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Abstract

Rationale—Recent findings have shown a complexly regulated 5-HT system as it is linked to
different kinds of aggression.

Objective—We focus on (1) phasic and tonic changes of 5-HT and (2) state and trait of
aggression, and emphasize the different receptor subtypes, their role in specific brain regions,
feed-back regulation and modulation by other amines, acids and peptides.

Results—New pharmacological tools differentiate the first three 5-HT receptor families and their
modulation by GABA, glutamate and CRF. Activation of 5-HT1A, 5-HT1B and 5-HT2A/2C
receptors in mesocorticolimbic areas, reduce species-typical and other aggressive behaviors. In
contrast, agonists at 5-HT1A and 5-HT1B receptors in the medial prefrontal cortex or septal area
can increase aggressive behavior under specific conditions. Activation of serotonin transporters
reduce mainly pathological aggression. Genetic analyses of aggressive individuals have identified
several molecules that affect the 5-HT system directly (e.g., Tph2, 5-HT1B, 5-HT transporter,
Pet1, MAOA) or indirectly (e.g., Neuropeptide Y, αCaMKII, NOS, BDNF). Dysfunction in genes
for MAOA escalates pathological aggression in rodents and humans, particularly in interaction
with specific experiences.

Conclusions—Feedback to autoreceptors of the 5-HT1 family and modulation via
heteroreceptors are important in the expression of aggressive behavior. Tonic increase of the 5-
HT2 family expression may cause escalated aggression, whereas the phasic increase of 5-HT2
receptors inhibits aggressive behaviors. Polymorphisms in the genes of 5-HT transporters or rate-
limiting synthetic and metabolic enzymes of 5-HT modulate aggression, often requiring
interaction with the rearing environment.
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1. Preamble

Novel findings with tools from molecular genetics and receptor pharmacology in
conjunction with more differentiating behavioral and clinical analysis begin to focus on the
prominent role of brain serotonin in the predisposition to initiate impulsive aggressive
behavior and the termination of bursts of aggressive behavior (Lesch and Merschdorf 2000;
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Miczek et al. 2002; Miczek et al. 2007b; Nelson and Chiavegatto 2001; Quadros et al.
2009b). The venerable serotonin deficiency hypothesis as simplifying principle, linking low
serotonin activity to the propensity to engage in aggressive behavior, is yielding to a more
differentiating interpretation of the accruing data (de Boer and Koolhaas 2005; Miczek et al.
2007b). The current review highlights several emerging themes of the past decade.

First, the dimension of impulsive aggressive behavior is a heritable trait that runs in families
and appears amplified by salient experiences during a critical postnatal developmental
period. The genetic architecture for synthetic and metabolic enzymes, receptor and
particularly transporter molecules in serotonergic neurons provides ample targets for
important life events to ultimately promote increased impulsive aggressive behavior (Caspi
et al. 2002).

Second, superimposed on the serotonergic tone, plastic changes in the impulse flow in
serotonin pathways to the forebrain are evident while an individual anticipates an aggressive
or defensive act (Ferrari et al. 2003). As aggressive experiences accumulate, neuroadaptive
changes in serotonergic dorsal raphé cells projecting to terminals in the forebrain are
manifested in serotonin impulse flow and particularly in receptor regulation. These forms of
neuroplasticity in serotonergic projections to the prefrontal cortex appear important for
anticipating and preparing for imminent aggressive or defensive acts.

Third, one site of regulatory influences on cellular activity in the dorsal raphé nuclei (DRN)
is the population of somatodendritic autoreceptors, and stimulation of these receptors
inhibits impulse flow in serotonergic cells which, in turn, decreases escalated aggressive
behavior in rodent models. Repeated somatodendritic autoreceptor stimulation or
antagonism have been explored in order to enhance clinical management of affective
disorders, including dysfunctions in social intercourse.

Fourth, excitatory and inhibitory transmitters such as glutamate and GABA synapse with
serotonergic cells in the dorsal raphé nuclei, and the modulation of serotonergic activity by
these inputs profoundly impacts aggressive behavior. Several members of the GABA and
glutamate receptor subtypes, located on serotonergic cells, have already been identified as
key targets for several drugs such as alcohol and benzodiazepines in their escalating and
inhibiting effects on aggression.

Fifth, among the many peptides that modulate serotonin at the somata and terminals, CRF,
vasopressin and opioid peptides are noteworthy for their profound effect on social and
aggressive behavior. In rodent models, CRF1 receptor antagonists effectively and selectively
reduce alcohol-heightened aggression by action on serotonergic neurons in the DRN,
although these findings await translation into the clinic.

The last decade has seen also a concerted effort to translate more readily preclinical and
clinical findings as is evident by two developments (1) an increasing focus on escalated
types of aggressive behavior in animal models and (2) by operationally and functionally
defined aggressive behaviors in clinical assessments.

2. Definition of Aggression

Most psychopharmacological research on serotonin and aggression is motivated by gaining
insights into pathological aggression, both in human and veterinary medicine (Volavka et al.
2005). When working with laboratory models of animal aggression, it is useful to consider
the ethological foundation of aggressive behavior such as its phylogenetic and ontogenetic
origins and its functional significance for the individual and the species. Aggressive
behavior comprises communicative signals, acts and postures for the purpose of obtaining a
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specific goal or in defense against threatening stimuli (Miczek et al. 2002). These behaviors
occur in the context of competing for food and other resources that are important to an
individual’s survival and reproduction (resident-intruder aggression), defense of a territory
or offspring (territorial and maternal aggression), or in response to fear or frustration
(Miczek et al. 2001). In this sense, the occurrence of aggressive behavior raises the fitness of
the individual and enhances the survival of the species. For example, resident-intruder
confrontations may represent male-male rivalries, establishing and maintaining a dominance
hierarchy (Figure 1). So-called isolation-induced aggression captures many elements of a
resident who excludes other breeding males from the territory (Brain and Benton 1979;
Miczek et al. 2001; Table 1).

Based on distal and proximal antecedent conditions, the behavioral topography, and the
consequences, aggressive behavior can be differentiated as offensive or defensive
(Blanchard and Blanchard 1977; Brain 1979). In rats, a set of specific defensive behaviors
occurs in response to either predator or conspecific attack, and comprises escape, freezing,
defensive postures and threats (Blanchard et al. 2003; Pellis and Pellis 1988; Rasia-Filho et
al. 2008). Defensive behaviors can be a response to threatening or fear-provoking stimuli
and, usually, result in escapes (Brain 1979). For example, maternal aggressive behavior is
seen in postpartum female rodents in order to protect offspring against male intruders, and
this type of aggression includes both defensive and offensive elements (Lucion and de
Almeida 1996; Parmigiani et al. 1998).

Violence in animals is a controversial term in animal ethology. This term has been
hypothesized to be related to escalated, pathological and abnormal forms of aggression
characterized by rapid attack latencies, prolonged and frequent aggressive behavior and
attack bites (Miczek et al. 2002; Miczek et al. 2003). These parameters are quantitative, in
that violence is expected to show shorter attack latencies and higher frequencies and longer
durations of consummatory behavior than adaptive aggression. Measures of a qualitative
nature have been proposed independently, where violence is considered qualitatively
different from adaptive aggression. For instance, attach bites aimed at vulnerable parts of the
opponent’s body are considered characteristic of abnormal aggression (Haller et al. 2005). A
few additional qualitative facets have been studied, namely lack of ritualistic behaviors as
measured by Attack/Threat (A/T) ratios (Haller et al. 2005) and context independent attacks
(Koolhaas 1978) aimed at the opponent regardless of its sex or state (free-living/
anaesthetized/dead) or the environment (home/neutral cage). In that sense, violence can
therefore in principle refer to an escalated (hyper-) aggression (quantitative) or to an
abnormal form of aggression (qualitative), or even to aggression that is both escalated and
abnormal (both), which is unsurprisingly rare (for review see Natarajan and Caramashi
2010).

Aggressive behaviors in humans share commonalities with those in non-human animals, but
they differ from most of them in their complexity. While social norms set the boundaries of
appropriate aggressive behavior, inappropriate aggressive behavior in the form of
interpersonal violence represents serious mental and social problems (Ferris et al. 2008).
Aggressive behavior is a symptom in several psychiatric diseases, as detailed in the DSM-IV
R and the updated DSM-V which is scheduled for publication in 2012, such as
schizophrenia, brief reactive psychosis, anxiety disorder, adjustment disorder, impulse
control disorder, antisocial personality disorder, attention deficit disorder, mania/depression,
PTSD, autism, and substance abuse (Boles and Miotto 2003; Raine 2002; Rydén et al. 2009;
Volavka et al. 2005).

A useful scheme considers human aggression as defensive, premeditated (e.g., predatory and
instrumental) or impulsive-hostile in nature (Stoff and Vitiello 1996; Vitiello and Stoff
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1997). Especially the premeditated and impulsive types of aggressive behaviors are
diagnosed as pathological (i.e. in need of treatment). A converging pattern of empirical data
links impulsive, but not premeditated, aggression to biological, environmental, and also to
pharmacological or psychological treatment response factors (Coccaro et al. 2010).

Methodologically (see Table 2), human aggressive behavior as a state is assessed using
protocols according to which individuals are provoked in competitive situations with
fictitious opponents and that provide opportunities to engage in measurable aggressive
responses (for review see Miczek et al. 2002). The assessment of aggressive traits in human
subjects are accomplished by psychometric measures like inventories, questionnaires and
scales. These laboratory measures of aggressive behavior have been used successfully in
research on the role of 5-HT (Table 2). A critical challenge for this and similar experimental
approaches is to relate the laboratory measures of aggression to aggressive and violent acts
outside of the laboratory. It also remains difficult to discern subtypes of human aggression
with laboratory measurement techniques. Table 2 summarizes the psychometric instruments
which identify individuals with contrasting aggressive traits such as the impulsive-reactive-
hostile-affective subtype versus the controlled-proactive-instrumental-predatory subtype
(Stoff and Vitiello 1996).

3. Aggressive “trait” vs. “state”

Based on early clinical and preclinical studies, the most frequently reiterated hypothesis
links a serotonin deficiency to individuals presenting impulsive, hostile, and violent
behavior (Brown and Goodwin 1986; Goldman et al. 1992; Lesch and Merschdorf 2000;
Linnoila and Virkkunen 1992; Mann 1999; Valzelli 1977). These individuals may benefit
particularly from pharmacological treatments aimed at inhibiting 5-HT transporters (using
SSRIs such as fluoxetine, citalopram), or activating 5-HT1A (buspirone) or blocking 5-HT2A
receptors (risperidone). Acutely, these drugs induce phasic changes in 5-HT function that
are associated with their transient anti-aggressive effects. Using in vivo microdialysis
techniques, transient changes in 5-HT extracellular levels can be monitored before, during,
after and in anticipation of an aggressive encounter in rats. In one study, reduced 5-HT
levels in the prefrontal cortex were revealed during and after the aggressive confrontation,
while no changes in 5-HT were detected in another terminal region, the nucleus accumbens
(Van Erp and Miczek 2000; Figure 2). By contrast, chronic treatment with these anti-
aggressive compounds may promote yet to be defined neuroadaptive changes in 5-HT
function that are associated with the emergence of therapeutic effects (e.g., autoreceptor
desensitization).

On the other hand, genetic studies focus on aggression as a “trait”. While it is clear that
these aggressive traits are polygenic, it is remarkable that in several cases a gene-
environment interaction is required for the increased propensity to engage in violent
outbursts, as observed with TPH2, MAO-A and 5-HTT polymorphisms (see below). For
example, a SNP in TPH2 gene (A2051C) has been shown to have a link to aggressive
behavior in rhesus monkeys. Individuals that have an AA/AC genotype show increased
aggressive acts compared to those with a CC genotype when they were reared without their
mother (peer-reared). This difference disappeared when individuals of both genotypes were
reared by their mothers (Chen et al. 2010). In this review, we will discuss the effects of
genes on aggressive behaviors with a focus on the interaction with salient environmental
events.

In addition, gene-gene interactions are also of interest and need to be examined in the future.
For example, Passamonti et al. (2008) showed interactions between 5-HTT and MAOA
polymorphisms, and those interactions exerted stronger effects on the activity of the anterior
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cingulate cortex, one of the brain areas implicated in impulsivity, including impulsive
aggression. Many other genes may have subtle effects on aggressive phenotypes and it is
possible that those genes have complex epistatic interactions from which stronger effects
emerge (Miczek et al. 2001). In rodents, most genetic studies on aggression in the past 15
years make use of conventional knockout techniques in which the expression of a gene is
generally deleted in the whole body, affecting all developmental stages and inducing
compensatory changes in other genes (trait-like change; see Table 3). Novel tools, including
conditional knockout, viral vector microinfusion, or drug-induceable knockout technique,
can produce transient and local changes in gene expression, enabling the examination of
more “phasic” changes in gene expression and how they affect aggressive behavior. The use
of these techniques may reduce some discrepancies in the results from genetic and
pharmacological studies of 5-HT function in aggression.

4. 5-HT receptors

4.1. Pharmacology of 5-HT receptors and aggression

So far, most evidence implicates the 5-HT1 and 5-HT2 families of receptors in aggressive
behaviors (Miczek et al. 2002; Olivier 2004), with some initial evidence for the involvement
of 5-HT3 receptors as well (McKenzie-Quirk et al. 2005; Ricci et al. 2004; Rudissaar et al.
1999).

Clinically, the 5-HT1A receptor partial agonist buspirone can reduce aggressive behavior in
mentally retarded patients (Kavoussi et al. 1997; Ratey et al. 1991). This compound has
been used for the management of aggressive outbursts associated with neuropsychiatric
disorders in adults and children (Connor and Steingard 1996; Pabis and Stanislav 1996).
However, clinical studies have mostly focused on patients with multiple diagnoses and
clinical symptoms, undergoing treatment with various drugs simultaneously (Brahm et al.
2008; Levy et al. 2005; Pabis and Stanislav 1996; Ratey et al. 1989; Ratey and O’Driscoll
1989). Thus, more controlled studies for different clinical populations are necessary to
assess the efficacy – and side effect profile – of buspirone and other 5-HT1A agents as
selective anti-aggressive medications. In preclinical investigations, systemic administration
of 5-HT1A receptor agonists promotes anti-aggressive effects in several species, including
fish, amphibian, birds, rodents, guinea pigs and non-human primates (Bell and Hobson
1994; Blanchard et al. 1988; Clotfelter et al. 2007; de Boer et al. 1999; de Boer et al. 2000;
de Boer and Koolhaas 2005; Dompert et al. 1985; Haug et al. 1990; Joppa et al. 1997;
Lindgren and Kantak 1987; McMillen et al. 1988; Miczek et al. 1998b; Muehlenkamp et al.
1995; Nikulina et al. 1992; Olivier et al. 1992; Sanchez et al. 1993; Sperry et al. 2003; Ten
Eyck 2008; Tompkins et al. 1980). Only one exception was observed in fruit flies
(Drosophila melanogaster), in which treatment with the 5-HT1A agonist, 8-OH-DPAT,
escalated aggressive behavior (Johnson et al. 2009). Selective antagonists of 5-HT1A
receptors, such as WAY-100635, block the anti-aggressive effect of 5-HT1A agonists, while
having no reliable effects on aggression per se (de Boer and Koolhaas 2005; Mendoza et al.
1999; Miczek et al. 1998b).

Laboratory studies have found that the anti-aggressive effects of 5-HT1A agonists in
vertebrates are consistently accompanied by non-specific effects including sedation, slow
motor routines, stereotypic behavior or reduced social interest (de Boer and Koolhaas 2005;
Miczek et al. 1998b; Olivier et al. 1995). However, some 5-HT1A agonists, at least in a
ferally derived rat strain, can selectively reduce aggressive behavior without affecting other
non-aggressive behaviors, (i.e., alnespirone and S-15535; (de Boer et al. 1999; de Boer et al.
2000; de Boer and Koolhaas 2005). It is possible that those compounds act on a
subpopulation of 5-HT1A receptors to exert this anti-aggressive effect, and thereby are more
behaviorally specific.
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Despite the absence of clinically approved drugs, preclinical work suggests that targeting 5-
HT1B receptors may have more specific anti-aggressive effects than 5-HT1A manipulations.
In mice and rats, the systemic administration of 5-HT1B agonists reduces aggressive
behavior without sedation, or motor or sensory impairment (de Almeida et al. 2001; de
Almeida and Miczek 2002; de Boer and Koolhaas 2005; Fish et al. 1999; Miczek et al.
2002; Miczek et al. 2004; Olivier et al. 1990; Olivier 2004; Figure 3). These effects were
antagonized by the 5-HT1B/1D antagonist GR-127935, further confirming the involvement of
5-HT1B in mediating the anti-aggressive effects (de Boer and Koolhaas 2005). However,
differences in the binding domain of 5-HT1B receptors of humans and rodents may yield
different pharmacological selectivity and specificity of 5-HT1B agonists (Olivier 2004).

Determination of the critical brain regions and specific mechanisms underlying the anti-
aggressive effects of 5-HT1A and 5-HT1B receptor agonists still remains to be resolved
(Table 4). Neurobiological studies have associated the effects of 5-HT1A and 5-HT1B
agonists with reduced 5-HT neuronal firing and release in projection sites (Adell et al. 2001;
Bonvento et al. 1992; Sprouse and Aghajanian 1987), suggestive of presynaptic mechanisms
mediating the anti-aggressive effects of these drugs. Activation of 5-HT1A and 5-HT1B
inhibitory autoreceptors in the dorsal raphé nucleus (DRN) with microinfusion of selective
receptor agonists consistently reduced aggressive behavior in rats and mice, but with
concomitant reduction of motor activity and social interactions (Bannai et al. 2007;
Faccidomo et al. 2008; Mos et al. 1993; Van Der Vegt et al. 2003). Infusion of a 5-HT1A
agonist into the median raphé nucleus (MRN) also reduced aggressive behavior of lactating
female rats (de Almeida and Lucion 1997).

The overall relevance of presynaptic mechanisms for the anti-aggressive effects of these
manipulations is challenged by several reports that lesions or depletion of 5-HT neurons
(e.g., using tryptophan hydroxylase inhibitor PCPA, or the neurotoxin 5,7-
dihydroxytryptamine (5,7-DHT)) do not affect the anti-aggressive effects of 5-HT1A and 5-
HT1B agonists (de Almeida et al. 2001; Miczek et al. 1998b; Sanchez and Hyttel 1994;
Sijbesma et al. 1991). While these data suggest postsynaptic 5-HT1 receptors as critical sites
of action, these pharmacological depletions spared a subpopulation of receptors.

In projection sites of 5-HT neurons, 5-HT1B receptors likely modulate 5-HT release from
synaptic terminals as autoreceptors, whereas both 5-HT1A and 5-HT1B receptors modulate
postsynaptic neurons (Olivier et al. 1992). In most studies, local activation of 5-HT1A and 5-
HT1B in projection regions (e.g., medial preoptic area, lateral septum, orbitofrontal cortex,
anterior hypothalamus, medial hypothalamus, periacqueductal gray) promote reduction of
aggressive behavior under different procedures and species (see Table 4). Interestingly,
under conditions that may promote escalated aggression, such as consumption of moderate
doses of alcohol or maternal aggression, a 5-HT1B or 5-HT1A agonist further increased
levels of aggressive behavior when infused into the medial prefrontal cortex (Faccidomo et
al. 2008) or the medial septal area (de Almeida and Lucion 1997), respectively. Further
studies are required to delineate the mechanisms for such pro-aggressive effects.

Atypical antipsychotic agents (e.g., risperidone) with significant antagonist action at 5-HT2A
receptors have been successfully used to reduce aggressive outbursts in patients diagnosed
with various neuropsychiatric disorders (Buckley et al. 1997; Buitelaar et al. 2001; Czobor
et al. 1995; De Deyn et al. 1999; Fava 1997; Keck, Jr. et al. 2000; Zarcone et al. 2001). On
the contrary, some reports cast doubt on these routine uses of antipsychotics (Swanson et al.
2008; Tyrer et al. 2008). The placebo treatment group showed the greatest recovery from
aggressive challenges compared to antipsychotic drug groups in people with intellectual
disability (Tyrer et al. 2008). In animal models, risperidone and other drugs with more
selective action as 5-HT2A antagonists (e.g., ketanserin, ritanserin and MDL 100907) reduce
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aggressive behaviors in a behaviorally non-specific manner (Rodriguez-Arias et al. 1998;
Sakaue et al. 2002; Shih et al. 1999; White et al. 1991).

Activation of 5-HT2A and 5-HT2C receptors by DOI and other substituted
phenylisopropylamines also reduce aggressive behavior in several species including flies,
amphibians, mice and rats (Bonson et al. 1994; de Almeida and Lucion 1994; Johnson et al.
2009; Muehlenkamp et al. 1995; Olivier et al. 1995; Sanchez et al. 1993; Ten Eyck 2008).
However, the effects of 5-HT2 ligands are accompanied by sedative effects in the same dose
range as the anti-aggressive effects. Local infusion of 5-HT2A/2C agonist into the PAG
reduces maternal aggression in rats (de Almeida et al. 2005), whereas microinjections into
the medial hypothalamus and into the PAG increased defensive aggression in cats
(Hassanain et al. 2003; Shaikh et al. 1997; see Table 4). This latter effect is likely linked to
the role of 5-HT2A/2C receptors in anxiety-like behavior (Lucki and Wieland 1990; Nogueira
and Graeff 1995). The development of more selectively acting pharmacological tools will
allow a more adequate differentiation of 5-HT2 receptor subtypes, and promises to dissociate
the anti-aggressive and sedative effects.

4.2. Genetics of 5-HT receptors and aggression

The 5-HT1B receptor is the first molecule that has been linked to aggression by using the
genetic knockout technique. Male mice with disrupted 5-HT1B receptor expression
(Htr1b−/−) increased aggressive behavior in the resident-intruder test relative to wild-type
residents after a month of isolation (Saudou et al. 1994; Table 3; but see Bouwknecht et al.
2001). However, due to very low, close to zero, aggressive behavior in the wild-type mice
(129/Sv-ter), the number of attacks in Htr1b−/− was very low and the latency to initiate was
very long compared to other strains of mice. These mice displayed behavioral disinhibition
in other behavioral tests including hyperlocomotor activity (Brunner et al. 1999; Ramboz et
al. 1995), drug intake (Crabbe et al. 1996; Rocha et al. 1998), measures of anxiety-like
behavior (Brunner et al. 1999; Malleret et al. 1999), and autonomic hyperreactivity to
novelty (Bouwknecht et al. 2001). Females of Htr1b−/− also show increased aggressive
behavior during the postpartum period (Brunner and Hen 1997). These results have been
interpreted to suggest a role for 5-HT1B receptors in the inhibition of aggressive and
impulsive behaviors.

Linkage analysis on a SNP in the 5′UTR region of the 5-HT1B gene, A161T, found a
significant correlation between this SNP and the history of aggression in subjects who
completed violent suicides (Zouk et al. 2007). Individuals with the T161 locus had higher
lifetime aggressive behaviors. T161 polymorphism had reduced transcriptional activity of 5-
HT1B receptor (Sun et al. 2002), and thus lower 5-HT1B receptor expression may be related
to lifetime aggression in suicidal victims. By contrast, other SNPs in the 5-HT1B showed an
opposite pattern. A linkage study of 5-HT1B with alcoholism and antisocial personality
disorder showed that the G861C polymorphism had significant linkage with antisocial
alcoholism in two groups (Lappalainen et al. 1998). Specifically, C861, the SNP with higher
5-HT1B receptor expression (Huang et al. 1999), was related to antisocial behavior in
alcoholics. However, these associations between the 5-HT1B polymorphisms (G861C,
G261T, or C129T) and aggression/antisocial behavior are not seen in other studies (Huang
et al. 1999; Kranzler et al. 2002; Sinha et al. 2003; Van den Berg et al. 2008). Therefore,
findings from pharmacological manipulation, genetic deletion and polymorphism studies of
the 5-HT1B receptor do not follow a simple and consistent scheme. This suggests that the
role of 5-HT1B receptors may depend on the types of aggressive behaviors or tonic and
phasic level of aggression.

In contrast to the important role of 5-HT1A receptors in the neural control of aggressive
behavior based on pharmacological evidence, no prominent linkage has been reported with
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polymorphisms in the 5-HT1A gene and aggression so far. However, there is evidence for a
correlation between 5-HT1A receptor expression and aggression. A human PET study found
a higher 5-HT1A receptor distribution in prefrontal cortex of subjects with higher aggression
scores based on a self-report questionnaire (Witte et al. 2009). Also, rats selected for higher
defensive reactions showed reduced 5-HT1A receptor expression in several brain areas
(Popova et al. 1998). It is possible that the polymorphisms which directly or indirectly affect
5-HT1A receptor transcription may be associated with either aggressive or defensive
responses. 5-HT1A receptor knockout mice engaged in less aggressive behavior relative to
wild-type controls, which also implicates the possible involvement of the 5-HT1A gene in
aggressive behavior (Zhuang et al. 1999; Table 3). Given the consistent pharmacological
data on anti-aggressive effects of 5-HT1A agonists in clinical and preclinical studies, lack of
complementary genetic data remains disconcerting.

Platelet 5-HT2A receptor binding is increased in patients with personality disorders and in a
psychiatric population with greater lifetime aggression scores (Coccaro et al. 1997; McBride
et al. 1994). In postmortem brains, lifetime aggression was positively correlated with
prefrontal 5-HT2A receptor binding in suicide victims (Oquendo et al. 2006). Therefore, it is
possible that polymorphisms that affect the level of expression of 5-HT2A receptors can be
associated with self-directed aggression. In some samples, significant linkage was found
between polymorphisms in the 5-HT2A receptor, T102C, A1438G and His452Tyr, and
aggressive-impulsive trait or adolescent-onset antisocial behavior in humans (Assal et al.
2004; Bjork et al. 2002; Burt and Mikolaiewski 2008; Nomura et al. 2006). But others have
reported no such link between aggression and 5-HT2A polymorphisms (Khait et al. 2005;
Van den Berg et al. 2008). Again, the success with pharmacotherapeutic management of
aggressive patients using compounds with affinity for 5-HT2A receptors would suggest that
violence-prone individuals may be characterized by distinctive 5-HT polymorphisms.

5. 5-HTT

5.1. Pharmacology of 5-HTT and aggressive behavior

Blocking serotonin transporter molecules is effective in reducing and preventing aggressive
behavior in humans and non-human animals, presumably due to increased brain 5-HT
levels. Clinically, blocking 5-HT transporters with the administration of selective serotonin
reuptake inhibitors (SSRIs), reduces aggressive outbursts and violent behavior in psychiatric
patients (Barkan et al. 2006; Blader 2006; Bond 2005; Coccaro and Kavoussi 1997; New et
al. 2004; Reist et al. 2003; Walsh and Dinan 2001), with therapeutic effects being usually
observed after chronic treatment (>3 weeks). However, there are occasional reports that
SSRIs may facilitate aggressivity and suicidal behavior, and the causes for these unusual
outcomes remain to be determined (Spigset 1999; Troisi et al. 1995).

In animal models, both acute and chronic treatment with SSRIs can dose-dependently reduce
aggressive behavior (Carrillo et al. 2009; Delville et al. 1996; Olivier et al. 1989; Pinna et al.
2003). Acute administration of several SSRIs (e.g., fluoxetine, fluvoxamine, sertraline)
reduced aggression in different contexts and species, including rodents and non-human
primates (Carrillo et al. 2009; Cutler et al. 1997; Delville et al. 1996; Fairbanks et al. 2001;
Ferris et al. 1997; Fuller 1996; Ho et al. 2001; Sanchez and Meier 1997). Chronically, daily
treatment with the SSRI citalopram abolished the escalated levels of aggression induced by a
moderate dose of alcohol over the course of three weeks, with modest reductions in baseline
levels of aggression in mice (Caldwell and Miczek 2008; Figure 4). On the other hand,
chronic SSRI treatment may restore competent agonistic behavior in placid, non-aggressive
laboratory rats (Mitchell et al. 1991; Mitchell 2005; Mitchell and Redfern 1992; Mitchell
and Redfern 1997). Thus, the anti-aggressive effects of SSRIs are more prominent in
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conditions of escalated aggressive behavior such as those promoted by alcohol (Caldwell
and Miczek 2008).

Mechanistically, acute or chronic administration of citalopram (or the more potent isomer
escitalopram) both elevate extracellular levels of 5-HT in the prefrontal cortex of rats,
suggesting increased cortical 5-HT as a putative therapeutic mechanism for SSRIs’ effects
on aggression and other mood disorders (Ceglia et al. 2004). However, the anti-aggressive
effects of another SSRI, fluoxetine, might be primarily mediated by actions on neurosteroids
and GABA transmission, and only secondarily via 5-HT (Pinna et al. 2003; Pinna et al.
2006). Furthermore, long-term effects of SSRIs likely recruit pre- and post-synaptic
mechanisms and neuroplastic events that contribute to their therapeutic effects (Benmansour
et al. 1999; Blier and de Montigny 1998; Ceglia et al. 2004; Pineyro et al. 1994).

5.2. Genetics of 5-HTT and aggressive behavior

A variation in the length of 5′-flanking transcriptional control region (promoter) of the 5-
HTT gene (the serotonin-transporter-gene-linked polymorphic region; 5-HTTLPR) has been
identified in humans (Heils et al. 1996), great apes and rhesus monkeys (Lesch et al. 1997).
This variation affects the transcriptional activity of the 5-HTT gene, and the short length (s)
allele reduces 5-HTT expression in vitro and lowers the prolactin response to clomipramine
in human, which reflects reduced 5-HT function, compared to the homozygote of long
length allele (l/l) (Heils et al. 1995; Lesch et al. 1996; Whale et al. 2000). An association
study in humans showed that individuals with one or two copies of the s allele (s/s, s/l) were
characterized by higher anxiety, depression, hostility and aggression, and lower
agreeableness than individuals of the l/l homozygote in both sexes (Lesch and Merschdorf
2000). Higher frequency of the s allele was observed in alcoholics accompanied with high
impulsivity and antisocial behaviors (type 2 alcoholism) compared to alcoholics without
antisocial behavior (type 1) or healthy controls (Hallikainen et al. 1999). Consistent with the
human polymorphism, rhesus monkeys that possess the s allele engaged in higher rates of
aggressive behaviors compared to l/l individuals (Jarrell et al. 2008; Lesch and Merschdorf
2000).

A genotype-environment interaction can be found in 5-HTT polymorphism. Rhesus
monkeys with the s allele had lower 5-hydroxyindoleacetic acid (5HIAA) in CSF than l/l
individuals when they were reared without their mother (peer-reared). This difference
disappeared when both were reared by their mothers (Bennett et al. 2002). Peer-reared
monkeys showed increased aggression-related behavior as well as altered CSF 5HIAA
levels (Higley et al. 1991; Kraemer et al. 1989). In humans, higher suicide ideations or
attempts were observed in individuals carrying the s allele than in l/l homozygotes when
they encountered a number of stressful life events, but not in less stressful situations (Caspi
et al. 2003). Therefore, it is possible that animals with the s allele are more vulnerable to the
stressful challenges, and subsequently escalate their aggressive behaviors towards others and
themselves. However, the effect of the s allele on aggression differed among sexes (Cadoret
et al. 2003) and even cultures (Baca-Garcia et al. 2004).

Seemingly contrary results were observed in mice with a deletion of the 5-HTT gene
(Slc6a4). Homozygote and heterozygote 5-HTT knockout mice on a C57BL/6J background
showed fewer attack bites and longer latencies to start fighting relative to wild-type mice in
the resident-intruder test (Holmes et al. 2002; Table 3). 5-HTT knockout mice have lower 5-
HT uptake and higher extracellular 5-HT concentrations in the forebrain compared to wild-
type (Mathews 2004). 5-HTT knockout mice underwent changes in more than 50
phenotypes including morphological, physiological, sensory, and behavioral functions
(Murphy and Lesch 2008), and thus those pleiotropic changes of other phenotypes may
contribute to the reduction of aggressive behaviors in these mice. Comparable findings on 5-
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HTT and aggression were reported in the rat. 5-HTT knockout rats on a Wistar/Crl
background also showed reduced offensive behaviors and longer attack latencies compared
to wild-type rats (Homberg et al. 2007). Therefore, genetic ablation of 5-HTT consistently
reduced aggressive behaviors in rodents.

6. Monoamine oxidase A (MAOA)

6.1. Pharmacology of MAOA and aggression

Inhibition of MAOA reduces the oxidative metabolism of monoamines, thus presumably
increasing the availability of 5-HT and other monoamines in the brain. Despite the early
recognized importance of MAO inhibitors as antidepressants, there are only a few
preclinical studies that systematically evaluated the effects of MAO inhibitors on aggression
(Miczek 1987). For the most part, non-selective inhibitors of both MAOA and MAOB (e.g.
phenelzine, isocarboxazid, tranylcypromine) show acute anti-aggressive effects in doses that
also alter motor and other non-aggressive behaviors (DaVanzo et al. 1966; Sofia 1969;
Valzelli et al. 1967; Welch and Welch 1968). Clinically, non-selective MAO inhibitors or
selective MAOB inhibitors can be useful in the pharmacological management of personality
disorders that include impulsive aggression and suicidal tendencies as important symptoms,
but are accompanied by an unfavorable profile of side effects (Hollander 1999; Raj 2004).

6.2. Genetics of MAOA and aggression

The gene for MAOA was the first candidate identified as a determinant in the susceptibility
for aggression in humans, and it has remained the focus of most genetic and epigenetic
studies. Brunner and colleagues (Brunner et al. 1993b) identified a large Dutch kindred with
a syndrome of borderline mental retardation and dysregulated impulsive aggression. All
affected males showed aggressive outbursts, and some exhibited sexually aberrant behavior,
attempted murder and arson. Linkage and sequence analyses showed that all affected males
in this family possessed one missense mutation in the MAOA gene on the X chromosome,
so that MAOA function was completely disturbed (Brunner et al. 1993a). The affected males
had higher serotonin and lower metabolites of NE, DA, and 5-HT in the urine (Brunner et al.
1993a). MAOA also is of significance in the probability of fighting in animals. Male mice
with disrupted MAOA gene on either C3H/He or 129Sv background showed escalated
aggressive behaviors compared to wild-types, as is evident by skin wounds among the cage-
mates and a short latency to initiate attacks in the resident-intruder test (Cases et al. 1995;
Scott et al. 2008). MAOA-deficient mice also showed a large increase in 5-HT and NE, and
a subtle DA elevation, in the brain and liver (Cases et al. 1995; Kim et al. 1997; Table 3). It
is likely that the change of 5-HT function is the cause of the behavioral changes in the
MAOA-deficient mice. Ketanserin and MDL100907, antagonists that preferentially bind to
5-HT2A receptors, blocked the escalated aggression in the MAOA mutant mice (Shih et al.
1999). Depletion of 5-HT by PCPA during the early developmental stage improved some
behavioral and brain structural abnormality in the MAOA-deficient mice (Cases et al. 1995;
Cases et al. 1996).

Variable-number tandem repeat (VNTR) polymorphism, which exists on the upstream
region of the MAOA gene, regulates MAOA expression depending on the number of
repeats: Alleles with 3.5 or 4 repeats have 2-10 times higher transcription than 3 or 5 repeat
alleles in vitro (Denney et al. 1999; Sabol et al. 1998). A prominent interaction between
MAOA genotype and environment on aggressive behavior has been reported (Caspi et al.
2002; Figure 5). Under stressful rearing conditions, such as abuse or neglect, or exposure to
traumatic life events in the first 15 years of their lives, individuals with low MAOA
expression (MAOA-L) polymorphisms showed higher propensity to have criminal arrests
and a violent history, adolescent conduct disorder, and also higher aggressive disposition in
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self-report questionnaire compared to individuals with higher MAOA expression (MAOA-
H) allele or MAOA-L individuals without abuse (Caspi et al. 2002; Foley et al. 2004;
Frazzetto et al. 2007; Kim-Cohen et al. 2006; Weder et al. 2009; Widom and Brzustowicz
2006). If rearing environments were lumped together, the effect of MAOA genotype
disappeared (Fresan et al. 2007) or sometimes MAOA-H individuals reported higher
aggression using data from interviews and questionnaires (Manuck et al. 2000; Manuck et
al. 2002). Therefore, individuals with MAOA-L allele are vulnerable to environmental
factors and show a high propensity to engage in aggressive behaviors only when they are in
a stressful environment. These findings are consistent in males, but not in females (Sjoberg
et al. 2007). Similarly, rhesus monkeys have a repeat length variation polymorphism
(rhMAOA-LPR) in the MAOA gene, and this polymorphism is also linked to aggression.
Monkeys with a low-activity allele exhibited higher aggressive behavior and tend to attain
higher dominance rank when they were reared by their mother. In contrast, when they were
reared separately from their parents (peer-reared), monkeys with the low-activity allele
engaged in less aggressive behavior (Newman et al. 2005). This inhibition of aggression has
been attributed to increased fear and anxiety in peer-reared monkeys (Higley and Suomi
1986).

Neuroimaging studies have indicated pronounced differences in volume and activity of
limbic system and neocortical areas between individuals with MAOA-L and MAOA-H (see
Buckholtz and Meyer-Lindenberg 2008 for a review). fMRI analysis in healthy human
volunteers showed that MAOA-L males had smaller limbic and orbitofrontal volumes, and
higher activity in amygdala and hippocampus during aversive recall (Meyer-Lindenberg et
al. 2006), that may be related to violent behavior in MAOA-L individuals. Alia-Klein et al.
(2008) reported that lower MAOA activity in cortical and subcortical brain areas is
associated with high aggression measured by self-report questionnaire, independent from
MAOA polymorphism. These data show that the MAOA activity is one of the determinants
for the vulnerability to aggression, especially the interaction between MAOA polymorphism
and salient social experiences can escalate the aggression and also change relevant brain
structures.

7. Modulation of serotonergic activity by other systems

The 5-HT neurons in the raphé nuclei are modulated by other amines, acids, peptides and
steroids (Adell et al. 2002). Recently, several efforts were undertaken to uncover the nature
of the neural systems that modulate 5-HT neurons to promote escalated aggressive
behaviors. Here we will focus briefly on inhibitory and excitatory neurotransmitters and
some neuropeptides in terms of their interaction with 5-HT system. The more general role of
those molecules on aggressive behavior was reviewed recently (Miczek et al. 2007b).

7.1 GABA

The inhibitory neurotransmitter γ-aminobutyric acid (GABA) plays a crucial role in the
modulation of the dorsal raphé nuclei (DRN). Large number of GABA interneurons and
distal GABAergic afferents can be found in the DRN (Belin et al. 1983; Gervasoni et al.
2000; Nanopoulos et al. 1982; Wang et al. 1992), and both GABAA and GABAB receptors
are expressed in the DRN (Bowery et al. 1987). In vitro electrophysiology studies have
shown that the activation of the GABAA and GABAB receptors on the 5-HT neurons both
inhibit 5-HT cell firings (Colmers and Williams 1988; Gallager and Aghajanian 1976; Innis
and Aghajanian 1987; Judge et al. 2004). On the other hand, in vivo microdialysis studies
have shown that the GABAA and GABAB receptors in the DRN differentially modulate 5-
HT release depending on the projection sites (Tao et al. 1996). We recently found that the
pharmacological activation of GABAB receptors in the DRN escalated aggressive behaviors
in mice (Takahashi et al. submitted). Interestingly, only under the influence of alcohol, local
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administration of GABAA receptor agonist muscimol also heightened aggressive behaviors
(Takahashi et al. 2010). By contrast, intra-DRN muscimol inhibited aggressive behaviors in
rats (Van Der Vegt et al. 2003) or was without effect on aggression in the absence of alcohol
(Takahashi et al. 2010). Therefore, both subtypes of GABA receptors are involved in
escalated forms of aggressive behavior via different mechanisms. In vivo microdialysis
showed that GABAB activation in the DRN increased extracellular 5-HT level in the medial
prefrontal cortex (Takahashi et al., submitted; Figure 6). This result suggests that the phasic
activation of 5-HT system may be able to promote certain types of escalated aggressive
behaviors in mice.

7.2 Glutamate

The DRN receives prominent glutamate input by the descending projections from the lateral
habenula, periaqueductal gray, lateral hypothalamus, interpeduncular nucleus and medial
prefrontal cortex (Aghajanian and Wang 1977; Behzadi et al. 1990; Kalen et al. 1986;
Maciewicz et al. 1981). Both the N-metyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-
methyl-4-isoxazolaproprionate/kainate (AMPA/kainate) are localized on serotonergic
neurons and increase the 5-HT release in the DRN and its projection areas (Celada et al.
2001; Pallotta et al. 1998; Tao et al. 1996; Tao and Auerbach 2000; Vandermaelen et al.
1986). Systemic administrations of classic antagonists of NMDA receptors, including
phencyclidine (PCP) and dizocilpine (MK-801), can increase aggressive behavior
(Burkhalter and Balster 1979; Krsiak 1974; McAllister 1990; Musty and Consroe 1982;
Rewerski et al. 1971; Wilmot et al. 1987), while other studies find that these compounds are
suppressive and sedative due to their strong side-effects (Belozertseva and Bespalov 1999;
Lang et al. 1995; Miczek and Haney 1994; Tyler and Miczek 1982). Anatomically discrete
analysis is required to identify the sites of action for NMDA receptors that produce
enhanced aggressive behavior. The 5-HT system is one of the candidates, especially the
descending glutamatergic projection from the medial prefrontal cortex (mPFC) to the DRN
will be interesting to investigate. The prefrontal cortex (PFC) has been implicated in the
emotion regulation including aggression (Davidson et al. 2000; Miczek et al. 2007a). This
PFC-DRN glutamatergic projections are involved in the controllability or emotion
regulation (Amat et al. 2005) and further study will be required to address the role of this
PFC-DRN glutamatergic neurons on aggressive behaviors.

7.3 CRF

The DRN is innervated by Corticotropin-Releasing Factor (CRF) immunoreactive fibers,
and presents both subtypes of CRF receptors, CRF1 and CRF2 (Chalmers et al. 1995; Potter
et al. 1994; Swanson et al. 1983). Evidence suggests that CRF, CRF receptors and other
peptides of the CRF family (Urocortins), play key modulatory roles on DRN serotonin
neurons (see Valentino and Commons 2005). Electrophysiological and microdialysis studies
consistently report that i.c.v. or intra-DRN microinjections of CRF, or drugs targeting CRF
receptors, exert potent modulatory control over 5-HT neural firing (Kirby et al. 2000; Lowry
et al. 2000), and 5-HT output to limbic, striatal and prefrontal cortical regions (Amat et al.
2004; Amat et al. 2005; Forster et al. 2008; Lukkes et al. 2008; Meloni et al. 2008; Price et
al. 1998; Price and Lucki 2001).

A role for CRF, CRF1 and CRF2 receptors in aggressive behavior has been indicated by
studies on maternal- and inter-male aggression in mice and hamsters (D’Anna et al. 2005;
Farrokhi et al. 2004; Gammie et al. 2004; Gammie et al. 2005; Gammie et al. 2007; Gammie
and Stevenson 2006). In rats, there is evidence that low doses of CRF themselves may
facilitate or induce pro-aggressive effects after i.c.v. or intra-amygdala infusions (Elkabir et
al. 1990; Tazi et al. 1987). Under conditions of escalated aggression promoted by moderate
doses of alcohol in male mice, CRF1 receptors are a promising target for pharmacological
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intervention. Systemically, antagonists of CRF1 receptors reduce alcohol-heightened
aggression, but also reduce baseline levels of aggressive behavior (Quadros et al. 2009a).
When locally administered into the DRN, CRF1 antagonists (e.g., CP-154526 or MTIP)
prevent the escalated levels of aggression observed after consumption of alcohol, with no
side effects on other behaviors. Remarkably, such anti-aggressive effects of CRF1
antagonists can be abolished with the infusion of 8-OH-DPAT into the DRN, which
transiently slows 5-HT impulse flow. On the other hand, microinfusion of a CRF2 antagonist
(Astressin-2B) into the DRN escalates aggressive behavior (Quadros et al. 2009a).

Thus, the modulation of aggressive behaviors by CRF systems depends on the species (mice,
rats) and type of aggression (species-typical, maternal or escalated aggression). Initial
evidence suggests the 5-HT cells in the DRN as one of the critical sites for such modulation
in the escalated aggression promoted by alcohol, with presumably opposing roles for CRF1
and CRF2 receptors.

7.4. Vasopressin

Arginine vasopressin (AVP) is a neuropeptide that modulates a variety of social behaviors
including pair-bonding, social recognition, maternal behavior, and aggression (Albers and
Bamshad 1998; Coccaro et al. 1998; Ferris 1992; Goodson 2008; Koolhaas et al. 1990;
Neumann et al. 2010; Winslow et al 1993). Selective antagonist of vasopressin V1a
receptors (SRX251, [d(CH2)5Tyr(Me)AVP]) inhibited inter-male aggression (Ferris et al.
2006; Ferris and Potegal 1988), indicating the involvement of V1a receptors in aggressive
behaviors. The interaction between AVP and 5-HT has been shown to be critical for certain
types of aggressive behaviors. In humans, a positive correlation has been observed between
AVP concentrations in the CSF and the life history of aggression, a composite measure of
trait aggression. Also, there was a positive correlation between AVP concentrations and
prolactin responses to a challenge with d-fenfluramine (Coccaro et al 1998). This result
indicates that individuals that have higher aggression ratings tend to have a high AVP
concentration in the CSF and a hyporesponsive 5-HT system. Neuronal interactions between
AVP containing neurons and 5-HT neurons are found in the anterior hypothalamus (Ferris et
al. 1997; Ferris et al. 1999), and this AVP-5-HT link is implicated in aggression.
Microinjection of AVP into the anterior hypothalamus increased aggressive behavior in
hamsters, and systemic fluoxetine (5-HTT inhibitor) treatment blocked the pro-aggressive
effect of AVP (Delville et al. 1996; Ferris et al. 1997). Therefore, 5-HT may have an
inhibitory function on the AVP induced heightened aggression. In contrast, mice with
disrupted Ca2+ channel expression (Cav2−/−) showed escalated level of aggressive behavior
and also higher AVP concentration in the CSF. However, these animals showed
overactivation of the dorsal raphe 5-HT neurons and increased 5-HT concentration in the
hypothalamus (Kim et al. 2009). Further investigation is anticipated to uncover how AVP
and 5-HT interact and whether there are specific types of aggression that require the activity
of either 5-HT or AVP systems independently.

8. Other molecules that directly or indirectly affect 5-HT pathways and

aggression

Here we will briefly discuss selected molecules that directly or indirectly affect serotonergic
pathways and modulate aggressive behaviors based mainly on findings from gene knockout
mouse studies, as summarized in Table 3. For more reviews on genes and aggressive
behavior, see Maxson and Canastar (2007), Miczek et al. (2001) and Nelson and
Chiavegatto (2001).
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8.1. Pet-1 (also known as Fev)

Pet-1, one of the transcription factors, is specifically expressed in the serotonergic raphé
neurons, and has a critical role in 5-HT neural development. Deletion of Pet-1 expression
reduced 5-HT level in the forebrain, and also depleted expression of TPH, 5-HTT, and the
vesicular monoamine transporter 2 (Vmat2). In the resident-intruder test, Pet-1 knockout
mice (Pet-1−/−) engaged in higher frequency and intensity of attacks toward a conspecific
male (Hendricks et al. 2003). These increases in aggressive behavior in Pet-1−/− mice are
embedded in broad behavioral disruptions that extended to maternal and anxiety-like
behaviors (Hendricks et al. 2003; Lerch-Haner et al. 2008), and it is possible that those other
behavioral changes promote indirectly aggressive behaviors.

8.2. Brain-derived neurotrophic factor (BDNF)

BDNF has several important roles in the neuron including neuronal survival, development,
differentiation and plasticity. Mice with decreased BDNF expression including knockout
(BDNF+/−) and conditional knockout (BDNF2L/1LNes-cre and BDNF2L/2LCk-Cre) all
showed increased inter-male aggression (Chan et al. 2006; Lyons et al. 1999). Higher
hippocampal extracellular levels of 5-HT were observed in BDNF+/− mice compared to
wild-type (Deltheil et al. 2008), but fluoxetine reduced their heightened aggressive behavior
(Lyons et al. 1999). All mutants changed 5-HT2A receptor expression, however BDNF+/−
showed increased 5-HT2A expression in the lateral frontal cortex and hypothalamus (Lyons
et al. 1999) whereas BDNF2L/1LNes-Cre and BDNF2L/2LCk-Cre exhibit reduced 5-HT2A
receptor expression in the prefrontal cortex (Chan et al. 2006; Rios et al. 2006). A SNP in
the BDNF gene, Val66Met, has attracted strong interest because of its association with
mood disorders and hippocampal function in humans (Egan et al. 2003; Neves-Pereira et al.
2002). Knock-in mice with this human Met allele also showed an increased aggressive
behavior and changed the response to SSRI treatment (Chen et al. 2006). In contrast to the
consistent results on aggressive behavior among BDNF mutant mice, studies on
polymorphisms of the BDNF gene in aggressive behavior in humans remain to be resolved.
No association was observed between Val66Met polymorphism and proneness to violence in
a Chinese male sample (Tsai et al. 2005). Other SNPs in the BDNF gene may be associated
with high impulsivity in children with ADHD (Oades et al. 2008).

8.3. Neuronal nitric oxide (nNOS)

Nitric oxide, a free radical gas which diffuses across membranes, is involved in several
cellular functions (for review see Calabrese et al. 2007). Mice lacking neuronal nitric oxide
synthase (nNOS−/−) show various deficits in their physiological development and also
behavior (Huang et al. 1993). nNOS−/− males, but not females, showed higher duration of
aggressive behavior and also displayed much fewer submissive postures compared to wild-
types (Nelson et al. 1995). Serotonergic dysfunction was observed in the nNOS−/− mice,
specifically reduced 5-HT turnover in the brain and deficient 5-HT1A and 5-HT1B receptor
function (Chiavegatto et al. 2001). Escalated aggression in the nNOS−/− was rescued by 5-
HTP treatment which increased 5-HT level and turnover. These findings point to an
important role of nitric oxide for the normal 5-HT function, and thus increased aggression
nNOS−/− may be induced by changing 5-HT activity.

8.4. Neuropeptide Y (NPY)

NPY controls primarily food intake, energy balance, and metabolic regulation (Herzog
2003). This molecule which is critical for energy homeostasis is also implicated in
aggressive behavior (Emeson and Morabito, 2005). Male mice with deleted expression of
the Y1-receptor (Y1−/−) showed obesity and reduced energy homeostasis (Kushi et al.
1998), and also exhibited increased aggressive behaviors in the resident-intruder test (Karl et
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al. 2004). However, this escalated aggression in Y1−/− was observed only in the home cage,
not in the novel environment. This result suggests a specific increase in territorial aggression
which may be related to altered 5-HT function of Y1−/− (Karl et al. 2004). TPH mRNA
expression in the raphé nuclei was reduced in the Y1−/− mice. In addition, 5-HT1A agonist
treatment reduced escalated aggression in Y1−/− mice.

8.5. α-Calcium-Calmodulin Kinase II (α-CaMKII)

α-CaMKII is a neural specific enzyme and has been shown to be involved in long-term
potentiation (LTP; Silva et al. 1992). Heterozygotes of α-CaMKII knockout mice showed
escalated defensive aggression but not offensive aggression (Chen et al. 1994). In the
resident-intruder test, resident α-CaMKII heterozygotes showed aggressive behavior similar
to wild-type mice. In contrast, when the mutant was tested as an intruder, they exhibited
high defensive reactions toward the resident. Reduced 5-HT release was observed in the
dorsal raphé of α-CaMKII mutants in vitro, and thus the changed 5-HT function may be
associated with defensive aggression in this mouse.

Gene targeting techniques in mice have identified a number of genes involved in aggressive
behaviors (Table 3) and these animals offer insights into the simple serotonin-aggression
link. The direction of the change in the 5-HT system is not always the same (Table 3); some
knockout mice that showed escalated aggressive behaviors also showed a reduction in 5-HT
tone (e.g. Pet1, nNOS, NPY, α-CaMKII) but others showed a clear increase of 5-HT release
in the brain (e.g. MAOA, BDNF, Cav2.2). Further examination of 5-HT changes in dissected
brain regions and also of changes in specific 5-HT receptor subtypes in these knockout mice
will clarify more details of the serotonin-aggression link.

9. Concluding Remarks

In summary, understanding the complex role of 5-HT in aggression requires consideration of
multiple factors, including (1) the type of aggressive behavior, its topography and function,
(2) the genetic background of the individual and the typical phenotype for this background,
(3) the trait characteristics of the human subject or the mouse (i.e., Mus musculus are a
pugnacious species and many inbred strains are quite placid), and (4) the situational
conditions under which aggressive behaviors has been engendered. From a clinical
perspective, the impulsive, hostile, explosive type of aggressive behavior is part of a more
broadly defined trait that has been linked to profound changes in the expression of MAO-A,
5-HTT, and 5-HT receptors. A growing number of studies that suggest important gene-
environment interactions involving genes that regulate 5-HT transmission (e.g., monoamine
oxidase and serotonin transporters) and stressful life events are of particular interest. When
associated, these conditions are critical in determining an increased vulnerability to initiate
violent acts and aggressive outbursts (e.g., Bennett et al. 2002; Caspi et al. 2002; Caspi et al.
2003). By associating the specific characteristics of the individual, the environment and the
type of social interaction, the serotonin-aggression link can be further explored, providing
new pharmacological and molecular targets for interventions.

From a therapeutic perspective, it seems clear that manipulations of 5-HT transmission are
effective for the management of aggressive behavior, despite the common observation of
side effects. Traditionally, pharmacological manipulations that increase 5-HT function are
effective in reducing aggression in clinical and preclinical settings. However, whether such
increases in 5-HT transmission are the main relevant mechanism for the anti-aggressive
effects remains in dispute. For example, agonists of the 5-HT1 family of receptors and
citalopram (SSRI) promote opposite changes in extracellular concentrations of 5-HT in
terminal regions, despite both having anti-aggressive effects. Such observations suggest that
drugs acting at different 5-HT molecular targets may recruit different neuropharmacological
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mechanisms in order to promote their anti-aggressive effects, likely involving actions on
specific receptor subpopulations and downstream signaling pathways. Of particular clinical
interest, the development of neuroplastic changes seems to accompany the emergence of
anti-aggressive effects after chronic treatment with SSRIs. More recently, the identification
of pharmacological targets that directly or indirectly modulate 5-HT function, such as
receptors for glutamate, GABA and neuropeptides, show promising results for more
selective anti- and pro-aggressive effects.
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Figure 1. Mouse agonistic behavior
Behaviors of resident and intruder mice engaged in an aggressive confrontation: (a) the
resident leaps and bites the intruder as the intruder attempts to escape; (b) the resident (right)
threatens as the intruder (left) holds a defensive upright posture; (c) the resident investigates
the intruder’s anogenital region; (d) the resident pursues the fleeing intruder; (e) both
resident and intruder engage in a mutual upright defensive posture. Reprinted with
permission from Miczek and O’Donnell (1978).
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Figure 2. Dopamine and serotonin during aggression
Measurements of extracellular dopamine and serotonin via in vivo microdialysis in resident
male rats before, during, and after a confrontation with an intruder. (a) In the nucleus
accumbens (top panel), dopamine levels (gray circles) rise and remain elevated after the
confrontation, while serotonin levels (black diamonds) do not significantly change. (b) In
the prefrontal cortex (bottom panel), dopamine levels rise after the confrontation, while
serotonin decline and remain lower after the confrontation. Samples were collected every 10
min and levels are expressed as mean percent of baseline ± SEM. Baseline was measured for
50 min before the fight. The vertical light gray bar indicates the occurrence of the 10-min
fight. * and ** represent significant differences from baseline (dashed line) at the p < 0.05
and p < 0.01 levels, respectively. Reprinted with permission from Van Erp and Miczek
(2000).
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Figure 3.
A. Effects of social instigation on aggressive behavior by a resident mouse toward a male
intruder. Bars represent the mean frequency ±SEM (vertical lines) of attack bites under
control (light gray) and instigated (dark gray) conditions. Asterisks denote statistical
significance from control (**P<0.01). B. Preferential reduction of instigated aggressive
behavior by the 5-HT1B agonist anpirtoline (left panel, filled circles) and CP-94,253 (right
panel, filled squares). Symbols represent the mean frequency of attack bites, expressed as a
percentage of vehicle (V) baseline, ±SEM. Light gray symbols represent non-instigated
fighting and dark gray symbols represent instigated levels of fighting. Asterisks denote
significance from vehicle baseline (P<0.05). Adapted from Fish et al. (1999) and de
Almeida and Miczek (2002).
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Figure 4.
Effects of repeated, twice daily administration of the SSRI citalopram (10 mg/kg, i.p.) on
aggressive behavior in mice after drinking 1.0 g/kg alcohol in operant self-administration
panels. Frequency of aggressive acts (± SEM) is defined as sum of attack bites, threats,
pursuits and tail rattles, and was analyzed in 5 min confrontations against a male intruder,
during the course of fours weeks of citalopram (or saline control) treatment. + symbols
represent differences from baseline (++ p<0.01; +++ p<0.001); * symbols represent group
(citalopram vs. saline-controls) differences (** p<0.01; *** p<0.001). Adapted from
Caldwell & Miczek (2008).
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Figure 5.
Means on the composite index of antisocial behavior as a function of MAOA activity and a
childhood history of maltreatment. MAOA activity is the gene expression level associated
with allelic variants of the functional promoter polymorphism, grouped into low and high
activity; childhood maltreatment is grouped into 3 categories of increasing severity. The
antisocial behavior composite is standardized (z score) to a M = 0 and SD = 1; group
differences are interpretable in SD unit differences (d). Reprinted with permission from
Caspi et al. (2002).
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Figure 6. Extracellular 5-HT concentration in the medial prefrontal cortex (mPFC) of mice after
GABAB receptor activation in the dorsal raphe nucleus (DRN)
(A) Baclofen microinjected into the DRN increased the 5-HT level in the mPFC whereas
saline injection did not change the 5-HT level. Twenty minutes samples were collected 5
samples for baseline, 3 samples after saline injection, and 6 samples after baclofen (0.06
nmol) injection. Data are expressed as percentage of baseline (n=7). * p<.05 compared to
the baseline. (B) The effect of 0.06 nmol baclofen on attack bites after the different interval
(10, 40 and 100 min, corresponding to the time period of fraction 9, 11, and 14 in the
microdialysis, respectively). Escalated attack bites were observed both 10 and 40 minutes
after the intra-DRN baclofen injection. * p<.05 compared to corresponding vehicle control.

Takahashi et al. Page 41

Psychopharmacology (Berl). Author manuscript; available in PMC 2013 June 17.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Takahashi et al. Page 42

Table 1

Types of aggressive behavior in preclinical models

A. Species-typical aggressive behavior

Situational or Experimental
variable

Agonistic behavioral
measurements

References

Dominant
resident, mainly in
primates and rats

In a stable colony where dominance
hierarchy is to be established and
maintained.

Frequency and duration of agonistic
acts, postures, and displays including
supplants, threat, pursue, and fight.

Mehlman et al. 1994
Higley et al. 1996
Fairbanks et al. 1999
Bennett et al. 2002
Bernstein et al. 1974
Steiniger 1950
Vandenbergh 1967

Territorial
resident (resident-
intruder test),
mainly in mice and
hamsters

Requires an established territory. In
the laboratory, home-cage of
experimental male (resident) where it
is pair-housed with a female. A male
stimulus animal (intruder) that is
group housed with other males is
introduced into resident’s cage.

Frequency of attack bite, sideways
threat, tail-rattle, pursue, upright
posture.
Latency to the first bite.

Van Oortmerssen and Bakker
1981
Eibl-Eibesfeldt 1950
Miczek and O’Donnell 1978
Crawley et al. 1975

BMaternal
aggression, mainly
in rats, mice, and
hamsters

Home-cage of lactating females from
postpartum day 1 to 7. Either male or
female of intruder is introduced into
dam’s cage.

Frequency of attack bite (especially
directed at the snout and the face),
sideways threat, tail-rattle, pursue,
upright posture.
Latency to the first bite

Hurst 1987
Sgoifo et al. 1992
Lonstein and Gammie 2000
Noirot et al. 1975
Haney et al. 1989

Female aggression,
mainly in primates
and rodents.

Dominant hierarchy among female
monkeys.
In the laboratory settings, female
rodent pair-housed with a breeding
male. Sexually matured female is
introduced as an intruder.

Harrassing attacks by dominant
female. Frequency of attack bite,
sideways threat, tail-rattle, pursue,
upright posture.
Latency to the first bite

Smuts 1986
Palanza et al. 2005
DeBold and Miczek 1981
Zitzman et al. 2005

Isolation-induced
aggression (similar
to territorial
aggression)

Male isolated for same time, ranging
from 24 h to 8 weeks prior to
resident-intruder encounter.

Frequency of attack bite, sideways
threat, tail-rattle, pursue, upright
posture.
Latency to the first bite.

Malick 1979
Valzelli and Bernasconi 1979
Cairns and Nakelski 1971
Yen et al. 1959

B. Escalated aggressive behavior

Situational or Experimental
variable

Agonistic behavioral
measurements

References

Alcohol-
heightened
aggression, mainly
in rats and mice

Animals receive ethanol (1.0g/kg)
intraperitoneally or orally before the
resident-intruder encounter.

(These 3 methods measure
aggressive behavior in same residentintruder
method)
Frequency of attack bite, sideways
threat, tail-rattle, pursue, upright
posture.
Latency to the first bite
Targets of attack bites (head, dorsal
areas, ventral areas, appendages)

Peeke and Figler 1981
Blanchard et al. 1987
Miczek et al 1992, 1998a
Miczek and de Almeida 2001

Social
provocations
(instigations),
mainly in hamsters,
mice, and rats

A resident male pre-exposed to
another breeding male in his home-
cage without direct agonistic
interaction (stimulus animals are
behind protective screen), followed
by resident-intruder encounter.

Heiligenberg 1974
Potegal and Tenbrink 1984
Potegal 1991
Fish et al. 1999

Frustration-
heightened
aggression

A resident male trained to obtain
rewards. Before the resident-intruder
encounter, reward is omitted.

Berkowitz 1993
De Almeida and Miczek 2002

Aggression
induced by low
glucocorticoids

Animals are adrenalectomized and
implanted with a low corticosterone
pellet

Haller et al. 2001

Affective defense
(“rage”), mainly in
cats

Electrical stimulation (0.2–0.8 mA,
63 Hz, 1 ms per half cycle duration)
delivered in medial hypothalamus or
midbrain periaqueductal gray.

Hissing, arching of the back,
retraction of the ears, piloerection,
unsheathing of the claws, papillary
dilatation and paw striking

Leyhausen 1979
Siegel et al. 1999
Hess 1954
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Table 2

Experimental protocols for assessing 5-HT effects on human aggressive behavior

A. Experimental manipulations

Experimental Manipulation Measurement Trait/State References

Aggressive responses toward a
competitor are measured in the
form of electric shock settings

Activate buttons at 5–10 settings,
each corresponding to a different
intensity or duration of electric
shock

State Buss 1961
Godlaski and Giancola 2009

A fictitious instigator or
competitor is the target of
aggressive responses that are
measured in the form of electric
shock deliveries

Setting of electric shock level on
a scale from 1–10

State Taylor 1967
Chermack and Giancola 1997

The subjects are provoked by
having points subtracted that are
earned in a competitive task. The
point losses are attributed to a
fictitious opponent, but are
actually determined by a
computer program according to a
random schedule. Subjects
responded by retaliation of point
subtractions (= aggressive
responses

Number of point subtractions
from a fictitious competition

State Cherek and Heistad 1971
Cherek and Lane 1999
Gowin et al. 2010

Aggression was defined as
delivery of electric shocks to a
fictitious opponent

Use of a modified version of the
Buss aggression machine.
Setting of shock level on a scale
from 1–5

State Zeichner and Pihl 1979
Giancola et al. 2009

B. Psychometric inventories

Psychometric Assessment Instrument Trait/State References

Aggression, impulsive and
hostility are measured by
Minnesota Multiphasic
Personality Inventory MMPI

Inventory Trait McKinley et al. 1948
Nagtegaal and Rassin 2004

Buss-Durkee Hostility Inventory
(BDHI), a self-rating scale of
anger and hostility. 66 items
with false/true answers; also
contains 7 scales: assault,
indirect aggression, irritability,
negativism, resentment,
suspicion and verbal aggression

Inventory Trait Buss and Durkee 1957

Anger and anxiety are measured
by State-Trait Anger Expression
Inventory (STAXI)

Inventory State/Trait Spielberg et al. 1973
Kim et al. 2009b

Aggression is measured by Beck
Anxiety Inventory and Beck
Depression Inventory

Inventory Trait Beck et al. 1961
Lamar et al. 2009

Psychopharmacology (Berl). Author manuscript; available in PMC 2013 June 17.
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Table 4

Modulation of aggressive behaviors after local infusion of drugs targeting 5-HT receptors
in selected brain regions

Brain Region Type of Aggression,
Species

Target; Drugs and Doses Pharmacological Effects References

DRN Resident aggression,
male rats

5-HT1A: 8-OH-DPAT, 1-10 μg.
5-HT1A/5-HT1B: Eltopronazine,
1-30
μg (agonists)

↓ aggressive behavior, with inactivity
and decreased social interaction

Mos et al. 1993

Resident aggression,
male rats

5-HT1A: Alnespirone, 25 μg
(agonist)

↓ aggression; no side effects Van der Vegt et al.
2003

Alcohol-escalated
aggression, male mice

5-HT1A: 8-OH-DPAT, 1.0 μg
5-HT1B: CP-94253, 1.0 μg
(agonists)

8-OH-DPAT and CP-94253: ↓
baseline aggression, with reduced
motor activity; no effects on alcoho-
lrelated aggression

Faccidomo et al.
2008

Schedule-heightened
aggression, male mice

5-HT1B: CP-93129, 0.1-1.0 μg
(agonist)

↓ escalated aggression; reduced
walking behavior

Bannai et al. 2007

Alcohol-escalated
aggression, male mice

5-HT1B: CP-93129, 0.1-1.0 μg
(agonist)

↓ baseline and alcohol-related
aggression (0.5-1.0 μg); concomitant
reduction in motor activity

Faccidomo et al.
submitted

Maternal aggression,
rats

5-HT1A: 8-OH-DPAT, 0.56 μg
(agonist)

↑ maternal aggression (0.56 μg); no
motor effects
DPAT-escalated aggression prevented
by infusion of CP-93129 (1.0 μg) into
the orbitofrontal cortex

Veiga et al. 2010

MRN Maternal aggression,
rats

5-HT1A: 8-OH-DPAT, 0.2-2.0 μg
(agonist)

↓ maternal aggression; no side
effects

De Almeida and
Lucion, 1997

PAG Maternal aggression,
rats

Dorsal PAG
5-HT1A: 8-OH-DPAT, 0.2-2.0 μg
(agonist)

↓ maternal aggression (0.2-2.0 μg);
no side effects

de Almeida and
Lucion, 1997

Maternal aggression,
rats

Dorsal PAG
5-HT2A/2C: α-methyl-5-HT
maleate,
0.2-1.0 μg (agonist)
5-HT2A/2C: ketanserin, 1.0 μg
(antagonist)

α-methyl-5-HT maleate: ↓ maternal
aggression; no motor effects
Ketanserin: no effects on aggression,
decreased motor activity

de Almeida et al.
2005

Hypothalamic-
stimulated defensive
aggression, cats

PAG

5-HT1A: 8-OH-DPAT*, 0.016 ng
-1.0
μg

5-HT2C: DOI*, 3.57 ng–0.54 μg
(agonists)

8-OH-DPAT: ↓ defensive hissing
(0.66 – 1.0 μg), effect prevented by
antagonist p-MPPI. No motor effect
DOI: facilitation of defensive hissing
(0.54 μg)

Shaikh et al. 1997

Septal nuclei Maternal aggression,
rats

Medial septal nucleus
5-HT1A: 8-OH-DPAT, 0.2-2.0 μg
(agonist)

↑ maternal aggression (0.2-0.5 μg);
reduced activity only with highest
dose (2.0 μg)

de Almeida and
Lucion, 1997

Maternal aggression,
rats

Medial septal nucleus
5-HT2A/2C: alpha-methyl-5-HT
maleate, 0.2-1.0 μg (agonist)
5-HT2A/2C: ketanserin, 1.0 μg
(antagonist)

No effects on aggressive or non-
aggressive behaviors (agonist)
Ketanserin: no effects on aggression,
but decreased motor activity

de Almeida et al.
2005

DRN = dorsal raphé nucleus; MRN = median raphé nucleus; PAG = periaqueductal gray area;

*
doses calculated based on the following molecular weights (MW) of the compounds (as available at Sigma-Aldrich): 8-OH-DPAT hydrobromide,

MW=328.29; CGS-12066 maleate salt, MW=450.41; DOI hydrochloride, MW=357.62.
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