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Abstract

The neuropeptide oxytocin has attracted great attention of the general public, basic neuroscience researchers,

psychologists, and psychiatrists due to its profound pro-social, anxiolytic, and “anti-stress” behavioral and physiological

effects, and its potential application for treatment of mental diseases associated with altered socio-emotional competence.

During the last decade, substantial progress has been achieved in understanding the complex neurobiology of the oxytocin

system, including oxytocinergic pathways, local release patterns, and oxytocin receptor distribution in the brain, as well as

intraneuronal oxytocin receptor signaling. However, the picture of oxytocin actions remains far from being complete, and

the central question remains: “How does a single neuropeptide exert such pleotropic actions?” Although this phenomenon,

typical for many of about 100 identified neuropeptides, may emerge from the anatomical divergence of oxytocin neurons,

their multiple central projections, distinct oxytocin-sensitive cell types in different brain regions, and multiple

intraneuronal signaling pathways determining the specific cellular response, further basic studies are required.

In conjunction, numerous reports on positive effects of intranasal application of oxytocin on human brain networks

controlling socio-emotional behavior in health and disease require harmonic tandems of basic researchers and clinicians.

During the COVID-19 crisis in 2020, oxytocin research seems central as question of social isolation-induced inactivation

of the oxytocin system, and buffering effects of either activation of the endogenous system or intranasal application of

synthetic oxytocin need to be thoroughly investigated.

Introduction

A large number of neuropeptide systems have emerged as

viable regulators of multiple facets of socio-emotional or

motivational behaviors and, thus, as potential treatment

targets for psychopathologies, such as anxiety, autism

spectrum, and substance use disorders, schizophrenia or

major depression, among others. Among the about 100

identified neuropeptides (http://www.neuropeptides.nl) only

few of them currently attracted scientific attention, which

include the nonapeptides oxytocin (OXT) [1–3] and argi-

nine vasopressin (AVP) [2, 4, 5], corticotropin releasing

factor [6], neuropeptide Y [7], neuropeptide S [8–10],

VIP/PACAP [11], and cholecystokinin-octapeptide [12].

Although promising behavioral effects in health and disease

have been described, most of these neuropeptide systems

will hardly become a serious treatment target either due to

lack of clinical efficacy of developed agonists or antago-

nists, or reported side effects in animals or in clinical trials.

In contrast, with synthetic OXT being already used in

obstetric medicine for more than 50 years, a safe neuro-

peptide is available. Profound anxiolytic, anti-stress, and a

plethora of pro-social effects of endogenous or synthetic

OXT have not only been revealed in laboratory animals

(for review see [1, 13]), but also in humans, where syn-

thetic OXT was applied intranasally (IN) [14, 15]. With a

still raising interest in the molecular and neuronal

mechanisms of actions within the brain on the one side

and in the behavioral and physiological effects of OXT,

especially in human studies, on the other, OXT-related

* Valery Grinevich

valery.grinevich@zi-mannheim.de

* Inga D. Neumann

Inga.Neumann@ur.de

1 Department of Neuropeptide Research in Psychiatry, Central

Institute of Mental Health, Medical Faculty Mannheim, University

of Heidelberg, 68159 Mannheim, Germany

2 Department of Neurobiology and Animal Physiology, University

of Regensburg, 93040 Regensburg, Germany

1
2
3
4
5
6
7
8
9
0
()
;,
:

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-020-0802-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-020-0802-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-020-0802-9&domain=pdf
http://orcid.org/0000-0002-6337-8866
http://orcid.org/0000-0002-6337-8866
http://orcid.org/0000-0002-6337-8866
http://orcid.org/0000-0002-6337-8866
http://orcid.org/0000-0002-6337-8866
http://orcid.org/0000-0002-3911-5062
http://orcid.org/0000-0002-3911-5062
http://orcid.org/0000-0002-3911-5062
http://orcid.org/0000-0002-3911-5062
http://orcid.org/0000-0002-3911-5062
http://www.neuropeptides.nl
mailto:valery.grinevich@zi-mannheim.de
mailto:Inga.Neumann@ur.de


publications have increased almost double in the last 20

years ([1] Pubmed).

Here, we will provide a comprehensive overview about the

neurobiology of the brain OXT system including (i) OXT-

ergic neuronal circuitries originating in the hypothalamus, (ii)

local neuropeptide release stimulated by stress, social inter-

actions, or optogenetic and chemogenetic challenges, and (iii)

OXT receptor- (OXTR) mediated intracellular signaling in

neurons, which possibly underlie selected behavioral effects

of OXT. Moreover, we will summarize current experimental

strategies to either monitor, or to manipulate, the activity of

OXT neurons and their downstream targets. We also propose

some futuristic scenarios for implementation of OXT into

treatment of human patients afflicted with socio-emotional

disorders. Finally, we discuss the importance of the brain

OXT system in times of pandemic-associated social isola-

tion and psycho-social stress, as seen during the COVID-19

crisis in 2020.

Neuroanatomy of the OXT system

OXT homologs, as many other neuropeptides [16], are

evolutionary old regulatory molecules and appeared ~700

Mio years ago, prior Cambrian explosion [17]. In mam-

mals, along with its closely related nonapeptide AVP,

OXT is synthesized in distinct hypothalamic neurons,

which form the hypothalamo-neurohypophysial system

(HNS) (Fig. 1). Relatively large, i.e., magnocellular OXT

(and AVP) neurons with a somatic diameter of about

20–35 μm [18] are located in the bilateral supraoptic

(SON), paraventricular (PVN), and accessory nuclei of the

hypothalamus (Fig. 1). These neurons project via the

pituitary stalk to the neurohypophysis, where their axon

terminals form neurohemal contacts with local fenestrated

capillaries essential for OXT secretion into the blood

stream. Due to its specific anatomy and physiology, the

HNS has become a textbook example that has been studied

for more than 100 years [1, 19–21]. Indeed, seminal neu-

roendocrine discoveries have been made using the HNS

including the regulation of neuropeptide gene expression,

intraneuronal processing and transport, stimulus-secretion-

coupling, and intracerebral including dendritic transport

and release reviewed elsewhere.

In addition to magnocellular OXT neurons, there exist

smaller and fewer parvocellular neurons, which are mainly

localized bilaterally within the dorsolateral subdivision of

the PVN. The about 100 parvocellular OXT neurons (this

number is estimated for a rat) are clearly distinct from

magnocellular neurons, as they do not possess projections

to the neurohypophysis; they should exclusively connect to

midbrain, brain stem, and spinal cord targets [22]. Also,

parvocellular PVN neurons connect to the ipsilateral SON

and to the contralateral PVN, where they contact magno-

cellular OXT neurons to coordinate their activity [23].

Both parvocellular and magnocellular OXT neurons

essentially form the brain OXT system. Thus, their pro-

jections and collaterals, respectively, provide the neuronal

substrate for central, intracerebral release of OXT. In

addition, dendritic trees of magnocellular OXT neurons

within the SON and PVN form the basis for local somato-

dendritic release of OXT [24, 25]. In recent years, our

understanding of the anatomical complexity of the brain

OXT system and its involvement in the fine-tuned regula-

tion of specific aspects of socio-emotional behavior has

significantly increased mainly due to the advent of inno-

vative viral vector-based tracing combined with chemo- and

optogenetic techniques.

Intracerebral OXT pathways and methods to
reveal them

After generation of antibodies against OXT and its carrier

protein neurophysin I in the 1980’s [26], numerous studies

have focused on the identification of OXT-immunoreactive

fibers throughout the brain. Although detectable immuno-

signal in distant OXT axons were found in several hindbrain

regions [27], the detection of OXT immunoreactivity in

axons of forebrain regions were limited to only a few

structures, such as the tenia tecta, lateral septum [28], and

the nucleus accumbens [29]. However, a more recent find-

ing employing soluble genetically encoded fluorescent

markers reported the spread of OXT axons through about 50

forebrain regions of rats in addition to their major projec-

tions to the neurohypophysis [30]. Collaterals of magno-

cellular OXT neurons of both the PVN and SON project to

the medial and central amygdala, lateral septum, prefrontal

cortex, anterior olfactory nucleus, and nucleus accumbens

Fig. 1 Overview of the hypothalamic oxytocin nuclei. Confocal

panel shows hypothalamic OXT-ergic SON, PVN, and fornical

accessory nucleus (AN) of an adult male rat, stained with antibody

against OXT, generously provided by Dr. Harold Gainer (NIH).

Images were obtained using a Leica LSM780 confocal microscope at

10× (z-stacks, 30 µm, 1 µm steps) and realigned and merged in Adobe

Photoshop. SON supraoptic nucleus, PVN paraventricular nucleus,

3V third ventricle, OC optic chiasm. Arrows point towards the

hypothalamic-neurohypophysial tract.
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[17, 31–33], where these projections were validated not

only anatomically, but also functionally (Fig. 2) (for review

see [30]).

Evidence for the existence of such functionally specia-

lized OXT neurons has been very recently provided by

genetic labeling of OXT neurons activated during fear

expression in rats [34]. Although the number of labeled

OXT neurons corresponded to only ~10% of all magno-

cellular OXT neurons, their activation or silencing resulted

in attenuation or elevation of fear behavior, respectively.

These “fear-sensitive” OXT cells almost exclusively project

to the central nucleus of amygdala—the hub region of fear

response.

However, the number of centrally projecting OXT axon

collaterals is in general rather low [30], which may explain,

why these fibers containing a limited OXT-immunoreactive

product (e.g., the number of OXT “puncta”) were simply

overlooked in the past. For example, using retrogradely

transmitted virus CAV2, we could identify about 25 mag-

nocellular OXT neurons of the SON, and about 5 neurons

of the PVN projecting to the lateral septum of lactating mice

[33]. These OXT cells were classified as magnocellular

based on their labeling by systemically delivered Fluor-

ogold, which is exclusively taken up by axonal terminals

in regions lacking a blood–brain barrier, such as the

neurohypophysis.

Of note, parvocellular OXT neurons remain negative

for Fluorogold labeling as they do not form axo-vascular

contacts with blood vessels in the neurohemal region of

the neurohypophysis [35]. This cell type of OXT neurons

largely extends their axons to the hindbrain, although their

projections to the forebrain regions have not been elaborated

so far [36]. However, a recent genetic profiling of OXT

neurons [37] resulted in the identification of 5 types of

OXT cells, which probably represent subpopulations

of magno- and parvocellular OXT neurons, potentially

projecting to hindbrain [38] and forebrain, respectively.

The above described OXT axonal connections through-

out the brain form the neuroanatomical substrate of OXT

release in the respective brain target regions. With respect to

the dynamics of OXT release into blood and within distinct

brain regions, we have to keep in mind that magnocellular

OXT neurons, which are mainly characterized by their

projections to the neurohypophysis, may or may not col-

lectively respond with release within central target regions

to a given physiological or stressful stimulus. Thus, the

described anatomy of the HNS and the brain OXT system

provide the basis for the description of mainly coordinated,

but also independent release of OXT into blood and within

the brain in a brain region- and stimulus-dependent manner

[24, 39, 40].

Synaptic versus non-synaptic OXT release

Although controversial discussion still remains [41], the

central release of OXT may occur in a synaptic or non-

synaptic fashion, probably, as a combination of presynaptic

terminal, axonal en passant, dendritic, and somatic release.

These different modes of release contribute to the enormous

functional complexity of the brain OXT system. Although

parvocellular OXT neurons projecting to the hindbrain most

likely synapse onto target cells [27, 41], the nature of axonal

contacts of magnocellular remains elusive despite electron

microscopic reports showing the presence of large dense-

core vesicles containing OXT in synaptic terminals within

the SON, ventromedial hypothalamus, lateral septum,

amygdala and nucleus of the solitary tract [30, 42–46].

Further, in vivo evidence for extracellular Ca2+-dependent

synaptic release of nonapeptides within the septum, SON

and PVN exists demonstrating that depolarizing stimuli, or

omission of Ca2+, can stimulate, or prevent, such local

release [47–49]. In contrast, so far, large dense-core

OXT vesicles have not been located in the active zones

of pre-synapses in the few OXT synapses found in

the SON [45, 50] and ventromedial hypothalamic nucleus

[43]. Moreover, OXTR have not been identified in post-

synaptic membranes. Together with electrophysiological

evidence speaking against synaptic neurotransmission of

Fig. 2 Scheme of a sagittal view on a rat brain including

OXT neuronal projections, OXT release and OXTR binding

within brain target regions. This scheme summarizes all available

data from male and female including lactating rats regarding OXT

neuronal projections, sites of OXT release, e.g., during stress exposure,

mating, parturition, suckling, and OXT receptors within brain target

regions, as outlined in detail in the text. AON anterior olfactory

nucleus, OB olfactory bulb, OT olfactory tubercle, Nac nucleus

accumbens, OVLT organum vasculosum laminae terminalis, SON

supraoptic nucleus, PVN paraventricular nucleus, PP posterior pitui-

tary, PFC prefrontal cortex, CC cingulate cortex, MPOA medial pre-

optic area, BNST bed nucleus of the stria terminalis, LS lateral

septum, CPu caudate putamen, PV periventricular nucleus of the

thalamus, CeA central amygdala, MeA medial amygdala, BLA baso-

lateral amygdala, VTA ventral tegmental area, LC locus coeruleus,

PBN parabrachial nucleus, DRN dorsal raphe nucleus, PAG peria-

queductal gray, SN substantia nigra, HPC hippocampus, HDB

nucleus of the horizontal limb of the diagonal band. Adapted with

allowance from [1].
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nonapeptides [51], it is likely that microscopically visua-

lized synapses [23, 30, 45] operate by classical neuro-

transmitters rather than OXT. Therefore, intracerebral

release of OXT from magnocellular neurons should occur

mainly non-synaptically, either from axonal collaterals en

passant or axonal terminals within the forebrain and other

limbic regions, as well as from dendrites and somata within

the hypothalamic PVN and SON. Pow and Morris were the

first to provide electron microscopic evidence for such

dendritic release of OXT from magnocellular neurons

within the SON [52], which does not contain parvocellular

OXT cells.

When released non-synaptically, OXT molecules diffuse

into the surrounding space and act as neuromodulator rather

than classical neurotransmitter by binding to nearby OXTR in

virtually all major forebrain brain regions [2, 24, 53, 54]

(summarized in Fig. 2). Recent calculations on the effective

OXT concentrations around the site of OXT release have

revealed a radius of about 55–120 µM [55]; beyond this

radius, OXT concentrations are not sufficient to activate local

OXTR. This excludes the possibility that diffusion of OXT to

neighboring or even further distant brain regions significantly

contributes to its neuronal or behavioral actions.

Both parvo- and magnocellular OXT neurons co-express

glutamate as a conventional neurotransmitter. However, the

balance between expression of OXT and glutamate in the

same neuron remains unclear. Although parallel elevation

of the vesicular glutamate transporter vGlutT2 and of OXT

mRNA levels has been reported in magnocellular OXT cell

bodies after osmotic challenge [56], and the presence of

vGluT2 immunosignal was detected in terminals of OXT

neurons in the posterior lobe of the pituitary [57], to our

knowledge only two functional studies tackled the question

of axonal OXT and glutamate co-release [30, 34]. The first

work [30] reported the presence of putative (asymmetric)

glutamatergic synapses formed by axons of hypothalamic

OXT neurons in the central nucleus of amygdala. To vali-

date this finding functionally, the authors activated OXT

axonal terminals in acute amygdala slices from rats sub-

jected to fear conditioning and found a small glutamate-

mediated response of postsynaptic cells. Intriguingly, Hasan

and colleagues showed activated glutamatergic over OXT-

ergic transmission in rats, which previously experienced

fear. This shift was further confirmed in vivo via evoking

OXT and glutamate release demonstrating that the rapid

onset of mobility in fear-conditioned rats remained even

after the block of OXTRs by its selective antagonist. Thus,

these two reports support the general notion that the coordi-

nated release of a slow-acting neuropeptide neuromodulator

and a fast-acting amino acid neurotransmitter is a mechanism

essential for the modulation of cognitive, emotional and

metabolic processes [58]. However, potentially simultaneous

synaptic glutamate and non-synaptic OXT releases from the

very same axon request further studies implementing high-

resolution imaging techniques.

Stimulus-dependent release of OXT in
distinct brain regions

The dynamics of OXT release within distinct brain

regions has been mainly studied using intracerebral

microdialysis performed in rats, mice, sheep, and voles.

In this context, both, commercially available concentric

microdialysis probes [59] as well as self-constructed

U-shaped microdialysis probes (for review see [60, 61])

have been successfully employed in different labora-

tories. The latter consist of two parallel 23-g stainless

steel cannulas with the microdialysis membrane origi-

nating, for example, from an artificial kidney (pores of

10–20 kDa) inserted into the ends of two cannulas and

bended to the U-shaped form. Although brain micro-

dialysis is an invasive approach, there is convincing

experimental evidence that plasma OXT from intracer-

ebral capillaries does not significantly contribute to the

neuropeptide content quantified in microdialysates

[1, 48, 49, 62]. For example, we had roughly estimated

that OXT concentration in the extracellular fluid of the

SON is about 100–1000-fold higher than that in plasma

[63]. This is an important prerequisite allowing separate

monitoring of central versus peripheral OXT release

patterns in response to a given stimulus.

A major advantage of intracerebral microdialysis is the

fact that it can be performed in conscious, freely behaving

animals, which allows studying intracerebral OXT release

not only in response to physiological stimuli, but also

during ongoing behavioral observation. Thus, OXT release

has been successfully monitored within various limbic tar-

get regions, including the rat and mouse dorsolateral and

ventral septal areas [48, 64–66], the rat dorsal hippocampus

[48, 67] and central amygdala [68], the nucleus accumbens

of voles [69], the substantia nigra, olfactory bulb, bed

nucleus of the stria terminalis and medial preoptic area of

sheep [59, 70], and within the rat nucleus of the solitary

tract [62, 71] (Fig. 2).

Electrical or optogenetic stimulation of the PVN was

described to stimulate OXT release within the septum

[48, 72], central amygdala [30], anterior olfactory cortex

[73], and the nucleus of the solitary tract [71]. Further,

somato-dendritic release of OXT within its nuclei of ori-

gin, i.e., within the hypothalamic SON and PVN, has also

been extensively studied mainly in rats [49, 62, 74–76].

However, due to sensitivity limitations, it is presently

impossible to exclusively measure release of OXT from

the small population of parvocellular neurons within the

PVN. Consequently, the results summarized below should
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reflect the intra-PVN release of the neuropeptide mainly

from magnocellular cells, or a combination of both,

magno- and parvocellular neurons.

Stimuli triggering intracerebral OXT release

Physiological, stressful, and pharmacological stimuli of

intracerebral OXT release have been extensively studied

and discussed (for review see [1, 40, 77–79]). So far, all

reproductive stimuli, such as birth, suckling in the lactating

animal, and mating in males and females, which were all

shown to activate the secretion of OXT as a neurohormone

into the blood stream, were also found to trigger OXT

release within the brain in a region-dependent manner.

Thus, in response to the reproductive stimuli mentioned

above, increased OXT release has been shown in the PVN,

SON, septum, dorsal hippocampus, bed nucleus of the stria

terminalis, olfactory bulb, nucleus accumbens, and medial

preoptic area [29, 48, 59, 75, 80–82] for review see [1, 24].

Also, various physiological [67, 83], physical and emo-

tional [49, 77] stressors stimulate not only OXT secretion

into blood, but also intracerebral release. Relevant emo-

tional stimuli include forced swimming (PVN, SON, and

amygdala) [50, 68, 84–86] and shaker stress (PVN) [87].

Also, OXT release is stimulated in male rats by exposure to

social defeat by an aggressive male resident (SON, septum,

but not PVN) [64, 88], and in virgin female rats by exposure

to maternal defeat by an aggressive lactating female resident

(PVN, but not amygdala or septum) [89]. The latter

examples provide striking evidence for region-dependent

release of OXT, which, moreover, occurs independent of

peripheral OXT secretion. OXT release within the PVN and

central amygdala has also been found during the display

of aggressive behavior in lactating [89] and virgin female

[90] rats (for review [91]). However, whether aggressive

encounters are accompanied by release of OXT into the

blood stream is currently unknown.

Such aversive and stressful stimuli are accompanied by

an activation of the hypothalamic–pituitary–adrenal (HPA)

axis, and multiple interactions between the OXT system and

the HPA axis exist [92, 93]. For example, stress-induced

plasma corticosterone seems to promote the simultaneous

release of OXT within the PVN [84], whereas OXT is rather

considered to exert an inhibitory tone on hypothalamic CRF

expression [94] and on general HPA axis responsiveness

[95] (for review see [96]). This becomes particularly visible

in lactation, when high brain OXT levels were found to

impact on the attenuated response of the HPA axis [97].

Even subtle, largely stress-free social stimuli, such as social

investigation of an unknown conspecific, result in elevated

electrical activity of OXT neurons [98, 99] and a measurable

increase in OXT concentrations in the extracellular fluid, for

example, within the lateral septum of male mice [66] and rats

[65]. Specialized OXT pathways described above consisting

of only a few neuronal connections are activated by social

interactions and seem to be essential for overcoming social

fear [33] and, consequently, for promoting naturally occurring

social preference behavior or social memory [65, 100].

Whether such mild social stimuli are also activating OXT

secretion into blood is unknown; we hypothesize that such

secretion may occur in low and, therefore, not detectable

quantities.

Recent attempts to reveal the behavioral relevance of

OXT neuronal circuitries and local OXT release have sub-

stantially benefitted from viral vector-based optogenetic

[101] and chemogenetic [102] approaches, which enable the

highly selective stimulation of endogenous OXT release.

Optogenetic activation of OXT neurons has been repeatedly

used to reveal behavioral or physiological effects of locally

released OXT [30, 73, 103–105]. Knobloch et al. were the

first to apply optogenetics for stimulation of magnocellular

OXT neurons. In this study, the blue light stimulation of

channelrhodopsin-2-expressing OXT axons within the lat-

eral part of the central nucleus of amygdala decreased

freezing responses in fear-conditioned rats [30] — an effect,

which has recently been confirmed by the same group [34].

Later, Xiao et al. used blue light stimulation to facilitate

OXT release from axons of parvocellular PVN OXT neu-

rons within the ventral tegmental area and showed specific

activation of local midbrain dopamine neurons. In contrast,

within the substantia nigra, optic stimulation of local OXT

release indicated an inhibitory effect on dopamine neurons,

likely to be mediated by activation of OXTR-expressing

GABA neurons [105].

However, so far, attempts to provide direct evidence for

optogenetic induction of release of OXT, either within the

brain or into the blood, is missing or failed. In our own first

pilot experiment (unpublished), we optogenetically stimu-

lated OXT release from axons in the central amygdala in

analogy to a previous study [30], and used microdialysis to

simultaneously monitor local OXT release. However, we

were unable to detect any increase in OXT concentrations in

microdialysates. Based on previous results that blue light

stimulation of OXT axons in the amygdala induced acti-

vation of OXT-sensitive neurons and behavioral effects, the

lack of a detectable rise in local OXT release may be

explained by the limited sensitivity of microdialysis with a

relative recovery of nonapeptides of only 2–3% from

the extracellular fluid [1, 106]. Moreover, although the

available radioimmunoassays with a detection limit in the

0.1–1 pg range are highly sensitive, at least 1010 molecules

of OXT have to be present in the extracellular fluid for

quantification. In contrast, the release of even one large

dense-core vesicle containing ~80.000 OXT molecules may

bind to OXTRs in surrounding neurons to change their
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electrical activity [55], resulting in the modification of local

networks transmitted into behavior.

Another method of choice for highly selective manip-

ulation of intracerebral OXT release is the DREADD

(designer receptor exclusively activated by designer drug)

technology, which requires the blood–brain barrier

permeable DREADD ligand clozapine N-oxide (CNO)

[33]. This chemogenetic method has the striking advantage

that additional stereotaxic implantation of optic fibers

necessary for optogenetic stimulation can be avoided. Viral

vector-based expression of different classes of DREADDs,

such as Gq- and Gi-coupled DREADDs, driven by the cell

type-specific OXT promoter allows neuronal activation

and inhibition, respectively. Thus, the activation of Gq

DREADD- (hM3Dq) expressing OXT neurons by CNO

resulted in elevated neuronal firing, intracellular Ca2+

levels and intra-PVN somato-dendritic and neurohypo-

physial release of OXT [102]. Moreover, chemogenetic

activation of PVN OXT neurons increased the endo-

cannabinoid anandamide content in the nucleus accumbens

in an OXTR-dependent manner, indicating chemogeneti-

cally induced local OXT release [107]. In contrast to these

gain-of-function studies, loss-of-function analyses are

based on Gi-coupled DREADD (hM4Di) [23]. For exam-

ple, selective CNO-induced inhibition of those hypotha-

lamic OXT neurons expressing hM4Di and projecting to

the lateral septum completely abolished social investigation

and induced social fear in lactating mice [33].

Thus, opto- and chemogenetics alone or in combination

are important tools to selectively manipulate local OXT

release, thus allowing to reveal the detailed involvement of

subpopulations of OXT neurons and their projections in

behavioral and physiological functions. Although optoge-

netics allows very precise temporal resolution, the stimu-

lation of OXT axons may potentially result in propagation

of action potentials along their axonal collaterals, making

the identification of precise structures underlying blue

light- induced behavioral effects problematic [108]. To

verify this issue, chemogenetics can be helpful as the

DREADD ligand CNO can also be infused into the region

of interest acting locally on DREADD-expressing OXT

axonal terminals, thus preventing back-propagation of

action potentials via axons and cell bodies [34].

In summary, OXT release monitored by intracerebral

microdialysis reflects the dynamic activity of the brain

OXT system. It can be characterized as strictly region-

and stimulus-dependent, may occur simultaneously or at

least coordinated with OXT secretion into blood, or may

be independent of it [1, 24]. Indeed, differences in

the temporal dynamics of peripheral and central release

patterns and in the pharmacokinetics of OXT in the brain

extracellular fluid versus blood compartment exist.

Therefore, there is general agreement that blood OXT

cannot be considered as an indicator of the activity of the

brain OXT system [2, 109].

Intraneuronal OXTR-mediated signaling

It is truly amazing that the large variability of behavioral

and physiological effects of OXT after its release within

distinct brain regions is based on ligand binding to a single

kind of OXTR expressed by neurons or glia cells in

numerous hypothalamic, limbic, cortical, and brain stem

regions (for summary see Table 1 in [1]). However, to this

end the stimulus-dependent release of OXT has to be

balanced with a fine-tuned regulation of local OXTR

expression and binding. The many regulatory modes of

OXTR expression include ligand availability [110, 111],

epigenetic mechanisms, such as DNA methylation in the

promoter of the Oxtr [112] and microRNAs [113], and

estrogen-receptor α or β activation [114–116] resulting in

brain region-specific and temporal dynamic patterns of

OXTR binding. Moreover, individual OXTR binding is

dependent on the developmental or reproductive stage, and

on exposure to acute or chronic stressors. Desensitization

and internalization of the OXTR upon ligand binding fur-

ther add to the regulatory complexity of this receptor. These

adaptations, which have been extensively reviewed else-

where [1, 117], provide the molecular basis underlying

appropriate behavioral adaptations to age- and stimulus-

dependent social or emotional demands [118, 119]. Con-

sequently, maladaptations in central OXTR binding, which

have already been associated with social stress and social

fear in rodents [66, 120, 121], are likely to contribute to the

etiology of psychopathologies [122].

Whereas the duration and intensity of neuronal actions

are mainly determined by the concentration of OXT in the

extracellular fluid, and by OXTR density and affinity, the

quality of acute or long-term neuronal effects of OXT is

mainly dependent on subsequent activation of intracellular

signaling cascades [123, 124] (Fig. 3). As a G (guanine

nucleotide-binding) protein-coupled receptor (GPCR), the

OXTR interacts with heterotrimeric G-protein complexes

(Gα, Gβ, and Gγ) and can be linked to multiple signaling

pathways depending on the specific G-protein complex

involved (e.g., Gαq, Gαo, and Gαi) (for review see [1, 117]).

For example, activation of the Gα proteins Gαq and Gα11,

which are both expressed in the brain, stimulates phos-

pholipase C resulting in the generation of inositol 1,4,5-

triphosphate (IP3) and 1,2-dicyaglycerol (DAG). Whereas

IP3 mobilizes Ca2+ from intracellular stores, DAG activates

protein kinase C (PKC) and, thus, phosphorylates a number

of other downstream target proteins.

Another important intraneuronal signaling pathway

activated by OXTR both via Gq/11 and Gi/o is the mitogen-
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activated protein kinase (MAPK) cascade. We have

demonstrated that this pathway, which requires both,

transactivation of the epidermal growth factor receptor

(EGFR) [125] and the influx of extracellular Ca2+ through

transient receptor potential vanilloid type 2 (TRPV2)

channels [126], is essential for the anxiolytic effect of OXT

in the PVN of male and female rats [125–127]. Moreover,

the hippocampal MEK1/2—MAPK cascade has also been

associated with OXT-regulated spatial memory formation in

lactating animals, which was shown to be CREB-dependent

[128]. In fact, MAPK activation by MEK1/2 finally leads to

the stimulation of the transcription factor CREB and sub-

sequent regulation of its cofactor CRTC (TORC) in the

nucleus and gene expression (Fig. 3) [94, 129–131]. After

central infusion of OXT we identified 157 upregulated and

204 downregulated genes within the PVN. Among the

upregulated genes was the neuropeptide Y receptor 5

(NPY5R) [131] (Fig. 3), which activity is sufficient for

anxiolysis in general and necessary for the anxiolytic effect

of OXT in particular. Interestingly, OXTR-activated de

novo protein synthesis further involves the eukaryotic

elongation factor eEF2 [117], which was stimulated by

OXT in a PKC-dependent manner within the PVN [131]

(Fig. 3).

The listed intraneuronal pathways linking acute OXTR

activation to cytoplasmic or nuclear targets are essential to

induce a neuron-specific response ultimately resulting in

behavioral or physiological responses. These pathways

identified so far in hypothalamic or hippocampal neurons

have mainly been associated with OXT-induced anxiolysis,

memory formation and stress-related behaviors. The

detailed intraneuronal responses to OXT in any other

behavioral context are far from being understood. Neuron-

specific OXTR-coupled pathways, which are likely to

depend on the predominant quality of expressed OXTR-

coupled G-proteins (e.g., Gq or Gi), the neuron-specific

density of OXTR expression, and the region-dependent

types of neurons expressing the OXTR may contribute to

the variability and specificity of neuronal responses result-

ing in multiple, sometimes even opposing behavioral effects

of the neuropeptide. These and other factors, such as the

duration of OXTR activation (acute versus chronic), or

differential modulation of local regional circuits via acting

on OXTR-expressing cells integrated into the local neuronal

ensembles, may be responsible for the phenomenon that a

single molecule binding to a single type of GPCR can

induce an enormous variability of effects in the brain.

Remarkably, the comparative anatomy of OXTR dis-

tribution revealed strict regional differences between the

rodent and primate brain. Whereas, in rodents, olfaction-

related brain regions are rich of OXTRs, in primates OXTRs

are abundantly expressed in visual brain regions, such as the

superior colliculus, pulvinar, and primary visual cortex [132].

This species-dependent OXTR distribution is not surprising as

OXT affects distinct sensory modalities (e.g., olfaction in

rodents and visual cues in humans), orchestrating species-

dependent strategies of social communications [133].

Although a recent study explored the distribution of OXTR

mRNA in the human brain [134], the intracellular OXTR

signaling in primate neurons remains enigmatic and, hence,

requires the expansion of human pluripotent stem cell tech-

nologies for generation of human OXT [135] and OXTR

neurons obtained from healthy donors as well as from patients

afflicted with socio-emotional pathologies.

Translational perspectives

Looking back at 700 Mio years of evolution, it is remark-

able that in nematodes (C. Elegans), 5% (!) among all

neurons express OXT-like peptides [136], while in the human

brain this number corresponds to about 0.00006% (~50.000

Fig. 3 Scheme of intraneuronal signaling cascades involved in

OXT-induced anxiolysis in the hypothalamic paraventricular

nucleus. Activation of the OXT receptor (OXTR) elevates — via the

Gβ/γ protein subunit — extracellular Ca2+ influx via incorporation of

TRPV2 Ca2+ channels into the cellular membrane and subsequent

activation of Ca2+-dependent cascades (PKC, CaMKI, II, IV). OXTR

activation via its G-protein αq subunit also leads to transactivation of

EGFR and subsequent activation of the MAPK pathway via MEK1/2.

The signaling cascades converge on downstream regulation of tran-

scriptions factors, such as MEF2, CREB, and its cofactor CRTC3 and,

consequently, modulate neuronal gene expression. Central infusion

OXT resulted in 157 up- and 204 downregulated genes identified in rat

PVN tissue punches (Affymetrix microarray [131] GEO dataset).

Moreover, through activation of PKC and MEK1/2, OXT regulates

eEF2 activity to promote protein de novo synthesis, e.g., synthesis of

the NPY5R. Ca2+ calcium, TRPV2 transient receptor potential cation

channels of vanilloid type 2, EGFR epidermal growth factor receptor,

CaMK calcium/calmodulin-dependent kinase, PKC protein kinase C,

MAPK mitogen-activated protein kinase pathway, MEK mitogen-

activated protein kinase kinase, CRTC cyclic AMP-regulated tran-

scriptional coactivators, CREB cyclic AMP responsive element bind-

ing protein, MEF2 myocyte enhancer factor 2, EF2 eukaryotic

elongation factor 2, NPY5R neuropeptide Y 5 receptor. Adapted with

allowance from [1, 131].
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OXT-ergic cells) of total number of neurons (~86 × 1012 cells)

[35]. In the light of these numbers, it is unbiasedly impressive

that IN application of OXT in humans modulates a plethora

of social and emotional behaviors, among other physiological

effects [15, 1, 137]. In human studies, IN OXT is mostly

administered to healthy (predominantly male) volunteers or to

patients suffering from deficits in socio-emotional behavior,

as seen in autism spectrum disorder, borderline personality

disorder, schizophrenia, or social phobia. Subsequently, OXT

versus placebo treatment effects are assessed on specific

behavioral tasks or on brain activity patterns in either a

within-subject or a group design, which have been exten-

sively reviewed elsewhere [1, 15, 137–139]. Thus, substantial

effects of IN OXT were described on social cognition

[138, 140–142], fear [143, 144], empathy [145, 146], trust

[147], and even xenophobia [148, 149] often accompanied by

altered neuronal activity [150].

Although the passage of IN OXT via the blood–brain

barrier is still under debate [109] numerous reports in both

rodents [151, 152] monkeys [153] and humans [154, 155]

indicate the delivery of IN OXT into the brain in sufficient

amounts. Recently, deuterated OXT has been detected in

the CSF [153] and various brain tissues, including orbito-

frontal cortex, thalamus, and striatum of macaques [156]. In

line, a recent study of Paloyelis et al. addressed an impor-

tant question regarding intracerebral effects of IN OXT and

showed changes in regional blood flow in the human brain

[157]. They used arterial spin labeling magnetic resonance

imaging to quantify the resting-state blood flow in a defined

tissue volume and time period (ml blood flow per g tissue

per min) and found an OXT-induced elevation in regional

blood flow in four brain regions belonging to the social

brain network, i.e., in regional clusters comprising the

amygdala, striatum, hippocampus, anterior and middle

cingulate cortex, inferior frontal gyrus, and insular cortex.

These and the described promising behavioral effects of

OXT have generated an enormous interest in IN OXT in

patients, psychiatrists and psychologists, and in the general

public, alike. They provided the perspective to use IN OXT

as a treatment option for psychopathologies associated with

socio-emotional dysfunctions, such as autism spectrum

disorders, anxiety disorders, social phobia, and schizo-

phrenia [15, 137, 139]. However, a substantial individual

variation in the efficacy of IN OXT effects on socio-

emotional behaviors and brain function is likely depending

on gender, childhood experiences, attachment style, per-

sonality, OXTR polymorphisms, and social support. This

implies the substantial need for a precision medicine

approach to optimize targeted treatments with OXT [137].

Moreover, a controversial discussion is still addressing

questions regarding the reliability and validity of human OXT

studies [158] due to small sample sizes and low statistical

power, and lack of detailed dose-response studies. Also, the

details regarding the mechanisms and routes of uptake of IN

OXT in substantial amounts reaching those brain regions

involved in the respective behaviors are still under debate

[1, 109, 151, 158, 159]. Possible routes of IN OXT pene-

trance include uptake into the olfactory and trigeminal nerves

connecting to the olfactory bulb and other brain regions,

uptake via the nasal vascular mucosa with high capillary

density, uptake into regions lacking a blood–brain barrier, i.e.,

the circumventricular organs, and limited transport across the

blood–brain barrier. Especially the extremely high amounts of

OXT generally applied IN may allow the latter route of

transport, as only an uptake of 0.005% of applied OXT can be

achieved [1]. Interestingly, the role of the seven circumven-

tricular organs lacking the blood–brain barrier, but expressing

OXTR (see Table 1 in [1]), and their neuronal connections

to various brain regions have not been investigated as

targets for circulating OXT yet. Moreover, OXT actions at

peripheral OXTR abundantly expressed in the heart, skin, and

autonomic nervous system including gastric vagal nerves (see

Table 2 in [1]) are likely to mediate peripheral OXT signals

after IN OXT to the brain.

So far, neither reliable side effects nor adverse con-

sequences have been reported in males or females, adults or

children after acute IN application of OXT (versus placebo) at

doses between 18 and 40 IU [160, 161]. However, a different

picture may emerge after chronically applied OXT. Despite

the fact that more detailed investigations on the effects of

chronic OXT treatment in large quantities are required, the

available studies performed in mice and voles describe

adverse behavioral effects accompanied by changes in intra-

cerebral OXTR expression and binding [110, 111, 162]. Also,

alterations in the fine-tuning of OXTR-mediated intraneuronal

signaling and interregional connectivity have to be considered

[1, 163]. Such studies may have enormous implications

for the use of IN OXT as long-term treatment for psycho-

pathologies. For example, given the modulatory cardiovas-

cular effects of OXT [164, 165], people with heart and

cardiovascular conditions may be more vulnerable to the

effects of OXT [161].

Given the central role of OXT for higher brain functions,

it is not surprising that variations in the Oxtr gene, i.e.,

single nucleotide polymorphisms (SNPs), have been asso-

ciated with individual differences in human behavior,

physiology, and brain anatomy [15, 166, 167]. Thus, SNPs

in the Oxtr have been associated with the feeling of lone-

liness [168], emotional withdrawal [169], emotion and

sociality dysregulation [170], distress [171], decreased

empathy [172], and decreased maternal sensitivity [173],

but also with disorders such as autism [167, 174] (for

review see [1]). However, limited evidence exists regarding

the structural and/or functional consequences of SNPs in the

Oxtr gene. To this end, it seems surprising that only very

recently, the crystal structure of the human OXTR has been
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solved, although in an inactive form as complex with

retosiban, a non-peptide antagonist [175].

Another direction of OXT research in humans stems

from the modulation of activity of endogenous OXT system

to amend emotional or social deficits. This can be achieved

either physiologically [84, 176, 177] or pharmacologically

[178, 179]. For example, physical exercise such as running

or swimming, and close social interactions with, but even

without direct physical contact were shown to significantly

stimulate the OXT system reflected by increased neuronal

activity, OXT synthesis, its intracerebral release or secretion

into the blood stream [49, 66, 70, 80–82, 84, 86, 152, 153].

Alternatively, the development of more sophisticated

delivery approaches may contribute to a more specific and

efficient increase in OXT availability in the ECF of human

patients identified with OXT system deficits. For example,

Prescott et al. were able to subcutaneously implant a

microchip into a dog over a period of 6 months, and this

microchip released the neuropeptide leuprolide (the analog

of gonadotropin releasing hormone) from 100 different,

individually addressable reservoirs [180]. Future advances

in this field might soon allow for substance release from

peripheral tissue implants, which stimulate endogenous

OXT release via activation of peripheral receptors [181–

183]. Whether intra-brain implants to locally release drugs

in the respective brain regions will ever become a serious

treatment option remains to be shown. So far, IN applica-

tion of OXT in combination with professional psychother-

apy proved to be a promising approach for the treatment of

patients suffering from PTSD, as there are no other effective

drugs available so far [184–186]. However, the cellular and

molecular mechanisms of OXT actions after IN application

have to be addressed in more detail to exclude subtle side

effects, for example, after chronic OXT treatment.

A promising strategy in this context could be to encou-

rage translational studies and the formation of tandem stu-

dies, i.e., animal and human researchers work in parallel on

a given subject (e.g., psychopathology, activity of neural

circuits, and stimulus condition) so that promising findings

can immediately be tested for the relevance in the respective

other species. Given the ever-growing body of available

techniques and resources, as well as advances in the field of

translational research [187, 188], we should be optimistic

that the quality of results from such studies will constantly

improve over the next years.

The OXT system in times of the COVID-19
crisis

There is profound evidence for an important role of the

brain OXT system including neuronal circuits and receptor-

mediated downstream signaling in regulating socio-emotional

behavior and stress responses under healthy physiological

conditions. Not only physical exercise, but especially close

social interactions associated with relevant physiological or

sensory stimuli activate central OXT expression and release

with beneficial mental health effects. In contrast, dysregula-

tion of any aspect of the complex neuropeptide system driven

by acute environmental, genetic, or epigenetic factors, is

likely to contribute to psychopathologies associated with

stress-induced socio-emotional dysfunctions. The present

disastrous situation after the coronavirus outbreak known as

COVID-19 is characterized by country-wide regulations with

the aim to combat the spread of the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2). Drastic restrictions

for the general public include curfew, home quarantine or

home office, and to generally keep physical distance to any

other person outside the household in many countries. All

these regulations have in common a dramatic social isolation,

and lack of face-to-face and physical interactions with rela-

tives, friends, or colleagues. As close social interactions are an

important mental health-protecting factor, a social isolation-

induced increase in fear and anxiety, depression, and feelings

of stress can be predicted [189]. In support, a general popu-

lation survey [190] revealed widespread concerns about the

consequences of the corona crisis associated with social dis-

tancing on mental well-being. Interestingly, the prospect of

becoming physically unwell with COVID-19 ranked lower

than issues related to the social and psychological response to

the pandemic [190].

For three reasons, the OXT system should increasingly

come into focus of the scientific discussion regarding the

causes and consequences of corona-induced impairments of

mental health. First, physical distancing and lack of direct

social interactions due to social isolation have adverse effects

on the activity of the OXT system: social isolation results

in lower density of neuronal branching (Neumann and

Grinevich, unpublished), and reduced neuropeptide synthesis,

and prevents socially stimulated central OXT release

[66, 191, 192]. Second, social support is an important factor

for our mental and physical well-being and for the recovery

from any disease [193, 194], and these effects are at least

partly mediated by the OXT system [195–198] (for review see

[39]). Finally, due to the pro-social and anti-stress effects of

the brain OXT system, IN application of the synthetic peptide

or efficient activation of the endogenous OXT are potential

options to prevent or reverse social isolation-induced

impairment in mental well-being and the development of

serious psychopathologies, associated with such a dramatic

crisis affecting our social lives.
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