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Abstract

In recent years, the security concerns about the vulnerability of Deep Convo-
lutional Neural Networks (DCNN) to Adversarial Attacks (AA) in the form
of small modifications to the input image almost invisible to human vision
make their predictions untrustworthy. Therefore, it is necessary to provide
robustness to adversarial examples in addition to an accurate score when
developing a new classifier. In this work, we perform a comparative study
of the effects of AA on the complex problem of art media categorization,
which involves a sophisticated analysis of features to classify a fine collection
of artworks. We tested a prevailing bag of visual words approach from com-
puter vision, four state-of-the-art DCNN models (AlexNet, VGG, ResNet,
ResNet101), and the Brain Programming (BP) algorithm. In this study, we
analyze the algorithms’ performance using accuracy. Besides, we use the
accuracy ratio between adversarial examples and clean images to measure
robustness. Moreover, we propose a statistical analysis of each classifier’s
predictions’ confidence to corroborate the results. We confirm that BP pre-
dictions’ change was below 2% using adversarial examples computed with
the fast gradient sign method. Also, considering the multiple pixel attack,
BP obtained four out of seven classes without changes and the rest with a
maximum error of 4% in the predictions. Finally, BP also gets four cate-
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gories using adversarial patches without changes and for the remaining three
classes with a variation of 1%. Additionally, the statistical analysis showed
that the predictions’ confidence of BP were not significantly different for each
pair of clean and perturbed images in every experiment. These results prove
BP’s robustness against adversarial examples compared to DCNN and hand-
crafted features methods, whose performance on the art media classification
was compromised with the proposed perturbations. We also ratify the com-
petitive score of BP against the state-of-the-art classifiers for the art media
categorization problem.

Keywords: Brain Programming, Adversarial Attacks, Image Classification,
Art Media Categorization

1. Introduction

Image classification is an active research area in artificial intelligence,
whose primary goal is to analyze contextual information or visual content of
an image and assign it to the class or category to which it belongs [1]. There
have been significant efforts on areas such as Computer Vision (CV), Machine
Learning (ML), Evolutionary computation (EC), and Swarm Intelligence (SI)
to tackle this problem [2, 3, 4]. Two predominant methods have been among
the most popular and successful approaches for solving image classification
problems: 1) Bag of Visual words (BoV) from CV and 2) Deep Convolutional
Neural Networks (DCNN) also known as Deep Learning (DL), a subdivision
of ML [5, 6]. Nonetheless, EC and SI have mostly contributed in two manners:
1) optimizing feature selection and 2) optimizing DCNN architectures.

In this manner, Genetic Programming (GP) has been one of EC’s prin-
cipal tools to optimize the selection of features and automatically extract
the best characteristics to approach image classification tasks. For exam-
ple, In 2018, authors of [7] propose a GP method to achieve simultaneously
global and local feature extraction for image classification using the JAFFE
(1998), YALE (1997), FLOWER (2007), and TEXTURE (2006) datasets.
As we could appreciate, all datasets are outdated since nowadays; none are
used to test algorithms. Moreover, their approach is compared to traditional
hand-engineered features from CV like SIFT (Scale-Invariant Feature Trans-
form), which is an image processing technique that follows the local feature
paradigm, and it does not behave-scale well for problems like image catego-
rization since different images with multiple attributes represent an object
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category. The solution demands a consensus of distinct characteristics in the
form of a set of features. Therefore, this research work lacks more recent
databases and a comparison with current classification algorithms. In 2019,
the article [8] proposes a GP approach to automatically generate discrim-
inative rich features for image classification using the MIT urban and na-
ture scene datasets (2003). These image databases are also outdated; hence,
the comparison is made with traditional CV classification methods like His-
togram of Oriented Gradients (HOG) and Support Vector Machine (SVM),
similarly to the previous work.

In 2019, the research work [9] proposed a method for employing transfer
learning in GP to extract and transfer knowledge to classify complex tex-
ture images. The proposed methodology uses the following texture datasets
Kylberg (2011), Brodatz (1999), and Outex (2002), and all images are re-
sized to 115 × 115 pixels to perform their experiments to avoid the compu-
tational cost and simplify the problem. In 2020, the article [10] proposes a
GP-based feature learning approach to select and combine five methods auto-
matically: Hist (Histogram features), DIF (Domain-Independent Features),
SIFT, HOG, and LBP (Local Binary Patterns). The technique generates a
compound solution that extracts high-level features to classify images from
classical problems with low-resolution datasets–about 100× 100 pixels up to
200 × 200 pixels. Authors compared their approach with other GP-based
methods and DL methods like LeNet-5 (a CNN model with an input of
grayscale images of 32× 32 pixels, toy-method in comparison with the state-
of-the-art) and two hand-craft CNNs models of five- and eight-layers without
providing the network parameters’ information. Hence, it is not easy to judge
the performance.

In addition to optimizing feature selection, EC and SI have developed
strategies to search for meaningful DCNN architectures for image classifi-
cation [4]. Nevertheless, recent approaches, which are summarized in [11],
explore hybridization of swarm and evolutionary computation algorithms by
aggregating hyper-parameters’ optimization during training. To give an ex-
ample, in 2019, authors from [12] proposed a novel method named evoCNN,
which uses genetic algorithms for evolving DCNN architectures and con-
nection values to address image classification problems. Their experiments
were based on nine datasets that use grayscale images of 28 × 28 pixels:
MNIST, MNIST-RD, MNIST-RB, MNIST-BI, MNIST-RD + BI, Rectangles,
Rectangles-I, Convex, and MNIST-Fashion. However, in 2019, authors from
[13] proposed a novel algorithm based on particle swarm optimization (PSO)
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named psoCNN, capable of automatically searching DCNN architectures for
image classification with fast convergence when compared with others evo-
lutionary approaches like evoCNN, IPPSO, among others. Their experiment
used the same nine datasets mentioned above.

Despite the effort and interest made by the EC and SI communities to
tackle the problem of image classification, they still are dealing with outdated
problems using classical datasets while making comparisons against obsolete
DCNN models. EC and SI have fallen short to be on par with DCNN models
with minor works that do not exceed hand-craft DCNN architectures.

Nonetheless, a Deep Genetic Programming Methodology called Brain
Programming, inspired by neuroscience knowledge that uses symbolic rep-
resentations and incorporates rules from expert systems with a hierarchical
structure inspired by the human visual cortex was developed by the EvoVi-
sion research team. In 2016, Evovision started evolving an Artificial Visual
Cortex (AVC) for image classification and object detection. Hernández et
al. used natural images of medium size (VGA) using GRAZ-01 (2003), and
GRAZ-02 (2004) datasets, which are the base for the Visual Object Challenge
(VOC challenge)–both still relevant in CV literature–[14]. The results were
compared with several feature extraction methods Basic Moments (2006),
Hierarchical MAX - Genetic Algorithm–HMAX-GA (2012), Enhanced Bi-
ologically Inspired Model–EBIM (2011), SIFT (2006), Similarity Measure
Segmentation–SM (2006), and Moment Invariants (2006) most from CV and
one including EC. In 2017, Hernández et al. [15] implemented a CUDA
version of BP to speed up the original system’s processing time. The exper-
iment analyzed the performance using different image sizes, which started
with 256× 256 pixels, doubling the sizes to up to 4096× 4096 pixels, demon-
strating the possibility of real-time functionality as well as the application
to high-definition images. Additionally, the method was compared in time
performance with a CUDA implementation of HMAX and CUDA version of
a CNN with outstanding results.

In 2019, the article [16] proposes a random search to find best-fit pa-
rameters for the AVC in image classification. The experiment found great
individuals to classify GRAZ-01, GRAZ-02, and Caltech-101 (2004) datasets.
GRAZ datasets have image sizes of 640 × 480 pixels, and Caltech-101 has
images of 300 × 200 pixels. Note that GRAZ images present a significant
challenge due to the short object occurrence in the whole image, becoming
challenging to resize images for processing. In contrast, Caltech-101 presents
a truly image recognition dataset. In 2020, BP was proposed as a tech-
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nique to approach the complex problem of Art Media Categorization (AMC)
[17]. The experiment consists of classifying high-resolution art datasets such
as WikiArt (2016) and Kaggle Art Images (2018). Moreover, BP results
were compared with a renowned DCNN model named AlexNet, obtaining a
competitive outcome. Also, BP has been evaluated on real-world problems
of object tracking using standard datasets and algorithms–FRAGtrack and
MILtrack–while also achieving outstanding results in real-working conditions
compared to the method of Regions with Convolutional Neural Networks (R-
CNN) [18, 19].

However, despite the progress made to build better image classifiers, a
research opportunity that has not been considered in EC and SI is the clas-
sifier’s predictions’ robustness. Nowadays, there is a big concern about the
performance of DCNN, which has opened a new research area in charge
of dealing with Adversarial Attacks (AA) that intentionally create small
perturbations in the input image to mislead the model to predict wrongly
[20, 21, 22, 23, 24, 25]. Some of these perturbations are imperceptible to
human vision and can completely change the DCNN’s prediction to drop
its performance. They are generated through a variety of forms, including
making small modifications to the input pixels, using spatial transforma-
tions, among others. In addition to the analysis of DCNN vulnerabilities,
there have been immense efforts to develop defense mechanisms to mitigate
AA. Still, the perturbations have become more complex and highly efficient
in fooling DCNN. Therefore, in this paper, we want to contrast the clas-
sification models between performance and robustness to perturbations to
guarantee predictions’ trustworthiness while not focusing only on accuracy.

1.1. Problem Statement

In this section, we detail the serious problem in the DCNN structure to
AA. First, given an input image x in an input subspace X such that x ∈ X
and its corresponding label y, DCNN model establishes a relationship within
the data using the following equation:

y = f(x) = wᵀx , (1)

where function f() is the DCNN model, whose associated weights param-
eters are w. However, an erroneous behavior is notable when the input image
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suffers a small change in its pixels xρ = x + ρ such that:

f(x) 6= f(xρ) s.t.

||x− xρ||p < α
(2)

where p ∈ N, p ≥ 1, α ∈ R,α ≥ 0. So, it can be defined an Adversarial
Example (AE) as an intentional modified input xρ that is classified differently
than x by the DCNN model, with a limited level of change in the pixels of
||x− xρ||p < α, so that it may be imperceptible to a human eye.

The simplest explanation of how AEs work to attack a DCNN is that most
digital images use 8-bit per channel per pixel. So, each step of 1/255 limits
the data representation; the information in between is not used. Therefore,
if every element of a perturbation ρ is smaller than the data resolution, it
is coherent for the linear model to predict distinct given an input x than to
an adversarial input xρ = x + ρ. We assume that forasmuch as ||ρ||∞ < α,
where α is too small to be discarded, the classifiers should predict the same
class to x and xρ.

Nonetheless, after applying the weight matrix w ∈ RM×N to the AE,
we obtain the dot product defined by wᵀxρ = wᵀx + wᵀρ. Hence, the AE
will grow the activation by wᵀρ. Note that the dimensionality of the problem
does not grow with ||ρ||∞; thus, the activation change caused by perturbation
ρ can grow linearly with n. As a result, the perturbation can make many
imperceptible changes to the input to obtain big output changes.

DCNN behavior is hugely linear to be immune to AEs, and nonlinear
models such as sigmoid networks are set up to be in the non-saturating
most of the time, becoming them more like a linear model. Hence, every
perturbation as accessible or challenging to compute should also affect the
DCNN. Therefore, when a model is affected by an AE, this image often affects
another model, whether the two models have different architectures or were
trained with other databases. They only have to be set up for the same task
to change the result [26].

In this manner, the AE generation finds an input xρ in the input subspace
X′ such that xρ ∈ X′ and f(x) 6= f(xρ). Nevertheless, we denote robustness
in terms of function continuity. Given a model’s function f() in an input
subspace X such that x ∈ X, if xk → x implies f(xk)→ f(x). Equivalently,
f(x) is robust at x, for all y ∈ X, if given a κ > 0, there is a µ > 0 such that
||y− x|| < µ implies |f(y)− f(x)| < κ. Hence, if f(x) is robust for every x,
then f(x) is said to be robust on X.
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Therefore, the procedure to measure robustness is by using appropriate
statistical tests depending on the results’ properties, standard performance
measures, and the ratio of accuracies. Statistical tests allow us to deter-
mine whether the results obtained are significantly different and improve the
knowledge of certain aspects over the existing algorithm measures: effective-
ness, efficiency, accuracy, or reliability when using artificial neural networks,
SVM, or other metaheuristics [27].

1.2. Research Contributions

This paper provides insight into adversarial attacks and the motivation
to analyze image classification models’ robustness. Therefore, we extend
the first results reported at the International Symposium on Visual Com-
puting (ISVC’20), on which we explore the robustness through the complex
image classification task of the AMC [28]. In this work, we test a prevail-
ing BoV approach from CV, four state-of-the-art DCNN models (AlexNet,
VGG, ResNet, ResNet101), and the BP algorithm using three AAs (Fast
Gradient Sign Method–FGSM, multiple pixel attack, and adversarial patch).
We remark the following contributions:

• The first contribution consists of a proposal of BP’s robustness as a
secure mechanism to deal with AAs for AMC. Since this problem is
difficult, with many artifacts across all studied classes, the results can
be extended to other challenging classification tasks.

• The second is a comparative study of predominant image classification
methodologies performances from three-different research areas (CV,
ML, and EC) considering AAs.

• The third is a statistical analysis of the proposed image classifiers from
the standpoint of robustness to AAs.

We organize the present work as follows. Section 2 presents relevant re-
search for the AMC. It covers the complexity of the problem and how it has
been tackle, from handcrafted features to DCNN models and GP methods.
It also presents the concerns about AAs and how the robustness predictions
have not been studied on the AMC. Section 3 outlines each classification
method’s structure and the AAs used in this work. Section 4 gives details
about the experimental setup, including the dataset, its construction, the
employed evaluation metrics, and the experimental results’ explanation. Fi-
nally, Section 5 presents the conclusions of this work.
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2. Related works

The AMC problem in CV has arisen from the need to have automatic
systems for identifying valuable artwork pieces to have a trustworthy anal-
ysis of complex features that can not be subjective as humans are prone to
be. For example, classifying fine art pieces involves a sophisticated selec-
tion of features that distinguish each medium, which is extremely difficult
[29]. Usually, an art expert analyzes the style, genre, and media from art-
work to identify the artist and detect forgeries [30, 31, 17]. Therefore, the
development of automated systems that provide such tasks makes an accu-
rate and robust analysis a critical issue in terms of security. In this manner,
to make a robust analysis of art media, high-resolution images are manda-
tory to provide enough information to maximize carefulness based on the
artwork details. The art style, usually associated with the author’s school,
describes the artists’ distinctive artifacts, visual elements, techniques, and
methods. The form is related to the localization of features at different lev-
els. The classical hierarchy of genres ranks history-painting and portrait as
high, while landscapes and still-life are classified as low because they did not
contain persons.

AMC has been tackled from 3 perspectives: 1) handcrafted feature ex-
traction, 2) deep convolutional neural networks, and 3) genetic programming
methodologies. First, handcrafted engineered features were the principal
method to develop formulas that can extract features to obtain an image
representation to classify an image easily.

One of the first works that employ handcrafted features was [32]; here,
the authors proposed a Discrete Cosine Transform (DCT) coefficients scheme
used for feature extraction painter identification by classifying the artist’s
style. They build a custom database of approximately 300 grayscale im-
ages from five painters (Rembrandt, Van-Gogh, Picasso, Magritte, and Dali)
to experiment. Li and Wang [33] proposed using a two-dimensional multi-
resolution hidden Markov model to analyze brush strokes to provide reli-
able information to distinguish artists from ancient Chinese paintings. Their
database consists of 276 grayscale images from five Chinese artists at a res-
olution of 3000 × 2000 pixels but scaled to 512 on the shorter dimension,
maintaining the aspect ratio. Authors in [34] present a comparative study of
different classification methodologies based on handcrafted engineered fea-
tures. They contrasted semantic-level features with an SVM, color SIFT and
opponent SIFT with BoV, and latent Dirichlet allocation with a generative
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BoV topic model for fine-art genre classification. In their study, a database of
seven categories of paintings (Abstract, Baroque, Renaissance, Popart, Ex-
pressionism, Impressionism, and Cubism) was used from the Artchive fine-
art dataset using 70 images from each class. Recently, Rosado [35] employed
a BoV implemented using a dense-SIFT method for feature extraction and
Probabilistic Latent Semantic Analysis (PLSA) to make an image analysis of
434 digitized images from paintings, drawings, books, and engravings by An-
toni Tàpies. In general, we note that using handcrafted engineered features
makes it possible to obtain encouraging but not perfect results. Over time,
the complexity of these characteristics started to become more challenging
to design. In addition to the designing process of features, the learning al-
gorithm development was a completely independent research area needed to
match the feature extraction.

DCNN have been a breakthrough in many areas of image processing, and
recent works on AMC have presented approaches based on the state-of-the-
art DCNN architectures. Authors in [36] introduced the use of deep convolu-
tional activation features from a DCNN model trained for object recognition
to recognize the style. These features achieve high performance identifying
styles in painting images and outperform most handcrafted engineered fea-
tures. Bar et al. [37] proposed a compact binary representation combining
the PiCoDes descriptors and the deep convolutional activation features from
a DCNN model to identify artistic styles in paintings showing exceptional re-
sults to classify artwork images from WikiArt using 27 classes. Noord et al.
[38] employed an adaptation of AlexNet to classify artwork styles from Rijks
Museum images. They could visualize the regions with a heatmap from the
artwork that impacts the prediction of style. Cetinic and Grgic [39] utilized
the features extracted from VGG to classify WikiArt database images into
seven genre classes such as portrait, landscape, city, still life, nude, flower,
and animal. They outperform handcrafted engineered features such as SIFT,
gist descriptor, HOG, Gray Level Co-occurrence Matrix (GLCM), and HSV
color histograms with their classification method. Seguin et al. [40] pro-
pose to extract from VGG similar components shared by various artworks
named visual link. These links try to find similitude from the paintings of
the same creators or the same schools. The experiment used images from
the Web Gallery of Art database reporting that their method achieves better
performance than handcrafted engineered features such as SIFT.

Sun et al. [41] employed AlexNet and VGG to construct a structure with
two pathways to obtain object and texture features. The DCNN performs
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the object computation, and the texture pathway uses the Gram matrices
of intermediate features. Authors used in their experiments WikiPaintings,
Flickr Style, and AVA Style databases. Elgammal et al. [42] proposed an
analysis of strokes in line drawings using a database of 300 digitized drawings
with over 80 thousand strokes. They employ handcrafted engineered features,
deep learned features, and the combination of both to discriminate between
artists at the stroke-level with high accuracy. Also, their work serves to
discover forgeries made by artists. Cetinic et al. [43] performed an extensive
CNN fine-tuning experiment using five Caffe models (CaffeNet, Hybrid-CNN
network, MemNet network, Sentiment network, and Flickr network) for five
different art-related classification tasks (artist, genre, style, time period, and
association with a specific national artistic context) on three large fine art
datasets (WikiArt, Web Gallery of Art, and TICC Printmaking Dataset). In
[44], authors employed pre-train DCNN models (AlexNet, VGG, GoogLeNet,
ResNet, DenseNet) to recognize basic artistic media from artworks. They
collected about 1000 artwork images per class (oil-paint brush, pastel, pencil,
and watercolor) through various search engines and websites to classify them.
They obtained comparable results with that of trained humans.

Finally, a GP-like methodology called brain programming has obtained
competitive results compared to a DCNN model for the AMC task [17]. This
technique aims to emulate the brain’s behavior based on neuroscience learn-
ing processes with new symbolic learning. In the experiments, two renowned
databases of high-resolution artwork images are used (art database from
Kaggle and WikiArt) to classify five art media classes (drawings, engrav-
ing, painting, iconography, and sculpture). The proposed technique achieves
comparable results to AlexNet on a binary classification problem.

Although DCNN have obtained exemplary results in solving a wide vari-
ety of computer vision tasks, small perturbations named adversarial attacks
made on the input image turn the learning model’s decision to change its
prediction completely. These perturbations are generated in several forms
that include small modifications to the input pixels and using spatial trans-
formations, among others. These attacks’ primary purpose is to fool the DL
models prediction intentionally and remain unnoticed to human perception.
Szegedy et al. [45] were the first who discovered an unusual weakness where
small perturbations almost invisible to the human vision on the input pixels
can fool a CNN. These attacks also reported high confidence in the model’s
wrong prediction, and even worse, multiple networks were affected using the
same perturbed image. Later, they found that CNN’s robustness against
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AA could be improved using these images in the training phase. However,
recent studies have highlighted the lack of robustness in well-trained DCNNs
[46, 47]. Goodfellow et al. [26] designed a method named Fast Gradient
Sign Method (FGSM), which enables efficient computing perturbations for
a given image. Another threat consists of an extreme and straightforward
attack proposed by Su et al. [48], which consists of modifying one pixel in the
image, can fool a CNN. A drawback, however, is that it only works for icon
images. They successfully attacked three different network models under this
strategy with high confidence. Moosavi-Dezfooli et al. [49] discovered sin-
gular perturbations that can misclassify any image; they called it universal
perturbations. In this way, Brown et al. [50] proposed a method to create
universal, robust, targeted adversarial image patches. These patches are so
compact that they can be printed and used in real-world scenes to fool a
CNN.

Despite significant efforts in making defense methods against AAs, the
research works have focused on modifying its training process or modifying
the input image during testing [26, 51, 52], also on changing the structure
of the networks [53, 54, 55] or through external models to classify unseen
examples [56, 57]. Zhang et al. [58] discussed the limitation of the adversarial
training because the attacks have become more and more challenging with
high efficiency on the damage.

AMC is a complex problem to solve. Its solution involves a complicated
analysis of features and demands accurate and robust decisions, mostly when
curators work with highly valuable art pieces. The performance of hand-
crafted engineered features methods has been limited to compete with DCNN
through their inability to extract complex features from artworks to build a
better image representation. DCNN have outperformed handcrafted engi-
neered features and has established the leading for the AMC. Nevertheless,
BP has started to demonstrate its competence against DCNN performance
in this area. However, AAs on art media represent a severe threat that has
not been studied to measure the classifier’s reliability. Furthermore, the AA
effect has not been demonstrated to influence different classification archi-
tectures’ predictions, such as CV methods, with only one successful GP-like
methodology [28]. Although DCNN have developed defense mechanisms to
diminished the AA effect, it is difficult to fight against all the new and more
complex AA. Thus, even if DL architectures have classified large-scale sets of
images with multiple classes with outstanding results, this paradigm’s secu-
rity concerns make the solutions unreliable. The brittleness is because, with
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small perturbations produced on the image, DL can be intentionally fooled.
For example, there are critical areas in museums and galleries, such as artist
identification and forgery detection, where the prediction’s confidence must
not depend on a system that can be manipulated by an imperceptible per-
turbation. This catastrophic scenario could lead to forgeries to circulate on
the market or be misattributed to a specific artist. This article presents a
method that can be used as a first defense mechanism by asking general
questions like if the digitized artwork belongs to a certain class before asking
further questions.

3. Methodology

This section describes the data modeling of each method used in this
work. The main goal in data modeling is to summarize the data by fitting it
to a model by establishing a relationship within the data (y,x) given by the
dataset by the following equation:

y = f(x) , (3)

where the function f() is the model that depends on adjustable parameters.
Therefore, we detail SIFT + Fisher Vectors modeling as the BoV method
because it was the last computer vision technique that won the image clas-
sification task on the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) 2011 before DL models arose. We describe the modeling from
deep neural networks and explain the contributions to the state-of-the-art
from the four DCNN models chosen for this work based on the ILSVRC win-
ners. Next, we present the theory behind BP to introduce function-symbolic
learning for data modeling and the workflow from the system. Finally, we
describe the modeling from the three selected AAs to construct the pertur-
bation to induce a misclassification such as in Equation (2).

3.1. SIFT + Fisher Vectors

Fisher Vector (FV) is a vectorial representation of the gradient of the sam-
ple log-likelihood concerning a generative model of the data [59]. There are
many advantages to the FV against the BoV. It was proved by [59] that BoV
is a particular case of the FV where is restricted the gradient computation to
the mixture weight parameters of the Gaussian Mixture Model (GMM) [60].
The generative model (GMM) can be understood as a probabilistic visual vo-
cabulary. Nevertheless, FV incorporates additional gradients that improve
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accuracy. Also, it needs fewer vocabularies with lower computational costs
than BoV, and it is easy to achieve good performance with simple linear clas-
sifiers. Note that BoV is typically quite sparse while the FV is almost dense,
making FV impractical for large-scale applications due to storage problems.
Nonetheless, a large-scale nearest neighbor search is made to mitigate this
problem using a popular computer vision method named product quantiza-
tion [61]. In practice, it is used SIFT descriptors on a dense multi-scale grid
to compute the FV image representation [59].

In order to construct the FV image representation, it is defined a set of
D-dimensional descriptors extracted from an image X = {xt, t = 1, . . . , T},
a set of SIFT descriptors. FV is a sum of normalized gradient statistics
δXλ =

∑T
t=1 Lλ∇λ log uλ(xt) with the assumption that all descriptors are in-

dependent. Where Lλ∇λ log uλ(xt) is the normalized gradient statistics com-
puted for each descriptor. Therefore, it can be understood that this operation
is an embedding of the local descriptors xt → φFK(xt) = Lλ∇λ log uλ(xt) in
a higher-dimensional space which helps a linear classifier to model the data
easier as in Equation (3).

These algorithms’ advantage is that it does not require labeled data to
learn the dictionary. Therefore, it can work on limited labeled data situa-
tions. The dictionary learning process can also improve features quality by
providing additional information of them [62, 63]. However, they are not ca-
pable of building features hierarchies, and the process is not merely stacked
one method on the top of other even there have been attempts to make it
deep [64, 65, 66].

3.2. Deep Convolutional Neural Networks

Differently, ANN starts the idea of designing deep architectures for neural
network models that can extract sufficient features along this structure to
allow the ANN to classify images. Deep Neural Networks, where DCNN
is part of it, models the data using Equation (3) employing fDNN() as a
particular form of a nested function, and each one called a layer.

y = fDNN(x) = f3(f2(f1(x))) , (4)

in such a way that f1 and f2 are vector functions of the following form:

fl(z) = gl(Wlz + bl) , (5)

with l denoting the index of the layer. gl is the activation function that
usually is a nonlinear function, and the model parameters consist of Wl the

13



weights matrix and bl the bias vector. Hence, the minimization problem is
defined by the loss function J(θ,x, y) where the goal is to find the best model
parameters for all the layers Θ that fits the data x to the label y.

LeCun et al. [67] introduced the modern framework of Convolutional
Neural Networks (CNN’s). However, the first time that CNN starts attract-
ing attention was with the development of the AlexNet [68], a DCNN model
for the ILSVRC 2012, where it could reduce by half the error rate on the
image classification task. AlexNet layer architecture consists of 5 convolu-
tional, three max-pooling, two normalizations, three fully connected layers
(the last with 1000 softmax output), 60 Million parameters, and 500,000
neurons. Additionally, [68] introduced the use of ReLU (Rectified Linear
Unit) Non-linearity as activation function with the benefits of much faster
training than using tanh or sigmoid functions. To prevent overfitting, they
also introduced the dropout method and data augmentation.

Another DL model that brought contributions to the state-of-the-art was
the VGG network from the Visual Geometry Group of the University of
Oxford [69]. VGG network increased the deep of previous networks by cre-
ating VGG-16 and VGG-19. The first one uses 13 convolutional layers and
three fully connected layers; the second one employed three additional con-
volutional layers. Also, they reduced the size of the filters to the smallest
size to capture the notion of up/down, left/right, and center that is a 3x3
filter. VGG was distinguished for its state-of-the-art performance on recog-
nition and localization tasks at ILSVRC 2014 and other image recognition
datasets.

ResNet [70] (Deep Residual Learning for Image Recognition) also con-
tributed to redefining the layer as a residual learning function on the CNN
architecture. This helps to mitigate the bottleneck problem of the training
phase on CNNs. ResNet showed its capacity to train its architecture with
a depth of up to 152 layers and lower complexity than GoogLeNet. Also,
ResNet won the ILSVRC 2015 on the classification task achieving for the
first time an error rate of 3.57%. They proposed five configurations of the
network: 18-layer, 34-layer, 50-layer, 101-layer, and 152-layer networks.

3.3. Brain Programming

Before we explain the algorithm of BP, we make a brief introduction
to GP algorithms. GP is an evolutionary computation technique inspired
by biological evolution principles [71]. It is considered a derivative of ge-
netic algorithms that evolve individuals’ populations in the form of a tree or
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computer program (formulas or mathematical expressions). Each individual
computer program is generated depending on the terminal and function sets
established by the user. They are evaluated in terms of how well it performs
in a particular problem. Then, using the Darwinian principle of reproduc-
tion and survival of the fittest and the genetic operators of crossover and
mutation, individuals are evolved to find a better fit solution to the problem.

BP is an evolutionary paradigm for solving CV problems reported in
[14, 16, 19]. This methodology extracts characteristics from images through
a hierarchical structure inspired by the brain’s functioning. BP proposes
a GP-like method, using a multi-tree representation for individuals. The
main goal is to obtain a set of evolutionary visual operators (EV Os), also
called visual operators (V Os), which are embedded within a hierarchical
structure called the artificial visual cortex. The AVC is based primarily on
two models: a psychological model called feature integration theory [72] and
a neurophysiological model called the two pathway cortical model [73]. Thus,
the AVC attempts to emulate the natural process that occurs along the visual
cortex according to the brain’s neurological ventral-dorsal model. This two-
streams model states that the process of acquiring visual information in the
brain follows two main pathways.

The dorsal stream is known as the “where” or “how” stream. This path-
way is where the guidance of actions and recognizing objects’ location in
space is involved and where visual attention occurs. The first theory states
that visual attention in human beings is performed in two stages. The first
is called the preattentive stage, where visual information is processed in par-
allel over different feature dimensions that compose the scene: shape, color,
orientation, spatial frequency, brightness, and motion direction. The sec-
ond stage, called focal attention, integrates the extracted features from the
previous stage to highlight a region of the scene. BP is based on the most
popular theory of feature integration for the dorsal stream from [72], and the
principles of the first computational model for visual attention, where the
image is decomposed into several dimensions to obtain a set of conspicuity
maps, which are then integrated into a single map called the saliency map
[74].

The ventral stream is known as the “what” stream. This pathway is
mostly associated with object recognition and shape representation tasks.
Proposed ventral stream models like neocognitron system [75], convolutional
neural networks [67], and HMAX model [76] (the Max principle is used in
BP), start by decomposing the image into a set of alternating “S” and “C”

15



layers. The “S” or simple layers are defined by a set of local filters applied to
find higher-order features, and the “C” complex layers increase the features
invariance by combining units of the same kind. However, BP replaces the
data-driven models with a function-driven paradigm. In the function-driven
process, a set of visual operators is fused by synthesis to describe the image’s
properties. Through a set of experiments, we will show that the discovered
solutions do not rely directly on the data but specific characteristics; hence,
making the solutions reliable regarding AAs.

Therefore BP can be summarized in two steps: first, the evolutionary
process whose primary purpose is to discover functions to optimize com-
plex models by adjusting the operations within them. Second, the AVC,
a hierarchical structure inspired by the human visual cortex, uses the con-
cept of function composition to extract features from images. The model
can be adapted depending on the task, whether it is trying to solve the
focus of attention for saliency problems or the complete AVC for categoriza-
tion/classification problems. BP differs from the data-driven models using
a function-driven approach to extract and combine the relevant information
that solves a specific visual task. Hence, the overall function-driven process
requires the input in a suitable representation; thus, we define an image I as
the graph-of-a-function.

Definition 1. Image as the graph of a function. Let f be a function
f : U ⊂ R2 → R. The graph or image I of f is the subset of R3 that
consist of the points (x, y, f(x, y)), in which the ordered pair (x, y) is a point
in U and f(x, y) is the value at that point. Symbolically, the image I =
{(x, y, f(x, y)) ∈ R3|(x, y) ∈ U}.

This definition is based on the fact that the images result from the impres-
sion of variations in light intensity along the two-dimensional plane. There-
fore, functions are optimized to imitate the functionality of specialized areas
of the brain through a set of operators.

3.3.1. Data Modeling with BP

BP proposes to solve the problem of image classification from the stand-
point of data modeling through GP. Therefore, to understand the learning
process of BP, we start defining the minimization problem, which requires to
find a solution Pmin ∈ S such that:

∀Pmin ∈ S : f(Pmin) ≤ f(P) . (6)
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Hence, opposed to conventional approaches to finding the best-fit param-
eters, we would like to fit the data through discovering functions that perform
a classification task in BP. The strategy takes several steps because the direct
mapping between the domain and codomain is unknown or not well defined.
In this manner, the solution to the image classification problem through BP
requires to define the following equation:

y = min(f(x,F,T, a)) , (7)

where (y,x) are the label and the image respectively, given by the dataset;
F represents the set of functions, T defines the terminal set, and a are the
parameters controlling the evolutionary process. Therefore, in order to solve
the problem, we need two things: 1) a method of feature extraction and 2)
a suitable criterion Q for the minimization.

Therefore, BP is the algorithm in charge of tuning (F,T, a) looking for
optimal feature extraction from the input images using the visual operators
embedded into the artificial visual cortex (AVC). The criterion for the mini-
mization Q in terms of a classification task helps discover the best classifier.
In this particular case, we use an SVM to learn a mapping f(x) that as-
sociates descriptors xi to labels yi. Here, we define the BP algorithm in
terms of a binary classification task, whose main purpose is to find a decision
boundary that best separates the class elements.

3.3.2. Evolving an Artificial Visual Cortex (AVC)

Each individual consists of syntactic trees defining the V Os that con-
structs the AVC structure to extract features from color images. This pro-
cedure gets a descriptor vector that encodes salient characteristics from the
image. Then, we apply an SVM to calculate the classification accuracy for
a given training image database to obtain the individual fitness. Hence,
BP uses an evolutionary loop presented in Algorithm 1 to evolve the entire
population represented by a set of AVCs, in which the whole workflow is
illustrated in Figure 1.

3.3.3. Structure Representation and Genetic Operations

In BP, an individual is a computer program represented by syntactic
trees embedded into a hierarchical structure. Individuals within the popu-
lation contain a variable number of syntactic trees, ranging from 4 to 12,
one for each evolutionary visual operator (V OO, V OC , V OS, V OI) regard-
ing orientation, color, shape, and intensity; and at least one tree to merge
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Figure 1: Brain Programming workflow. The left side shows the genetic operations, in
the middle is presented the BP’s flow diagram, and the right side illustrates the individual
representation.

Algorithm 1: BP evolutionary process

Input : Training images, Algorithm parameters (see Table 5)
Output: The updated population AVCs

1 Generate a random initial population P0;
2 i = 0;
3 while the termination criterion is not satisfied do
4 Evaluate each individual fitness (AVC) in Pi ;
5 Selection using lexicographic parsimony pressure;
6 Generate offspring by crossover and mutation;
7 i = i+ 1;

8 return The updated population Pfinal
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the resulting visual maps, and finally generate the Mental Maps (MM). All
functions within each V O are defined according to expert knowledge to high-
light characteristics related to the respective feature dimension and updated
through genetic operations.

• Visual Maps

Each input image is transformed to build the set Icolor = {Ir, Ig, Ib, Ic, Im,
Iy, Ik, Ih, Is, Iv}, where each element corresponds to the color components
of the RGB (red, green, blue), CMYK (Cyan, Magenta, Yellow, and black)
and HSV (Hue, Saturation, and Value) color spaces. Elements on Icolor are
the inputs to four V Os defined by each individual. Each V O is a mapping
function applied to the input image to extract specific features from it, along
with information streams of color, orientation, shape, and intensity; each of
these properties is called a dimension. The output to V O is an image called
Visual Map (VM) for each dimension. It is important to note that each
solution in the population should be understood as a complete system and
not only as a list of three-based programs. Individuals represent a possible
configuration for feature extraction that describes input images and is op-
timized through the evolutionary process. Next, we explain the process of
V Os to extract features on each dimension to obtain a resulting VM .

The first tree of the individual mimics the orientation. Thus, we evolve
this visual operator (V OO) through a set of specially selected elements to
highlight edges, corners, and other orientation-related features using the set
of terminals and functions provided in Table 1. The input for the functions
can be any of the terminals, as well as the composition among them; Gσ

are Gaussian smoothing filters with σ = 1, 2; and Du represents the image
derivatives along the direction u ∈ x, y, xx, yyxy. These operators emulate
the functionality of the V1 region presented in the primary visual cortex.

The second operator encodes the color dimension emulating the color-
sensitive cells in the visual cortex. The visual operator of color(V OC) re-
produces the color perception process to find prominent regions with color
properties in the image. Note that some functions of V OC are the same
as those in V OO plus the function complement() that provides a negative
image that complements an intensity or RGB value (see Table2). Thus, in
the output image, dark areas become lighter, and light areas become dark.
Opponent terminals perform a fixed operation between the color bands that
builds a new image with the maximum values between them. For example,
Op r,g accentuates the difference between the red and green bands.
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Dimension Functions Description Terminals Description

V OO A + B, A − B,
A × B, A/B,
k + A, k − A,
k × A, A/k, |A|,
|A + B|, |A − B|,
log(A), (A)2,

√
A,

round(A), bAc,
dAe, inf(A,B),
sup(A,B),
Gσ=1(A), Gσ=2(A),
Dx(A), Dy(A),
thr(A)

Arithmetic functions
between images or
constants k, absolute
values, trascendental
functions, square,
square root, rounding
functions, infimum,
supremum, convolu-
tion with a Gaussian
filter, derivatives, and
threshold applied to
images A and/or B

Ir, Ig, Ib,
Ic, Im, Iy,
Ik, Ih, Is,
Iv, Dx(Ix),
Dxx(Ix),
Dy(Ix),
Dyy(Ix),
Dxy(Ix)

Elements of
Icolor and its
derivatives

Table 1: Functions and terminal list for the V OO.

Dimension Functions Description Terminals Description

V OC A + B, A − B,
A×B, A/B, k+A,
k−A, k×A, A/k,
log(A), exp(A),
(A)2,

√
A, (A)c,

round(A), bAc,
dAe, thr(A)

Arithmetic functions
between images or
constants k, trascen-
dental functions,
square, square root,
image complement,
rounding functions
and threshold applied
to images A and/or B

Ir, Ig, Ib,
Ic, Im,
Iy, Ik,
Ih, Is, Iv,
Opr−g(I),
Opb−y(I)

Elements of
Icolor and
color op-
ponencies:
red-green
and blue-
yellow

Table 2: Functions and terminal list for the V OC .

The third tree is the visual operator of shape. The method that extracts
visual information from the object’s shape employing V OS from Table3,
which utilize the morphological information of the artifacts in the image.
BP proposes to create compound operators by the composition of basic mor-
phological operators such as dilation, erosion, open, close with disk, square,
and diamond structural elements. Indeed, more complex operators can be
created from these operators. The goal of extracting shape information is to
highlight morphological information that can be used for object recognition.

Finally, the intensity measure corresponds to the amount of light per-
ceived by a photosensitive device. In humans, the intensity is measured by
specialized ganglion cells in the retina. Then, the following formula is applied
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Dimension Functions Description Terminals Description

V OS A + B, A − B,
A × B, A/B, k +
A, k − A, k ×
A, A/k, round(A),
bAc, dAe, thr(A),
A⊕SEd, A⊕SEs,
A⊕SEdm, A	SEd,
A	SEs, A	SEdm,
A} SEs, A� SEs,
Sk(A), Perim(A),
A~SEd, A~SEs,
A~SEdm, That(A),
Bhat(A)

Arithmetic functions
between images or
constants k, rounding
functions, threshold,
and morphological
operators: dilation,
erosion, open, close
with disk, square, and
diamond structural
element; skeleton, hit
or miss, bottom-hat,
top-hat

Ir, Ig, Ib,
Ic, Im, Iy,
Ik, Ih, Is,
Iv

Elements of
Icolor

Table 3: Functions and terminal list for the V OS.

to compute the visual map of intensity.

VMInt =
Ir + Ig + Ib

3
. (8)

• Conspicuity Maps

The next procedure is the center-surround process; it efficiently com-
bines the information from the VMs and is useful for detecting scale in-
variance in each of the dimensions. This process is performed by apply-
ing a Gaussian smoothing over its corresponding VMd at nine scales P σ

d =
{P σ=0

d , P σ=1
d , ..., P σ=7

d , P σ=8
d }; this processing reduces the visual map’s size

by half on each level forming a pyramid. Subsequently, the six levels of the
pyramid are extracted and combined.

Qj
d = P

σ=b j+9
2
c+1

d − P σ=b j+2
2
c+1

d , (9)

where j = 1, 2, ..., 6. Since the levels P σ
d have different sizes, each level is nor-

malized and scaled to the visual map’s dimension using polynomial interpo-
lation. This technique simulates the center-surround process of the biological
system. After extracting features, the brain receives stimuli from the vision
center and compares it with the receptive field’s surrounding information.
The goal is to process the images so that the results are independent of scale
changes. The entire process ensures that the image regions are responding to
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the indicated area. This process is carried out for each characteristic dimen-
sion (VMd); the results are called Conspicuity Maps (CM), focusing only
on the searched object by highlighting the most salient features. This early
stage of the system follows the psychological model of visual attention, which
involves the objects’ location in space as the artificial dorsal stream pathway.

• Mental Maps

After obtaining the most saliency features, the next stage along the AVC
is to compute the Mental Maps (MMs) to define a descriptor vector used as
input to a classifier for categorization purposes. This procedure is analogous
to the artificial ventral stream pathway. Hence, the information from CMs
is synthesized to build the set of MMs, which discriminates unwanted infor-
mation. The AVC model uses a set-of-functions to extract the images’ dis-
criminant characteristics (see Table 4); it uses a functional approach. Thus,
a set of k V Os is applied to the CMs for the construction of the MMs.
These V Os correspond to the remaining part of the individual that has not
been used. Unlike the operators used for the VMs, the operators’ whole set
is the same for all the dimensions. These operators filter the visual infor-
mation and extract the information that characterizes the object of interest.
Then, using Equation (10), where d is the dimension, and k represents the
cardinality of the set of V OMMk

, we apply the MMs for each dimension.

MMd =
k∑
i=1

V OMMi
(CMd) (10)

Dimension Functions Description Terminals Description

V OMM A + B, A − B,
A × B, A/B,
|A + B|, |A − B|,
log(A), (A)2,

√
A,

Gσ=1(A), Gσ=2(A),
Dx(A), Dy(A)

Arithmetic functions
between images or
constants k, absolute
values, transcendental
functions, square,
square root, convolu-
tion with a Gaussian
filter, and derivatives

CMd,
Dx(CMd),
Dxx(CMd),
Dy(CMd),
Dyy(CMd),
Dxy(CMd)

Conspicuity
Maps and its
derivatives

Table 4: Functions and terminal list for the set V OMM .
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• Genetic Operations

Individuals are selected from the population using a proportionate fitness
method called lexicographic parsimony pressure to participate in the genetic
recombination from the individuals’ multi-tree representation. This method
consists of assigning to each solution a selection probability proportional to
their fitness value while preferring smaller trees when fitness is equal. The
best individuals are retained to apply genetic operators to create the new
offspring.

Like genetic algorithms, BP executes the crossover between two selected
parents at the chromosome level using a “cut-and-splice” crossover. Thus, all
data beyond the selected crossover point is swapped between both parents
A and B. The result of applying a crossover at the gene level is performed
by randomly selecting two subtree crossover points between both parents.
The selected genes are swapped with the corresponding subtree in the other
parent. The chromosome level mutation leads to selecting a given parent’s
random gene to replace such substructure with a new randomly mutated
gene. The mutation at the gene level is calculated by applying a subtree
mutation to a probabilistically selected gene; the subtree after that point is
removed and replaced with a new subtree. These genetic operators allow
the variation of the genetic material while promoting individuals’ genetic
innovation through all levels and maintaining the diversity of the population.

3.3.4. Fitness Function

The following stage in the model is the construction of the image descrip-
tor vector (DV ). The system concatenates the four MMs and uses a max
operation to extract the n highest values; these values are used to construct
the DV . Once we get the DVs from images in the database, a classifier as-
sociates the domain given by the descriptors to the labels’ codomain. In this
work, we use an SVM working with the discriminate hyperplane defined by:

f (x) =
l∑

i=1

αiyiK (xi,x) + b, (11)

where the given training data is (xi, yi), i = 1, . . . , l, yi ∈ {−1, 1}, xi ∈ Rp

and K(xi,x) is the kernel function. The sign of the output indicates the class
membership of x. Thus, finding the best hyperplane is performed through
an optimization process that locate the margin between the class and non-
class as the search criteria. Therefore, the minimization problem on the
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learning pentuple from Equation (7) remains as ((x,y) ,F ,T ,a,Q). Thus,
the accuracy obtained by the SVM indicates the fitness of the individual 1.

3.3.5. Initialization, GP parameters, and Solution Designation

Once we define the AVC structure from each individual, we set the pa-
rameters of the evolutionary process of BP (see Table 5) and establish the
image database. Next, a random initial population is created using a ramped
half-and-half technique, which selects half of the individuals with the grow
method and half with the full method. The full method makes balanced
trees according to the maximum initial depth, while the grow method makes
unbalanced trees allowing branches of varying lengths. Here we set a limit of
maximum depth to avoid uncontrolled growth of trees over time. Tree depth
is dynamically set using two maximum values to limit any individual’s size
within the population. The dynamic max depth is a maximum value that
may not be surpassed unless the individual’s fitness is better than the best
solution found so far. If it occurs, the dynamic max depth value is updated
to the new fittest individual. The real max depth is a hard limit that no in-
dividual may surpass under any circumstances. Selection is carried out using
a tournament with lexicographic parsimony pressure while keeping the best
individual. Finally, the evolutionary process is terminated until one of these
two conditions is reached: 1) an acceptable classification rate or 2) the total
number of generations. Thus, the evolutionary process reaches an optimum
population that contains the best solution to the problem.

3.4. Adversarial Attacks

Adversarial attacks are classified depending on the model’s available in-
formation and the desired attack to predict a specific class. Hence, we choose
three different attacks: a white box untargeted (FGSM), a black box untar-
geted (one pixel attack), and a targeted attack (Adversarial Patch), which
will be explained in the following paragraphs.

3.4.1. Fast Gradient Sign Method

The Fast Gradient Sign Method proposed by [26], is the most widely used
method for computing AEs given an input image due to its easy implementa-
tion (See example images in Figure 2). It proposes to increase the loss of the

1The accuracy denoted in this Section has the purpose of optimizing BP; nevertheless,
the accuracy indicated in Section 4.2 refers to the metric to measure the attack responses.
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Parameters Description

Generations 30
Initial Population 30
Crossover at chromosome level 0.4
Crossover at gene level 0.4
Mutation at chromosome level 0.1
Mutation at gene level 0.1
Tree depth Dynamic depth selection
Dynamic max depth 7 levels
Real max depth 9 levels
Selection Tournament with lexicographic

parsimony pressure
Survival Elitism

Table 5: Initialization parameters for each GP applied in the BP algorithm.

classifier by solving the following equation: ρ = ε sign(∇J(θ,x, yl)), where
∇J() computes the gradient of the cost function around the current value of
the model parameters θ with the respect to the image x and the target label
yl. sign() denotes the sign function, which ensures that the magnitude of the
loss is maximized and ε is a small scalar value that restricts the norm L∞ of
the perturbation.

The perturbations generated by FGSM take advantage of the linearity of
the DL models in the higher dimensional space to make the model misclassify
the image. The implication of the linearity of DL models discovered by
FSGM is that exists transferability between models. Authors in [77] reported
that with the ImageNet dataset, the top-1 error rate using the perturbations
generated by FGSM is around 63-69% for ε ∈ [2, 32].

3.4.2. One Pixel Attack

The one pixel attack was planed in a minimal scenario where only one
pixel is changed in the image to fool the DL models using images of a reduced
size of 32×32 pixels. With these limitations, Su et al. successfully fool three
different CNN models on 70.97% of the testing images with the modification
of just one pixel per image [48]. Also, it was reported that the average
confidence of the CNNs on the wrong prediction on the pictures was 97.47%.

The one pixel adversarial perturbations are based on a black-box attack,
on which no information about the network is required. It uses a population-
based optimization algorithm for solving complex multi-modal optimization
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Figure 2: Example images of computing the FGSM using ResNet101 from each class with
a scale factor of ε = 2, 4, 8, 16, 32.

problems named Differential Evolution [78] to generate the attack. It searches
a solution from a vector space R5 that contains (x,y) coordinates limited by
the image size and the three bands of the RGB color values. Within a
population, it randomly modifies the five-dimensional individuals’ elements
to create new offspring such that they compete in the current iteration to
obtain better fitness. In the case of two pixels, an individual has a vector
space R10 that contains the coordinates and colors values of both pixels, and
so on for individuals with more pixels. During the run, the algorithm used
the probability of the predicted label to compute the fitness criterion. The
last surviving individual is used to modify the pixels in the image.

In summary, let the vector x = (x1, . . . , xn) be a n-dimensional image,
which is the input of the target classifier f that predict correctly the class
t from the image. The probability of x associated to the class t is fl(x).
It builds an additive adversarial perturbation vector e(x) = (e1, . . . , en) ac-
cording to x, the class target and the limitation of maximum modifications
d, a small number that express the dimensions that are modified while other
dimensions of e(x) left as zeros. For targeted attacks, the main purpose is
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Figure 3: Example images of the multiple pixel attack using d = 10, 000 for each class.
Each column shows three sample images from the Wikiart database.

to find the optimal solution e(x)∗ that solves the following equation:

max
e(x)∗

ftarget(x + e(x))

s.t. ||e(x)||0 ≤ d .
(12)

Hence, the case of one pixel attack is d = 1, but it can be extended to
multiple pixels by increasing d. It should be noticed that one pixel attack
was performed on DL models with inputs from CIFAR 10 dataset. So, it
represents a considerable modification of such tiny images; nevertheless, it is
insignificant with the databases studied in the present work. Therefore, we
use a multiple pixel attack d >> 1 in order to work with real size images. It
should be noted that increasing the number of pixels in this attack will raise
the perturbation risk to be noticeable (See example images in Figure 3).

3.4.3. Adversarial Patch

The Adversarial Patch opposed to traditional strategy for creating a
targeted AE by finding a maximum perturbation e(x) that maximizes the
ftarget(x + e(x)) is a method to replace a perturbation on the whole image
with a patch (See Figure 4). The robustness of these patches resides on the
wide variety of transformations on which they can attack any image and tar-
get the classifier prediction to the desired class. Also, they work in real work
environments where they can be printed, photographed, or even when the
patch is too small; they can make to ignore the whole scene to predict the
target class.
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Figure 4: Example images of the adversarial patch. Each column represents the classes
from the Wikiart database, and each row represents the corresponding patch from the
DCNN model.

To build patch p̂, it was used a variant of the Expectation over Trans-
formation (EOT) framework, on which the patch is trained to optimize the
following equation:

p̂ = arg max
p̂

Ex∈X.t∈T.l∈L[log f(y, A(p,x, l, t))] , (13)

where X is a training set of images, T is a distribution over transforma-
tions of the patch, L is a distribution over locations in the image, and (y,x)
are the label and the image vector respectively. The expectation over the
training images improves the patch’s effectiveness, regardless of what is in
the background. It was proved by [50] the patch’s universality using several
images with different backgrounds. A variation of this method is to add a
constraint of the form ||p − porig||∞ < ε to the patch objective in order to
camouflage it. The constraint enforces the final patch to be within ε in the
L∞ norm of some starting patch porig.

4. Experiments

Robust classification is a highly valuable characteristic regarding auto-
matic system development following security and confidence of art pieces’
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predictions. In this study, we analyze the algorithms’ performance using
accuracy. Besides, we use the accuracy ratio between adversarial examples
and clean images to measure robustness. Moreover, we propose a statistical
analysis of each classifier’s predictions’ confidence to corroborate the results.
Therefore, this experiment consists of studying the accuracy and robustness
against AAs using three of the main approaches for image classifications:

• traditional handcrafted features algorithm (SIFT+FV)

• Deep Genetic Programming Methodology (BP)

• DCNN models (AlexNet, VGG, ResNet18, and ResNet101).

We consider unconventional training, validation, and test datasets since
we apply two different image databases compiled by experts for AMC. Train-
ing and validation datasets are constructed from the Kaggle database, while
testing uses a standard database WikiArt (See Table 6). The aim is to emu-
late a real-world scenario where the proposed models are tested with standard
benchmarks.

This work analyzes the threat of using three types of AA to the model
mentioned above. The white box untargeted (FGSM) determines the impact
from an easy and direct threat to DCNN by knowing its parameters. Also, we
study the transferability effect on other DCNN models, extending to BP and
SIFT+FV, which are different architectures. We analyze the behavior of such
perturbations from these architectures, which can cause wrong predictions
with the addition of subtle texture to the artworks. The black box untargeted
(multiple pixel attack) analyzes the hazard from an attack that tries to find
locations and pixel values to build a perturbation that changes the model’s
prediction from an artwork image. The targeted attack uses the adversarial
patch to challenge the robustness of such modified image patches, which
can be rotated, put on random locations, and printed to appear in real-world
conditions in the artwork to cause a misleading prediction of the target class.
Additionally, we analyze the transferability effect of such patches through all
models.

4.1. Datasets

We use the same datasets from the experiment of AMC reported in [17].
The training and validation set of images are obtained from the Kaggle web-
site from the digitized artwork dataset. This dataset comprises five categories
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of art media: drawing, painting, iconography, engraving, and sculpture. The
engraving class consists of two different kinds; most of them were black and
white art pieces. The other style was Japanese engravings, which introduce
color to the images. So, the engraving class was split into engraving black
and white and engraving color. It is used for testing a standard database
WikiArt, where it was selected the images from the same categories. Since
the Wikiart engraving class is grayscale, the ukiyo-e class (Japanese engrav-
ings) from Wikiart was used as the engraving color class. Also, the set of
images of the category landscapes, which are painting from renowned artists,
is added to test the painting class. Table 6 provides the number of artworks
for each dataset.

Iconography Painting Drawings Sculpture Engraving
BW

Engraving
Color

Caltech
Back-
ground

Train 1038 1021 553 868 426 30 233

Validation 1038 1021 553 868 283 19 233
Wikiart 251 2089 204 116 695 1167 233
Wikiart
Land-
scapes

136

Table 6: Total number of images per class obtained from Kaggle and Wikiart
databases

4.2. Evaluation metrics

We employ classification accuracy as a measure of performance for the
classifiers, which is simply the rate of correct classifications given by the
following formula:

Accuracy =
1

N

N∑
n=1

d(y′n, yn) , (14)

where N is the total of test images, y′n is the predicted label for the image
n, yn is the original label for the image n, and d(x, y) = 1 if x = y and 0
otherwise.

Additionally, as a robustness measure, we used the accuracy ratio between
adversarial examples and clean images implemented by [77]. This metric
means that if the ratio reaches one, the accuracy of AEs and the clean images
is the same. Nevertheless, if it tends to zero, that means that the AA worked
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to fool the classifier. If this ratio exceeds 1, it implies that the AA is helping
to correct misclassified images. The following equation calculates the ratio:

Ratio =
accadv
accclean

, (15)

where accadv is the classification accuracy on AEs, and accclean is the classi-
fication accuracy on the clean images.

4.3. Implementation details

In this subsection, we outline the implementation details for all learned
models:

• Brain Programming: was implemented on Matlab using a modified
version of GP Lab and the libsvm library for the SVM.

• SIFT+FV: was implemented on Matlab using VLFeat libraries for the
SIFT description, GMM, and Fisher Vectors. It was used the SVM
provided by Matlab.

• DCNN: for the implementation of the four models (AlexNet, VGG,
ResNet18, and ResNet101), we use the pre-trained models from Py-
Torch v1.1. These models were retrained using transfer learning for
the art media problem.

Also, we outline each of the AA:

• FGSM: was implemented in PyTorch v1.1 using the validation and test
datasets to compute AEs with standard values for scale ε = 2, 4, 8, 16, 32
for all the DCNN models.

• Multiple pixel attack: was implemented using 100 random images from
the test dataset (50 from each class) in Matlab and Python. Python
version was programmed using the differential evolution with the Pygmo
library, and Matlab’s version used the differential evolution library
available from their file exchange website. Both implementations used
the same settings of 50 individuals, 30 generations, a crossover proba-
bility of 0.9, and d = 10, 000 pixels.
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• Adversarial Patch: was implemented using 100 images from the train-
ing dataset for each DCNN model in PyTorch v1.1 with the following
parameters set to build the patch: patch size of 50×50 pixels, a max of
100 iterations per image with a stop criteria of 0.9 posterior probability
of the target class. As we defined the binary classification problem, we
choose the background class as the target prediction to measure the
number of class images that predict the model as the target class.

4.4. Results

The results obtained from the experiments mentioned above are presented
and discussed in the following subsection.

4.4.1. FGSM

In Table 7, we present the results for the training and validation datasets
from Kaggle along with the AEs computed using FGSM for all DCNN models.
We report classification accuracy at each stage of training and validation next
to all models’ accuracy tested with the AEs. Here, we want to measure the
influence in the prediction of the FGSM in two manners: 1) direct, since
we know the model’s parameters and perturbation, and 2) indirect, through
the transferability of the attack. Previously, other researchers reported that
AEs could affect different CNN models by setting them up for the same task.
Still, we want to extend the analysis to different architectures such as BP
and SIFT+FV that could be affected by these subtle perturbations to the
digitized artworks.

First, we observed that SIFT+FV models appeared to be overfitted.
Hence, we perform two types of verifications presented in Table 8. We use
the hyperparameters optimizer from Matlab and the crossval function that
validates the model using a 10-fold cross-validation. After ten runs, the hy-
perparameters optimizer returns the best model for each class. The results
over the train and validation datasets are listed in the optimizer column at
Table 8. The crossval function randomly partition the data into ten sets of
equal size, later train an SVM classifier on nine sets, and repeat the process
ten times. After that, we computed the mean accuracy at train and valida-
tion datasets for each class over each ten models. We present the results in
the cross-validation column at Table 8. We obtained the same results as the
original experiment. Then, the results showed that the data do not overfit
the models.
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Therefore, it can be observed in Table 7 how drastically can be dropped
the performance of DCNN. The worst-case was the sculpture class, the VGG’s
performance went from 97.62% to 14.38%, AlexNet dropped from 95.78% to
14.57%, ResNet18 diminished from 96.88% to 19.07%, and ResNet101 de-
creased from 97.89% to 37.86%. Also, it is perceived that the transferability
effect between the DCNN models is more significant at ε = 32. The draw-
ings class presents almost the same behavior as the sculpture class, where the
other networks are affected by AEs. For all other classes, the effect is unno-
ticeable, but the accuracy is significantly affected when the model matches
the AE.

In some cases, SIFT+FV was affected by FGSM. For example, in the
drawing class, the performance was reduced by almost 8%. And for the
painting, the accuracy was decreased approximately by 4%. This result
shows a partial transferability of AEs to SIFT+FV because regardless of
applying DCNN, the perturbation compromised these two classes’ perfor-
mance. However, BP maintains its performance in almost every test; the
accuracy variation through all the analysis was less than 2%. Figure 5 illus-
trates an example showing that the generated maps from the AVC do not
suffer any change in their responses with the FGSM.

Figure 7 presents the results of Table 7 using the accuracy ratios between
adversarial examples and clean images. We observe that the variation of BP
is imperceptible in comparison with SIFT+FV and DCNN models. Also,
we noted that the performance of DCNNs drastically dropped in almost all
classes reaching less than 20% of its original accuracy when the perturbation
matches the network design. In all other cases, the attack reduces the ac-
curacy to about 20% of the actual performance considering clean images for
the classes Sculpture, Engraving BW, and Engraving Color.

The testing stage exhibited an even worse behavior compared with the val-
idation dataset for the DCNN and SIFT+FV. The drop in the transferability
performance was higher when the scaling factor ε becomes larger. Table 9
shows that the accuracy was compromised in all DCNN models for three
classes: Painting, Drawings, and Engraving Color. For example, the worst-
case is Engraving Color, where AlexNet fell to 17.22% from a clean score of
94.72%, VGG and ResNet18 diminished their performance to almost 5% of
accuracy after scoring 99% and 96%, respectively, and ResNet101 achieves
49%, which was the less affected in accuracy. Moreover, the experimental re-
sults in Table 9 provide the FGSM transferability in DCNN models. Notice
that the effect on ε = 32 reaches the more significant changes. Also, the test
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Iconography
AlexNet VGG ResNet18 ResNet101

train val ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32
BP 92.84 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42
SIFT+FV 99.92 95.91 95.91 95.91 95.91 95.59 94.26 95.83 95.83 96.07 95.52 94.57 95.75 95.75 96.07 95.52 94.34 95.99 95.99 96.07 95.67 94.73
AlexNet 99.61 98.66 96.3 96.3 83.24 52.56 38.39 98.51 98.51 98.43 98.03 97.64 98.58 98.58 98.66 98.03 97.4 98.51 98.51 98.51 98.03 97.48
VGG 100 99.21 99.29 99.29 99.06 98.82 96.85 91.9 91.9 47.05 17.7 16.76 99.21 99.21 98.98 98.74 95.83 99.21 99.21 98.98 98.35 97.32
ResNet18 100 98.9 98.66 98.66 98.66 98.9 97.95 98.66 98.66 98.66 98.03 95.83 90.24 90.24 52.01 29.03 32.1 98.66 98.66 98.43 97.17 95.75
Resnet101 100 99.37 99.21 99.21 99.21 99.06 97.72 99.29 99.29 99.06 98.9 97.01 99.37 99.37 99.21 97.95 95.28 94.34 94.34 67.98 50.04 51.3

Painting
train val ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32

BP 99.68 99.04 98.25 98.25 98.48 98.41 98.48 98.78 98.8 98.64 98.33 98.41 98.8 98.8 98.56 98.64 98.56 98.41 98.41 98.56 98.8 97.69
SIFT+FV 99.76 92.24 92.08 92.08 92.00 89.84 87.84 92.16 92.16 92.08 90.48 88.08 91.92 91.92 91.76 90.08 88.00 92.00 92.00 91.84 89.76 87.60
AlexNet 98.96 97.69 93.46 93.46 83.01 66.99 69.3 97.53 97.53 97.13 96.89 96.41 97.45 97.45 96.89 96.97 96.49 97.45 97.45 97.21 97.05 96.73
VGG 99.92 98.17 97.93 97.93 97.53 96.73 92.82 89.31 89.31 32.14 14.27 14.91 97.69 97.69 97.05 95.45 88.28 97.69 97.69 96.81 95.14 88.12
ResNet18 100 97.85 97.93 97.93 97.93 97.45 96.33 97.77 97.77 97.05 96.33 93.22 86.92 86.92 43.94 31.82 40.75 97.69 97.69 97.13 95.77 92.9
Resnet101 100 98.56 98.72 98.72 98.48 98.17 96.65 98.64 98.64 98.25 96.49 93.86 98.72 98.72 98.17 95.85 92.58 91.15 91.15 55.42 43.94 49.68

Drawings
train val ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32

BP 96.56 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59
SIFT+FV 99.87 83.84 83.84 83.84 83.97 83.46 81.30 84.22 84.22 84.48 83.59 81.93 84.22 84.22 84.22 82.95 81.68 84.10 84.10 84.35 82.95 80.79
AlexNet 96.44 91.35 85.75 85.75 66.79 44.91 35.62 90.84 90.84 91.22 90.59 88.55 91.09 91.09 91.09 90.59 89.06 90.71 90.71 91.09 91.09 90.08
VGG 99.75 95.42 95.29 95.29 94.78 93.51 87.02 74.43 74.43 28.75 15.78 14.38 94.78 94.78 93.13 88.68 77.86 94.78 94.78 93.77 90.59 83.46
ResNet18 99.87 94.44 94.27 94.27 93.64 92.37 86.9 93.38 93.38 91.22 86.77 77.48 72.9 72.9 31.04 23.41 22.77 93.64 93.64 92.37 88.17 80.28
Resnet101 99.87 95.8 95.8 95.8 95.42 93.89 89.31 95.55 95.55 93.89 90.84 83.33 95.29 95.29 93.13 88.68 80.79 76.08 76.08 47.96 41.48 38.55

Sculpture
train val ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32

BP 93.19 93.26 92.79 92.79 92.79 92.79 92.79 92.79 92.79 92.79 92.7 92.79 92.88 92.88 92.79 92.79 92.7 92.88 92.88 92.79 92.88 92.7
SIFT+FV 99.55 87.35 87.44 87.44 85.79 85.15 83.68 87.26 87.26 86.34 85.15 84.42 87.35 87.35 85.98 84.97 85.06 87.44 87.44 85.98 85.24 85.15
AlexNet 99.36 95.78 90.93 90.93 63.24 27.50 14.57 95.78 95.78 95.42 94.68 89.55 95.88 95.88 95.78 94.13 89.09 95.97 95.97 96.06 94.68 90.10
VGG 100 97.62 98.26 98.26 97.89 94.87 78.28 84.69 84.69 37.76 17.87 14.21 98.08 98.08 97.07 91.38 72.59 97.98 97.98 96.98 93.31 78.00
ResNet18 100 96.88 97.25 97.25 96.88 95.05 80.66 96.88 96.88 96.15 92.39 77.54 84.88 84.88 45.92 25.30 19.07 96.70 96.70 95.69 92.58 79.65
Resnet101 100 97.89 98.44 98.44 98.17 96.06 87.08 98.44 98.44 98.08 95.42 84.88 98.35 98.35 96.98 92.30 77.45 89.00 89.00 60.49 44.18 37.86

Engraving BW
train val ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32

BP 89.76 92.05 92.23 92.23 92.23 91.70 91.87 91.70 91.70 92.06 91.87 91.70 91.70 91.70 92.23 92.05 91.53 91.70 91.70 91.87 91.87 92.05
SIFT+FV 100 93.99 94.35 94.35 94.70 94.17 92.76 94.35 94.35 94.35 94.17 93.64 94.35 94.35 94.52 94.17 93.46 94.35 94.35 94.88 94.35 93.46
AlexNet 99.76 99.29 96.11 96.11 78.62 56.71 47.88 99.12 99.12 99.12 98.94 98.41 99.12 99.12 99.12 98.94 98.06 99.12 99.12 99.12 98.94 98.41
VGG 100 100 99.82 99.82 99.82 99.65 99.29 98.53 97.53 73.14 49.29 47.17 99.82 99.82 99.82 99.82 99.12 99.82 99.82 99.82 99.82 99.29
ResNet18 100 100 100 100 99.82 99.82 98.94 99.82 99.82 99.82 99.65 98.23 95.58 95.58 78.98 64.49 63.07 100 100 100 100 98.41
Resnet101 100 100 100 100 100 99.82 99.47 100 100 99.82 99.82 99.47 100 100 99.65 99.65 98.76 98.94 98.94 94.70 89.75 88.16

Engraving Color
train val ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32

BP 98.33 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37
SIFT+FV 100 50.00 44.74 44.74 44.74 44.74 50.00 47.37 47.37 47.37 47.37 50.00 47.37 47.37 44.74 47.37 47.37 50.00 50.00 47.37 47.37 50.00
AlexNet 100 100 73.68 73.68 23.68 13.16 15.79 100 100 100 100 94.74 100 100 100 100 94.74 100 100 100 94.74 92.11
VGG 100 100 100 100 100 100 97.37 97.37 97.37 26.32 15.79 13.16 100 100 100 100 100 100 100 100 100 100
ResNet18 95.00 100 97.37 97.37 97.37 97.37 81.58 97.37 97.37 97.37 89.47 81.58 52.63 52.63 13.16 02.63 21.05 97.37 97.37 97.37 94.74 78.95
Resnet101 100 100 100 100 100 100 97.37 100 100 100 100 97.37 100 100 100 97.37 94.74 94.74 94.74 81.58 65.79 68.42

Table 7: Results obtained using training and validation datasets from Kaggle.
Each method presents its classification accuracy for training, validation and
the AEs using the FGSM computed at ε = 2, 4, 8, 16, 32.
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optimizer cross-validation
SIFT+FV train val mean train mean val
Iconography 100 95.28 99.28 95.28
Painting 99.76 92.72 98.84 92.83
Drawings 100 83.84 98.28 83.44
Sculpture 100 86.71 98.63 86.48
Engraving Bw 100 93.64 99.32 93.87
Engraving Color 100 50.00 92.00 47.11

Table 8: Results of using the SVM hyperparameters optimizer method from
Matlab and the crossvalidation function to verify overfitting on SIFT+FV.

Figure 5: Maps generated in each phase of the AVC, extracted from the original image
and the AE computed from FGSM using ResNet101 with ε = 32. Note that despite the
attack, the generated maps do not change much.
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Figure 6: Maps generated in each phase of the AVC, extracted from an AE of the multiple
pixel attack and the image with the adversarial patch. Note that despite the attack, the
generated maps do not change much with the original one.

showed the poor performance of SIFT+FV considering clean images. In four
out of seven classes (Painting Landscapes, Drawings, Sculpture, and Engrav-
ing color), the accuracy is way below to compete with DCNNs. Additionally,
SIFT+FV was affected by AEs in Iconography, Painting Landscapes, and
Sculpture, where approximately 10% of its original score reduced the perfor-
mance. Finally, BP demonstrated high quality and steady results keeping
its scores from clean images after AEs with minimal to zero changes for all
classes.

Additionally, it is noticeable that, as opposed to SIFT+FV, BP reaches
comparable results to DCNNs’ scores. Besides, we present in Figures 8-9 the
ratio of accuracy on AEs for the testing classes. We observed a very similar
behavior, at least for BP, whose rate for all experiments remains almost one.
We see a drastic drop in DCNN models’ performance when the perturbation
matches the network’s architecture and influences AEs’ transferability to
other DCNN models and SIFT+FV.

36



Figure 7: Comparative graph of the computed accuracy ratios between adversarial exam-
ples and clean images from each method using the validation dataset.
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Figure 8: Comparative graph of the computed accuracy ratios between adversarial exam-
ples and clean images from each method using Iconography, Painting, Painting Landscapes,
Drawings, and Sculpture classes from the testing dataset.
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Iconography
AlexNet VGG ResNet18 ResNet101

test ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32
BP 91.74 91.66 91.66 91.82 91.74 91.74 91.66 91.66 91.74 91.74 91.74 91.66 91.66 91.66 91.58 91.5 91.58 91.58 91.58 91.58 91.58
SIFT+FV 86.16 85.54 85.54 84.71 83.26 77.69 85.54 85.54 84.92 83.47 77.48 85.95 85.95 84.71 83.06 76.24 86.16 86.16 84.71 83.06 75.62
AlexNet 96.07 93.39 93.39 70.04 37.4 28.72 95.87 95.87 95.04 94.42 92.98 96.07 96.07 95.87 94.83 93.18 96.07 96.07 95.45 94.63 92.15
VGG 95.87 95.45 95.45 94.83 91.32 80.99 76.65 76.65 36.98 23.97 21.69 95.66 95.66 94.21 87.81 76.86 95.87 95.87 95.87 90.91 82.44
ResNet18 96.49 95.87 95.87 94.83 94.21 87.81 95.66 95.66 94.42 90.5 83.88 76.86 76.86 38.64 25.21 21.49 96.07 96.07 94.21 90.29 85.12
Resnet101 95.25 95.25 95.25 94.83 92.77 89.88 95.45 95.45 94.63 91.94 88.02 95.45 95.45 92.56 87.6 83.26 79.96 79.96 49.38 36.16 36.36

Painting
test ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32

BP 100 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65
SIFT+FV 94.83 94.83 94.83 94.70 94.57 93.63 94.92 94.92 94.88 94.57 93.63 94.88 94.88 94.79 94.44 93.28 94.88 94.88 94.70 94.32 93.20
AlexNet 94.06 90.57 90.57 64.64 41.04 41.00 94.10 94.10 93.90 94.01 94.92 94.10 94.10 94.06 94.32 95.35 94.10 94.10 94.06 94.06 95.00
VGG 93.37 93.28 93.28 92.64 87.47 60.12 61.15 61.15 13.14 10.42 10.68 92.89 92.89 91.17 80.10 47.55 92.59 92.59 90.78 81.05 44.96
ResNet18 94.23 94.19 94.19 94.40 94.40 92.64 94.01 94.01 93.63 91.30 81.91 64.86 64.86 15.25 13.01 15.07 93.80 93.80 92.72 89.84 80.19
Resnet101 95.91 95.82 95.82 95.78 94.62 90.09 95.82 95.82 95.69 90.44 79.03 95.61 95.61 94.66 88.33 73.47 75.24 75.24 30.62 19.04 19.98

Painting Landscapes
test ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32

BP 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
SIFT+FV 75.34 75.07 75.07 72.90 70.46 62.6 75.61 75.61 73.71 70.46 62.60 75.34 75.34 73.17 68.83 60.70 75.34 75.34 72.90 68.29 59.62
AlexNet 93.77 86.99 86.99 61.25 41.46 35.77 93.50 93.50 92.68 91.06 90.24 93.50 93.50 92.68 91.60 90.51 93.77 93.77 92.68 91.33 90.51
VGG 94.58 94.58 94.58 94.31 90.79 73.71 80.76 80.76 42.01 28.73 30.89 94.31 94.31 94.31 88.08 72.63 94.04 94.04 93.22 87.53 70.19
ResNet18 95.12 94.85 94.85 93.77 92.95 90.79 94.31 94.31 92.41 89.43 81.84 72.36 72.36 42.82 33.60 38.48 94.31 94.31 91.6 88.62 79.95
Resnet101 95.39 95.12 95.12 95.12 93.77 89.43 94.58 94.58 94.58 93.50 83.74 94.31 94.31 92.95 88.89 78.86 80.76 80.76 50.96 43.90 44.72

Drawings
test ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32

BP 94.05 94.28 94.28 93.59 93.81 94.5 93.82 93.82 94.05 93.59 94.73 93.81 93.81 93.59 93.59 94.05 93.81 93.81 93.59 93.59 93.81
SIFT+FV 73.61 68.42 68.42 66.36 62.7 56.52 68.42 68.42 67.51 62.7 57.89 68.42 68.42 66.82 62.01 56.75 68.19 68.19 67.28 62.01 56.75
AlexNet 86.73 77.8 77.8 57.21 41.19 32.72 85.81 85.81 86.27 84.67 79.18 85.81 85.81 85.35 83.75 80.09 85.81 85.81 85.58 84.67 81.69
VGG 91.99 91.99 91.99 90.89 88.79 80.78 72.77 72.77 35.7 20.59 18.99 91.3 91.3 89.02 83.3 73.91 91.53 91.53 89.7 83.98 76.89
ResNet18 90.85 90.85 90.85 89.7 88.79 81.46 90.39 90.39 87.41 81.69 74.37 71.85 71.85 36.16 24.49 24.49 90.16 90.16 86.96 81.92 74.83
Resnet101 93.59 93.36 93.36 93.14 91.53 85.81 93.14 93.14 90.62 85.58 76.43 93.14 93.14 90.16 83.07 75.29 72.27 72.27 45.54 35.24 33.41

Sculpture
test ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32

BP 90.54 90.83 90.83 90.83 90.83 90.83 85.96 85.96 85.96 85.96 85.96 90.83 90.83 90.83 90.83 90.83 90.83 90.83 90.83 90.83 90.83
SIFT+FV 60.47 52.80 52.80 52.80 53.10 51.62 53.39 53.39 53.10 52.51 52.51 52.80 52.80 52.51 52.51 51.33 53.39 53.39 52.51 52.51 50.74
AlexNet 91.45 87.61 87.61 65.49 44.25 36.87 91.15 91.15 90.56 89.38 87.32 91.45 91.45 91.45 89.09 89.38 91.45 91.45 91.45 90.27 88.20
VGG 94.69 94.99 94.99 94.99 92.33 84.37 79.06 79.06 45.43 32.74 34.51 95.28 95.28 94.10 88.20 82.01 94.69 94.69 93.81 91.74 86.73
ResNet18 92.63 91.74 91.74 90.86 89.38 83.19 91.74 91.74 87.91 84.96 80.24 75.81 75.81 46.61 34.81 33.92 91.15 91.15 89.38 86.14 83.19
Resnet101 92.92 93.22 93.22 92.63 90.86 87.61 92.92 92.92 92.92 89.97 86.14 93.22 93.22 91.15 88.20 83.48 80.53 80.53 56.64 50.44 56.34

Engraving BW
test ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32

BP 91.55 92.64 92.64 91.97 91.72 91.63 92.30 92.30 92.05 92.05 91.63 91.97 91.97 91.80 91.97 91.80 92.13 92.13 91.97 91.80 91.63
SIFT+FV 89.79 89.79 89.79 89.71 89.87 90.96 89.79 89.79 89.79 89.37 90.96 89.87 89.87 89.62 89.54 90.88 89.96 89.96 89.46 89.54 90.96
AlexNet 98.58 94.06 94.06 75.06 57.32 54.64 98.66 98.66 98.66 98.49 97.32 98.66 98.66 98.66 98.33 97.15 98.66 98.66 98.66 98.58 97.49
VGG 99.58 99.83 99.83 99.67 99.50 99.16 91.05 91.05 62.85 45.94 49.87 99.58 99.58 98.74 98.41 97.91 99.58 99.58 99.25 99.00 98.83
ResNet18 99.83 99.92 99.92 99.83 99.67 99.16 99.75 99.75 99.41 98.83 97.49 93.22 93.22 71.55 59.41 61.09 99.83 99.83 99.67 98.91 97.82
Resnet101 99.67 99.75 99.75 99.75 99.83 99.75 99.83 99.83 99.50 99.25 98.74 99.67 99.67 99.50 99.08 98.16 95.90 95.90 90.13 85.77 83.01

Engraving Color
test ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32

BP 89.92 89.68 89.68 89.74 89.86 89.80 89.92 89.92 89.74 89.86 89.62 89.68 89.68 89.74 89.98 89.80 89.92 89.92 89.86 89.50 90.16
SIFT+FV 66.95 66.77 66.77 66.59 66.89 68.09 66.83 66.83 66.59 67.19 68.09 66.89 66.65 66.95 68.33 66.71 66.71 66.53 66.53 66.95 66.95
AlexNet 94.72 73.55 73.55 25.49 12.30 17.22 94.78 94.78 94.90 94.48 93.64 94.72 94.72 94.66 95.14 94.24 94.54 94.54 95.02 94.66 94.00
VGG 99.40 99.46 99.46 99.46 99.28 96.52 79.90 79.90 16.02 05.46 06.06 99.52 99.52 99.22 99.10 97.18 99.40 99.40 99.10 98.50 95.98
ResNet18 96.40 95.98 95.98 96.16 95.02 89.14 95.92 95.92 95.50 93.88 89.50 49.13 49.13 06.84 05.58 10.74 95.62 95.62 95.02 92.68 86.98
Resnet101 99.88 99.76 99.76 99.76 99.52 98.92 99.70 99.70 99.70 99.22 98.44 99.82 99.82 99.76 99.40 98.56 92.86 92.86 61.91 49.19 54.53

Table 9: Results obtained using the test dataset from Wikiart. Each method
presents its classification accuracy for testing and the AEs using the FGSM
computed at ε = 2, 4, 8, 16, 32.
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Figure 9: Comparative graph of the computed accuracy ratios between adversarial exam-
ples and clean images from each method using Engraving BW and Engraving Color classes
from the testing dataset.

4.4.2. Multiple Pixel Attack

The multiple pixel attack experiment came along with the analysis that
one pixel does not perturb high-resolution images to change the model’s
prediction. We experiment with modifying one pixel to fool the models over
100 selected images, and the results indicate no score changes. Thus, we
experimentally found that when 8000-10,000 pixels, DCNN models have a
massive amount of change in their prediction, so we set a second experiment
with a 10,000 pixel attack. We present in Table 10 the number of images that
change its forecast with the success rate and the mean posterior probability
of these new predictions in the confidence row.

We observed that DCNN changes by a considerable amount of their pre-
dictions with high confidence by modifying multiple pixels. SIFT+FV was
also misled in five out of seven classes achieving the same number of images
as DCNN models with lower confidence. In this way, only two categories
resisted the attack. On the contrary, BP was robust to this attack having
four out of seven classes without changes and the rest with a maximum error
of 4%. Notice that the amount of pixels modified in this experiment fails
the motivation of AA in which the perturbation should be unnoticeable to
human vision. Therefore, BP was robust to this perturbation. We illustrate
as an example; BP generated maps using a multiple pixel attack in Figure 6.
Additionally, we report the mean processing time in seconds (see Table 10),
which makes this attack unfeasible to perform in real-time applications.
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Iconography BP SIFT+FV AlexNet VGG ResNet18 ResNet101
Original Acc. 92.00 88.00 96.00 94.00 96.00 92.00
Success rate 0.00 32.00 32.00 44.00 46.00 42.00
Confidence NA 64.96 85.09 85.72 76.34 77.61
Time (seconds) 94.22 301.21 138.51 147.72 152.37 237.73

Painting BP SIFT+FV AlexNet VGG ResNet18 ResNet101
Original Acc. 100 78.00 94.00 90.00 92.00 94.00
Success rate 2.00 0.00 54.00 60.00 64.00 64.00
Confidence 51.83 NA 78.11 97.34 99.37 98.06
Time (seconds) 90.16 598.12 119.78 122.59 111.14 242.58

Painting Landscapes BP SIFT+FV AlexNet VGG ResNet18 ResNet101
Original Acc. 100 78.00 88.00 88.00 92.00 92.00
Success rate 2.00 40.00 54.00 60.00 64.00 66.00
Confidence 54.06 62.04 75.70 97.25 99.26 97.37
Time (seconds) 98.83 585.69 141.85 163.51 143.62 205.53

Drawings BP SIFT+FV AlexNet VGG ResNet18 ResNet101
Original Acc. 88.00 70.00 80.00 90.00 86.00 92.00
Success rate 0.00 38.00 68.00 68.00 74.00 78.00
Confidence NA 66.53 83.91 91.94 95.11 94.24
Time (seconds) 118.85 462.92 110.18 111.48 128.07 220.69

Sculpture BP SIFT+FV AlexNet VGG ResNet18 ResNet101
Original Acc. 86.00 62.00 88.00 98.00 96.00 96.00
Success rate 4.00 60.00 62.00 54.00 56.00 54.00
Confidence 58.14 67.61 92.65 98.60 97.45 96.93
Time (seconds) 71.20 601.53 121.22 130.06 137.16 181.14

Engraving BW BP SIFT+FV AlexNet VGG ResNet18 ResNet101
Original Acc. 94.00 94.00 100 100 100 100
Success rate 0.00 0.00 40.00 50.00 32.00 20.00
Confidence NA NA 77.63 68.07 71.86 61.25
Time (seconds) 88.71 599.41 148.90 169.56 152.11 177.61

Engraving Color BP SIFT+FV AlexNet VGG ResNet18 ResNet101
Original Acc. 94.00 74.00 98.00 100 92.00 100
Success rate 0.00 60.00 40.00 50.00 46.00 22.00
Confidence NA 55.98 73.80 66.15 62.96 65.31
Time (seconds) 87.01 600.82 150.70 174.51 154.52 186.13

Table 10: Results from the experiment of computing the multiple pixel attack
with d = 10, 000 on 100 random images from the testing dataset. The original
accuracy refers to the score of the clean images. Success rate means the
percentage of images that change the prediction with a mean Confidence
value of the posterior probabilities over the new predicted classes.
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4.4.3. Adversarial Patch

We present the results of the adversarial patch in Table 11. This exper-
iment analyzes the change in the model’s predictions by adding the trained
patches from DCNN models using 100 images from each class in a random
location and orientation. The results from Table 11 show that these patches
affect in a significant manner DCNN models in most experiments. Also, we
discovered that the patches could be transferable to other DCNNs.

The painting landscapes experiment showed the worst-case scenario for
DCNN models, on which we observed a considerable transferability effect be-
tween the models. We observed that VGG, ResNet18, and ResNet101 were
affected by all the patches. DCNN models dropped its performance to ap-
proximately half of its original accuracy and, in some cases, is less to 50%.
ResNet18 was fooled in all images using its trained patch. All other classes
did not show a similar behavior; the patches can fool DCNN models. In con-
trast, SIFT+FV and BP demonstrated a robust control over the adversarial
patches, showing almost an unchangeable performance. Figure 6 illustrates
the BP generated maps using an image with the adversarial patch.

4.4.4. Statistical Analysis of Robustness

In the last section, we see that differences among experiments seem strik-
ing, particularly when images suffer a subtle perturbation. Nevertheless,
statistical analysis allows us to be more confident regarding the robustness
of each method’s predictions. Nowadays, the nonparametric statistical anal-
ysis is bringing researchers’ attention to measure the performance through a
rigorous comparison among algorithms, considering independence, normality,
and homoscedasticity [79, 80]. Such procedures perform both pairwise and
multiple comparisons for multiple-problem analysis. In our case, we apply
pairwise statistical procedures to perform individual comparisons between
each method’s predictions’ confidence from clean and attacked images based
on the statistical procedure described in [81].

When the designed algorithms’ results for the same problem achieved the
conditions expressed before, the most common test is the ANOVA. In case
that the distributions are not normal, we must use a nonparametric test
like Kruskal-Wallis. If the distributions are normal but do not achieve the
property of homoscedasticity, the analysis required is the Welch test. The
statistical tests enable comparisons of the sample distributions, attending
to the required conditions, and applying a suitable assessment a posteriori
to contrast the results. As a result, we have first studied data normality
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Iconography Original Acc. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 99.00 99.00 99.00 99.00 99.00
SIFT+FV 92.00 89.00 93.00 93.00 92.00
AlexNet 98.00 74.00 97.00 97.00 98.00
VGG 94.00 91.00 45.00 82.00 81.00
ResNet18 94.00 87.00 90.00 58.00 90.00
ResNet101 93.00 87.00 87.00 78.00 70.00

Painting Original Acc. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 100.00 100.00 100.00 99.00 100.00
SIFT+FV 97.00 98.00 97.00 98.00 96.00
AlexNet 96.00 54.00 94.00 94.00 94.00
VGG 92.00 71.00 48.00 73.00 61.00
ResNet18 94.00 67.00 76.00 23.00 43.00
ResNet101 97.00 72.00 72.00 69.00 56.00

Painting Land. Original Acc. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 100.00 100.00 100.00 100.00 100.00
SIFT+FV 87.00 81.00 78.00 84.00 81.00
AlexNet 94.00 24.00 85.00 86.00 77.00
VGG 95.00 41.00 19.00 48.00 23.00
ResNet18 95.00 22.00 39.00 0.00 9.00
ResNet101 96.00 43.00 41.00 35.00 22.00

Drawings Original Acc. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 91.00 91.00 91.00 91.00 91.00
SIFT+FV 72.00 67.00 68.00 69.00 67.00
AlexNet 94.00 30.00 85.00 80.00 73.00
VGG 98.00 81.00 69.00 74.00 62.00
ResNet18 96.00 82.00 91.00 66.00 79.00
ResNet101 99.00 88.00 90.00 85.00 75.00

Sculpture Original Acc. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 85.00 85.00 85.00 85.00 85.00
SIFT+FV 95.00 92.00 94.00 94.00 95.00
AlexNet 97.00 32.00 92.00 89.00 86.00
VGG 97.00 93.00 72.00 85.00 85.00
ResNet18 95.00 92.00 86.00 66.00 89.00
ResNet101 94.00 87.00 89.00 86.00 87.00

Engraving BW Original Acc. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 90.00 90.00 91.00 91.00 91.00
SIFT+FV 91.00 94.00 93.00 95.00 92.00
AlexNet 100.00 99.00 100.00 100.00 100.00
VGG 100.00 99.00 83.00 96.00 97.00
ResNet18 100.00 100.00 96.00 71.00 96.00
ResNet101 100.00 100.00 100.00 100.00 100.00

Engraving Color Original Acc. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 93.00 92.00 93.00 92.00 92.00
SIFT+FV 94.00 94.00 96.00 95.00 95.00
AlexNet 97.00 67.00 98.00 95.00 93.00
VGG 100.00 100.00 99.00 100.00 100.00
ResNet18 98.00 99.00 100.00 98.00 99.00
ResNet101 100.00 100.00 100.00 100.00 100.00

Table 11: Results obtained using the adversarial patch. Each column presents
the score obtained for the original 100 images per class and the AEs when
adding the adversarial patch.
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(Lilliefors, Kolmogorov-Smirnov) and homoscedasticity (Levene test); then,
according to the results, we have applied the appropriate statistical test
(Kruskal-Wallis, Welch, Anova) to determine if the differences are signifi-
cant, using a p-value < 0.05. Therefore, if the predictions’ confidence is
statistically different, it will illustrate the rejection of the null hypothesis
Ho. If the statistical analysis accepts Ho, it will define that the predictions’
confidence from the pair of clean and perturbed images is not significantly
different; hence we can conclude that the method is robust to the AEs.

The statistical analysis from Tables 12-13 shows that the predictions’
confidence from BP is not significantly different in every experiment of the
test dataset using FGSM. That means that the confidence is not affected
by the subtle perturbations added to the images. The majority of p-values
from SIFT+FV demonstrate to be not significantly different between the
predictions’ confidences. Nonetheless, the analysis from all DCNN architec-
tures showed that, in most cases, the rejection of the null hypothesis Ho.
The rejection illustrates the damage of the AEs to the DCNN’s predictions’
confidence by making them statistically different.
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Iconography
AlexNet VGG

Testing Vs. ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32
BP 0.99743 0.99889 0.99599 0.9958 0.9958 0.99828 0.99634 0.99517 0.9937 0.99371
SIFT+FV 0.95119 0.95118 0.80859 0.21374 0.00012958 0.93022 0.93022 0.73482 0.10472 9.0663e-06
AlexNet 1.7665e-12 1.7665e-12 1.8922e-54 5.2622e-73 1.5556e-74 0.99483 0.99483 0.99702 0.84401 0.83964
VGG 0.58235 0.58245 0.0087004 1.884e-09 3.1824e-32 3.2201e-30 3.2201e-30 3.1832e-64 1.3611e-174 7.6365e-176
ResNet18 0.63062 0.63063 0.024056 8.0612e-06 3.3087e-17 0.52182 0.52182 0.00035193 3.2009e-10 2.4186e-22
ResNet101 0.6259 0.62599 0.054054 5.9926e-05 2.5752e-11 0.54501 0.54501 0.0017698 1.0084e-06 2.232e-12

Painting
AlexNet VGG

Testing Vs. ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32
BP 0.9136 0.89874 0.89634 0.85943 0.12557 0.99068 0.99108 0.78341 0.75145 0.59411
SIFT+FV 0.21866 0.21866 0.00012449 1.6086e-24 1.65e-86 0.16502 0.16502 3.9752e-06 1.516e-31 3.6495e-98
AlexNet 3.4962e-105 3.4962e-105 0 0 0 0.98106 0.98106 0.90152 0.47591 0.050199
VGG 0.64622 0.64621 9.6649e-14 2.4111e-137 0 0 0 0 0 0
ResNet18 0.9711 0.97111 0.92035 0.13873 3.8914e-111 0.37065 0.37065 2.124e-25 1.5714e-103 1.1938e-291
ResNet101 0.90558 0.90557 0.37347 3.1411e-66 4.1528e-240 0.35338 0.35338 3.3466e-53 1.3622e-216 0

Painting Landscapes
AlexNet VGG

Testing Vs. ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32
BP 1 1 1 1 1 1 1 1 1 1
SIFT+FV 0.79505 0.79505 0.30022 0.0024393 3.3167e-09 0.79599 0.79599 0.3353 0.0019852 3.6761e-09
AlexNet 7.9291e-10 7.9291e-10 1.4342e-29 5.265e-33 8.3707e-33 0.9905 0.9905 0.95413 0.95212 0.70978
VGG 0.87445 0.87447 0.38584 3.5473e-12 7.3903e-34 5.0409e-29 5.0409e-29 5.5977e-37 3.0354e-37 1.0586e-38
ResNet18 0.89967 0.89966 0.7306 0.30211 1.4175e-05 0.68713 0.68713 0.030198 1.4375e-05 7.5887e-15
ResNet101 0.9671 0.96696 0.74545 5.8498e-08 2.5216e-22 0.87901 0.87901 0.33332 2.368e-17 3.0898e-30

Drawings
AlexNet VGG

Testing Vs. ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32
BP 0.98405 0.98405 0.97876 0.95426 0.97483 0.98745 0.98745 0.99322 0.98889 0.97186
SIFT+FV 0.67854 0.67854 0.43269 0.04983 2.6184e-06 0.69315 0.69315 0.46697 0.064349 1.0753e-05
AlexNet 1.5308e-05 1.5308e-05 3.0146e-26 5.9791e-41 6.2069e-47 0.92991 0.92989 0.83881 0.84904 0.0052409
VGG 0.87066 0.87066 0.058863 9.9068e-08 3.7992e-30 1.5939e-20 1.5939e-20 1.7229e-53 3.4676e-58 6.0516e-61
ResNet18 0.90781 0.90781 0.50143 0.0023366 5.16e-16 0.59103 0.59103 0.0056782 6.2775e-08 9.5421e-26
ResNet101 0.97912 0.97912 0.55583 3.2526e-06 1.313e-22 0.79099 0.79099 0.00070622 4.8929e-12 1.5062e-33

Sculpture
AlexNet VGG

Testing Vs. ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32
BP 0.99772 0.99772 0.99742 0.99748 0.99701 0.99736 0.99736 0.99717 0.99702 0.99753
SIFT+FV 0.89198 0.89198 0.4632 0.1714 0.086323 0.93114 0.93114 0.5201 0.20871 0.14017
AlexNet 0.00013513 0.00013513 2.0152e-20 8.8035e-31 8.2946e-34 0.89484 0.89484 0.54423 0.00026161 1.6579e-12
VGG 0.75594 0.75594 0.0082156 5.2489e-08 1.6714e-21 6.7774e-13 6.7774e-13 1.0801e-30 7.3611e-34 2.2997e-36
ResNet18 0.76905 0.76905 0.053247 2.3723e-06 7.1788e-18 0.6501 0.6501 0.0032158 1.3364e-08 4.5108e-21
ResNet101 0.83153 0.83153 0.018017 6.1378e-07 2.1775e-14 0.73046 0.73046 0.0025386 2.3318e-07 3.531e-15

Engraving BW
AlexNet VGG

Testing Vs. ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32
BP 0.1314 0.1314 0.75089 0.7213 0.76281 0.1184 0.1184 0.69932 0.72718 0.75278
SIFT+FV 0.89606 0.89606 0.9213 0.77775 0.01329 0.87447 0.87447 0.85628 0.96241 0.086893
AlexNet 5.358e-33 5.358e-33 2.205e-116 3.5771e-171 2.9344e-187 0.61108 0.61108 0.79384 0.66623 1.2529e-07
VGG 0.94146 0.94146 0.62982 0.019374 0.092515 1.7458e-85 1.7458e-85 2.3367e-202 6.0154e-219 3.4579e-219
ResNet18 0.35122 0.35122 0.020752 6.4226e-13 4.1326e-56 0.11378 0.11378 2.9188e-05 5.2976e-22 1.1364e-73
ResNet101 0.14262 0.14262 0.70567 0.0010867 5.2621e-31 0.4537 0.4537 0.19041 4.4468e-06 1.2934e-39

Engraving Color
AlexNet VGG

Testing Vs. ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32
BP 0.89591 0.89591 0.94823 0.93453 0.98186 0.87265 0.87265 0.92126 0.93354 0.99179
SIFT+FV 0.83715 0.83715 0.7306 0.52109 0.95255 0.78356 0.78356 0.78447 1 0.82826
AlexNet 1.6503e-133 1.6479e-133 4.924e-273 2.106e-290 1.6302e-274 0.56852 0.56852 0.36771 0.041684 1.0253e-05
VGG 3.66e-32 3.66e-32 1.8892e-35 1.7963e-34 1.0132e-18 0 0 0 0 0
ResNet18 1.105e-08 1.105e-08 1.8668e-09 4.1096e-08 6.1218e-06 1.6772e-10 1.6772e-10 1.7619e-14 1.0486e-16 1.5263e-15
ResNet101 5.1941e-16 5.1941e-16 1.1333e-18 6.1089e-25 5.416e-42 8.2181e-23 8.2181e-23 1.968e-41 3.066e-70 3.3115e-107

Table 12: Results from the statistical tests applied to each method’s pre-
dictions’ confidence from clean and attacked images using test datasets and
AEs from AlexNet and VGG. Each value represents the corresponding p-
value from the statistical test.

45



Iconography
ResNet ResNet101

Testing Vs. ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32
BP 0.99767 0.99672 0.99739 0.99585 0.99585 0.99992 0.99593 0.99825 0.99589 0.99589
SIFT+FV 0.95457 0.95457 0.78501 0.098796 1.296e-05 0.9245 0.92449 0.71244 0.06041 2.3283e-06
AlexNet 0.99776 0.99776 0.96299 0.74961 0.18328 0.9903 0.9903 0.98065 0.79478 0.62045
VGG 0.45019 0.45018 1.3824e-05 7.6022e-17 2.9553e-39 0.60766 0.60768 0.0020685 3.2656e-09 6.6815e-28
ResNet18 2.8465e-35 2.8465e-35 1.2532e-66 1.0059e-161 1.2666e-66 0.48618 0.48626 0.0005933 1.195e-08 9.7675e-18
ResNet101 0.36979 0.36979 1.161e-05 8.3498e-14 2.6481e-22 5.2645e-31 5.2645e-31 1.3736e-58 7.7789e-61 7.2518e-59

Painting
ResNet ResNet101

Testing Vs. ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32
BP 0.84987 0.78268 0.54929 0.99293 0.9937 0.73759 0.94754 0.87769 0.88685 0.83682
SIFT+FV 0.15684 0.15685 1.1729e-06 9.2235e-34 4.2265e-102 0.1448 0.1448 4.1104e-07 1.6025e-34 6.9011e-99
AlexNet 0.97537 0.97538 0.83884 0.0002221 0.056476 0.98499 0.98501 0.8621 0.39927 0.11822
VGG 1.5516e-06 1.5524e-06 1.4289e-58 1.8098e-237 0 8.3796e-06 8.3735e-06 5.48e-50 1.1918e-222 0
ResNet18 0 0 0 0 0 9.7705e-05 9.7674e-05 3.6504e-28 2.1311e-107 9.0869e-291
ResNet101 0.20263 0.20266 7.6609e-70 1.041e-267 0 0 0 0 0 0

Painting Landscapes
ResNet ResNet101

Testing Vs. ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32
BP 1 1 1 1 1 1 1 1 1 1
SIFT+FV 0.81073 0.81072 0.31041 0.0013292 9.4406e-10 0.79544 0.79544 0.27643 0.0011679 3.2551e-09
AlexNet 0.97698 0.97699 0.93679 0.92671 0.66599 0.99458 0.9946 0.97321 0.97355 0.81807
VGG 0.71643 0.71643 4.7994e-05 1.6994e-17 4.5878e-38 0.73709 0.73709 0.00021444 4.9845e-16 8.8656e-38
ResNet18 1.3222e-24 1.3435e-24 1.8235e-34 5.3646e-34 2.2238e-35 0.60616 0.60616 0.021885 2.1956e-05 1.1705e-16
ResNet101 0.83154 0.83154 1.4205e-06 5.6908e-22 5.671e-33 8.0509e-29 8.0509e-29 7.9778e-37 9.0441e-38 5.7158e-41

Drawings
ResNet ResNet101

Testing Vs. ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32
BP 0.98646 0.98646 0.98853 0.96403 0.97252 0.99539 0.99539 0.99544 0.98031 0.98827
SIFT+FV 0.69545 0.69544 0.45485 0.052022 4.3891e-06 0.68791 0.68791 0.43034 0.039834 2.482e-06
AlexNet 0.91835 0.91835 0.86539 0.77007 0.0013548 0.9221 0.92208 0.86883 0.94347 0.29188
VGG 0.61463 0.61463 0.00064209 2.228e-13 1.8494e-35 0.5806 0.58052 0.0061323 1.4804e-10 5.7541e-34
ResNet18 1.7101e-24 1.7101e-24 1.9766e-51 1.4251e-54 1.2956e-56 0.50031 0.50028 0.00714 1.1845e-06 2.6572e-20
ResNet101 0.59366 0.59366 0.0001009 4.6116e-12 1.5527e-34 4.7426e-30 4.7426e-30 3.8037e-54 1.3584e-57 3.9703e-60

Sculpture
ResNet ResNet101

Testing Vs. ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32
BP 0.9975 0.9975 0.99702 0.99693 0.9969 0.99659 0.99659 0.99686 0.99662 0.99609
SIFT+FV 0.91246 0.91245 0.45842 0.19418 0.23847 0.91303 0.91303 0.40899 0.11917 0.0022884
AlexNet 0.89915 0.89911 0.57069 0.00029538 2.4554e-12 0.92807 0.92807 0.63864 0.0012897 1.0607e-10
VGG 0.71495 0.71495 0.00025963 4.4615e-10 1.6644e-23 0.83568 0.83568 0.0062375 1.065e-06 8.4707e-20
ResNet18 5.4653e-13 5.4653e-13 1.885e-26 2.7286e-29 2.1562e-32 0.8016 0.8016 0.01385 2.2828e-06 1.1366e-17
ResNet101 0.63809 0.63809 0.00097214 2.3315e-09 1.5158e-17 7.4724e-11 7.4724e-11 1.7682e-19 8.4807e-21 1.7814e-25

Engraving BW
ResNet ResNet101

Testing Vs. ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32
BP 0.62139 0.62139 0.76279 0.72754 0.73081 0.23525 0.23525 0.73697 0.75743 0.76744
SIFT+FV 0.88575 0.88575 0.8536 0.95828 0.14382 0.86903 0.86904 0.88072 0.92791 0.065097
AlexNet 0.88255 0.88255 0.82907 0.12103 5.201e-14 0.63177 0.63178 0.85028 0.51736 0.026006
VGG 0.3549 0.3549 0.011117 1.113e-11 1.2312e-46 0.61302 0.61311 0.14793 1.5966e-08 1.9818e-32
ResNet18 2.0619e-81 2.0619e-81 8.5802e-191 2.2357e-211 4.2645e-218 0.10882 0.10882 0.0001122 9.641e-23 5.6127e-80
ResNet101 0.5792 0.5792 0.0092807 5.08e-14 5.8058e-77 4.4317e-56 4.4223e-56 1.1988e-119 1.3737e-152 3.8698e-193
Testing Vs. ε2 ε4 ε8 ε16 ε32 ε2 ε4 ε8 ε16 ε32
BP 0.96553 0.96553 0.93342 0.99733 0.99721 0.96275 0.96275 0.9169 0.98099 0.83034
SIFT+FV 0.89023 0.89023 0.67872 0.66967 0.8903 0.89075 0.89075 0.72948 0.51895 0.8264
AlexNet 0.61061 0.61064 0.4212 0.095421 0.0014581 0.56698 0.56703 0.33301 0.017158 1.6441e-06
VGG 8.8075e-36 8.8007e-36 1.3014e-44 7.2256e-54 7.1826e-59 1.3175e-40 1.323e-40 6.4181e-58 1.2544e-79 1.8917e-105
ResNet18 3.076e-307 3.076e-307 0 0 0 3.907e-11 3.907e-11 5.3445e-16 1.6623e-17 1.5303e-14
ResNet101 4.2e-20 4.1976e-20 4.9361e-32 4.2834e-52 6.6939e-89 2.6025e-310 2.6206e-310 0 0 0

Table 13: Results from the statistical tests applied to each method’s pre-
dictions’ confidence from clean and attacked images using test datasets and
AEs from ResNet and ResNet101. Each value represents the corresponding
p-value from the statistical test.
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The same behavior is seen in the statistical analysis from Table 14, which
shows the method’s predictions’ confidence to the adversarial patch. The
study showed the same rejection of the null hypothesis Ho from all DCNN
architectures in a significant part of the experiments for all classes. Con-
versely, BP accepted the null hypothesis Ho in every experiment. SIFT+FV
showed similar behavior to BP, but the sculpture class and the VGG patch
obtained significantly different predictions’ confidence.

5. Conclusion

Robustness against AA must be the primary concern when it is developing
an automatic recognition system. So, from now on, a classifier’s performance
should not be focused only on accuracy but also on robustness to AAs. In
this work, we present a comparative study for AMC subject to AA. We
compare several methods to analyze the performance and their reliability to
predict a class using adversarial perturbations. We selected six models using
three of the main approaches for image classification: 1) handcrafted fea-
tures approach (SIFT+FV), 2) deep genetic programming approach (BP),
and 3) DCNN approach (AlexNet, VGG, ResNet18, and ResNet101). The
comparative study consists of analyzing three different attacks. Firstly, the
direct threat’s impact and transferability considering the white box untar-
geted attack–FGSM. This perturbation adds a subtle texture to the artwork,
which can cause a misleading prediction. Secondly, find a set of localiza-
tion and pixel values to modify the artwork to fool the classifier using a
black box untargeted attack–multiple pixel attack. Finally, apply precom-
puted patches–adversarial patch–robust to transformations located randomly
in the artwork to predict a targeted class.

In this sense, this study has demonstrated that AA is a severe threat to
the performance of DCNN. Using FGSM showed that if the attacker knows
the model, it can make the DCNN decrease its performance up to less than
20% of its original score. Additionally, we proved the transferability effect
between DCNN models, which is not severe for the binary classification, but
it can reduce up to 20% of the performance. On the other hand, SIFT+FV
also was affected by some of the classes but by a minor amount. However, the
added texture caused by the FGSM lead to a decrease in its performance in a
significant manner when the algorithm was tested, having encouraging results
but not suitable to compete with DCNNs in the testing phase. Finally, BP
exhibits comparable performance (efficiency) to DCNN in both validation
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Iconography
Testing Vs. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 0.99608 0.99019 0.99812 0.99901
SIFT+FV 0.60131 0.89837 0.61682 0.97909
AlexNet 7.1039e-20 0.79567 0.46915 0.56209
VGG 0.0003743 1.3363e-23 9.9987e-07 1.0847e-07
ResNet18 2.5542e-05 0.00040313 2.092e-18 0.00029613
ResNet101 0.0010507 8.4448e-05 3.9575e-08 1.358e-12

Painting
Testing Vs. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 1 1 1 1
SIFT+FV 0.54497 0.74837 0.55432 0.82595
AlexNet 1.3914e-27 2.7344e-07 4.1336e-07 7.5744e-12
VGG 4.5007e-16 3.0804e-22 5.2464e-14 3.4408e-20
ResNet18 1.2746e-19 1.1991e-15 2.269e-29 4.9202e-26
ResNet101 3.855e-20 1.9447e-20 5.876e-18 9.657e-26

Painting Landscapes
Testing Vs. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 1 1 1 1
SIFT+FV 0.71106 0.35442 0.76126 0.32247
AlexNet 2.3132e-27 1.4598e-08 1.3614e-06 4.8304e-13
VGG 3.4926e-25 5.7961e-30 1.6104e-22 3.0764e-29
ResNet18 1.5553e-28 1.3091e-24 1.1945e-33 5.1204e-32
ResNet101 1.868e-27 5.565e-27 3.9203e-28 1.1313e-30

Drawings
Testing Vs. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 1 1 1 1
SIFT+FV 0.49234 0.24792 0.40336 0.20665
AlexNet 2.0788e-27 2.61e-05 2.1405e-08 7.0741e-12
VGG 3.9051e-15 2.6781e-20 1.1136e-18 3.3552e-21
ResNet18 5.2286e-15 3.8956e-09 1.3091e-24 5.042e-17
ResNet101 3.8469e-17 9.1359e-12 5.7602e-14 1.0681e-22

Sculpture
Testing Vs. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 0.99544 0.99701 0.99823 0.99557
SIFT+FV 0.093228 0.048075 0.14621 0.49341
AlexNet 9.0533e-28 1.6758e-06 1.6128e-08 8.3985e-08
VGG 6.2478e-06 4.5278e-19 1.1145e-10 3.8384e-09
ResNet18 9.011e-06 5.6851e-07 3.0015e-20 6.7596e-08
ResNet101 3.1949e-07 0.00045029 2.9946e-07 1.2838e-08

Engraving BW
Testing Vs. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 0.84032 0.9292 0.83695 0.79371
SIFT+FV 0.17899 0.68646 0.63549 0.75774
AlexNet 6.8616e-16 0.33203 0.13546 0.80088
VGG 2.7464e-15 6.3779e-28 1.1879e-13 1.0857e-15
ResNet18 4.2622e-24 1.3125e-21 5.7495e-32 6.0573e-26
ResNet101 1.5343e-07 1.7745e-10 4.6019e-14 4.6746e-23

Engraving Color
Testing Vs. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 0.81987 0.96904 0.82055 0.81363
SIFT+FV 0.51466 1 1 1
AlexNet 4.7445e-15 0.42195 0.6454 0.32844
VGG 0.00057199 5.3585e-08 0.11452 0.000143
ResNet18 0.00012499 0.01838 0.00042032 0.31804
ResNet101 0.33861 0.29463 1.2204e-05 8.898e-10

Table 14: P-value obtained using the adversarial patch. Each column
presents the score obtained for the 100 images per pair (Clean and AE)
using the adversarial patch.
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and testing phases. It has an almost imperceptible variant on its accuracy
to these perturbations proving no direct transferability from other models.
Figures 5-6 can be observed the output of each stage of BP from clean and
AEs with almost no variation on its outcomes.

The study about one pixel attack confirms this type of attack’s poor de-
sign due to a minimal scenario contrived with an input image of size 32× 32
pixels. We conclude that it is challenging to apply multiple pixel attacks on
real-world conditions. On the one hand, when we extend to multiple pixels,
the perturbation loses the attack’s intention of being imperceptible to hu-
man vision, not to mention the massive amount of processing time. On the
other hand, BP shows it challenging to fail these attacks even by increasing
five times the number of pixels per AA compared to SIFT+FV and DCNN
models, which were successfully fooled. Finally, the adversarial patch showed
that a precomputed perturbation positioned in a random location and orien-
tation in the artwork could fool DCNN models with excellent transferability
between them; meanwhile, BP and SIFT+FV remain in their original score.
It is remarkable the BP robustness to the multiple pixel attack and the ad-
versarial patch. However, these two attacks are harsh perturbations and
BP remained steady in its performance, leading to the reliability of BP’s
predictions in no human supervision cases.

The statistical analysis from the predictions’ confidence supports the
study of robustness by illustrating the change in the posterior probability
complementing the results from the accuracy’s standpoint. In this manner,
BP demonstrated to have not significantly different predictions’ confidence
compare to DCNN models, which showed in most cases the rejection of the
null hypothesis Ho. Conversely, SIFT+FV obtained good results, with most
of the test scoring a not a significant difference in the predictions’ confidence.

In conclusion, art media categorization is a complex problem in which
it is difficult to outperform DCNN performance. Still, BP has comparable
results and is robust to these adversarial attacks with no direct transferability
of such perturbations to the model. On the other hand, SIFT+FV proves
to be robust for a limited number of experiments with moderate results.
So, BP arises as an alternative proposal of an art media classifier without
the vulnerabilities of AA. Additionally, it takes advantage of the symbolic
representations and incorporates rules from expert systems in a hierarchical
structure to solve the AMC problem. Lastly, BP opens the possibility of
being explainable on each of its stages, unlike DCNN, an important research
area to know precisely the model’s inner workings.
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