
Brain Organoids as Tools for Modeling
Human Neurodevelopmental Disorders

Brain organoids recapitulate in vitro the specific stages of in vivo human brain

development, thus offering an innovative tool by which to model human

neurodevelopmental disease. We review here how brain organoids have been

used to study neurodevelopmental disease and consider their potential for

both technological advancement and therapeutic development.
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Introduction

Investigating neurodevelopmental disease patho-

genesis presents considerable challenge due to

limited accessibility of human central nervous sys-

tem (CNS) tissue and poor recapitulation of animal

models. The considerable variability in neuroanat-

omy and connectivity that exists between individ-

uals because of disparate genetic background and

environmental exposure (40) introduces another

barrier to understanding disease progression. Our

knowledge of cellular phenotypes in neuropatho-

logical conditions has historically derived primarily

from postmortem analysis of CNS tissue, but tissue

represents only a single disease time point and

may not be well preserved. Functional neuroimag-

ing and animal models have provided noninvasive

alternatives for modeling human neurological dis-

eases, but these models are limited by age, sex,

pathological heterogeneity, and inconsistent trans-

latability between species (84) (FIGURE 1).

Recent advancement of stem cell technology has

introduced a new model by which to study the

human brain. Human embryonic stem cells

(hESCs) can be induced into neural stem cells and

further differentiated into neurons and glia. Due to

their ethically controversial origin, however, hESCs

have been only loosely adopted. Cellular repro-

gramming—a technique that reverts patient-spe-

cific somatic cells to a pluripotent state, the

induced pluripotent stem cells (iPSCs) (122)— of-

fers a way around this problem. iPSCs carry the

genotype of the patient donor and, like hESCs, can

be differentiated into many different cell types,

including neurons and glia. iPSCs thus enable di-

rect in vitro manipulation of relevant cellular phe-

notypes affected in nervous system diseases.

Initial efforts to model neurological diseases in

vitro consisted of neuronal culturing in monolayer.

Neurons and glia can be obtained by differentiat-

ing neural progenitor cells (NPCs) that are, in turn,

directed from iPSCs or ESCs by dual SMAD inhibition

(20). NPCs self-organize into rosettes resembling

the embryonic neural tube—thereby mimicking

in vivo neocortical development—and are thus a

predominant method in several differentiation

protocols (93). Alternatively, neurons can be in-

duced directly from fibroblasts via forcible expres-

sion of several transcription factors—Brn2, Ascl1,

and MytL1— or even a single transcription factor,

Ngn2 (17, 90, 140). Regardless, culturing neural

cells in a 2D environment limits the opportunity

for cells to create the structure and organized net-

work connectivity observed in vivo (56). The need

for improved in vitro models that more accurately

recapitulate human brain complexity and overcome

the limitations of 2D models led to the development

of 3D brain organoids (FIGURE 1).

The founding discovery of what would come to

be called an “organoid” was made by the Sasai

laboratory, a pioneering stem cell research group

upon whose shoulders all subsequent organoid re-

search stands. They observed that ESCs and iPSCs

could self-organize and aggregate in a manner re-

markably recapitulative of in vivo development

(32, 85). Indeed, although the Sasai group’s initial

monographs detailed the self-formation of optic

tissue (32, 85), organoids of other neural fate like-

wise display highly similar organization, gene ex-

pression profiling, topographical induction, and

temporal development to that seen during fetal

neural development (18, 19, 61, 68, 134). Currently,

brain organoids can be generated in two ways:

non-patterned or patterned. Non-patterned or-

ganoids, generally grown embedded in an extracel-

lular matrix, self-organize into different brain

regions via endogenous patterning cues (61, 101).

Patterned organoids, in contrast, are differentiated

into specific brain regions—forebrain or midbrain,

for example— by adding external growth factors

(74, 92, 98).

Brain organoids, patterned or otherwise, confer

investigative ability unavailable in vivo. Evaluation

of normal cellular migration and organoid maturation
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with immunofluorescence and live imaging can be

used to examine tissue stratification and to detect

early signs of pathology (11, 18). Genomic engi-

neering tools can modify patient-derived stem cells

to investigate gene-function relation (114), region-

ally patterned organoids can be fused to investi-

gate complex interregional dynamics (11, 114, 135),

and patch-clamp electrophysiology and optoge-

netics can assess functional integration (70)

(FIGURE 2). Furthermore, recent detection of

spontaneous network activity with regular oscilla-

tory waves, similar to that observed in preterm

human electroencephalography, demonstrated the

capacity of multi-electrode array to dynamically

assess network activity in long-term mature or-

ganoids (127). The accessibility of iPSCs and brain

organoids has thus introduced unprecedented

possibility for in vitro neurodevelopmental disease

modeling.

Applications of Brain Organoids as
Neurodevelopmental Disease
Models

Perhaps the greatest application of brain organoid

technology thus far, in vitro modeling of neurode-

velopmental disease enables observation of dis-

ease progression throughout neurodevelopment

and—in conjunction with novel genetic tech-

niques—the opportunity to interrogate underlying

pathological mechanisms with previously pre-

cluded precision. The versatility of brain organoids

permits modeling diseases of either intrinsic (i.e.,

genetic) or extrinsic (i.e., environmentally medi-

ated) etiology (FIGURE 2). However, despite recent

characterization of functional network develop-

ment (127), developmental disorders in which

gross structural abnormalities predominate remain

the more accessible for in vitro modeling.

Autosomal Recessive Primary Microcephaly

Autosomal recessive primary microcephaly (MCPH)—

a genetic form of microcephaly, itself a clinical

entity of heterogeneous etiology— has been linked

to genetic mutations in neurodevelopmental path-

ways (82). Individuals with MCPH clinically portray

nonprogressive intellectual disability and neuro-

pathologically exhibit microcephalic brains, with

reduction concentrated in the cerebral cortex

(132). MCPH has been modeled with organoids

generated from patient-derived iPSCs carrying mu-

tation(s) in either ASPM, the gene that codes for a

protein involved with mitotic spindle function and

that accounts for a plurality of MCPH cases (36), or

CDK5RAP2, a gene whose product localizes to the

mitotic spindle pole during neurogenesis (61, 63,

132). Those iPSCs in which ASPM expression was

downregulated, predicted to impede neural pro-

genitor proliferation, yielded hypoplastic or-

ganoids with fewer proliferative cells, decreased

FIGURE 1. Advantages and disadvantages of methods of neurodevelopmental disease analysis
Neurodevelopmental disease mechanisms can be assessed using various modalities, each of which has unique and complementary strengths, with
selection dependent on desired readout.
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neocortex-like morphology, and diminished neu-

roepithelial structural integrity (63). Functional

analysis revealed calcium activity in fewer cells

than the controls—implicating neuronal matura-

tion impediment—and decreased synchrony (63).

CDK5RAP2-mutant organoids likewise portrayed hy-

poplasticity with sparse progenitor and neuroepithe-

lial regions (61). Coincident findings of premature

neural differentiation and increased neuron quantity

were supported by observation of increased neuro-

nal differentiation upon CDK5RAP2 RNAi-knock-

down (61). Successful phenotypic rescue upon

electroporated expression of CDK5RAP2 protein con-

firmed viable in vitro recapitulation of MCPH (61).

Microcephaly in Seckel Syndrome

Seckel syndrome—a disorder argued to be on a

clinical spectrum with primary microcephaly and

whose clinical features include severe pre- and

postnatal growth restriction, microcephaly, and in-

tellectual disability (33, 71)—is observed in individ-

uals with mutated centrosomal-P4.1-associated

protein (CPAP). Concordant with other microceph-

alies, organoids of Seckel syndrome patient-deri-

vation featured diminished size with reduced

neuroepithelium and disordered progenitor re-

gions (38). In argument for organoids’ biologically

intrinsic mechanistic value, Gabriel et al. (38) iden-

tified a ciliary role in NPC sustenance and a regu-

latory role of ciliary length by CPAP. Indeed,

detailed interrogation of Seckel organoids revealed

more numerous and longer apical progenitor cilia

compared with controls (38). Their work thus dem-

onstrated that, in addition to modeling structural

deficits, brain organoids enable investigation—in

vitro— of molecular mechanisms underlying neu-

rodevelopmental disease.

Macrocephaly

Just as some mutations confer a microcephalic

phenotype, others—PTEN loss-of-function, for ex-

ample— have macrocephalic consequence (15).

Cortical organoids generated from PTEN-knockout

hESCs exhibited increased neuroepithelial out-

growth, surface area, and volume (64). Most strik-

ing, however, was the enhanced gyrification

evident in PTEN-mutant organoids. At the cellular

level, PTEN-mutants displayed more proliferative

cells throughout development, an increase re-

flected in expanded neural progenitor pools in the

ventricular and subventricular zones. It was over

these pools of increased proliferative cellularity

that the neuroepithelial curvature was more pro-

nounced, an observation later supported biophys-

ically (55). Viral reintroduction of PTEN offered

successful phenotypic rescue, with normal neural

differentiation and proliferation and the genera-

tion of smooth organoids. Indeed, manipulating

AKT signaling effected a phenotypic dose re-

sponse: less AKT signaling yielded smaller,

smoother cortical organoids, and increased AKT

signaling generated larger organoids with in-

creased fold density (64).

Congenital Lissencephaly

Lissencephaly is a clinical entity characterized by

decreased or absent gyration resulting from defi-

cient neuronal migration during development (49).

Heterozygous chromosome 17p13.3 deletion re-

sults in Miller-Dieker syndrome (MDS), a neurode-

velopmental lissencephalic disorder whose clinical

characteristics include intellectual disability and

seizures (13). This deletion often involves LIS1 and

YWHAE, the gene products of which are compo-

nents of a multiprotein complex that has regula-

tory function of cytoskeletal protein dynamics

(133). Because the LIS1 multiprotein complex is

involved with the mitotic spindle and radial glia

proliferation, protein defects within the complex

yield structural defects during development (137).

Organoids developed from MDS patient-derived

iPSCs exhibited smaller size and slower expansion

compared with controls, and likewise featured

FIGURE 2. Brain organoid disease modeling and analytic techniques
Brain organoids can model congenital structural deficits or be subjected to envi-
ronmental insult. In addition, genetic engineering and multi-organoid fusion en-
able the assessment of a broader array of disease mechanisms, such as abnormal
interregional development. Various methods can be used to evaluate the devel-
opmental changes that underlie the disparate phenotypes observed between nor-
mal and diseased organoids.
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structural aberrancies in neuroepithelial loops, in-

cluding reduced apical and basal membrane

length, loop diameter, and overall size of a ventri-

cle-like space (50). Interrogation of MDS organoids

at finer resolution revealed disrupted radial glia

cytoskeletal networks with diminished projection

of truncated microtubules toward the basal mem-

brane (50). Moreover, mitotic spindle cleavage in

MDS organoids exhibited a non-random planar

switch (from vertical to horizontal and asymmet-

ric) and disrupted adhesion molecules in the ven-

tricular zone. Reduced �-catenin expression in

organoids and influential N-cadherin signaling in

MDS patient rosettes implicated Wnt pathway dis-

ruption in MDS; pharmacological �-catenin acti-

vation via CHIR99021 inhibition of GSK3� rescued

division plane orientation, cortical loop structure,

and apical membrane length (50). Notably, ex-

pressing LIS1 or 14-3-3ε (the protein product of

YWHAE) in MDS patient cells offered partial resto-

ration of a control phenotype (50).

Individuals with MDS exhibit pronouncedly dis-

rupted cortical cellular distribution: immature

neurons appear in the deepest cortical layer, and

cell proliferation markers imply disruption of neu-

ral progenitor proliferation (112). Organoids from

MDS patients— developed to investigate neural

progenitor defects in vitro—revealed a disrupted

ventricular zone surface, disproportionately fre-

quent horizontal cleavage angles, and outer radial

glia with longer mitotic delay before cytokinesis

(9). Despite intact migratory processes, MDS or-

ganoids exhibited impaired neural migration such

that migration was initiated but not sustained and

was observed to be slower and less linear. Remark-

ably, restoration of the LIS1 and 14-3-3ε proteins

completely rescued phenotypic aberrancy to wild-

type (9).

Karzbrun et al. (55) sought to define the physical

forces that regulate cortical folding and then apply

that understanding to a lissencephalic organoid

model. Physically, organoid surface wrinkling ap-

peared to be subject to the mechanical instability

instigated by compression, such that wrinkling

starkly emerged when the nuclear density reached a

threshold (55). Application to a heterozygous LIS1

mutant organoid model revealed a wider range of

cortical thicknesses than control organoids and the

longer wavelengths (i.e., distance from one wrinkle

crest to another) and decreased curvature expected

of lissencephaly (55). LIS1 mutants exhibited de-

creased expression of cytoskeletal genes, and assess-

ment of ESCs and NPCs with atomic force

microscopy indicated the LIS1 mutant cells were

twice as elastic as their control counterparts (55).

Increased elasticity would be expected to confer re-

sistance against a compressive force inducing folding

and might partially explain the decreased gyrification

of lissencephaly. Such a model would likewise be

consistent with a separate group’s observation of in-

creased neuroepithelial curvature in areas with more

proliferating cells (64).

Sandhoff Disease

Sandhoff disease is an autosomal recessive lyso-

somal storage disorder in which mutant-HEXB in-

sufficiency of �-hexosaminidase causes lysosomal

accumulation of GM2 ganglioside (104, 105). The

GM2 gangliosidoses clinically feature developmen-

tal delay or regression, seizures, macrocephaly, hy-

potonia, and progressive decline in motor and

cognitive functioning (3, 124). Allende et al. (3)

developed organoids from a Sandhoff disease pa-

tient and from CRISPR/Cas9-corrected HEXB mu-

tant isogenic iPSCs. Compared with HEXB-

corrected organoids, Sandhoff disease patient

organoids appeared macrocephalic, with increased

proliferation and dysfunctional differentiation (3).

By week 4 of growth, immunostaining revealed

GM2 ganglioside accumulation and even inclusion

body development in Sandhoff disease organoids;

HEXB-corrected organoids accumulated signifi-

cantly less GM2 ganglioside (3). In evidence of

phenotypic rescue, restoration of �-hexosamini-

dase via AAV-HEXA/B injection decreased Sandhoff

disease organoid size and lessened GM2 accumu-

lation (3).

Tuberous Sclerosis Complex

Tuberous sclerosis complex (TSC) is a multisystem

developmental disorder in which heterozygous

germline mutations in TSC1 or TSC2— encoding

hamartin and tuberin, respectively— cause consti-

tutive activation of mechanistic target of rapamy-

cin complex 1 (mTORC1) (95). The wide-ranging

clinical features of TSC include seizures, autism,

and intellectual disability; facial angiofibromas;

cardiac rhabomyomas; and, most characteristi-

cally, cortical tubers (28). Blair et al. (12) sought to

investigate the underlying genetic mechanisms of

cortical tuber development—the proposed of

which include “second hit” loss of heterozygosity,

abnormal retrotransposition, and haploinsuffi-

ciency (52, 75)— using cortical spheroids generated

from CRISPR/Cas9-mutated (both hetero and ho-

mozygously) TSC1 or TSC2 hESCs. Homozygous

TSC2-knockout spheroids exhibited persistently

upregulated mTORC1 during neuronal differentia-

tion, a period customarily of quiescent mTORC1

signaling (12). Homozygous TSC1 or TSC2 knock-

outs additionally featured enhanced mTOR-de-

pendent, gliogenic JAK-STAT signaling: treatment

with the mTOR inhibitor rapamycin reduced path-

way activation, decreased astrocytic GFAP expres-

sion, and increased expression of neuronal

markers (12). Blair et al. (12) then engineered
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hESCs with a Cre-inducible TSC2 mutation to as-

sess the verity of the second-hit hypothesis. Ho-

mozygous, but not heterozygous, spheroids

exhibited enlarged, misshapen neurons, increased

glial cells, and hypertrophic, filamentous “giant

cells” resembling those characteristic of cortical

tubers. Spheroids developed from a heterozygous

TSC patient, reprogrammed from fibroblasts and

engineered to receive a second hit, subsequently

confirmed the necessity of biallelic inactivation to

develop the dysmorphic cells characteristic of TSC.

Just as rapamycin earlier reduced JAK-STAT signal-

ing to combat mTORC1 overactivation, so, too,

could it reduce cellular enlargement and recover

neuronal—rather than glial— differentiation. A de-

velopmental time dependency constrained treat-

ment efficacy, however, such that rapamycin

administered too late offered insufficient pheno-

typic rescue (12).

Rett Syndrome

Rett syndrome is a neurodevelopmental disorder

almost universally caused by X-linked mutations in

MECP2, the gene encoding methyl-CpG binding

protein 2. Clinically, females with Rett syndrome

typically experience normally appearing develop-

ment for 12–18 mo followed by regression—in do-

mains such as hand movement and language—and

the onset of gait abnormalities (51, 86); males ex-

perience severe congenital encephalopathy and

early death (108). Rett patient-derived cells exhibit

structural and connectivity defects (73), and a sup-

pressive role of MeCP2 has been implicated in

posttranscriptional micro-RNA processing essen-

tial for neural development (22). Brain organoids

generated from Rett syndrome patients revealed

upregulated miR-199 and miR-214, two micro-

RNAs that are involved in ERK and AKT signaling

pathways for neurogenesis and neural differentia-

tion (78). Moreover, Rett mutant organoids dis-

played increased ventricular area with decreased

ventricular wall thickness, consistent with in-

creased neural progenitors and proliferation with

concomitantly impaired neurogenesis (78).

Autism Spectrum Disorder

The term autism spectrum disorder (ASD) de-

scribes a set of clinically heterogeneous disorders

whose core characteristics include behavioral ste-

reotypies and impairments in social interaction

and language (1). ASD is thought to be of both

genetic and environmental etiological derivation

(100), and, despite the wide-ranging concordance

estimates observed for twins, the estimated herita-

bility of ASD is 0.7– 0.8 (26, 118). Perhaps underly-

ing the broad clinical heterogeneity, ASD is

associated with a broad array of genetic profiles

and aberrancies—from widely varying allelic fre-

quencies (e.g., common, rare, etc.) to disparate

inheritance patterns (e.g., dominant, X-linked, etc.)

to variant type (e.g., insertion/deletion, copy num-

ber variant, etc.) (100). Despite this genetic heter-

ogeneity, autism may represent a convergence

phenotype of several common pathways (39); in

vitro cellular modeling may offer a versatile modal-

ity by which to interrogate these various underly-

ing mechanisms (43, 67, 72).

ASD may be attributable to heterogeneous inter-

cellular transcriptomic changes with convergent

cellular and molecular pathways (99), one of which

may be excitatory/inhibitory imbalance (103, 123).

Cortical organoids using iPSCs drawn from macro-

cephalic ASD individuals revealed, compared

with unaffected family members, transcriptomic

differences in cell fate and proliferation; cytoskel-

etal regulation of dynamic cytologic growth, guid-

ance, and maintenance; synaptic assembly and

channel functioning, such as potassium ion chan-

nel upregulation and ligand-receptor interactions;

and upregulated GABAergic enzyme synthesis (74).

Despite the low number of individuals tested, the

similar findings observed in an independent co-

hort of ASD individuals increase confidence in the

data (72). Cytologic analysis exhibited increased

VGAT� inhibitory synapse formation with con-

comitantly increased GABAergic neural fate, a find-

ing subsequently confirmed electrophysiologically

(74). Transcriptomic upregulation correlated with

autism symptom severity, and one of the principal

genes upregulated throughout development was

FOXG1, the product of which is a developmental

transcription factor for the telencephalon and mu-

tations in which confer neurodevelopmental dys-

function (4, 15, 53, 74, 79, 97). Remarkably,

interference with FOXG1 expression could revert

the GABAergic neural production in ASD organoids

to normal (74). Evaluation of another gene fre-

quently involved in autism, the chromatin-remod-

eling factor CHD8 (chromodomain helicase DNA-

binding protein 8), likewise revealed upregulation

of transcripts used for GABAergic interneuronal

development (130). Although ASD is associated

with an excitatory/inhibitory imbalance, the con-

cordant findings of GABAergic increase in these

models contrasts with evidence indicating GABAe-

rgic reduction in ASD (21, 34).

Microglia in Organoids

Concomitantly with imbalanced excitation and in-

hibition, individuals with ASD and other neuropsy-

chiatric disorders are proposed to have aberrant

synaptic structure and connectivity (7, 48, 73, 94,

126). Microglia function in synaptic remodeling

during development (77, 107, 117, 120) and may be

involved in ASD and other neurodevelopmental
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disorders (35, 59, 91, 106). For example, ASD pa-

tients exhibit increased microglia density and mi-

croglial morphology indicative of activation (81,

121, 125), and wild-type microglial engraftment

could impede disease progression and improve

phenotype in a Rett syndrome mouse model (31).

Indeed, rodents have, to date, been the primary

model for studying microglia (10, 117); however,

murine and human microglia are thought to differ

markedly (111a). Recent derivation of microglia

from hiPSCs offers a novel opportunity by which to

study microglial function in neurological disease

(2, 83). Two groups separately derived microglia-

like cells from human iPS cells that could, in or-

ganoid co-culture, integrate and respond to either

laser- or needle-induced traumatic injury (2, 83),

and a third group induced an inflammatory re-

sponse by exposing neurospheres co-cultured with

human microglia to bacterial lipopolysaccharide

and flaviviral infection (80). Whereas it had been

thought that microglia— of primitive myeloid pro-

genitor yolk-sac derivation (42)—must be intro-

duced to neuroectodermally derived organoids,

recent modification of an undirected-differentia-

tion brain organoid protocol, in which all three

primitive germ layers are present in early or-

ganoidogenesis, revealed intrinsic development of

Iba-1-positive microglia from mesodermal precur-

sors (89). Such inclusion of microglia in organoids

promises expanded opportunities for disease

modeling.

Teratogens Modeling

In addition to genetically based neurodevelop-

mental disease modeling, the in vitro accessibility

and manipulability of brain organoids has also fa-

cilitated their use in studying CNS teratogens. Al-

cohol consumption during pregnancy, perhaps the

foremost CNS teratogen, is a major public health

concern (111). Clinically, fetal alcohol spectrum

disorder features developmental delay, behavioral

impairment, and cognitive dysfunction (102). The

neuropathological consequences of prenatal alco-

hol exposure include decreased brain volume and

thinning of the corpus callosum (reviewed in Ref.

62). Exposure of brain organoids to alcohol im-

paired neural maturation, reduced neurite out-

growth, and increased cell death (141). Nicotine is

another common teratogen, fetal exposure to

which can disrupt development and increase long-

lasting health risks for the offspring even into

adulthood (14). Brain organoids exposed to nico-

tine showed impaired neuronal migration and dif-

ferentiation (131).

As with toxin exposure, viral insult also pres-

ents an external mechanism by which neural

development can be impaired (6). Exposure to

Zika virus in utero has been associated with an

increased frequency of congenital microcephaly

(88). A causal mechanism underlying this asso-

ciation was established by infecting brain or-

ganoids and a mouse model with a Brazilian

strain of Zika virus (29). Consistent with the mi-

crocephaly observed in mice, the virus depleted

the neural progenitor cell pool of organoids by

preferentially infecting NPCs, causing cell death,

and disrupting the cortical plate (29).

Fusion, Genome Engineering, and
the Next Generation of Organoid
Technology

Modeling neurological disorders in the past has

often required animal or other model systems, and

neurodevelopmental disorders present a particular

challenge due to limited accessibility. The en-

hanced breadth and depth of organoid technology

using human cells, however, has facilitated the

modeling of an ever-increasing array of disorders

with both unprecedented recapitulative accuracy

and genetic manipulative capacity. Multi-organoid

fusion, genomic engineering, and methods of vas-

cularization promise further advancement in dis-

ease modeling and pharmacological development.

Multi-Organoid Fusion

Development of the nervous system is a complex

yet synchronous dance of multi-modal events, in-

cluding neuronal migration and the establishment

of synaptic interconnectivity. Although organoid

modeling methods to date recapitulate neural de-

velopment remarkably well (61, 98), the disrupted

neuronal migration and regional interconnectivity

underlying some neurological disorders argues for

methods that can model these actions. Fusing to-

gether organoids of different pre-specified brain

regions offers a modality by which to model such

interregional interaction (5, 11, 134, 135). Birey et

al. (11) pre-patterned and fused pallium and sub-

pallium spheroids using patient-derived cells to

identify GABAergic interneuronal migration defi-

cits present in Timothy syndrome. Timothy syn-

drome—a multisystem neurodevelopmental disorder

resulting from defective L-type calcium channels

(LTCC) secondary to mutations in their encoding

gene, CACNA1C (CaV1.2)— clinically includes fea-

tures such as cognitive impairment and autism,

cardiac defects, syndactyly, and immune defi-

ciency (119). Assessment of interneuronal migra-

tion in fused spheroids revealed increased

neuronal saltation frequency but decreased length

and speed (11). Because Timothy syndrome results

from gain-of-function mutation, adding the LTCC

blocker nimodipine to patient-derived cells

rescued the defective saltatory phenotype (11).
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Multi-organoid fusion thus offers a viable means

by which to model interregional developmental

dynamics as well as phenotypic defects associated

with disease.

Genome Engineering

Novel techniques in genomic engineering—includ-

ing zinc-finger nucleases, transcription activator-

like effector nucleases (TALEN), and the CRISPR/

Cas9 system (23, 45, 46, 54, 69, 113a)— have

enhanced our ability to manipulate the human

cellular genome with unprecedented precision (16,

58). The considerable genetic heterogeneity under-

lying neurological disease demands techniques by

which to more efficiently define the effects of ge-

netic variants on neurodevelopmental pathways

and phenotypic change (76). These new tech-

niques have enhanced the utility of in vitro disease

modeling by enabling pathogenic mutations to be

introduced into wild-type stem cells or mutations

to be corrected in patient-derived stem cells (113,

128). Despite concern of off-target effects and in-

efficiency (37, 65, 69, 139), whole-genome se-

quencing suggests these effects may be less

prevalent in iPSCs than feared (116, 129), and up-

dated genome editing strategies—such as target

selection and guide protein modification— have

sought to minimize these effects (24, 25, 47, 57, 69,

113a, 130, 139). In vitro organoid modeling of sev-

eral of the diseases featured in this review has only

been successful because of genomic manipulabil-

ity, and further genomic innovation promises dis-

ease modeling with even greater complexity—

sporadic diseases, for example (44)—and portends

enhanced clinical translatability (109).

Transplantation, Vascularization, and
Pharmaceutical Development

One of the primary factors limiting further devel-

opment of organoid technology has been size re-

striction imposed by insufficient nutrient delivery

to the organoid interior due to the absence of vas-

cularization (41, 136). One solution is to appropri-

ate in vivo nutrient distribution machinery (30, 70).

Brain organoids engrafted into the retrosplenial

cortex of immunodeficient mice successfully vas-

cularized, yielding coincidently increasing graft

surface area with minimal or absent apoptosis (70).

The engrafted organoids retained differentiability,

underwent astrocytic and oligodendrocytic glio-

genesis, and functionally integrated (70). Another

solution—separate differentiation of patient-de-

rived iPSCs into cortical organoids and endothelial

cells with subsequent co-culture—likewise exhib-

ited organoid vascularization (96).

Much of the immediate clinical utility expected

of the cortical organoid system is its pharmaceuti-

cal potential; the true efficacy of such a model,

however, demands vasculature and a blood-brain

barrier (BBB). To that end, a vascularized 3D

model has been used for multi-disciplinary inter-

rogation of neurotoxicity (110), and dynamic BBB

spheroids have been employed to model drug

transport and neurotoxicity (24, 87). Following co-

culture of endothelial cells, astrocytes, and peri-

cytes, the spheroid exhibited an interior with

preponderant astrocytes and an exterior surface of

pericytes and endothelial cells (8). Critically, this

external surface appeared dynamic, with regulated

permeability, expression and activity of a P-glyco-

protein efflux pump, and peptide receptor-medi-

ated transcytosis (24). Successful development of

these early BBB models suggests organoid technol-

ogy—irrespective of BBB inclusion—may relieve

dependence on imperfect animal models for phar-

maceutical development and toxin interrogation,

and may well confer future opportunity for person-

alized therapeutics (66, 110).

Future Challenges

Brain organoid technology has greatly enhanced

neurodevelopmental disease research, but, despite

its potential, many challenges and technical limi-

tations remain. Organoid protocols may exhibit

significant batch variability and can give rise to

different compositions of brain regions (60); how-

ever, improvements aiming to reduce organoid

heterogeneity and improve reproducibility are be-

ing developed (98, 114, 128, 138). Organoids are

also limited by their minimal or lack of relevant

cellular subtypes (e.g., microglia and endothelial

cells), which restricts their resemblance of in vivo

development to only early gestation (92, 98). Later

neocortical development requires vascularization

for nutrient diffusion, the absence of which results

in interior necrosis (60). As was previously men-

tioned, however, novel vascularization techniques

are initial steps to resolving this challenge (70, 96).

Moreover, because most differentiation protocols

favor ectodermal fate, microglia, of mesodermal

origination, are usually absent. Improved methods

of co-culturing or introducing these cells into brain

organoids is necessary for accurate disease model-

ing. Last, to advance the translation of pathophys-

iological findings from organoids to the human

brain, it is imperative to understand whether brain

organoids create the neural circuitry observed in

the human brain and address any ensuing ethical

concerns. �
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