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Abstract

Background: We aimed to describe specific changes in brain perfusion in patients with dementia with Lewy bodies

(DLB) at both the prodromal (also called mild cognitive impairment) and mild dementia stages, relative to patients

with Alzheimer’s disease (AD) and controls.

Methods: Altogether, 96 participants in five groups (prodromal DLB, prodromal AD, DLB with mild dementia, AD

with mild dementia, and healthy elderly controls) took part in an arterial spin labeling MRI study. Three analyses were

performed: a global perfusion value comparison, a voxel-wise analysis of both absolute and relative perfusion, and a

linear discriminant analysis. These were used to assess the global decrease in perfusion, regional changes, and the

sensitivity and specificity of these changes.

Results: Patterns of perfusion in DLB differed from AD and controls in both the prodromal stage and dementia, DLB

having more deficits in frontal, insular, and temporal cortices whereas AD showed reduced perfusion in parietal and

parietotemporal cortices. Decreases but also increases of perfusion in DLB relative to controls were observed in both

absolute and relative measurements. All these regional changes of perfusion classified DLB patients with respect to

either healthy controls or AD with sensitivity from 87 to 100 % and specificity from 90 to 96 % depending on the stage

of the disease.

Conclusions: Our results are consistent with previous studies. We extend the scope of those studies by integrating

prodromal DLB patients and by describing both hypo- and hyperperfusion in DLB. While decreases in perfusion may

relate to functional impairments, increases might suggest a functional compensation of some brain areas.
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Background
Dementia with Lewy bodies (DLB) is clinically charac-

terized by cognitive impairment together with fluctuat-

ing cognition, parkinsonism, and visual hallucinations. It

is the second most common form of neurodegenerative

dementia after Alzheimer’s disease (AD), accounting for

10–20 % of patients with dementia [1].
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A diagnosis of DLB is difficult to establish since at the

early stage there is no clear cognitive pattern. Symptoms

include non-amnestic mild cognitive impairment (MCI)

[2] and at later stages DLB is mixed with other types of

dementia. Establishing a differential diagnosis is all the

more difficult as patients could present symptoms of AD,

making DLB heterogeneous. Furthermore, clinical crite-

ria lack sensitivity [1, 3, 4] and inter-rater reliability [5],

although new neuropsychological tools have recently been

developed [6, 7]. Therefore, in clinical routine, DLB can

be mistaken for AD [3]. Yet, making an early and accurate

diagnosis is mandatory for prognosis and management,

as well as for pharmacological treatment [1], since some
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drugs such as neuroleptics have shown deleterious effects

in DLB [8, 9].

Brain imaging may provide information to refine the

diagnosis of DLB [10]. As functional changes can precede

atrophy [11], functional neuroimaging may be particularly

relevant to the study of the early stage of DLB. Among

the various methods that assess brain functioning, cere-

bral blood flow (CBF) or brain perfusion can be evaluated

using [15O] positron emission tomography (PET), single

photon emission computerized tomography (SPECT), or

arterial spin labeling (ASL) MRI. To our knowledge, brain

perfusion in DLB has not been evaluated using [15O] PET.

Studies using SPECT have shown occipital hypoperfu-

sion [11–16] together with relatively preserved perfusion

in the medial temporal lobe [14–16] in DLB in contrast

to AD. The frontal, parietal, and cingulate cortices have

also been reported to be altered when compared to elderly

controls [15–17]. Similar results have been reported in

ASL MRI studies [18–20] as well as in [18F]-fluoro-d-

glucose PET studies assessing metabolism [21–27]. Taken

together, these results indicate perfusion changes in DLB

in the dementia stage. Therefore, we still have to assess

early differences of perfusion between DLB and AD, at the

prodromal stage (also named MCI).

Using magnetically labeled arterial blood water as an

endogenous tracer, ASL has the advantage over SPECT

and PET of being non-invasive, available in clinical rou-

tine, more reliable [28], and providing absolute values of

CBF (i.e., without any global CBF weighting by the CBF

of a given brain area, such as the cerebellum). ASL may,

therefore, be a suitable tool for assessing perfusion in a

diagnostic perspective.

In this study, we aimed to describe whole-brain ASL

perfusion changes according to both the diagnosis and the

cognitive impairment. We studied DLB and AD patients.

For both diseases, patients were divided into a prodromal

group and a mild dementia stage group, and we com-

pared them with an elderly control group. We planned

to assess differences between DLB and AD as well as

between prodromal and the mild dementia stage in DLB.

We postulated that ASL MRI would be sufficiently sen-

sitive to detect changes in perfusion even in prodromal

DLB. As global CBF (i.e., whole-brain CBF) seems to

be altered in DLB [18], we also assessed regional CBF

(rCBF, as relative perfusion) by a weighting of mean

perfusion.

Methods

Participants

Altogether, 132 participants were recruited for this study,

of which 12 patients were excluded due to motion dur-

ing the MRI acquisition (see the section “MRI process-

ing”), resulting in a total of 120 participants, comprising

44 patients with prodromal DLB (pro DLB group), 16

patients with DLB at the mild dementia stage (mild DLB

group), 13 patients with prodromal AD (pro AD group),

26 patients with AD at the mild dementia stage (mild

AD group), and 21 healthy elderly controls (HC group).

Patients sharing both DLB and AD criteria were not

included in the study. Demographic and clinical data are

presented in Table 1. The five groups were examined by

clinicians with expertise in dementia, who performed a

complete anamnesis andmedical examination. Using [29],

akinesia, rigidity, and tremor at rest were rated from 0

to 4 (0 for no symptoms to 4 for serious impairment).

Fluctuations were assessed with the Mayo Clinic Fluctu-

ations scale [30] and the Newcastle-upon-Tyne Clinician

Assessment of Fluctuation scale [31], and patients with a

score greater than or equal to 2 were considered as having

fluctuations. Cognitive functions were evaluated using the

following tests:

• Mini-Mental State Examination (MMSE) for general

cognitive functions
• The French version of the Free and Cued Selective

Reminding Test, the Delayed Matching-to-Sample

test (48 items), and the digit-span test for memory

functions
• The Dénomination Orale (oral naming test, 80 items)

for language
• The Frontal Assessment Battery, the Trail Making

Test A and B, the Digit Symbol Substitution Test, and

formal and semantic lexical evocation for executive

functions
• The praxis set of Mahieux and the Rey-Osterrieth

complex figure test for praxis
• The number localization and cube analysis of the

Visual Object and Space Perception battery for

visuo-perceptive functions

All patients underwent cerebrospinal fluid analysis,

includingmeasurement of tau, phospho-tau, and amyloid-

beta (1–42) (Innogenetics’s Innotest�, ELISA). Assess-

ment of medial temporal lobe atrophy and parietal lobe

atrophy on brain MRI were performed using the stan-

dardized Scheltens scale [32] and the Koedam scale [33]

(5 categories, from 0 to 4 with 0 corresponding to no

atrophy), respectively. Vascular damage in white matter

and basal ganglia was assessed separately according to

the Wahlund scale [34]. An etiologic diagnosis of the

neurocognitive disorder for each patient was made using

Dubois’s criteria for pro AD and mild AD [35], and McK-

eith’s criteria (probable DLB, i.e., at least two core symp-

toms) for mild DLB [1]. Pro DLB patients were defined

as patients with MCI (Petersen criteria) [36], preservation

of independence (assessed by the Instrumental Activi-

ties of Daily Living) and by McKeith’s criteria (meeting

probable DLB criteria except presence of dementia) [1].

The numbers of patients treated with dopaminergic drugs
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Table 1 Demographic and clinical data of participants

Characteristic Pro DLB Mild DLB Pro AD Mild AD HC

Participants 46 16 13 25 21

Female 26 8 4a 17 12

Age, years (SD) 69.4 (8.8) 74.7 (10.2)∗ 74.5 (9.9)∗ 73.6 (9.1)∗ 64.8 (8.6)

MMSE score (SD) (maximum 30) 27.5 (1.4) 20.7 (3.4) 27.1 (1.5) 19.5 (3.4) 28.9 (1.0)

Participants with visual hallucinations 19 9 0 3 0

Participants with parkinsonism 34 11 1 7 0

Participants with cognitive fluctuations 28 9 0 5 0

Medial temporal lobe atrophy (L, R)

Participants with a score of 0 18, 16 6, 4 3, 3 7, 5 13, 9

Participants with a score of 1 11, 12 1, 4 5, 6 5, 9 7, 10

Participants with a score of 2 12, 15 4, 4 4, 4 7, 5 1, 2

Participants with a score of 3 5, 2 3, 2 1, 0 5, 3 0, 0

Participants with a score of 4 0, 1 2, 2 0, 0 1, 3 0, 0

Parietal lobe atrophy (L, R)

Participants with a score of 0 14, 14 9, 8 4, 2 5, 6 7, 8

Participants with a score of 1 16, 17 4, 5 7, 8 8, 6 9, 8

Participants with a score of 2 12, 11 3, 3 2, 3 9, 9 4, 5

Participants with a score of 3 0, 4 4, 0 0, 0 3, 4 0, 0

Participants with a score of 4 0, 0 0, 0 0, 0 0, 0 0, 0

Vascular damage in white matter

Participants with a score of 0 25 4 7 9 7

Participants with a score of 1 15 7 4 7 12

Participants with a score of 2 6 4 1 7 2

Participants with a score of 3 0 1 1 2 0

Vascular damage in basal ganglia

Participants with a score of 0 33 13 10 17 21

Participants with a score of 1 11 1 2 5 0

Participants with a score of 2 2 1 1 0 0

Participants with a score of 3 0 1 0 3 0

Participants with AchI medication 14 11 2 17 0

Participants with dopaminergic medication 13 6 0 0 0

Medial temporal lobe atrophy, parietal lobe atrophy, and vascular damage were assessed according to the Scheltens, Koedam, and Wahlund scales, respectively. Pro AD were

more male than mild AD. Mild DLB, pro AD, and mild AD were older than HC

AchI acetylcholinesterase inhibitor, AD Alzheimer’s disease, DLB dementia with Lewy bodies, HC healthy (elderly) controls, L left hemisphere,MMSE Mini-Mental State

Examination, R right hemisphere, SD standard deviation
*p < 0.05
ap < 0.01

or cholinesterase inhibitors are listed in Table 1. The con-

trol group consisted of elderly healthy and cognitively

intact (no MCI) subjects who were recruited via adver-

tisements in local community newsletters in Strasbourg,

and via the listing of controls of the local clinical investi-

gation center (Centre d’Investigation Clinique) in charge

of any type of medical research of the University Hospital

of Strasbourg. Exclusion criteria for participation in the

study included contraindications for MRI, history of alco-

hol or substance misuse, evidence suggesting alternative

neurological or psychiatric explanations for their symp-

toms or cognitive impairment, focal brain lesions on brain

imaging, and the presence of other severe or unstable

medical illness. All patients had a formal assessment of
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their diagnosis by three independent expert clinicians (FB,

BC, and NP) and controls underwent similar clinical and

cognitive assessments to exclude any who may have had

occult MCI or dementia. Patients with concomitant AD

and DLB, i.e., meeting both McKeith’s (for probable DLB)

and Dubois’s criteria were also excluded.

The study was approved by the local Ethics Committee

(Comité de Protections des Personnes Est IV, Strasbourg,

France). Controls and patients gave written informed

consent.

Data acquisition

The pulsed ASL sequence was performed on a Siemens

Verio 3T scanner equipped with a 32-channel head coil

(Siemens, Erlangen, Germany). In total, 121 whole-brain

T2∗-weighted (gradient echo) echo planar images were

acquired using the QUIPPS II sequence provided by the

manufacturer. The parameters were:

• Repetition time (TR): 3 s
• Flip angle: 90°
• Echo time (TE): 21 ms
• Inversion time 1 (TI1): 600 ms
• Inversion time 2 (TI2): 1325.1 ms
• Field of view (FOV): 152 × 256 × 112mm
• Imaging matrix: 38 × 64 × 28
• 4 mm3 isotropic voxels, acceleration factor

(generalized auto-calibrating partially parallel

acquisitions [GRAPPA]): 2

The tagged volume was 10 cm thick, positioned at the

neck, and its distal part was 23 mm below the first slice to

avoid saturation. Bipolar gradients were used to eliminate

the signals from fast moving spins (>10 cm·s−1). The first

volume recorded corresponded to M0, and non-tagged

images were acquired in alternation with tagged images.

A 3D MPRAGE T1-weighted image was also acquired

at the same session. The parameters were: imaging matrix

192 × 192 × 176 and 1 mm3 isotropic voxels.

MRI processing

Images were processed using SPM8 (Welcome Depart-

ment of Cognitive Neurology, London, UK) and in-house-

developed software. All data were processed for each

participant separately.

Functional images were first corrected for motion

and magnetic field B0 inhomogeneities. According to

the motion parameters provided by SPM, patients with

translations and rotations higher than 2 mm and 2°,

respectively, were removed from the analysis. As the

TE is high enough to make the ASL sequence sensitive

to blood oxygen level-dependent fluctuations, the sig-

nals were high-pass filtered at 0.1125 Hz according to

the method of Chuang et al. [37]. One CBF map per

subject was then calculated according to the TE-corrected

method published by Foucher et al. [38]. The M0 map

was coregistered to the T1 image and the transforma-

tion parameters were used to coregister the CBF map

in the same way. The T1 image was segmented using

the New Segment toolbox, leading to five high defini-

tion maps (gray and white matter, cerebrospinal fluid,

meninges, and bones). The first three served as a brain

mask to exclude non-cerebral voxels from the CBF map.

Gray and white matter probability maps also served to cal-

culate spatial normalization parameters to the Montreal

National Institute (MNI) space according to the DAR-

TEL approach. T1 and CBF maps were then spatially

normalized according to the normalization parameters.

During this procedure, CBF maps were smoothed (full

width at half maximum of 8 × 8 × 8 mm) but not

modulated.

Statistical analyses

Analyses were performed in Matlab (R2012b, Mathworks,

Natick, MA). The gender and age distribution between

groups were assessed by chi-squared tests and a one-

way ANOVA, respectively. A global decrease in perfu-

sion in patients relative to healthy controls was evaluated

by two-sample T-tests on values of whole-brain mean

perfusion.

Voxel-wise statistical analyses of perfusion were per-

formed using ANOVA, with age [39, 40] and gender

[40] as regressors of non-interest. These analyses were

both conducted in absolute and relative measurements,

the latter being corrected for the global mean value.

The relative measurement corrects for inter-individual

differences in global perfusion and explains local differ-

ences in perfusion. The statistical analyses combined a

puncorrected < 0.001 threshold at the voxel level with

a cluster size threshold of 40 voxels (i.e., 320 mm3).

Following a multiple comparison correction (familywise

error or FWE) of pFWE < 0.05 at the cluster level,

significant clusters in the tables are identified by a

superscript.

The clusters resulting from the voxel-wise analyses were

subsequently considered as regions of interest (ROIs) in a

two-class k-means classification and a linear discriminant

analysis. The k-means analysis classified the patients and

HC and provided the values of sensitivity and specificity

for the patient group (or for DLB when the comparison

concerned DLB versus AD). The discriminant analysis

modeled the difference in perfusion between groups. As

we aimed to model it with the simplest equation, we chose

the shortest combination of ROIs that maximized the val-

ues of sensitivity and specificity (to assess for sensitivity

and specificity, a leave-one-out cross-validation was used

and the estimated classification was compared to the true

diagnosis).
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Results
Demographic data are presented in Table 1. Age differed

between groups (F[ 4, 116] ) = 4.4; p < 0.01): mild DLB,

pro AD, and mild AD being older than HC (p < 0.05).

The proportion of male patients was higher in the pro AD

group than in the mild AD group (p < 0.01).

Perfusion in prodromal patients

The difference in global perfusion relative to HC was sig-

nificant in the pro AD group (p < 0.05) but not in the pro

DLB group.

The results for focal relative perfusion in prodromal

patients are presented in Table 2 and Fig 1. Hypoperfusion

in pro DLB compared to HC occurred in the right frontal,

parietal, and temporal cortex together with the anterior

insula. Only the left superior frontal gyrus showed an

increase in relative perfusion in pro DLB. Absolute hypop-

erfusion gave similar results with a loss of perfusion in the

right temporal and anterior insula, whereas the left supe-

rior frontal gyrus was hyperperfused (Additional file 1:

Table S1 and Figure S1. Please refer to these supple-

mentary data for all results of absolute perfusion). Pro

AD showed hypoperfusion compared to HC in the right

inferior frontal gyrus and bilateral angular gyrus, and

hyperperfusion was seen in the left supramarginal gyrus

(absolute assessment showed a similar pattern of hypop-

erfusion, but without any increase in perfusion relative to

HC). Comparison between pro DLB and pro AD revealed

a lower relative perfusion in DLB in the fusiform gyrus (as

with absolute measurements). Pro AD did not have any

hypoperfused brain areas relative to pro DLB (but abso-

lute measurements showed a decrease in the left angular

gyrus).

Perfusion in patients with dementia

The difference in global perfusion relative to HC showed

a trend towards statistical significance in mild AD (p =

0.059), but not in mild DLB.

Mild DLB patients showed a variety of hypoperfused

brain areas compared to HC (Table 3 and Fig 2), includ-

ing the frontal and temporal cortex, bilateral anterior

insula, and caudate nucleus (as in absolute measurement;

see Additional file 1: Table S2 and Figure S2). Hyper-

perfusion in mild DLB patients was observed mainly

in the left precuneus. In mild AD, compared to HC,

perfusion was reduced in parietal and temporal areas

(assessment of absolute perfusion provided a similar pat-

tern), whereas hyperperfusion was restricted to the left

putamen (no increases in mild AD were revealed with

absolute perfusion).When patient groups were compared,

mild DLB showed a lower perfusion than mild AD in

the frontal and temporal cortices together with the left

supramarginal gyrus, anterior insula, and caudate nucleus

(a difference in absolute perfusion only concerned the

anterior insula and the supramarginal and superior tem-

poral gyri). In contrast, mild AD had a reduced rCBF in

the bilateral precuneus, left supramarginal, and medial

superior frontal gyri (only the bilateral precuneus and

the left supramarginal gyrus in assessment of absolute

perfusion).

Table 2 Significant changes in relative perfusion in prodromal patients

Contrast Region Laterality Extent Coordinates (x, y, z) Sensitivity Specificity

Pro DLB < HC Middle temporal R 960 38 –58 6 65 76

Anterior insula
R 840 36 34 0 74 90

Inferior frontal

Superior parietal R 648 16 –62 50 80 62

Superior orbital R 336 18 66 –14 54 95

Pro DLB > HC Superior frontal L 432 –16 32 38 57 90

Pro AD < HC Angular R 1280 42 –54 28 100 95

Angular L 448 –38 60 26 92 76

Inferior frontal R 400 34 38 0 76 92

Pro AD > HC Supramarginal L 432 –62 –24 26 69 90

Pro DLB < pro AD Fusiform R 984 34 –30 –18 72 69

Pro AD < pro DLB – – – – – – – –

Extent is expressed in mm3 . Coordinates are in the Montreal National Institute space. Sensitivity and specificity are percentages, relative to DLB identification except for

comparison between pro AD and HC

AD Alzheimer’s disease, DLB dementia with Lewy bodies, HC healthy (elderly) controls, L left hemisphere, R right hemisphere
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Fig. 1 Statistical maps of relative perfusion in prodromal patients and healthy controls. Numbers are z-coordinates in the MNI space. Left column:

Pro DLB minus HC.Middle column: Pro AD minus HC. Right column: Pro DLB minus pro AD. Positive (red) and negative (blue) T -values are,

respectively, hyper- and hypoperfusion resulting from a voxel-wise ANOVA (puncorrected < 0.001, cluster size threshold of 40 voxels). The anatomical

image used as a template is an average T1 from the encompassed groups. AD Alzheimer’s disease, DLB dementia with Lewy bodies, HC healthy

(elderly) controls,MNIMontreal National Institute

Perfusion according to the level of cognitive impairment

Patients at different stages of the same disease were

also compared, i.e., prodromal groups were compared

to mild dementia groups. Mild DLB had lower perfu-

sion than pro DLB in the left anterior insula, the inferior

frontal gyrus, the right anterior and middle cingulum, the

bilateral middle temporal gyrus, and the caudate nuclei

(Table 4 and Fig. 3) (absolute perfusion revealed a simi-

lar pattern of decreasing perfusion; see Additional file 1:

Table S3 and Figure S3). Mild AD had reduced perfu-

sion compared to pro AD in the right precuneus and

the left inferior parietal lobule (only the inferior pari-

etal lobule was significant in measurement of absolute

perfusion).

Discriminant analysis

The linear discriminant analysis revealed the optimal

weighting for the combination of ROIs that best segre-

gated the two populations. We performed this analysis

for all possible combinations of ROIs resulting from the

voxel-wise comparisons. Since only cluster was signif-

icant between pro DLB and pro AD, no discriminant

analysis was performed on this contrast. We obtained

the most accurate classification compared to the medi-

cal diagnosis with the linear discriminant analysis formula

shown in Table 5 (for discriminant analysis with abso-

lute measurements of perfusion, see Additional file 1:

Table S4). Values of sensitivity and specificity were good

to perfect (Table 5). Nevertheless, they were higher when

discriminating mild DLB than when discriminating pro

DLB. No discriminant analysis was performed on the con-

trast between pro AD and HC since there was only one

cluster.

Discussion
Our aim was to describe brain perfusion disorders in

the early stages of DLB using the pulsed ASL tech-

nique. We performed whole-brain voxel-wise analyses

to compare two stages of DLB and AD, i.e., prodro-

mal (or MCI) and dementia, as well as a fifth group

of elderly controls. To evaluate whether perfusion MRI

would help with diagnosis, we used classification tools (k-

means and discriminant analysis) to assess the sensitivity

and specificity of each significant cluster resulting from

the voxel-wise analysis, and of specific combinations of

clusters.
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Table 3 Significant changes in relative perfusion in patients with mild dementia

Contrast Region Laterality Extent Coordinates (x, y, z) Sensitivity Specificity

Mild DLB < HC
Caudate nucleus∗

R
5128

12 16 6
94 81

L –10 14 4

Middle temporal L 2456 –54 –20 –14 81 86

Middle temporal R 2064 42 –52 8 75 76

Anterior insula
R 1560 36 36 0 81 100

Inferior frontal

Anterior insula L 1072 –30 22 6 75 90

Inferior frontal L 576 –34 12 24 75 67

Mild DLB > HC Precuneus L 952 –6 –60 58 50 100

Mild AD < HC Inferior parietal L 1640 –46 –42 48 72 86

Superior parietal
R 1440 16 –62 50 84 67

Precuneus

Superior temporal R 584 44 –48 18 84 76

Precentral sulcus L 472 –34 4 44 96 52

Middle temporal R 360 62 –42 14 72 81

Superior temporal L 352 –42 –42 0 80 76

Mild AD > HC Putamen L 352 –30 –4 –12 60 86

Anterior insula
L 2168 –28 26 2 88 84

Inferior frontal

Superior temporal R 1416 –56 –18 4 94 88

Caudate nucleus L 1016 –14 16 –6 81 68

Mild DLB < mild AD Inferior frontal R 752 36 38 –2 88 76

Supramarginal L 752 –44 –28 34 88 72

SMA R 704 12 –6 54 69 92

Inferior frontal L 496 –38 12 22 63 80

Middle temporal L 480 –64 –20 –10 69 92

Mild AD < mild DLB Precuneus∗ LR 2896 2 –60 52 69 92

Medial superior frontal L 704 –2 60 32 69 92

Medial superior frontal L 584 –2 46 44 69 92

Supramarginal L 496 –56 –30 24 69 92

Extent is expressed in mm3 . Coordinates are in the Montreal National Institute space. Sensitivity and specificity are percentages, relative to DLB identification except for

comparison between mild AD and HC

AD Alzheimer’s disease, DLB dementia with Lewy bodies, HC healthy (elderly) controls, L left hemisphere, R right hemisphere, SMA supplementary motor area
*pFWE < 0.05

Changes in DLB

Care is needed when interpreting differences in perfusion,

particularly when two diseases or two stages of the same

disease are being compared. Both hypo- and hyperper-

fusion were indeed observed in DLB relative to controls,

suggesting distinct phenomena. Hypoperfusion occurred

mainly in the middle temporal gyrus, and the right frontal

and anterior insula in pro DLB; it then extended to the

contralateral hemisphere and to the caudate nuclei when

the disease worsened. This expansion of hypoperfused

areas when the cognitive impairment increases was con-

firmed by contrasting pro DLB and mild DLB since it

provided a similar pattern (plus the middle and ante-

rior cingulum). Frontal and temporal hypoperfusion is

consistent with previous reports [18, 20]. Hypoperfu-

sion in prefrontal areas may be associated with impair-

ment in DLB of executive functions [41] and attention

[42], whereas the deficit in middle temporal areas would

instead relate to memory [43]. A previous study on hallu-

cination in AD [44] reported that the right anterior insula
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Fig. 2 Statistical maps of relative perfusion in patients with mild dementia and healthy controls. Numbers are z-coordinates in the MNI space. Left

column: Mild DLB minus HC.Middle column: Mild AD minus HC. Right column: Mild DLB minus mild AD. Positive (red) and negative (blue) T -values are,

respectively, hyper- and hypoperfusion resulting from a voxel-wise ANOVA (puncorrected < 0.001, cluster size threshold of 40 voxels). The anatomical

image used as a template is an average T1 from the encompassed groups. AD Alzheimer’s disease, DLB dementia with Lewy bodies, HC healthy

(elderly) controls,MNIMontreal National Institute

may be involved in the process of hallucination, suggest-

ing that the early impairment of the anterior insula we

described may be involved in the occurrence of halluci-

nations. The decrease in CBF in the caudate nuclei may

instead be related to parkinsonism. According to previ-

ous studies, occipital hypoperfusion seems to be a core

feature of DLB and may be related to visual hallucina-

tions [14, 45]. Moreover, patients with DLB commonly

present visual perceptual and visuospatial dysfunctions

[46]. In our study, pro DLB and mild DLB did not show

occipital hypoperfusion. However, a very strong effect of

age was observed in the occipital cortex, which may mask

the effect of the pathology and explain some discrepan-

cies with previous studies, as most of them did not correct

for age. The early stages of the disease and the number of

patients who complain of visual hallucinations and visual

impairment may also explain this difference [14]. Further

correlates between perfusion and cognitive performances

would provide information about variants in the first stage

of DLB. In addition to the hypoperfusion pattern, the

frontal cortex in pro DLB and the precuneus in mild DLB

showed an increase in CBF compared to HC (contrasting

pro DLB with mild DLB confirmed these results). Such

observations are only partly due to the relative assessment
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Table 4 Significant changes of relative perfusion according to the level of cognitive impairment

Contrast Region Laterality Extent Coordinates (x, y, z)

Mild DLB < pro DLB Caudate nucleus∗ L 4968 –12 6 12

Inferior frontal L 2064 –32 14 24

Middle temporal L 1320 –58 –10 –18

Anterior insula L 1144 –28 24 4

Caudate nucleus R 936 10 10 4

Middle cingulum R 880 10 4 42

Anterior cingulum R 704 16 34 20

Middle temporal R 456 60 –12 –16

Middle temporal L 384 –56 –56 8

Pro DLB < mild DLB Precuneus L 744 –4 –60 58

Mild AD < pro AD Inferior parietal L 1544 –60 –46 42

Precuneus R 344 14 –60 28

Pro AD < mild AD Cuneus L 496 16 –102 12

Inferior frontal R 432 34 38 0

Extent is expressed in mm3 . Coordinates are in the Montreal National Institute space. Sensitivity and specificity are percentages, relative to DLB identification except for

comparison between AD and HC

AD Alzheimer’s disease, DLB dementia with Lewy bodies, HC healthy (elderly) controls, L left hemisphere, R right hemisphere
*pFWE < 0.05

of perfusion (by correcting for the whole-brain mean

value), as absolute perfusion also revealed these hyperper-

fused regions. Whereas hypoperfusion relative to controls

may reflect a decrease in neuronal activity in patients,

hyperperfusion may reveal a compensatory process by

which patients make up for the initial neuronal disorders

[47–49]. Therefore, assessing perfusion seems to indicate

a disorganization in DLB of some parts of the cortex, with

both under- and over-activated areas.

Changes in AD

Perfusion in AD was mainly reduced in the parietal and

parietotemporal cortex, where the deficit started as early

as the prodromal stage. Such impairments are in accor-

dance with previous studies using ASL [50, 51], SPECT

[13, 52], or PET [24]. Our data also showed that perfu-

sion in these areas decreased with the cognitive decline

(i.e., from theMCI stage to dementia).While our transver-

sal study was not designed to compare the prodromal

patients who convert to dementia to those who do not,

the hypoperfusion we observed in the parietal and pari-

etotemporal cortex and the fusiform gyrus has been

reported by other groups as a predictor of conversion

to dementia [53, 54]. Exploring perfusion according to

the cognitive profile of patients with AD suggested that

such hypoperfusion relates to the impairment of execu-

tive functions [55] and memory [56, 57]. We found that

pro AD had lower perfusion than mild AD in the inferior

frontal gyrus and the cuneus, which, according to our

results and previous reports [15], is more typical of DLB.

This counterintuitive result could reflect the lack of sensi-

tivity of the DLB criteria [1, 3, 4], reinforcing the need for

new biomarkers of DLB. Another explanation would be a

compensatory phenomenon in mild DLB with hyperacti-

vation in the frontal and occipital cortices.

Changes between DLB and AD

Hypoperfusion in DLB relative to AD mainly occurred

in the frontal cortex, the anterior insula, and the caudate

nuclei, and in parts of the temporal cortex and supplemen-

tary motor area. Hypoperfusion in AD relative to DLBwas

in the medial frontal cortex and the parietal lobe. Hypop-

erfusion was unsurprisingly more extensive in dementia

than in MCI, a finding that could be related to the stage

of the disease but also to a lack of statistical power

given the lower number of patients in the pro AD group.

These patterns mainly agreed with the comparisons to

HC. They are also in accordance with previous reports

[18, 20] but differ in terms of occipital hypoperfusion in

mild DLB (although Fong et al. [20] did not show occip-

ital hypoperfusion either). The differences in perfusion

between DLB and AD are consistent with the cogni-

tive profiles of the diseases, the former being predom-

inantly a frontal (and occipital) related disease and the

latter being a posterior and medial temporal lobe related

disease.
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Fig. 3 Statistical maps of relative perfusion according to the level of cognitive impairment. Numbers are z-coordinates in the MNI space. Left column:

Pro DLB minus mild DLB. Right column: Pro AD minus mild AD. Positive (red) T-values are hypoperfusion in the mild groups resulting from a

voxel-wise ANOVA (puncorrected < 0.001, cluster size threshold of 40 voxels). The anatomical image used as a template is an average T1 from the

encompassed groups. AD Alzheimer’s disease, DLB dementia with Lewy bodies,MNIMontreal National Institute

Table 5 Linear discriminant analysis to classify subjects according to their relative pattern of perfusion

Contrast Regions of interest Coefficient Constant Sensitivity Specificity

Pro DLB vs HC Middle temporal (R) 5.5 –24.1 87 90

Anterior insula/inferior frontal (R) 9.2

Superior parietal (R) 8.1

Superior orbitofrontal (R) 5.1

Superior frontal (L) –5.9

Mild DLB vs HC Caudate nucleus (LR) 19.8 –38.5 94 95

Middle temporal (R) 13.3

Anterior insula/inferior frontal (R) 4.8

Anterior insula (L) 8.4

Mild DLB vs mild AD Superior temporal (R) 9.2 –12.5 100 96

Caudate nucleus (L) 5.1

Inferior frontal (L) 9.4

Precuneus (LR) –2.8

Supramarginal (L) –12.8

Coefficients are mean coefficients (leave-one-out cross-validation) corrected for age and gender. As an example, to distinguish mild DLB from HC: Classification = constant +

mean perfusion in bilateral caudate nucleus × 19.8 + mean perfusion in right middle temporal gyrus × 13.3 + mean perfusion in right anterior insula × 4.8 + mean perfusion

in left anterior insula × 8.4

AD Alzheimer’s disease, DLB dementia with Lewy bodies, HC healthy (elderly) controls, L left hemisphere, R right hemisphere
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Sensitivity and specificity

Discriminant analyses of the perfusion differences

between DLB and HC and between DLB and AD provided

good values of sensitivity and specificity, even with a

small set of ROIs (sensitivity from 87 to 100 %; specificity

from 90 to 96 %). These values were higher than those

in previously published results obtained using SPECT

[11, 12, 14, 15, 58] and PET [21, 24]. They were processed

to give higher values than each ROI taken individually.

Although mild DLB was more accurately classified than

pro DLB, the good sensitivity and specificity suggest that

DLB and AD could be differentiated at an early stage of

the disease, such as the prodromal stage. It is noteworthy

that the voxel-wise analysis and the discriminant analysis

were performed on the same subjects since the sample

size was too low to divide the groups into a learning and a

testing data set. Therefore, the circular analysis we used

can provide high values of sensitivity and specificity,

which has to be considered as the upper limit of what can

be achieved by a pulsed ASL study in discriminating DLB

from HC and AD.

Relative and absolute perfusion

Whole-brain CBF has been reported to be globally

reduced in DLB [18]. Our results were not in line with this

finding since AD but not DLB showed a global decrease of

perfusion. This global reduction might mask some hyper-

activation relative to whole-brain functioning and make

the hypoperfusion pattern look more consistent that it

actually is. By taking into account the mean perfusion,

i.e., assessing relative perfusion as in SPECT, we described

some local brain hypo- and hyperperfusion in DLB that

was only partly observed in absolute values.

Limitations

Some of the changes in perfusion observed in this study

may partly be due to atrophy, even though we limited

this bias by using the DARTEL normalization procedure

(a common template across healthy subjects and patients

was created) without modulation of the perfusion images

(i.e., areas that were expanded or shrank to match the

common template were not modified in intensity of per-

fusion). In this study, we assessed perfusion in DLB with

a pulsed ASL sequence as did Taylor et al. [19], whereas

other groups used pseudocontinuous [18] or continuous

ASL [20]. Although the pseudocontinuous labeling tech-

nique has greater sensitivity than pulsed and continuous

ASL, their intra- and mutli-center reproducibility is rea-

sonable for the three ASL techniques [59]. Therefore,

some differences between DLB, AD, and HC may still

be hidden when using the pulsed ASL sequence, but the

significant differences we found may not depend on the

sequence. Another limitation of the study is the impact

on statistical power due to differences in the number

of participants between groups. As a consequence, some

brain dysfunctions may have been underestimated. Other

group differences could nevertheless be limited by the

covariates: although the proportion of males was higher in

the pro AD group than in the other groups, we accounted

for gender in the statistical analyses, as we did for age.

Lastly, although we used a leave-one-out cross-validation

to classify the patients according to their perfusion pat-

tern, a validation using other data sets will need to be

performed. Nevertheless, this is one more step towards a

multi-sequence and multi-MRI validation.

Conclusions
This whole-brain voxel-wise study demonstrates that ASL

can reveal specific changes in brain perfusion in DLB,

even in its early stage such as in MCI. By combining per-

fusion values from a few ROIs, DLB can be differentiated

from both AD and controls.
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