
Overview

he initial portion of this manuscript is devoted
to a basic introduction to a number of neurophysiolog-
ical concepts as background to an understanding of neu-
ronal oscillations (used here nearly interchangeably with
“rhythms”) in the brain. This initial portion may require
some in-depth knowledge in neurophysiology, though we
hope to introduce concepts in intuitive ways and by
adding a glossary (see Glossary in separate Box) for con-
venience. We will go on to explain how these oscillatory
rhythms interact with each other and allow for informa-
tion coding, demonstrating that they are central to brain
function. Therefore, a knowledge of the role of neural
rhythms is critical to a full understanding of brain func-
tion and the impact disturbances of brain rhythms can
have on patients. With this background in hand, we then
move to a larger perspective aimed specifically at find-
ings and future directions in psychiatric disease.

Introduction: a system of brain rhythms

Computation in the cerebral cortex of all mammals has
two essential features: local-global communication and
persistent activity.1–3 Due to the bidirectional and highly
branched connectivity of neurons throughout the mam-
malian brain, the results of local computations are
broadcast to widespread areas so that multiple structures
are informed simultaneously around any given local
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The perpetual activity of the cerebral cortex is largely sup-
ported by the variety of oscillations the brain generates,
spanning a number of frequencies and anatomical loca-
tions, as well as behavioral correlates. First, we review
findings from animal studies showing that most forms of
brain rhythms are inhibition-based, producing rhythmic
volleys of inhibitory inputs to principal cell populations,
thereby providing alternating temporal windows of rela-
tively reduced and enhanced excitability in neuronal net-
works. These inhibition-based mechanisms offer natural
temporal frames to group or “chunk” neuronal activity
into cell assemblies and sequences of assemblies, with
more complex multi-oscillation interactions creating syn-
tactical rules for the effective exchange of information
among cortical networks. We then review recent studies
in human psychiatric patients demonstrating a variety
alterations in neural oscillations across all major psychiatric
diseases, and suggest possible future research directions
and treatment approaches based on the fundamental
properties of brain rhythms.     
© 2012, LLS SAS Dialogues Clin Neurosci. 2012;14:345-367.



S t a t e  o f  t h e  a r t

346

Glossary 

Brain oscillations: Periodic fluctuation of excitability in groups of neurons. The coherent changes in the mem-
brane potential of neurons create an extracellular current which can be measured by electrical recordings from
the brain or scalp (such as by EEG). Since most brain rhythms are paced by inhibition, they are natural mecha-
nisms for carrying information in temporal frames. 
Phase of oscillation: Phase is the time-variant angle of the oscillatory cycle, expressed in degrees from 0 to 360
or radians. The phase repeats with every cycle of an oscillation.
Phase space: The mathematical domain of the cycle of an oscillation. In other words the entire mathemati-
cal/conceptual space covered by the combination of all phases of a particular cyclical oscillation. This “space” can
be used to conceptually address events or properties happening across all aspects, or phases, of the oscillation (ie,
action potentials, or comodulation of other oscillations).
Spectral power: After data is broken down into a number of component oscillations (each of a particular fre-
quency) using a Fourier Transformation (or similar), the spectral power distribution is the series of numbers sig-
nifying the amplitude of each component oscillation. For example a pure 10 Hz sine wave has a power spectrum
showing zero power everywhere but at 10 Hz. Neural data has a complex power spectrum and the peaks can char-
acterize the dominant frequency in a given brain state.
Local field potential (LFP): Intraparencyhmal equivalent of EEG.  Composed of electric current contributions from all
active cellular processes within a volume of brain tissue which superimpose at a given recording location in the extra-
cellular medium to generate an extracellular potential Ve (a scalar measured in Volts) with respect to a reference poten-
tial. The difference in Ve between two locations gives rise to an electric field (a vector whose amplitude is measured
in Volts per distance). The proper physical term of LFP should be local potential because the field is a vector.
Power Law of local field potential: A relationship between the energy of the extracellular signal and its tempo-
ral frequency. A descending straight-line on the log-log plot (power vs frequency) would be an indication of a
power law that scales as 1/fn.
Noise (noise fluctuation): Variations which occur ostensibly and practically at random, no clear relationship to
oscillations, inputs or other known system (ie, brain) states. One should distinguish between neuronal and non-
neuronal (artifactual) noise. Neuronal “noise” is brain activity not directly related to the measured phenomenon
but maybe critical for other phenomena.
Cross-frequency phase coupling: Phenomenon where the phase of a lower frequency oscillation modulates the
amplitudes of a higher frequency oscillation to create “packets” of those higher frequency waves.
Correlation/cross-correlation: A measure of the degree of similarity of two waves.
Anti-correlation: Phenomenon wherein two waves have amplitude fluctuations (aka phase) that are opposite in
timing (ie, one increases when other decreases).
Neuronal time constant/membrane time constant: An electrical property of a neuron determined by the resis-
tance and capacitance of the neuronal cell membrane. This property determines how quickly electrical deviations
from baseline remain present and are quantified as the time it takes for the membrane voltage to relax back from
a step response and reach 1-1/e (approx 63.2%) of its asymptotic value. Typically 10-30 ms.
Sharp wave-ripple: Cross-frequency coupling between a sharp wave (80-150 ms) and amplitude-modulated fast
oscillatory (140-200Hz) events. Sharp-wave ripples are believed to be the transfer mechanism of information
from the hippocampus to neocortex during off-line (eg, sleep) states.
Place cells: Neurons, mostly studied in the hippocampus, which fire action potentials only when the animal is in
a specific place in a given environment (that place where a cell fires is called the “place field” of that cell).
Grid cells: Neurons, notably in the entorhinal cortex, which fire action potentials when the animal is in any of a
number of places which are geometrically arrayed in space in a regular grid fashion. It is conjectured that the
outputs of neurons combine to create the place fields of place cells.



activity. The inverse is also true: local circuits are under
the continuous control of global brain activity, usually
referred to by terms such as “brain state,” “top-down” or
“attentional” control.4,5 The second fundamental feature
of the cerebral cortex is its persistent activity, ie, an abil-
ity to ignite and maintain a long-lasting trace after the
initial input has already vanished.6 For example, a tran-
sient perturbation, such as hearing someone’s name in a
particular context, can trigger internally generated brain
activity for several minutes. In the case of sleep, which is
an extreme example of persistent activity, since activity
is maintained free of external inputs, a transient pertur-
bation can have a lasting impact. Both local-global com-
munication and persistent activity require special struc-
tural and dynamic organization.
Local-global interactions and persistent activity can be
maintained by the interactive systems of brain oscilla-
tions.7 The cerebral cortex is perpetually active as
reflected by the ever-changing landscape of the elec-
troencephalogram (EEG). Traditional quantitative inves-
tigation of the EEG is performed by calculating the spec-
tral power distribution of long-duration recordings, ie, the
relative amplitudes, or “energies” of the various frequen-
cies comprising the EEG or other extracellularly recorded
signal (Figure 1). A striking aspect of the extracellular sig-
nal is its self-similarity (“fractal” nature) in both space and
time, wherein the fundamental features of the extracellu-
lar signal recorded by microelectrodes or large scalp elec-
trodes over different cortical structures are the same, even
though the recorded volume of neurons differs in orders
of magnitude. Thus, certain fundamental aspects of func-
tion are maintained across location and scale.8,9 Such a dis-
tribution is telltale of complex (or “pink”) noise,10 which
led many investigators to suggest that brain dynamics are
essentially chaotic, driven by noise fluctuations.11

However, this conclusion is valid only when brain activity
is surveyed over very long periods of time. However,
many of the most interesting brain-related phenomena
from perception to action occur in relatively short time
windows such as subseconds rather than minutes or hours;
therefore, these short windows are the most relevant for
the investigation of brain dynamics involved in cognitive
activity. Examined from such a temporal perspective, the
brain patterns that characterize these cognitive moments
may have some nonoscillatory or irregular components,
but are typically largely oscillatory in nature and return
reliably to the same states after the information is
processed. Even in such short time windows several

rhythms and nonrhythmic patterns can coexist. Most
often the frequencies of the various rhythms have a non-
integer relationship with each other and the resulting
interference patterns lead to the appearance of “noise.” 
Neuronal networks in the mammalian forebrain support
several oscillatory bands (families of oscillations) that span
from approximately 0.05 Hz to 500 Hz (Figure 1).
Importantly, there are a number of boundary lines drawn
to delineate cortical oscillations which have been empiri-
cally found to act relatively independently. The frequencies
occupied by these bands have relatively constant relation-
ships to each other on a natural logarithmic scale (Figure 1)

and tend to have constant ratios between any given pair of
neighboring frequencies (Figure 1). Constrained largely by
the slow axon conduction velocity of the neurons, when the
available time is short, as is the case of higher frequency
oscillations, the participating neurons are confined to a
small volume of nervous tissue. In contrast, during slow
oscillations many neurons in a large volume of tissue can
be recruited to the rhythm. Mainly due to this structural
constraint, when multiple rhythms are present simultane-
ously, the phase of the slow rhythm(s) modulates the power
of the faster one(s). This “cross-frequency phase coupling,”

Figure 1. A system of interacting brain oscillations. Oscillatory classes in
the cortex. Note the linear progression of the frequency classes
(written next to commonly used name for each rhythm), on
the natural log scale.  This geometrical order is despite the fact
that these frequency families were defined based on phe-
nomenological correlates.
Reproduced from ref 7: Buzsáki G, Draguhn A. Neuronal oscillations in
cortical networks. Science. 2004;304:1926–1929. Copyright ©
American Association for the Advancement of Science 2004
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first demonstrated between theta (θ, 4 to 9 Hz) and gamma
(γ, 30 to 90 Hz) oscillations,12,13 is a general mechanism for

all known rhythms (Figure 2)14–16 and it undergirds a hier-
archical organization of brain rhythms.17

Figure 2. Oscillations can route information by multiple mechanisms. (a) View of the brain showing location of computation as revealed by tran-
sient γ oscillations (i--iv) and θ oscillation in the hippocampus (HI) entorhinal cortex (EC). Brain rhythms of the same and different kind (eg,
θ, γ) can influence each other within and across structures by modulating the phase and/or the amplitude of the oscillations. (b) Phase-
phase coupling of “synthetic” γ oscillations between two structures for illustration purposes. Phase is shared between the waves—see
dashed gray lines and coherence plot regardless of amplitude. Coherence spectrum between the two rhythms can reveal the strength
of phase coupling. (c) Cross-frequency phase-amplitude coupling. Here the phase relationship between the respective γ oscillations can
be random but the envelope of γ waves at both sites is modulated by the common θ rhythm and can be revealed by the power-power
correlation (comodugram; right). (d) In addition to phase-amplitude coupling (θ-γ), the two sites may display γ coherence as well; a sign
of strong inter-site interaction. (e) Cross-frequency phase-phase coupling. See also Figure 4. (f) A slow rhythm (eg, hippocampal θ oscil-
lation) can modulate γ power at multiple neocortical areas so that the results of the local computations are returned to the hippocampus
when the hippocampal network is in ‘‘readiness’’ phase of the slow oscillation. 
Reproduced from ref 13: Buzsáki G, Wang X-J. Mechanisms of γ oscillations. Ann Rev Neurosci. 2012;35:203–225. Copyright © Annual Reviews 2012



Preservation of brain rhythms 
in the mammalian order

The spectral features of the EEG or local field potentials
(LFP) recorded from animals with small or large brains
are similar, and all known oscillations in humans are pre-
sent in all other mammals investigated to date. γ oscilla-
tions have the same frequency range (30 to 90 Hz) and,
importantly, have the same intermittent nature and likely
the same mechanisms in animals with small and large
brains.13 Slow oscillations (0.5 to 2 Hz)18 have been
observed in the neocortex of all mammals tested. Similarly,
sleep spindles have not only the same frequency (12 to 18
Hz) but the duration of the spindles is also similar.19–21 The
ultra-slow (0.1 Hz) rhythm(Figure 3) involved large areas
of the neocortex and is easily detectable with functional
magnetic resonance imaging (fMRI) as correlated and
anticorrelated brain regions in this frequency range gives
rise to the “default” patterns of cortical activity (ie, those
brain activity patterns observed in the absence of specific

inputs or tasks) now frequently seen in human subjects.22

The ultra-slow fluctuation of cortical network excitability
is robust and has been observed also in monkeys,23 cats,24

and rats21 (Figure 3). Thalamocortical alpha (α) oscillations
(8 to 12 Hz) are the characteristic dynamic of sensory and
motor systems in their “idling” or non-directed state. In
humans, the specific members of the α family rhythms are
known as α oscillations of the visual system, mu (µ)
rhythms of the sensorimotor system, and tau (τ) rhythms
of the auditory system.17,25 Similar α mechanisms have been
detected in the gustatory cortex, even in the absence of
taste inputs.26 In primates with a large cortical domain ded-
icated to vision, eye closure induces widespread α oscil-
lation in the occipital-posterior part of the neocortex.27 In
rodents, where face-whisker representation in the
somatosensory cortex is particularly large, the µ rhythm
occurs synchronously over the parietal-frontal areas dur-
ing immobility.28 Sniffing induces θ phase-modulated γ pat-
terns in the olfactory bulb and cortex with similar fre-
quencies and temporal dynamic in multiple species.29
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Figure 3. Cross-frequency coupling contributes to the hierarchy of brain rhythms. (a) Local field potential trace from layer 5 of the rat neocortex
(1 Hz – 3 kHz) and a filtered (140-240 Hz) and rectified derivative of a trace from the hippocampal CA1 pyramidal layer, illustrating the
emergence of “ripples.” One ripple event is shown at an expanded time scale. Peak of a δ wave and troughs of a sleep spindle are marked
by asterisks. ( b) Hippocampal ripple-triggered power spectrogram of neocortical activity centered on hippocampal ripples. Note that
ripple activity is modulated by the sleep spindles (as revealed by the power in the 10-18 Hz band), and both events are modulated by the
slow oscillation (strong red band 0-3 Hz), and all three oscillations are biased by the phase of the ultraslow rhythm (approximately 0.1 Hz,
asterisks). CX, V, Cortex, Layer 5
Reproduced from ref 21: Sirota A, Csicsvari J, Buhl D, Buzsáki G. Communication between neocortex and hippocampus during sleep in rodents. Proc Natl
Acad Sci U S A. 2003;100:2065–2069. Copyright © National Academy of Science 2003
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Hippocampal θ oscillations are perhaps the only known
rhythm whose frequency scales inversely with the size of
the brain. The 6- to 12-Hz θ oscillations in rodents30,31 slow
down to 4 to 6 Hz in carnivores.32,33 θ frequency of all
species investigated is slowest in humans (1 to 4 Hz),34–36

and its very existence has been questioned by some
reports in epileptic patients.37,38

The preservation of frequencies in the various mam-
malian species is an important argument in favor of time
as the most important organization principle in brain
dynamics. While brain rhythms vary little across species
(30% to 100%), brain size increases hundreds- to thou-
sands-fold from the smallest- to the largest-brained
mammal.39 This scaling process places serious and criti-
cal constraints on brain development. While the modu-
lar neocortex can volumetrically expand multiple-fold,
time-related issues appear to have fundamentally shaped
brain phylogenesis. To preserve timing in the face of
multiplying cortical modules, disproportionally more
long-range axonal pathways and more effective axon
myelination are deployed.40 By contrast, a potential argu-
ment for the decreasing frequency of hippocampal θ
oscillations in mammals with larger brains is that the
hippocampus is a single cortical module,41,42 and its
growth is limited by the axon conduction delays.
Pyramidal neurons of the CA3 region of the hippocam-
pus innervate a very large volume of the hippocam-
pus,41,43,44 connecting distant peer neurons and requiring
long axonal lengths and, consequently, longer delays. The
increasing delays may contribute to the slowing of the θ
rhythm as the structure grows.
It is critical to emphasize that preservation of cortical
rhythms across species does not reflect the brain’s inabil-
ity to change timing mechanisms, and rhythms can adapt
effectively according to the needs of given species. For
example, central pattern generators for walking and res-
piratory rhythms vary according to ecological needs
from 0.5/min in large aquatic mammals to 100/min in
mice. Instead, the constancy of brain oscillations across
species seems to reflect the importance of timing as well
as an inheritance of the same coding mechanisms. The
preservation of temporal constants that govern brain
operations across several orders of magnitude of time
scales suggests that the architectural aspects of the brain,
such as scaling the ratios of neuron types, modular
growth, system size, intersystem connectivity, synaptic
path lengths, and axon caliber are subordinated to a tem-
poral organizational priority.

Brain oscillations provide framework 
for a neural syntax

Most, if not all, network oscillations are based on inhi-
bition wherein populations of principal neurons are
paced by repetitive trains of inhibitory postsynaptic
potentials. These rhythmic inhibitory volleys provide
windows of alternating reduced and enhanced excitabil-
ity of principal cells in a temporally coordinated man-
ner.17,45 Indeed, segregation of excitatory principal cells
into functional groups, often referred to as cell assem-
blies and assembly sequences,46 is perhaps the most
important service performed by the large family of
inhibitory neuron classes in the cortex.47,48 Inhibition-
based oscillations may do so by providing a natural
means to “stop” signals of neuronal information flow by
temporally silencing principal cells and “chunking”
streams of messages into shorter frames, as evidenced by
the observation that oscillations have well-defined
onsets and offsets with characteristic maximum and min-
imum spiking activity in the information-transmitting
principal cells.49 This stop-start parsing function of neu-
ronal oscillators and their hierarchical cross-frequency
coupling organization (see section below as well as
Figure 2), in turn, can support syntactical rules, known to
both sender and receiver, making communication more
straightforward than interpreting long uninterrupted
messages50 or stochastic patterns of spikes. 
In general, syntax is a set of principles that allows the
generation of rich combinations from a limited number
of elements using a minimal number of rules. It has been
hypothesized that the fundamental element of neuronal
syntax is an assembly of neurons discharging together in
a γ cycle.51–53 The most important role of the cell assem-
bly is to bring together sufficient numbers of peer neu-
rons so that their collective spiking can bring above dis-
charge threshold the proper population of downstream
postsynaptic neurons.52 Consequently, from the point of
view of the downstream (“reader” or “integrator”) tar-
get cells, collective activity of upstream neurons is clas-
sified as a single event53 only if their spikes occur within
the time-integrating window (ie, within the membrane
time constant of the neurons, tends to be 10 to 30 msec;
if signals occur within this time scale, they will be com-
bined as a unitary event).54 Spikes of upstream neurons
which fire outside the integration time window must be
part of another event, or a separate assembly. The tem-
poral window or the membrane time constant also cor-
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responds to the duration of the γ cycle (a 40-Hz oscilla-
tion yields cycle lengths of 25 ms) and is also closely
related to other biophysical properties of neurons,
including the time constant of γ-aminobutyric acid
(GABA)A and α-amino-3-hydroxy-5-methyl- 4-isoxa-
zolepropionic acid (AMPA) receptors55 and the critical
time window of spike-timing-dependent plasticity.56,57

Multiple γ cycles, each containing their own cell assem-
bly, can be thought of as being “neural letters” and these
letters can then be combined to create “words” and later
“sentences.” More precisely: discrete episodes or pack-
ets of γ oscillations, which are typically short-
lasting,5,15,45,58,59 are often grouped by slower oscillations
via cross-frequency phase coupling (Figure 2).12,14,15,60–62

This packeting can be thought to associate the “letters”
contained in the series γ cycles to form a neural “word.”
An example would be a γ “burst” which might be cross-
frequency coupled to θ and therefore present in a single
θ cycle.63–66 Then slower rhythms in which θ waves nest
can bind such words into “neural sentences,” ie, longer
messages of information, coordinated across large brain
territories.
In summary, the hierarchical nature of cross-frequency
interactions may reflect a mechanism of syntactical orga-
nization. Importantly, the LFP γ oscillatory episodes can
be exploited as a proxy for assembly organization and
for monitoring physiological and disease-related alter-
ations of neuronal communication.

Brain oscillations support 
inter-regional communication

As discussed above, efficient communication requires
that messages are transmitted by syntactical rules known
to both sender and receiver. In human-made systems,
transfer of messages from source (sender) to target
(reader) is usually considered a unidirectional operation
in which an ever-ready recipient mechanism stands by
for receiving messages. However, brain networks have
evolved their own self-organized (“spontaneous”) pat-
terns, which can effectively gate or bias whether the
information conveyed by the sensors or sender network
is amplified or ignored.53,67

In order to better illustrate these phenomena, we will
start with sensory systems which are not “ever-ready”
reading mechanisms but rather have coevolved with spe-
cialized motor systems that are dedicated to allowing
those sensory systems to most efficiently operate. These

dedicated motor outputs, such as licking, sniffing, whisk-
ing, touching, saccadic eye movements, twitching of the
inner ear muscles, or other gating mechanisms assist
their specific sensory systems by optimizing the orienta-
tion of the sensors and, therefore, maximizing their abil-
ity to sample the environment. In addition to optimizing
the sensors, top-down mechanisms provide further
amplification and filtering in short time windows. Such
active mechanisms can create transient gain adjustments,
which enhance the ability of the sensory system to
process inputs selectively.68–72 Such “active gain” is per-
haps best illustrated in the case of olfaction, where the
detection of an odorant in a particular phase of the sniff
cycle is several-fold more effective than presentation in
the same odorant at other phases.71 Such transient gain
adjustments are likely to play a critical role in vision,
where saccadic eye movements allow for an intermittent
and active sampling of the visual input. This mechanism
may explain why stationary pictures evoke barely
detectable spike rate changes in higher visual areas,73

whereas movie clips that are scanned by frequent sac-
cades robustly activate those same cells.74 In summary,
the sequence of sensation appears to be as follows: gen-
eration of an internal plan, corresponding motor-based
adjustment of the sensor to allow selective amplification
of the preplanned inputs and suppression of other
streams of information, then finally detection. When
unexpected stimuli impinge on such a system it of course
means the initial processing of information was subop-
timal, and the system adapts by replanning for optimal
adjustments of the sensors and detection of key details.
Oftentimes, this active sampling mechanism is referred
to as attention or selective attention,75 although the bio-
logical origin and mechanisms of the effector mecha-
nisms are rarely discussed.67

We hypothesize that, analogous to the sensory systems,
higher-order areas of the brain adopted similar reader-
initiated mechanisms for efficient processing of afferent
information. For example, transfer of neural information
from the hippocampus (the “sender”) to the neocortex
(the “reader”) during slow-wave sleep can be initiated
by the transition of neocortical neurons to a depolar-
ized/active state during the neocortical slow oscillation
which occurs during slow-wave sleep.21,76–78 These fluctu-
ations of neocortical (receiver) excitability can bias the
spike content of hippocampal (sender) sharp wave-rip-
ple oscillations,79,80 thereby allowing the hippocampus to
then signal back and reciprocally affect those neocorti-
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cal populations that are still actively spiking in the per-
sisting depolarized state of the slow oscillation. In the
waking brain, the directionality is opposite: now the dia-
logue is initiated by the reader hippocampus via θ-phase
control of (sender) neocortical network dynamics in the
form of local γ oscillations.15 This scheme has the addi-
tional advantage of allowing the receiver to specify that
the self-organized γ oscillations at the many sender mod-
ules across the cortex, can arrive at the hippocampus at
the phase of the θ cycle when the reader hippocampal
networks are in their most sensitive, plastic state.81

Exchange of information between different stages of the
visual system appears to follow similar rules,58,82 suggest-
ing that the reader-initiated transfer of neural messages
from a sender is a general rule in the brain. This, again,
is in contrast to the notion of a passively waiting receiver
system, showing that the brain has evolved unique com-
munication schemes, utilizing oscillations and their
mutual interactions as a tool to aide an efficient com-
munication scheme.

Hierarchy of brain oscillators is formed by
cross-frequency coupling

Brain rhythms can interact with each other by multiple
mechanisms, including phase-phase, phase-amplitude
and amplitude-amplitude envelope coupling (Figure 2).
In the simplest scenario oscillators of similar frequency
within the same or different anatomical structures can
entrain each other by a mechanism known as phase-cou-
pling. Phase coupling can be measured by coherence or
preferably by more advanced methods, which are inde-
pendent of the amplitude fluctuations and based exclu-
sively on phase. A well-known example of phase-phase
coupling is the coherent θ oscillations throughout the
hippocampus-entorhinal cortex system. Multiple regions
can generate θ oscillations and all layers form θ dipoles
that fuse into a global “monolithic” single θ oscillator.
This occurs despite the fact that the θ rhythm generators
of isolated regions oscillate at different frequencies.31

Typically, when oscillators of similar frequencies are cou-
pled, the overall frequency is determined by the fastest
one.83 The computational advantages of phase synchro-
nization have been illustrated by numerous experiments
in various species, and excellent reviews summarize
those findings.4,83–85

A temporally less precise, but nevertheless important,
interaction between oscillators of similar frequency is

expressed by the temporal covariation of their power,
known as amplitude comodulation or power-power cou-
pling. In this case, phase constancy between the waves
may not be present but, instead, the power (amplitude)
envelopes of the oscillators are correlated (comodula-
tion of power). This power-power synchrony of two or
multiple oscillators in various networks can be coordi-
nated by the joint phase biasing of the power of the
faster oscillations by the slower rhythm, known as cross-
frequency phase-amplitude (CFPA) coupling or nested
oscillations. One reason why slow oscillations can impact
faster ones in multiple brain areas has to do with the
conduction velocities of cortical neurons. Compared with
faster oscillators, slower oscillators involve more neurons
in a larger volume86 and are associated with larger mem-
brane potential changes because in longer time windows
spikes of many more upstream neurons can be inte-
grated.61,87 Cross-frequency phase-amplitude coupling
was first described between hippocampal θ and γ
rhythms,12,88,89 and extended subsequently to across-struc-
ture coupling.14,60,90–97 Gamma power can also be phase-
modulated by α,97,98 spindle,99 delta,100 switching between
UP and DOWN states of slow oscillations61,77,101 and ultra-
slow23 oscillations.13,16,17,84,102,103 The principle of cross-fre-
quency phase-amplitude coupling generalizes to all
known frequency bands in the mammalian cortex and
has been reported between all co-occurring oscillators
in interactive circuits at frequencies from as low as 0.025
Hz to as high as 500 Hz.21,104,105 For example, the occur-
rence of hippocampal “ripples” (140 to 200 Hz) is cou-
pled to dendritic layer sharp waves and phase-modu-
lated by sleep spindles (12 to 16 Hz). In turn, the
spindle-modulated sharp wave-ripple complex is phase-
coupled to neocortical slow oscillations (0.5 to 1.5
Hz)77,101; and all these rhythms are modulated by the
ultraslow (0.1 Hz) oscillation21 (Figure 3). 
Several studies have demonstrated the physiological util-
ity of cross-frequency coupling. For example, the strength
of θ-γ coupling in the hippocampus and striatum of the
rat was affected by task demands.94,95 The magnitude of
coupling between a 4-Hz oscillation and γ power in the
prefrontal cortex increased in the working memory phase
of a choice task.106 In patients implanted with depth elec-
trodes, the magnitude of θ-γ coupling in the hippocampal
region varied with working memory load.107 In an audi-
tory task, γ power in the frontal and temporal sites was
phase-locked mainly to θ oscillations, whereas over occip-
ital areas phase modulation was strongest by the α



rhythm in a visual task.108 Computational models have
suggested that θ phase-nested γ waves can support multi-
item working memory, allowing for the discrete repre-
sentation and sequencing of individual items or places.51,63

This is indeed a physiologically viable mechanism107,109

since γ cycle represented items within the θ cycle may be
bound together by NMDA receptors.66,110

Yet another cross-frequency interaction is referred to as
cross-frequency phase-phase or n:m coupling, when
there is an integer relationship between the frequencies
of the two rhythms. In n:m phase locking one observes
m events associated with the “driven” cycle of one fre-
quency occurring at n different times or phases in the
“stimulus” cycle of the other.111 When multiple oscilla-
tors are present simultaneously, phase-phase coupling
may not be immediately obvious. However, since the
repeating sequence n:m pattern is periodic in time, the
distribution of the difference between phases of the
oscillators can be calculated for different n:m ratios. In
the case of significant phase-phase coupling between two
rhythms the distribution of n:m combination deviates
from a uniform distribution because the phase differ-
ences between the two rhythms oscillate around some
constant value. The peaks in the phase difference distri-

butions are known as “Arnold tongues” or synchroniza-
tion tongues,112 and are regarded as regions of synchro-
nization.113 Phase-phase cross-frequency synchronization
has been described between θ-γ rhythms in both rats and
humans114,115 (Figure 4) and between beta (β) -γ oscilla-
tions in the human magnetoencephalogram (MEG) in a
working memory task.98

The phenomenon of cross-frequency coupling firmly
demonstrates the hierarchical organization of multiple
brain rhythms in both space and time and implies that
time in the brain is represented at multiple correlated
scales.7,16,84,102,103 Computational models have explored
potential theoretical advantages of cross-frequency cou-
pling,4,51,116,117 and the mechanisms of cross-frequency cou-
pling may form the backbone of a neural syntax, which
allows for both segmentation and linking of spike trains
into cell assemblies (“letters”) and assembly sequences
(neural “words”).53

Spike content of brain rhythms

While local field potentials provide reliable information
about the group actions of neurons, they do not fully
represent the true common currency of interneuronal

Figure 4. Phase-phase coupling between oscillations. (a) Plot illustrates phase-phase relationship between hippocampal θ and γ oscillations. Note
that faster and slower γ oscillations (different diagonal bands) are simultaneously present. (b) Mean radial distance values (R value) from
the distribution of the difference between θ and γ phases calculated for different n:m (θ:γ) relationships (1:1, 1:2….1:12) for several fil-
tered γ frequency bands. Note large peaks (also known as Arnold’s tongues) at 5 (mainly for band 30-40 Hz) and 9 (mainly for 50-80 Hz).
Reproduced from ref 114: Belluscio MA, Mizuseki K, Schmidt R, Kempter R, Buzsáki G. Cross-frequency phase-phase coupling between θ and γ oscillations
in the hippocampus. J Neurosci. 2012;32:423–435. Copyright © Society for Neuroscience 2012
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communication: action potentials, or “spikes” that the
cell “fires.” While local field potential oscillations can be
taken as a signal regarding the action potential-generat-
ing status of a particular population of neurons, it is
mainly the action potential output of the neuron that can
inform its downstream partners. Interest in brain
rhythms has greatly increased recently largely due to our
better understanding of the spike content of oscillations.7

These combined spike-field experiments further illus-
trate that time in the brain is coded at multiple tempo-
ral scales and we will discuss representative experiments
below.
One such example comes in the form of hippocampal
“place cells”: neurons (which are actually pyramidal and
granule cells of the hippocampus) that show an orderly
firing of action potentials specifically correlated with the
location of the rat in its environment. Assemblies of such
neurons provide enough spatial information that they
can be used to define a particular position of space.118,119

Furthermore, in a running/moving animal there is a con-
stantly updating process of prediction of the places the
animal will visit in the future by the firing of a spatially
organized series hippocampal place cell neurons repre-
senting places directly ahead of the animal along its
anticipated path.66,120 Within a given θ cycle, the neurons
active at the trough of that cycle appear to represent the
current location of the rat, neurons active earlier in the
cycle seem to represent already-visited places and later-
activated neurons represent future locations (Figure 5).
The temporal relationships of these predictively acti-
vated neurons are governed by a “compression rule”:

within the θ cycle, the spike timing sequence of neurons
predicts the upcoming sequence of locations in the path
of the rat, with larger time lags representing propor-
tionally larger distances or travel times17,66,121 (Figure 5). 
The time compression mechanism has important conse-
quences on the assembly organization of hippocampal
neurons. Because of the small time offsets between the
place cell spikes within the θ cycle, the summed spikes
of many overlapping place neurons will generate a group
oscillation whose frequency is slower than the oscillation
frequency of the constituent neurons. As a result, an
interference pattern emerges between the larger θ fre-
quency oscillation and the cycle created by the action
potentials of active single neurons, known as “phase pre-
cession” of place cells122 (Figure 5). A consequence of the
correlation of absolute and θ phase-related time scales
of spikes is that the distance traveled from the beginning
of the place field can be instantly inferred from the θ
phase of the place cell spikes66,120,122,123 (Figure 5).
The within-θ cycle time lags between place neurons are
largely responsible for determining the globally coher-
ent θ oscillation in the hippocampal system.31,121,124,125 An
important corollary of the relation between different
time scales is that place cells continue to represent the
same positions and distances in the same environment
even when the running speed of the rat varies,126,127 since
the oscillation frequency of place cells increases in pro-
portion to the velocity.127,128 Another ramification is that
the natural upper limit of distance coding by θ-scale time
lags (~50 cm for neurons in the dorsal hippocampus)120,123

is limited by the duration of the θ cycle (120–150 msec

Figure 5. Multiple temporal representations in the hippocampus. Two CA1 pyramidal cells (green and blue) with overlapping place field represen-
tations on a linear track (black). It takes several seconds for the animal to pass from the peak (dashed line) of place field 1 (green) to place
field 2 (blue). Middle panel, plots of the spikes as a function of the rat’s position on the track and their θ phase. Each dot is an action
potential. Ordinate, phase of θ shown twice for better visualization. Note that as the animal moves closer to the center of the place
field for each cell, say running from left to right, the action potentials move closer to the 180-degree phase of the oscillation and as it
moves away, the action potentials move further away. Right panel, time offset between the spikes of the reference (blue) and the green
neurons at the θ time scale (arrow), as shown in a cross-correlogram. The time offsets of place cell spikes within the θ cycle and their dis-
tance (or travel time) representation are correlated. 
Reproduced from ref 128: Diba K, Buzsáki G. Hippocampal network dynamics constrain the time lag between pyramidal cells across modified environments.
J Neurosci. 2008;28:13448–13456. Copyright © Society for Neuroscience 2008
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in the rat). Objects and locations > 50 cm ahead of the
rat are initially less distinguishable on this neuronal
spike-timing map from more distant landmarks, but as
the animal approaches, they are progressively better
resolved by the interleaved cell assemblies. The within-
θ cycle temporal lags between neurons limit how many
cell assemblies can nest in a given θ period (7 to 9, as
reflected by the number of γ cycles per θ cycle).12,14,51,63,129

Because of this temporal limitation, the hippocampus
functions as a “spatial zoom” device, so that distance res-
olution scales with the size of the environment; place
fields are small in small enclosures and large in large
environments, appropriately scaling to the information
at hand.128,130,131

Assuming that place locations can be regarded as ana-
logues to other discrete items,51,120 the temporal com-
pression mechanism is then a limiting factor of the “reg-
ister capacity” of the memory “buffer.” 51,65,110,132 Recall
from long-term episodic memory can enter conscious
working memory in “chunks” of 7±2 items at a time in
such a way that the spatiotemporal resolution of events
near to the recalled event is higher than the resolution
for the far past or far future, relative to the recalled
event.51,128 Only by moving the content of recall forward
in perceived time, do subsequent events emerge with
high contextual resolution.120

The within-θ cycle delays between place cells are
secured by perisomatic inhibition.127,133 As a result of this
cycle-based organization, almost the entire phase space
of the θ cycle is utilized, by the firing of neurons repre-
senting, past, present and future places (Figure 5).
Optogenetic suppression of parvalbumin-immunoreac-
tive, perisomatic interneurons impaired the phase dis-
tribution of place cells and increased their tendency to
fire synchronously near the trough.134 Pharmacological
activation of cannabinoid (CB1) receptors can also
impair the proper timing between place cells without
affecting the spatial tuning of the hippocampal cells.
Despite the intact hippocampal spatial map, the animal
under the influence of cannabinoid cannot solve a spa-
tial memory task, presumably because the downstream
reader networks of hippocampal neurons cannot decode
the time-jittered spikes.135

The above examples from work on the hippocampus
demonstrate that representation of multiple time scales
is a fundamental feature of cortical function. Similar
coding strategies may support the emergence of “grid
cells”136 (neurons found to be active not only in partic-

ular places in the environment but occupying an array
of places which are regularly spaced in a grid of equilat-
eral triangles) in the entorhinal cortex14,137–140 and other
complex functions in the prefrontal cortex and other
structures.141–144

Temporal compression is also at play while the network
is not receiving new sensory input, or is “offline.” As
described earlier, “place cells” are neurons which fire
when the animal is physically in certain places in the
environment and in the waking animal. During behav-
ioral pauses just before an animal runs across an envi-
ronment, the sequence of anticipated place cell firings
during the animal’s future run are “preplayed” in a com-
pressed manner during sharp wave-ripple (SPW-R)
events which last 80-150 ms.104 They are also “replayed”
after reaching the end of the run but this time in reverse
sequence, as if the path is retracted.145,146 Such com-
pressed replay is also routinely observed in non-REM
sleep.147,148 The bidirectional re-enactment of temporal
sequences during SPW-Rs is critical for memory con-
solidation64,66,149–154 and may also contribute to creative
associations in the subsequent waking episodes.155,156

Similar time-compressed off-line replay of waking activ-
ity has been also documented in the neocortex80,157–161 and
striatum,162,163 suggesting that multiple time-scale repre-
sentation is a general phenomenon in the brain. 
Thus, neuronal oscillations organize the spiking activ-
ity of multiple neurons in a number of manners, which
appear to allow for prediction, recall, consolidation, and
creative association. Furthermore, this appears to be a
phenomenon utilized more broadly than by only the
spatial processing system and may underlie a great deal
of efficient neural information handling.

Oscillations can promote both spike 
synchrony and asynchrony

Oscillations and synchrony are often used synonymously
and an often-expressed objection against the utility of
network oscillations is that rhythmically discharging neu-
rons are predictable and synchronized spikes are largely
redundant.164–166 In line with this reasoning, the most syn-
chronized network patterns occur during sleep, anesthe-
sia and various diseases, such as epilepsy and Parkinson’s
disease.167 In contrast to these states, the effectiveness of
a representation system is characterized by high vari-
ability with minimal interactions among the constituents,
furthermore improvement of behavioral performance in



356

S t a t e  o f  t h e  a r t

behavioral tasks is often characterized by increased inter-
spike variability and reduced spike correlation among
neurons.109,165,168–172 This view appears to be at striking odds
with suggestions that neuronal oscillations enhance the
coding ability of neurons.4,5,17,58,122

There seems to be a compromise between the informa-
tion processing capacity of neuronal networks and the
need for some level of synchronization of their neurons
for efficient communication. Fast communication among
pyramidal neurons in the cortex is established by
AMPA-type glutamate receptors, which are weak and
have high probability of transmission failures.173

Therefore, in order to convey information to peer neu-
rons, pyramidal cells should come together in transient
coalitions, or cell assemblies.46,53 As discussed above, the
goal of the temporal assembly formation is to discharge
the downstream neurons. Thus, for effective communi-
cation there is a requirement for a minimum level of
synchrony and it may be that γ cycle-defined cell assem-
blies represent a useable packet of information, which
contain varying specific content.53

Cross-frequency coupling between local γ oscillations
and the more global slower rhythms is established by
phase synchrony. However, this coupling mechanism
does not imply that the slower oscillation magnifies the
synchrony in the γ period. Quite the contrary, γ cycle-
embedded cell assemblies are distributed across the
phase space of the modulating slow oscillation, as
demonstrated above for θ oscillations. In inhibition-
based oscillations, the recruitment of assemblies is delib-
erately protracted over time. Instead of narrowing the
time window of synchronization, multiple assemblies are
separated in nested γ cycles within the slower, modulat-
ing θ cycle. In contrast to the intuitive “oscillations-
enhance-synchrony” picture, temporal synchrony among
principal neurons is lowest during θ oscillations and
highest during slow-wave sleep. Another counterintu-
itive observation is that the coefficient of variation (CV)
of the interspike intervals of hippocampal principal cells
is also largest during θ-associated exploration behaviors
and smallest during slow-wave sleep.174 The potential
mechanism underlying such “paradoxical” asynchrony
and spike variability-promoting functions of θ oscillation
is its ability to temporally coordinate excitatory and
inhibitory synaptic inputs to neurons.12,31,175 Modeling
studies have demonstrated that temporally precise cor-
related fluctuations of excitatory and inhibitory currents
can reduce or cancel each others’ action and decorrelate

the synaptic current of postsynaptic neurons.166,176 As a
result, spike timing variability can increase and syn-
chrony across neurons can be reduced, due the strong θ-
correlated excitatory and inhibitory inputs impinging
upon most pyramidal cells. Under this hypothesis, pre-
cise temporal coordination and synchrony have differ-
ent meanings, since sequential but temporally precise
activity of neurons are deemed asynchronous or “poly-
chromous”177 not synchronous. Similar to observations in
other systems,109,168,169 enhanced irregularity of spike inter-
vals should have computational advantageous in the hip-
pocampus. It will be important to learn whether such
features are specific to hippocampal θ oscillations or can
be generalized to other types of rhythms as well.

Relationship of neural oscillations and 
spiking dynamics to psychiatric disease

In the sections above we have laid out the fundamental
role played by oscillations in information processing and
coding in the brain. We have illustrated that oscillations
play a number of roles, all apparently subserving effi-
cient information handling, including coordinating the
activities of neurons both in small and large regions of
brain, allowing for a unique method of transmission of
information from sender regions to receiver regions and
creating “packets” of information in the form of assem-
blies of neurons firing action potentials within certain
phases of the oscillations, yet in a manner that maintains
high information content. Thus, it appears oscillations
may be fundamental to cognition and brain function
overall.
The temporal coordinating properties of network oscil-
lations are of course not only relevant to the healthy
brain, but also with the pathological processes of psy-
chiatric disease. Psychiatric disease includes symptoms
of disordered emotion, perception, and reality testing,
not to mention the somewhat less well-defined person-
ality disorders and other characterologic disorders
wherein much more subtle disruptions of socialization,
attachment and overall personal functioning are
described. Despite the fact that many symptoms in psy-
chiatric disease do not lie in the domains classically stud-
ied by electrophysiologically-oriented neuroscientists,
such as visual perception, spatial processing, or learning
and memory, it has become clear that all psychiatric dis-
orders have a basis in the brain and likely electrophysi-
ologic processes.178,179 Indeed neural circuits from inver-



tebrates to vertebrates and from the cortex to the limbic
system have been shown to consistently share many fun-
damental properties, including basic principles of con-
nectivity, oscillatory activity, and oscillation-related con-
trol of assembly spike timing. 
We believe that neuronal oscillations provide the right
level of inquiry for strengthening the link between
research in animals and psychiatric disease and there-
fore we review briefly below the work-in-progress in this
field and discuss possible future directions.

Brain oscillations as 
quantifiable phenotypes

Brain oscillations are among the most heritable traits in

mammals,180 as known since the earliest twin studies of
the human EEG.181–185 During early ontogeny brain phys-
iology undergoes dramatic changes,186–188 and these
changes continue into adulthood.92,189 However, despite
these developmental/maturational changes, within-sub-
ject patterns are remarkably stable when retested after
several months, much more so than variability across sub-
jects.190 Healthy adults show a remarkably stable power
spectral pattern in the 8 to 16 Hz band during sleep,
which allows >90% correct discrimination among indi-
viduals,191,192 independent of the level of education or gen-
eral intelligence.193 Monozygotic twins show high simi-
larity of spontaneous EEG for all frequencies and brain
areas with close to correlations levels of r = 0.9 across
pairs. The concordance within heterozygotic twins is less

Figure 6. Brain rhythms are gene-regulated and unique. (a, b) Time-frequency display of visually induced γ band activity in a monozygotic (MZ) twin
pair. C, Average spectral power of magnetoencephalogram activity during control (green) and visual stimulation (red) epochs. D-F, same
as A-C in a dizygotic (DZ) twin pair. Note stronger similarity of frequency and temporal dynamic changes of the MEG in the MZ pair rel-
ative to the DZ pair. 
Reproduced from ref 198: van Pelt S, Boomsma DI, Fries P. Magnetoencephalography in twins reveals a strong genetic determination of the peak frequency
of visually induced γ-band synchronization. J Neurosci. 2012;32:3388–3392. Copyright © Society for Neuroscience 2012
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but still higher than between non-twin siblings.191,194–197 Not
only self-organized (“spontaneous”) but also reactive
patterns are under strong genetic control, as shown by a
high index of heritability (0.9) of visually induced γ-band
(45-85 Hz) activity198 (Figure 6). Similar to human stud-
ies, the various oscillatory patterns studied in rodents also
show highly reliable genetic control.199–207 The quantita-
tively reliable discrimination between brains by physio-
logical means lead to the suggestions that they can be
used for “fingerprinting” individuals.191 Such characteri-
zation may be further improved when brain oscillations
are not considered separately but as a system and when
cross-frequency coupling mechanisms are also taken into
consideration.
If fingerprinting of individuals is possible by EEG and
magneto-encephalogram (MEG), it is certainly a useful
way to characterize neurological and mental diseases
from the perspective of brain activity. Such “rhyth-
mopathies,” “oscillopathies” or “dysrhythmias” may
reflect malfunctioning networks.167,208 While EEG is one
of the oldest diagnostic tools for identifying and charac-
terizing certain neurological and psychiatric diseases,
recent progress in understanding the origin and physi-
ological significance of brain rhythms has renewed inter-
est in this area of clinical research.209

Oscillation phenotypes of 
psychiatric diseases

A great number of recent publications report impaired
γ-band oscillations in schizophrenic patients in a variety
of behavioral tasks, including the ability of cortical fields
to “passively” reflect or follow externally imposed audi-
tory frequencies, evoked responses after single stimuli
and transcranial magnetic stimulation-induced
response.61,210–212 Furthermore, schizophrenic patients both
have decreased power of localized γ oscillations but also
have perturbed γ synchronization across hemispheres or
other large anatomical distances.213,214 In addition, many
recent reports have correlated degree of γ oscillation dis-
turbance with degree of schizophrenia symptoms includ-
ing the cognitive impairment classical in schizophrenia,
positive symptoms (ie, hallucinations and delusions) and
negative symptoms (ie, affective blunting, anhedonia,
avolitional state).213,215–217 Finally, these γ disturbances are
also present in first-degree relatives of schizophrenic
patients without classical schizophrenia symptoms per se
and therefore may be a traceable endophenotype.211,218,219

The rekindled interest in the study of γ oscillations
mainly lies in the understanding of the critical involve-
ment of parvalbumin-immunoreactive basket interneu-
rons in γ oscillations13 and the relatively selective degen-
eration of this parvalbumin class of neurons in
schizophrenia.220 Schizophrenic patients also show a sig-
nificant reduction in sleep spindles221,222 and θ-γ phase
coupling.223 γ oscillation disturbances may also point to
alterations in the glutamatergic system, given that glu-
tamate neurons are the primary backbone of neural sig-
naling. Indeed data have shown that glutamate-targeted
treatments for schizophrenia may have efficacy in schiz-
ophrenic patients.224

While schizophrenia is perhaps the most pervasive and
debilitating psychiatric disease, depression is the most
prevalent, with roughly 20% lifetime incidence in
Western populations and it inflicts the third largest mea-
sured disease burden of all illnesses in the world.225,226

Numerous studies have noted oscillation-related differ-
ences between depressed patients versus controls:
increased α and β rhythm power, increased β, asymmet-
ric α in the frontal aspects of the hemispheres, and sen-
sory-evoked responses.227,228 Such differences may be
leveraged in better treating this debilitating and some-
times-lethal disease. At the moment, while a variety of
treatments exist for depression, the current state of the
art in drug-based treatment is based on statistically-
informed trial and error.229 This is due to the fact that
there is no reliable means of determining which med-
ication will work for which individual patient. A number
of researchers have begun to use EEG to not only point
to differences between depressed patients and healthy
controls, but have also begun to find correlates between
brain rhythms and likelihood of response.227,228 Treatment
response is predicted by a number of electrical parame-
ters including baseline α power, α power asymmetry,
frontal θ concordance measures within a few days of
treatment, evoked responses to auditory stimuli and
combinations of these measures. In general these para-
meters are able to predict responsivity at rates of
approximately 60% to 80% accuracy.227,228 A particularly
clinically relevant question is whether a particular mea-
sure can predict which medication to choose for a par-
ticular patient and a few studies have found that a mea-
sure called LDAEP (loudness-dependence of the
auditory evoked potential) can do just that differentiat-
ing between patients likely to respond to serotonergic
versus non-serotonergic antidepressants.228,230
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Relatively less attention has been given to bipolar dis-
order, despite its severity. However, there have been
findings of altered induced responses in the β and γ
bands.231–233 In alcoholic patients (after long abstinence
from alcohol), resting β is increased, α is low in certain
subsets, α-band interhemispheric coupling is greater, γ is
decreased in visual tasks, and evoked responses are
less.234 Attention-deficit hyperactivity disorder patients
have been consistently found to have increased frontal
θ power and increased θ-β ratio compared with con-
trols,235 γ power in response to auditory stimuli have also
been found to be increased.236 Abnormalities of α and β
rhythms have also been found in personality-disordered
patients.237–239 Patients with autism spectrum disorders
(ASD) also have remarkably altered EEG/MEG pat-
terns, often time characterized by “disorganized” but
high γ power and reduced rhythm.211,240–242

Advancing disease understanding

We believe that, while investigation of oscillations in the
brain can also deepen our understanding of the patho-
physiology of mental disease, progress has been disap-
pointingly slow, with discoveries of new psychothera-
peutic drugs practically at a standstill, and development
of homologous relevant animal models being extremely
challenging.243 Working under the principle that cogni-
tion and perception are supported by brain-generated
ensemble patterns in cortical networks and that impair-
ment of proper temporal organization underlies the var-
ious deficits associated with psychiatric and neurologi-
cal disorders, then studying network oscillations should
be an effective and novel method for both furthering our
understanding of the basis of neuropsychiatric disease
and for finding new treatments. Network oscillations
have a combination of properties, which allows them to
be particularly appropriate targets for further mecha-
nistic and therapeutic research. First, as discussed above,
network oscillations are robust phenotypes whose gen-
eral properties are well preserved throughout mam-
malian evolution. Second, rhythms vary within a small
but reliable range from individual to individual in a man-
ner that has been born out by data to relate to function
and disease. Third, on a shorter time scale oscillations are
strongly influenced by both overt and cognitive behav-
iors. Fourth, different rhythms are specific to particular
brain structures and, finally, they have the right tempo-
ral scale for the assessment of cell assembly patterns.

These features, when combined, suggest that reliably
measurable signals correlating with specific disease and
functional impairment can be detected in specific
regions of the brain in response to specific behaviors and
stimuli and can be reliably studied in animals to further
our understanding, with an aim towards novel thera-
peutics. 
A likely helpful approach to efforts to bridge animal and
human investigations will be to more actively build a
library of shared phenotypes between animals and
humans. There are a number of animal disease models
for various psychiatric diseases, which have been char-
acterized along various levels of assessment. The types
of characterizations carried out in animals are limited in
humans. Conversely, human phenotypes, such as the
oscillatory phenotypes described above, have not been
carefully assessed in experimental animals, either in spe-
cific disease models or in wild-type animals. Further
building our database of disease-related oscillation phe-
notypes shared between animals and humans represent
a rational first step in any efficient effort to understand
mechanisms of neuropsychiatric disease at the level of
neuronal communication. Clear human-to-animal links
have been made in other domains of human disease244

and neuroscience,245 and have yielded efficient and clin-
ically relevant findings. Such an effort towards under-
standing how psychiatric disease rests upon the funda-
mental scaffolding of brain function, ie, fast time-scale
oscillatory- and assembly-based action may be taken on
piecemeal the way most of research is done now, but it
may be most usefully pursued more systematically in the
form of the efforts of a large institution or consortium. 

A novel path for treatment

The predominant mode of psychiatric treatment today
is based on pharmacology and it may be useful to con-
sider network level phenotypes as an intermediate link
between disease and drug action. Brain network-specific
oscillations and cross-frequency coupling of their inter-
actions can be quantified effectively in both sleeping and
task-solving animals, and since network patterns are
specifically and differentially affected by a large spec-
trum of psychotropic drugs,104,246 they can be used in early
screening. Unlike the often-varying drug responses
between humans and animal models across many mea-
sures,243 the pharmacological profiles of network oscilla-
tions are identical in all mammalian species. For more
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detailed analysis, large-scale recordings of multiple sin-
gle neurons in the behaving animal can be used to assess
both the mechanistic network level effects of both drugs
that are already known to be effective in humans and
also novel/other agents, which may have novel mecha-
nisms on the same systems. Such work would of course
be informed by work on network alterations in human
disease and once animal-based discoveries are made
they can be translated back to the human. 
In addition, the oscillation-centric approach offers an
alternative to pharmaceutical-based interventions: direct
assessment and potential correction of aberrant brain
activity based on the measurement of that activity itself.
Such approaches would certainly be appealing in cases
of drug resistance, but are potentially useful as even first-
line treatment, especially if they can remain noninvasive.
In fact, a version of such therapies have existed for years
in the form of biofeedback, where patients are presented
with various transforms of their brain rhythms and
requested to alter brain rhythms in a particular direction
using cognitive control. With varying degrees of practice,
patients are able to learn to self-alter their brain oscilla-
tions as a proxy for improving other symptoms such as

anxiety. Although such feedback treatments have been
used for decades, the therapeutic outcomes have been
controversial and suboptimal.247 In light of new knowl-
edge about oscillatory activity in the intact brain and in
disease states, carefully controlled and targeted trials are
now warranted. 
For more extreme or difficult to control symptoms, aber-
rant brain activity can in principle be restored by appro-
priately patterned electrical stimulation. Furthermore,
in many diseases, symptoms recur irregularly and unpre-
dictably and are often separated by long symptomless
intervals.225 In such instances, closed-loop feedback brain
control that leaves other aspects of brain functions unaf-
fected is desirable. Effective clinical application of
closed-loop treatment has two fundamental require-
ments.248–251 The first is recording and identifying causal
pathophysiological network patterns. The second
requirement is closed-loop feedback stimulation of the
target circuits whose activation can interfere with the
emerging pathological pattern. Figure 7 shows a proof of
principle for this approach. The detected pathophysio-
logical pattern is the thalamocortical spike-and-wave
pattern in a genetic model of generalized, absence

Figure 7. Closed-loop interaction in the thalamocortical loop. (a) Experimental setup. Optic fiber is placed into the reticular nucleus of thalamus in
a Pvalb-IRES-Cre:Ai32 double transgenic mouse to induce spike-wave seizure-like pattern; shown in (c). Blue LEDs (squares) placed epidu-
rally at two positions in each hemisphere. (b). Schematic of the reverberation in the thalamocortical loop. Neurons of the thalamus: retic-
ular nucleus cells (RT), thalamocortical projection neurons TC). Neurons of the cortex: pyramidal cells (Py) and inhibitory interneurons (int).
(d) Light stimulation of the parvalbumin RT neurons alone induces spike-waves, whereas light stimulation of cortical parvalbumin interneu-
rons alone induces rebound excitation in cortical pyramidal cells (Py). Combined and phase shifted stimulation of RT and cortex attenu-
ates the induced spike-wave activity. 
Reproduced from ref 252: Berenyi A, Belluscio M, Mao D, Buzsaki G. Closed-loop control of epilepsy by transcranial electrical stimulation. Science.
2012;337:735–737. Copyright © American Association for the Advancement of Science 2012
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seizures in the rodent. The spike components of the pat-
tern can be readily detected by surface or scalp record-
ings and used as a trigger to trigger an effector mecha-
nism. Using transcranial electrical stimulation (TES) or
optogenetic activation of the neocortex as effectors,
closed-loop feedback could effectively reduce the dura-
tion of seizure episodes.172,252 Noninvasive, closed-loop
stimulation may also prove effective affecting identifi-
able brain states. For example, “synthetic” sleep spindles
can be induced by TES during sleep in schizophrenic
patients with an attempt to supplement the low inci-
dence of spindles in this disease. A recent study253 used
feedback auditory stimulation to temporarily improve
depressive symptoms in hypersomnic-type depressive
patients, although in that study brain activity was mon-
itored by a human operator. The authors systematically
detected delta or slow waves during stage 3 sleep and
once such rhythms were detected, sound stimulation was
administered that did not awaken the patient but did
reduce slow waves for several minutes. As a result of
reducing the “depth” of sleep, depression symptoms
decreased transiently but significantly.
In addition, decreased levels of sleep spindles have been
detected in patients with schizophrenia.221 Assuming that
the deficit of sleep spindles is causal to the disease,222

closed-loop stimulation of thalamic activity and resultant
of sleep spindles can be used either in hospital settings or
the patient’s home. Another example might be specific
suppression of excess γ activity specifically in the primary
sensory cortices of schizophrenic patients with the goal
of reducing hallucinations. However, long-term reliable
and on-line monitoring of low amplitude brain activity,

especially from outside the brain parenchyma remains a
major challenge. In selected very deeply affected patients,
subdural or depth recording might perhaps be a viable
option to treat debilitating symptoms and might even be
paired with the already-successful invasive deep brain
stimulators for extremely treatment resistant depressed
patients.254,255 In a recent pilot study, oscillation pheno-
types were examined to determine which patients might
be responsive candidates for deep stimulation treatment,
finding that greater frontal θ “cordance” prior to surgery
predicts greater improvement of depression in response
to subcallosal anterior cingulate cortex stimulation.256

Conclusion

Given that large pharmaceutical companies are pro-
gressively reducing or eliminating research on mental
disease due to the difficulty in finding new drugs, new
treatments may well need to come via fundamentally
different approaches to therapeutics. We have presented
here alternative ideas for therapies such as closed-loop
feedback that may not only circumvent the problem of
decreased pharmaceutical dollars being funneled
towards psychiatric disease, but may well affect thus-far
untreatable aspects of these complex diseases due to the
fact that they likely work via fundamentally different
means. In sum, we submit that approaching psychiatric
disease from the perspective of oscillations and assem-
bly-related fast timescale neural activity will lead at the
very least to new understanding of the underpinnings of
psychiatric symptoms, and possibly also represent a road
to new and useful therapies. ❏
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Ritmos cerebrales y sintaxis neural: 
consecuencias para una codificación
eficiente del contenido cognitivo y la 
enfermedad neuropsiquiátrica

La perpetua actividad de la corteza cerebral está
sustentada en gran medida por la variedad de osci-
laciones que genera el cerebro, las que abarcan un
número de frecuencias y sitios anatómicos, así como
correlatos conductuales. En primer lugar se revisan
los hallazgos de estudios animales que muestran
que la mayoría de las formas de los ritmos cerebra-
les se basan en la inhibición, produciendo descar-
gas rítmicas de estímulos inhibitorios a las princi-
pales poblaciones celulares, proporcionando por lo
tanto ventanas temporales que alternan una exci-
tabilidad relativamente reducida o aumentada en
los circuitos neuronales. Estos mecanismos basados
en la inhibición ofrecen marcos temporales natura-
les para agrupar o “fragmentar” la actividad neu-
ronal en conjuntos celulares y secuencias de con-
juntos, con interacciones más complejas de
multi-oscilación creando reglas sintácticas para el
cambio efectivo de información entre los circuitos
corticales. Luego se revisan los estudios en pacien-
tes psiquiátricos que demuestran una variedad de
alteraciones en las oscilaciones neurales en las prin-
cipales enfermedades psiquiátricas, y sugieren posi-
bles orientaciones en las investigaciones a futuro
y aproximaciones terapéuticas basadas en las pro-
piedades fundamentales de los ritmos cerebrales. 

Rythmes cérébraux et syntaxe neuronale :
implications pour un codage efficace du
contenu cognitif et des maladies 
neuropsychiatriques

L'activité permanente du cortex cérébral est large-
ment basée sur la grande variété d'oscillations que
le cerveau génère incluant un grand nombre de fré-
quences et de localisations anatomiques, ainsi que
leurs corrélats comportementaux. Nous présentons
tout d’abord les recherches sur les études animales
montrant que la plupart des formes des rythmes
cérébraux sont basées sur l’inhibition, produisant
des volées rythmiques de signaux inhibiteurs vers
les populations cellulaires principales, fournissant
alors des fenêtres temporales alternatives d’excita-
bilité relativement réduites et plus importantes
dans les réseaux neuronaux. Ces mécanismes inhi-
biteurs offrent des cadres temporaux naturels à une
grosse activité neuronale ou activité groupée dans
des ensembles de cellules et des séquences d’en-
sembles de cellules, avec des interactions multi-oscil-
latoires plus complexes créant des règles syn-
taxiques pour l’échange efficace d’information
parmi les réseaux corticaux. Nous analysons ensuite
des études récentes de patients psychiatriques qui
montrent des altérations variées des oscillations
neurales dans toutes les principales maladies psy-
chiatriques. De possibles directions de recherche
future ainsi que des approches de traitement fon-
dées sur les propriétés fondamentales des rythmes
cérébraux sont proposées. 
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