG) at Washington Univer-

sity School of Medicine, and the Biomedical Informatics 

Research Network (BIRN). �ere are 416 subjects aged 

(1)f : X → Y ; x �→ y,

(2)L(w,X) =

1

n

n∑

i=1

l(f (xi,w), ĉi)

(3)
l = −

∑

i

ĉi log ci
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18–96, and for each of them, 3 or 4 T1-weighted sMRI 

scans are available. Hundred of the patients having age 

over 60 are included in the dataset with very mild to 

moderate AD.

3.3  Data augmentation

Data augmentation refers to artificially enlarging the 

dataset using class-preserving perturbations of indi-

vidual data to reduce the overfitting in neural network 

training [82]. �e reproducible perturbations will enable 

new sample generation without changing the semantic 

meaning of the image. Since manually sourcing of addi-

tional labeled image is difficult in medical domain due 

to limited expert knowledge availability, data augmenta-

tion is a reliable way to increase the size of the dataset. 

For our work, we developed an augmentation scheme 

involving cropping for each image. We set the dimen-

sion of the crop similar to the dimension of the proposed 

deep CNN classifier. �en, we extracted three crops 

from each image, each for one of the image plane: axial 

or horizontal plane, coronal or frontal plane, and sagit-

tal or median plane. For our work, we use 80% data from 

the OASIS dataset as training set and 20% as test data-

set. From the training dataset, a random selection of 10% 

images is used as validation dataset. �e augmentation 

process is performed separately for the train, validation 

and test dataset. One important thing to consider is the 

data augmentation process is different from classic cross-

validation scheme. Data augmentation is used to reduce 

overfitting in a vast neural network while training with a 

small dataset. On the other hand, cross-validation is used 

to derive a more accurate estimate of model prediction 

performance. Cross-validation technique is computa-

tionally expensive for a deep convolutional neural net-

work training as it takes an extensive amount of time.

3.4  Network architecture

Our proposed network is an ensemble of three deep con-

volutional neural networks with slightly different con-

figurations. We made a considerable amount of effort for 

the design of the proposed system and the choice of the 

architecture. All the individual models have a common 

architectural pattern consisted of four basic operations:

  • convolution

  • batch normalization [83]

  • rectified linear unit, and

  • pooling

Each of the individual convolutional neural networks has 

several layers performing these four basic operations illus-

trated in Fig. 2. �e layers in the model follow a particular 

connection pattern known as dense connectivity [84] as 

shown in Fig. 3. �e dense connections have a regularizing 

effect that reduces overfitting in the network while train-

ing with a small dataset. We keep these layers very narrow 

(e.g., 12 filters per layer) and connect each layer to every 

other layer. Similar to [84], we will refer to the layers as 

dense layer and combination of the layers as dense block. 

Since all the dense layers are connected to each other, the 

ith layer receives the feature maps ( h0, h1, h2, . . . , hi−1 ), 

from all previous layers ( 0, 1, 2, . . . , i − 1) . Consequently, 

the network has a global feature map set, where each 

layer adds a small set of feature maps. In times of training, 

each layer can access the gradients from the loss function 

as well as the original input. �erefore, the flow of infor-

mation improves, and gradient flow becomes stronger in 

the network. Figure 4 shows the intermediate connection 

between two dense blocks.

For the design of the proposed system, we experi-

mented with several different deep learning archi-

tectures and finally developed an ensemble of three 

homogeneous deep convolution neural networks. �e 

proposed model is shown in Fig.  5. We will refer to 

the individual models as M1 , M2 and M3 . In Fig. 5, the 

top network is M1 , the middle network is M2 , and the 

bottom network is M3 . Each of the models consists of 

several convolution layers, pooling layers, dense blocks 

and transition layers. �e transition layer is a combina-

tion of batch normalization layer, a 1*1 convolutional 

layer followed by a 2  *  2 average pooling layer with 

stride 2. Batch normalization [83] acts as a regular-

izer and speeds up the training process dramatically. 

Traditional normalization process (shifting inputs to 

zero-mean and unit variance) is used as a preprocess-

ing step. Normalization is applied to make the data 

comparable across features. When the data flow inside 

the network at the time of training process, the weights 

and parameters are continuously adjusted. Sometimes 

these adjustments make the data too big or too small, 

Fig. 2 Common building block of the proposed ensemble model
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a problem referred as ‘Internal Covariance Shift.’ Batch 

normalization largely eliminates this problem. Instead 

of doing the normalization at the beginning, batch nor-

malization is performed to each mini-batches along 

with SGD training. If B = {x1, x2, . . . , xm} is a mini-

batch of m activations value, the normalized values 

are (x̂1, x̂2, . . . , x̂m) and the linear transformations are 

y1, y2, . . . , ym , then batch normalization is referred to 

the transform:

Considering γ ,β the parameters to be learned and ǫ , a 

constant added to the mini-batch variance for numeri-

cal stability, batch normalization is given by the following 

equations: 

(4)BNγ ,β : x1, x2, . . . , xm → y1, y2, . . . , ym

(5a)µB ←

1

m

m∑

i=1

xi

where µB is mini-batch mean and σ 2

B
 is mini-batch 

variance [83].

�ough each model has four dense blocks, they differ 

in the number of their internal 1*1 convolution and 3*3 

convolution layers. �e first model, M1 , has six (1 * 1 con-

volution and 3  *  3 convolution layers) in the first dense 

block, twelve (1*1 convolution and 3*3 convolution lay-

ers) in the second dense block, twenty-four (1*1 convolu-

tion and 3*3 convolution layers) in the third dense block 

and sixteen (1*1 convolution and 3*3 convolution layers) 

in the fourth dense block. �e second model, M2 , and 

third model, M3 , have (6, 12, 32, 32) and (6, 12, 36, 24) 

arrangement respectively. Because of the dense connec-

tivity, each layer has direct connections to all subsequent 

layers, and they receive the feature maps from all pre-

ceding layers. So, the feature maps work as global state 

of the network, where each layer can add their own fea-

ture map. �e global state can be accessed from any part 

(5b)σ 2

B
←

1

m

m∑

i=1

(xi − µB)2

(5c)
x̂i ←

xi − µB√
σ
2

B
+ ǫ

(5d)yi ← γ x̂i + β ≡ BNγ ,β(xi)

Fig. 3 Illustration of dense connectivity with a 5-layer dense block

Fig. 4 Illustration of two dense blocks and their intermediate connection
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of the network and how much each layer can contribute 

to is decided by the growth rate of the network. Since 

the feature maps of different layers are concatenated 

together, the variation in the input of subsequent layers 

increases and results in more efficiency.

�e input MRI is 3D data, and our proposed model 

is a 2D architecture, so we devise an approach to con-

vert the input data to 2D images. For each MRI data, we 

created patches from three physical planes of imaging: 

axial or horizontal plane, coronal or frontal plane, and 

sagittal or median plane. �ese patches are fed to the 

proposed network as input. Besides, this data augmen-

tation technique increases the number of samples in 

training dataset. �e size of each patch is 112*112. We 

trained the individual models separately, and each of 

them has own softmax layer for classification decision. 

�e softmax layers have four different output classes: 

non-demented, very mild, mild and moderate AD. �e 

individual models take the input image and generate its 

learned representation. �e input image is classified to 

any of the four output classes based on this feature rep-

resentation. To measure the loss of each of these mod-

els, we used cross-entropy. �e softmax layer takes the 

learned representation, fi , and interprets it to the out-

put class. A probability score, pi , is also assigned for the 

output class. If we define the number of output classes 

as m, then we get

(6)pi =

exp(f i)
∑

i exp(f i)
, i = 1, . . . ,m

Fig. 5 Block diagram of proposed Alzheimer’s disease diagnosis framework
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and

where L is the loss of cross-entropy of the network. Back-

propagation is used to calculate the gradients of the net-

work. If the ground truth of an MRI data is denoted as ti , 

then

To handle the imbalance in the dataset, we used cost-sen-

sitive training [85]. A cost matrix ξ was used to modify 

the output of the last layer of the individual networks. 

Since the less frequent classes (very mild dementia, mild 

dementia, moderate dementia) are underrepresented 

in the training dataset, the output of the networks was 

modified using the cost matrix ξ to give more importance 

to these classes. If o is the output of the individual model, 

p is the desired class and L is the loss function, then y 

denotes the modified output:

�e loss function is modified as:

where yn incorporates the class-dependent cost ξ and is 

related to the output on via the softmax function [85]:

�e weight of a particular class is dependent on the num-

ber of samples of that class. If class r has q times more 

samples than those of s, the target is to make one sample 

of class s to be as important as q samples of class r. So, 

the class weight of s would be q times more than the class 

weight of r.

We optimized the individual models with the stochas-

tic gradient descent (SGD) algorithm. For regularization, 

we used early stopping. We split the training dataset into 

a training set and a cross-validation set in 9:1 propor-

tion. Let Ltr(t) and Lva(t) are the average error per exam-

ple over the training set and validation set respectively, 

measured after t epoch. Training was stopped as soon as 

it reached convergence, i.e., validation error Lva(t) does 

not improve for t epoch and Lva(t) > Lva(t − 1) . We 

(7)
L = −

∑

i

ti log(pi)

(8)
∂L

∂fi
= pi − ti

(9)yi = L(ξp, o
i), : yip ≥ yij ∀j �= p

(10)L = −

∑

n

tn log(yn)

(11)yn =

ξp,n exp(on)
∑

k ξp,k exp(ok)

used Nesterov momentum optimization with Stochastic 

Gradient Descent (SGD) algorithm for minimizing the 

loss of the network. Given an objective function f (θ) to 

be minimized, classic momentum is given by the follow-

ing pair of equations: 

 where vt refers to the velocity, ǫ > 0 is the learning rate, 

µ ∈ [0, 1] is the momentum coefficient and ∇f θt is the 

gradient at θt . On the other hand, Nesterov momentum 

is given by: 

 �e output classification labels of the three individual 

model are ensembled together using majority voting 

technique. Each classifier ’votes’ for a particular class, 

and the class with the majority votes would be assigned 

as the label for the input MRI data.

4  Results and discussion

4.1  Experimental settings

We implemented the proposed model using Tensor-

flow [86], Keras[87] and Python on a Linux X86-64 

machine with AMD A8 CPU, 16 GB RAM and NVIDIA 

GeForce GTX 770. We applied the SGD training with a 

mini-batch size of 64, a learning rate of 0.01, a weight 

decay of 0.06 and a momentum factor of 0.9 with Nes-

terov optimization. We applied early stopping in the 

SGD training process, while there was no improvement 

(change of less than 0.0001) in validation loss for last 

six epoch.

To validate the effectiveness of the proposed AD detec-

tion and classification model, we developed two baseline 

deep CNN, Inception-v4 [88] and ResNet [89] and modi-

fied their architecture two classify 3D brain MRI data. 

Besides, we developed two different models, M4 and M5 

having similar architecture like M1 , M2 and M3 model 

except for the number of layers in the dense block. M4 

has six (1*1 convolution and 3*3 convolution layers) in 

the first dense block, twelve (1*1 convolution and 3*3 

convolution layers) in the second dense block, forty-eight 

(1*1 convolution and 3*3 convolution layers) in the third 

dense block and thirty-two (1*1 convolution and 3*3 con-

volution layers) in the fourth dense block (Fig. 6). �e lay-

ers in the dense blocks of M5 have the arrangement 6, 12, 

64, 48 as shown in Fig. 7. Additionally, we implemented 

two variants of our proposed model using M4 and M5.

(12a)vt = µvt−1 − ǫ∇f (θt−1)

(12b)θt = θt−1 + vt

(13a)vt = µvt−1 − ǫ∇f (θt−1 + µvt−1)

(13b)θt = θt−1 + vt



Page 9 of 14Islam and Zhang  Brain Inf.  (2018) 5:2 

  • For the first variant, we implemented an ensemble of 

four deep convolutional neural networks: M1 , M2 , M3 

and M4 . We will refer to this model as E1.

  • For the second variant, we implemented an ensemble 

system of five deep convolutional neural networks: 

M1 , M2 , M3 , M4 and M5 . We will refer to this model 

as E2.

4.2  Performance metric

Four metrics are used for quantitative evaluation and 

comparison, including accuracy, positive predictive 

value (PPV) or precision, sensitivity or recall, and the 

harmonic mean of precision and sensitivity (f1-score). 

We denote TP, TN, FP and FN as true positive, true 

negative, false positive and false negative, respectively. 

The evaluation metrics are defined as:

accuracy =
(TP + TN)

(TP + FP + FN + TN)

precision =
TP

(TP + FP)

recall =
TP

(TP + FN)

f 1-score =
(2TP)

(2TP + FP + FN)

Fig. 6 Block diagram of individual model M4
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4.3  Dataset

�e OASIS dataset [7] has 416 data samples. �e dataset 

is divided into a training dataset and a test dataset in 4:1 

proportion. A validation dataset was prepared using 10% 

data from the training dataset.

4.4  Results

We report the classification performance of M1 , M2 , M3 , 

M4 and M5 model in Tables 1, 2, 3, 4 and 5, respectively. 

From the results, we notice that M1 , M2 and M3 model 

are the top performers among all models. So, we choose 

the ensemble of M1 , M2 , M3 for our final architecture. 

Besides, the variants E1 ( M1 + M2 + M3 + M4 ) and E2 

( M1 + M2 + M3 + M4 + M5 ) demonstrate inferior per-

formance compared to the ensemble of M1 , M2 , M3 (pro-

posed model) as shown in Fig. 8. From Fig. 8, we notice 

Fig. 7 Block diagram of individual model M5

Table 1 Classi�cation performance of M1 model

Class Precision Recall f1-score Support

Non-demented 0.99 0.99 0.99 73

Very mild 0.75 0.50 0.60 6

Mild 0.62 0.71 0.67 7

Moderate 0.33 0.50 0.40 2

Avg/total 0.93 0.92 0.92 88
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that E1 model has an accuracy of 78% with 68% precision, 

78% recall and 72% f1 score. On the other hand, the E2 

model demonstrates 77% accuracy with 73% precision, 

77% recall and 75% f1-score.

Table 6 shows the per-class classification performance 

of our proposed ensembled model on the OASIS data-

set [7]. �e accuracy of the proposed model is 93.18% 

with 94% precision, 93% recall and 92% f1-score. �e 

performance comparison of classification results of the 

proposed ensembles model, and the two baseline deep 

CNN models are presented in Fig. 9. Inception-v4 [88] 

and ResNet [89] have demonstrated outstanding per-

formance for object detection and classification. �e 

reason behind their poor performance for AD detec-

tion and classification can be explained by the lack of 

enough training dataset.

Since these two networks are very deep neural net-

works, so without a large dataset, training process 

would not work correctly. On the other hand, the 

depth of our model is relatively low, and all the lay-

ers are connected to all preceding layers. So, there is 

a strong gradient flow in times of training that elimi-

nates the ‘Vanishing gradient’ problem. In each training 

iteration, all the weights of a neural network receive an 

update proportional to the gradient of the error func-

tion concerning the current weight. But in some cases, 

the gradient will be vanishingly small and consequently 

prevent the weight from changing its value. It may 

completely stop the neural network from further train-

ing in worst-case scenario. Our proposed model does 

not suffer this ‘Vanishing gradient’ problem, have bet-

ter feature propagation and provides better classifica-

tion result even for the small dataset. �e performance 

comparison of classification results of the proposed 

ensembled model, the baseline deep CNN models 

and the most recent work, ADNet [81] is presented in 

Fig.  10. It can be observed that proposed ensembled 

model achieves encouraging performance and outper-

forms the other models.

5  Conclusion

We made an efficient approach to AD diagnosis using 

brain MRI data analysis. While the majority of the 

existing research works focuses on binary classifica-

tion, our model provides significant improvement for 

multi-class classification. Our proposed network can 

be very beneficial for early-stage AD diagnosis. �ough 

the proposed model has been tested only on AD data-

set, we believe it can be used successfully for other clas-

sification problems of medical domain. Moreover, the 

Table 2 Classi�cation performance of M2 model

Class Precision Recall f1-score Support

Non-demented 0.88 0.95 0.91 73

Very mild 0.00 0.00 0.00 6

Mild 0.25 0.29 0.27 7

Moderate 0.00 0.00 0.00 2

Avg/total 0.75 0.81 0.78 88

Table 3 Classi�cation performance of M3 model

Class Precision Recall f1-score Support

Non-demented 0.99 0.96 0.97 73

Very mild 0.50 0.33 0.40 6

Mild 0.45 0.71 0.56 7

Moderate 0.50 0.50 0.50 2

Avg/total 0.90 0.89 0.89 88

Table 4 Classi�cation performance of M4 model

Class Precision Recall f1-score Support

Non-Demented 0.92 0.67 0.77 73

Very Mild 0.00 0.00 0.00 6

Mild 0.17 0.60 0.26 7

Moderate 0.00 0.00 0.00 2

Avg/Total 0.77 0.61 0.66 88

Table 5 Classi�cation performance of M5 model

Class Precision Recall f1-score Support

Non-demented 0.80 0.94 0.86 73

Very Mild 0.00 0.00 0.00 6

Mild 0.22 0.14 0.17 7

Moderate 0.00 0.00 0.00 2

Avg/Total 0.64 0.74 0.68 88

Table 6 Performance of the proposed ensembled model

Class Precision Recall f1-score Support

Non-demented 0.97 1.00 0.99 73

Very mild 1.00 0.33 0.50 6

Mild 0.67 0.86 0.75 7

Moderate 0.50 0.50 0.50 2

Avg/total 0.94 0.93 0.92 88
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proposed approach has strong potential to be used for 

applying CNN into other areas with a limited dataset. 

In future, we plan to evaluate the proposed model for 

different AD datasets and other brain disease diagnosis.
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