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Despite considerable interest in the forces shaping the relationship

between brain size and cognitive abilities, it remains controversial

whether larger-brained animals are, indeed, better problem-solvers.

Recently, several comparative studies have revealed correlations

between brain size and traits thought to require advanced cognitive

abilities, such as innovation, behavioral flexibility, invasion success,

and self-control. However, the general assumption that animals with

larger brains have superior cognitive abilities has been heavily

criticized, primarily because of the lack of experimental support for

it. Here, we designed an experiment to inquire whether specific

neuroanatomical or socioecological measures predict success at

solving a novel technical problem among species in the mammalian

order Carnivora. We presented puzzle boxes, baited with food and

scaled to accommodate body size, to members of 39 carnivore species

from nine families housed in multiple North American zoos. We found

that species with larger brains relative to their body mass were more

successful at opening the boxes. In a subset of species, we also used

virtual brain endocasts to measure volumes of four gross brain re-

gions and show that some of these regions improve model prediction

of success at opening the boxes when included with total brain size

and bodymass. Socioecological variables, including measures of social

complexity and manual dexterity, failed to predict success at opening

the boxes. Our results, thus, fail to support the social brain hypothesis

but provide important empirical support for the relationship between

relative brain size and the ability to solve this novel technical problem.
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Animals exhibit extreme variation in brain size, with the sperm
whale’s brain weighing up to 9 kg (1), whereas the brain of the

desert ant weighs only 0.00028 g (2). Although body mass is the
single best predictor of brain size (1, 3), some species have much
larger brains than expected given their body size (e.g., humans and
dusky dolphins), whereas other species have much smaller brains
than expected (e.g., hippopotamus and blue whale) (1). Brain tissue
is energetically costly (4–6), and therefore, large brains are presumed
to have been favored by natural selection, because they confer ad-
vantages associated with enhanced cognition (3). However, despite
great interest in the determinants of brain size, it remains controversial
whether brain size truly reflects an animal’s cognitive abilities (7–9).
Several studies have found an association between absolute or

relative brain size and behaviors thought to be indicative of complex
cognitive abilities. For example, brain size has been found to cor-
relate with bower complexity in bower birds (10), success at building
food caches among birds (11), numerical abilities in guppies (5), and
two measures of self-control in a comparative study of 36 species of
mammals and birds (12). Additionally, larger-brained bird species
have been found to be more innovative, more successful when in-
vading novel environments, and more flexible in their behavior (13–
16). Although there is circumstantial evidence suggesting an asso-
ciation between problem-solving ability and brain size, experimental
evidence is extremely rare. To experimentally assess the relationship
between brain size and any cognitive ability across a number of
species in a standardized way is challenging because of the unique
adaptations each species has evolved for life in its particular

environment (17). In this study, we investigate whether larger-
brained animals do, indeed, exhibit enhanced problem-solving
abilities by conducting a standardized experiment in which we
present a novel problem-solving task to individuals from a large
array of species within the mammalian order Carnivora.
Carnivores often engage in seemingly intelligent behaviors, such

as the cooperative hunting of prey (18, 19). Nevertheless, with the
exception of domestic dogs, carnivores have largely been ignored in
the animal cognition literature (20). Mammalian carnivores com-
prise an excellent taxon in which to assess the relationship between
brain size and problem-solving ability and test predictions of hy-
potheses forwarded to explain the evolution of large brains and
superior cognitive abilities, because they exhibit great variation in
their body size, their brain size relative to body size, their social
structure, and their apparent need to use diverse behaviors to solve
ecological problems. Although most carnivores are solitary, many
species live in cohesive or fission–fusion social groups that closely
resemble primate societies (21–23). Furthermore, experiments with
both wild spotted hyenas (24) and wild meerkats (25) show that
members of these species are able to solve novel problems, and in
spotted hyenas, those individuals that exhibit the greatest behav-
ioral diversity are the most successful problem-solvers (24).
Here, we presented steel mesh puzzle boxes, scaled according to

subject body size, to 140 individuals from 39 species in nine families
of zoo-housed carnivores and evaluated whether individuals in each
species successfully opened the boxes to obtain a food reward inside
(Fig. 1A and Dataset S1). In addition to testing whether larger-
brained carnivores are better at solving a novel technical problem,
we inquired whether species that live in larger social groups exhibit
enhanced problem-solving abilities compared with species that are
solitary or live in smaller social groups. We also asked whether
species exhibiting greater behavioral diversity are better at solving
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problems than species exhibiting less behavioral diversity. Addi-
tionally, carnivores exhibit an impressive range of manual dexterity
from the famously dexterous raccoons and coatis to the much less
dexterous hyenas and cheetahs (26). Therefore, to ensure that our
measure of problem-solving ability was not solely determined by
manual dexterity and ensure that our problem-solving test was
equivalently difficult across a range of species, we also examined the
impact of manual dexterity on problem-solving success in this study.
Finally, the relative sizes of specific brain regions might be more

strongly predictive of problem-solving ability than overall brain size
relative to body size. Recently, Swanson et al. (27) used virtual brain
endocasts to show that, although mammalian carnivore species with
a higher degree of social complexity did not have larger total brain
volumes relative to either body mass or skull size, they did have
significantly larger cerebrum volumes relative to total brain volume.
Therefore, we used deviance information criterion (DIC) model
selection analysis to inquire whether any of four gross regional brain
volumes (total cerebrum, posterior cerebrum, anterior cerebrum,
and hindbrain) better predicted performance in our puzzle box trials
than total brain size in a subset of 17 carnivore species for which
these data were available from virtual brain endocasts (Dataset S1).
We retrieved data on brain size and the sizes of gross brain regions

from published literature and used phylogenetic comparative statistics
to assess relationships among these measures, social complexity, be-
havioral diversity, manual dexterity, and performance measures
obtained during box trials. We used social group size as our proxy for
social complexity, because in an earlier comparative study of mam-
malian carnivores, Swanson et al. (27) found that group size was just
as effective of a proxy as the first axis from a principal component
analysis of several different measures of social complexity in carni-
vores. We used an established measure of behavioral diversity, which
we obtained by calculating the number of different behaviors ex-
hibited by individuals from each species while interacting with the
puzzle box (24, 28–30). To assess manual dexterity, we recorded oc-
currences of 20 types of forelimb movements following the work by
Iwaniuk et al. (26). Finally, we used measures taken from virtual
brains to analyze the effects of the size of specific gross brain regions
on performance in puzzle box trials. These measures allowed us to
inquire whether specific neuroanatomical or socioecological measures
can help explain variation in problem-solving ability across species.

Results

We tested one to nine individuals in each of 39 species (mean = 4.9
individuals; median = 5) (Table S1). Of 140 individuals tested, 49
individuals (35%) from 23 species succeeded at opening the puzzle
box (Fig. 1A, Table S1, and Movie S1). The proportion of individ-
uals within each species that succeeded at opening the box varied

considerably among families, with species in the families Ursidae
(69.2% of trials), Procyonidae (53.8% of trials), and Mustelidae
(47.1% of trials) being most successful at opening the puzzle box
and those within the family Herpestidae (0%) being the least suc-
cessful (Table S1). Total brain volume corrected for body mass
varied among the species that we tested, with Canid and Ursid
species having the largest brains for their body mass and Viverrid,
Hyaenid, and Herpestid species having the smallest brains for their
body mass (Fig. 1B and Table S1).
It appeared that the majority of subjects in our study actually

gained an understanding of the puzzle and how to open it. If indi-
viduals were only using brute force to open the box or emitting
exploratory behaviors without any understanding of how the puzzle
works, then we should not have seen any evidence of learning the
solution over time. To investigate whether the test subjects were
actually learning the solution to the problem, we ran a non-
phylogenetically corrected generalized linear mixed-effects model to
examine how work time changed over successive trials for successful
individuals. Work time significantly decreased as trial number in-
creased (F9,97 = 2.57; P = 0.01), indicating that successful individuals
improved their performance with experience.
The top model based on DIC model selection was one that con-

tained brain volume, body mass, latency to approach the puzzle box,
time spent trying to open the box, manual dexterity, behavioral di-
versity, and group size (Table 1). The only statistically indistinguish-
able model (i.e., ΔDIC < 2) did not include group size but was
otherwise the same (Table 1). Individuals from carnivore species with
both larger absolute brain volumes and larger brain volumes relative
to their overall body mass were better than others at opening the
puzzle box, but only relative brain volume was a statistically significant
predictor [P value from Markov Chain Monte Carlo (pMCMC) =
0.013] (Figs. 2 and 3, Table 2, and Table S2). Our results were in-
sensitive to variation in both the total number of individuals tested
per species and the minimum number of trials conducted per indi-
vidual. Specifically, we obtained the same qualitative results if we
limited our analyses to only species in which at least three (398 trials
on 112 individuals from 23 species) (Table S3) or four individuals
(348 trials on 97 individuals from 18 species) (Table S4) were tested
per species, and if we restricted our analyses only to individuals to
which we administered at least three separate trials (total number of
trials per individual was 3–10) (Table S5). Additionally, if we restricted
our analyses only to trials 1–3 for individuals that were tested at least
three times (388 trials with 39 species), we found that individuals from
species with a larger brain volume for their body mass tended to be
more likely to open the puzzle box (pMCMC = 0.052) (Table S6).
Individuals from species with large average group sizes, such as

banded mongoose (average group size = 23.7 individuals), were

A B

Fig. 1. (A) We tested the performance of zoo-

housed individuals in 39 species from nine carnivore

families by exposing them to our puzzle box prob-

lem, with the box scaled to accommodate body size.

(B) The relationship between body mass (kilograms)

and brain volume (milliliters) in 39 mammalian car-

nivore species. (A) Species in gray and (B) family

names in gray represent species in which no tested

subjects opened the box. Note that, in B, two species

in the family Felidae (Panthera pardus and Puma

concolor) have overlapping points.
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no more successful at opening the puzzle box (pMCMC = 0.79)
(Table 2) than individuals from solitary species, such as black
bears (group size = 1) or wolverines (group size = 1). To further
test whether social complexity affected carnivores’ ability to open
the puzzle box, we also compared success at opening the puzzle
box between solitary species (group size = 1) and social species
(group size > 1) where group size was a binary predictor. This
comparison indicated that social species were no better at opening
the puzzle box than solitary species (pMCMC = 0.99) (Table S7).
Surprisingly, individuals from species with larger body sizes were

less successful than smaller-bodied species at opening the puzzle box
(pMCMC = 0.036) (Table 2). Individuals that were more dexterous
(pMCMC = 0.08) (Table 2) and those that spent more time
attempting to open the puzzle box (pMCMC = 0.08) (Table 2) tended
to be more successful, although neither of these were statistically
significant. Individuals that more quickly approached the puzzle box
(pMCMC = 0.57) (Table 2) or those that used a greater diversity
of behaviors when interacting with the puzzle box (pMCMC = 0.39)
(Table 2) were no more successful than others at opening the box. In
nine of the puzzle box trials, individuals opened the box door but did
not retrieve the food reward, which might reflect underlying differ-
ences in motivation. We included these trials in our main analyses
(Table 2), but also, we ran our analyses without these nine trials and
obtained the same qualitative results (Table S8).
In our brain region analyses, there was no obvious top model that

best explained success at opening the puzzle box (Table 3). Models
containing relative anterior cerebrum volume (anterior to the cru-
ciate sulcus;ΔDIC = 0) and posterior cerebrum volume (posterior to
the cruciate sulcus; ΔDIC = 0) were the two models with the lowest

DIC values (Table 3). However, models containing hindbrain volume
(which includes both cerebellum and brainstem volumes; ΔDIC =

0.2) or total cerebrum volume (ΔDIC = 0.3) were not considerably
worse. Notably, models containing body mass and total brain volume
in addition to the volume of one of four specific brain regions all had
lower DIC values than a model containing only body mass and total
brain volume (ΔDIC ranged from 1.9 to 2.2) (Table 3). This result
suggests that the addition of the volume of a brain region to the
model improved its ability to predict performance in the puzzle box
trials over a model containing only total brain volume (Table 3). In
none of the models using the reduced dataset were the relative sizes
of any specific brain region associated with success in opening the
puzzle box (Table S9).

Discussion

The connection between brain size and cognitive abilities has been
called into question by both a study pointing out the impressive
cognitive abilities of small-brained species, such as bees and ants (7),
and another study doubting that overall brain size is a valid proxy for
cognitive ability (9). In the former case, Chittka and Niven (7) argue
that larger brains are partially a consequence of the physical need
for larger neurons in larger animals and partially caused by in-
creased replication of neuronal circuits, which confers many ad-
vantages for larger-brained species, such as enhanced perceptual
abilities and increased memory storage. Chittka and Niven (7)
conclude that neither of these properties of larger brains necessarily
enhance cognitive abilities. Interestingly, our results actually show
that carnivore species with a larger average body mass performed
worse than smaller-bodied species on the task that we presented to

Table 1. Model comparisons using DIC model selection analysis to investigate the predictors of

success in opening the puzzle box in 39 carnivore species

Fixed effects λ-Posterior mode λ-Mean (95% credible interval) DIC ΔDIC

BV + BM + L + WT + D + BD + GS 0.94 0.85 (0.49–0.99) 283.2 0

BV + BM + L + WT + D + BD 0.93 0.82 (0.33–0.99) 284.9 1.7

L + WT + D + BD + GS 0.95 0.87 (0.62–0.99) 286.4 3.2

L + WT + D + BD 0.96 0.85 (0.56–0.99) 288.5 5.3

WT + D + BD 0.93 0.84 (0.54–0.99) 288.5 5.3

BV + BM + L + GS 0.97 0.91 (0.76–0.99) 293.3 10.1

BV + BM + L 0.95 0.88 (0.65–0.99) 294.3 11.1

BV + BM + GS 0.98 0.91 (0.73–0.99) 294.5 11.3

L + GS 0.97 0.92 (0.78–0.99) 296.4 13.2

BV + BM 0.96 0.88 (0.65–0.99) 296.6 13.4

GS 0.97 0.91 (0.73–0.99) 298.1 14.9

Intercept 0.96 0.90 (0.71–0.99) 299.9 16.7

Model terms are behavioral diversity (BD), body mass (BM), brain volume (BV), dexterity (D), group size (GS),

latency to approach puzzle box (L), and time spent working trying to open the puzzle box (WT).
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Fig. 2. (A) Carnivore species with larger brain volumes

for their body mass were better than others at opening

the puzzle box. (B) There was no significant relationship

between absolute brain volume and success at opening

the puzzle box in carnivore species when body mass

was excluded from the statistical model. Data pre-

sented represent the average proportion of puzzle box

trials in which species were successful and are for pre-

sentation purposes only, whereas statistical results from

our full model used for our inferences are shown in

Table 2. Mass-corrected brain volume in A is from a

general linear model and for presentation purposes

only; statistical results from the full model are shown in

Table 2.
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them. Thus, it truly does seem that a larger brain size relative to
body size is an important determinant of performance on this task,
and it is not the case that larger animals are more successful simply
because their brains are larger than those of smaller species.
Regarding whether overall brain size is a valid proxy for cognitive

abilities, the use of whole-brain size as a predictor of cognitive
complexity in comparative studies is questioned, because the brain
has different functional areas, some of which are devoted to partic-
ular activities, such as motor control or sensory processing. Given this
high degree of modularity in the brain, Healy and Rowe (8, 9) argue
that overall brain size is unlikely to be a useful measure when ex-
amining how evolution has shaped the brains of different species
to perform complex behaviors. Although the brain has functional
modules, such as the hippocampus or the olfactory bulbs, which may
be under specific selection pressures (31), these modules may also
exhibit coordinated changes in size because of constraints on ways in

which the brain can develop (32). In addition to functionally spe-
cialized modules, the brain also contains broad areas, such as the
mammalian neocortex, that control multiple processes. Thus, there
are reasons to believe that overall brain size may be an informative
proxy for cognitive abilities, despite the modular nature of the brain.
Here we examined relationships between relative brain size, size of

specific brain regions, and problem-solving success. Although none of
the regional brain volumes that we examined significantly predicted
success on this task (Table S9), the addition of the volume of these
brain regions improved the ability of our models to explain perfor-
mance in the puzzle box task over a model containing only total brain
volume (Table 3). We emphasize, however, that only 17 species were
included in that analysis. Nevertheless, relative brain size was a sig-
nificant predictor of problem-solving success across species, and this
result was robust in all of our analyses. Thus, our data provide im-
portant support for the idea that relative brain size can be useful in
examining evolutionary relationships between neuroanatomical and
cognitive traits and corroborate results from artificial selection ex-
periments showing that larger brain size is associated with enhanced
problem solving (5). It will be important in future work to use more
detailed noninvasive brain imaging methods rather than endocasts to
evaluate whether hypothetically important brain areas, such as pre-
frontal and cingulate cortexes, contribute to the relationship between
brain size and performance during problem solving.
Assessment of the ecological and neuroanatomical predictors of

problem-solving ability has some important implications for hy-
potheses proposed to explain the adaptive value of large brains and
sophisticated cognition. One such hypothesis that has garnered
much support in primate studies is “the social brain hypothesis” (33,
34), which proposes that larger brains evolved to deal with chal-
lenges in the social domain. This hypothesis posits that selection
favored those individuals best able to anticipate, respond to, and
perhaps even manipulate the actions of conspecific group members.
However, a major shortcoming of the social brain hypothesis (35,
36) is its apparent inability to explain the common observation that
species with high sociocognitive abilities also excel in general in-
telligence (37, 38). There is, in fact, a long-standing debate as to
whether animal behavior is mediated by cognitive specializations
that have evolved to fulfill specific ecological functions or instead,
domain-general mechanisms (38, 39). If selection for social agility
has led to the evolution of domain-general cognitive abilities, then
species living in social groups should solve technical problems better
than solitary species. However, we found that carnivore species
living in social groups performed no better on our novel technical
problem than solitary species. Thus, whereas social complexity may
select for enhanced ability to solve problems in the social domain
(40), at least in carnivores, greater social complexity is not associated
with enhanced ability to solve a novel technical problem.

A

0.00

0.25

0.50

0.75

1.00

-0.5 0.0 0.5 1.0

Residual Brain Volume

S
u

c
c
e
s
s
 a

t 
O

p
e
n

in
g

 P
u

z
z
le

 B
o

x

B

0.00

0.25

0.50

0.75

1.00

2 3 4 5 6

log(Brain Volume)

Fig. 3. (A) Individuals from carnivore species with larger brain volumes relative

to their body mass were significantly better than others at opening the puzzle

box (Table 2). (B) There was no significant relationship between absolute brain

volume and success at opening the puzzle box in our individual-level analyses in

which body mass was excluded (Table S2). Individuals with success equal to one

opened the box, whereas those with success equal to zero did not. Mass-cor-

rected brain volume in A is from a general linear model and for presentation

purposes only; full statistical results are shown in Table 2 and Table S2. Re-

gression lines represent predicted relationships from statistical models in-

vestigating the association between (A) brain volume relative to body mass or (B)

log (brain volume) and success at opening the puzzle box.

Table 2. Results from Bayesian phylogenetic generalized linear mixed-effects models

to investigate the predictors of success in opening the puzzle box in 39 mammalian

carnivore species

Effective sample size Posterior mean (95% CI) Posterior mode pMCMC

Random effect

Species 3,094 13.8 (0.0007–40.4) 4.3 —

Individual identification 2,791 21 (7.6–38.2) 16.1 —

Fixed effect

Intercept* 3,284* −36.5 (−60.7 to −16.1)* −30.6* 0.0003*

Brain volume* 3,284* 8.5 (1.3–16.3)* 7.8* 0.013*

Body mass* 3,720* −4.6 (−9.2 to −0.2)* −4.9* 0.036*

Latency to approach 3,284 −0.12 (−0.5–0.3) −0.1 0.57

Work time 2,493 0.34 (−0.04–0.7) 0.4 0.08

Behavioral diversity 3,018 1.7 (−1.9–6) 1.2 0.39

Dexterity 3,284 2.7 (−0.3–5.8) 2.2 0.08

Group size 3,284 −0.04 (−0.3–0.2) −0.02 0.79

pMCMC is the Bayesian P value. Sample sizes are 495 trials on 140 individuals from 39 different species. 95%

CI, 95% credible interval.

*Statistically significant.
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Our results are similar to those obtained in the work by MacLean
et al. (12), which examined relationships among brain size, social
complexity, and self-control in 23 species of primates. In both that
study and our own study, species with the largest brains showed the
best performance in problem-solving tasks. However, in neither pri-
mates nor carnivores did social complexity predict problem-solving
success. This finding is also consistent with results obtained in the
work by Gittleman (41), with analysis of 153 carnivore species that
revealed no difference in brain size relative to body size between
social and solitary species. Nevertheless, in this study, we were only
able to present carnivores with a single problem-solving task, and we
were only able to test one to nine individuals per species. Ideally,
future studies will present a large array of carnivores with additional
cognitive challenges and will test more individuals per species.
A second hypothesis forwarded to explain the evolution of larger

and more complex brains, the cognitive buffer hypothesis (42, 43),
posits that large brains evolved to allow animals to cope with
socioecological challenges and thus, reduce mortality in changing
environments. Previous work has shown convincingly that diet is a
significant predictor of brain size in carnivores (27), as it is in pri-
mates (12), and this study shows that carnivore species with larger
brains are more likely to solve a novel technical problem. However,
an explicit test of the cognitive buffer hypothesis has not yet been
attempted with mammalian carnivores.
Overall, our finding that enhanced problem solving is related to

disproportionally large brain size for a given body mass is important
for several reasons. First, although there is correlational evidence for
an association between absolute or relative brain size and problem-
solving abilities, experimental evidence is extremely rare. The lack of
experimental evidence has led to criticisms of the use of brain size as
a proxy for problem-solving abilities (8, 9, 44). We offer experimental
evidence that brain size is, indeed, a useful predictor of performance,
at least in the single problem-solving task that we posed to our
carnivore subjects. Although only brain size relative to body mass was
a significant predictor of success with our puzzle box, species with
larger absolute brain volumes also tended to be better than others at
opening the puzzle box (Figs. 2 and 3 and Table S2). Second, the vast
majority of work on this topic has focused on primates, fish, and birds
(5, 10, 11, 13–16). Our results offer new evidence for the relationship
between brain size and problem-solving abilities in mammalian car-
nivores. The previous lack of support for this relationship across a
diverse set of taxa has limited both its validity and its generality.
Thus, the findings presented here represent an important step for-
ward in our understanding of why some animals have evolved large
brains for their body size.

Materials and Methods

From 2007 to 2009, we presented puzzle boxes to myriad carnivores housed in

nine North American zoos (Fig. 1A and Dataset S1). Because we were testing

animals that ranged in size from roughly 2 to 300 kg, we used two steel mesh

puzzle boxes; the larger box was 63.5 × 33 × 33 cm, and the smaller box was

one-half that size. The smaller box was presented to species with an average

body mass of <22 kg, such as river otters, kinkajous, sand cats, and other

small-bodied carnivores (Dataset S1). The larger box was presented to species

with an average body mass >22 kg, including snow leopards, wolves, bears,

and other large-bodied species (Dataset S1). For cheetahs (species average

body mass = 50 kg) and wild dogs (species average body mass = 22.05 kg), both

large and small boxes were used with some subjects, but their performance

did not vary with box size (additional details are given in SI Text).

Wevideotapedall trials and extractedperformancemeasures fromvideotapes

using methods described elsewhere (24, 28, 45) (Movie S1). Extracted behaviors

included the latency to approach the puzzle box, the total time spent trying to

open the box, the number of different behaviors used in attempting to open

the box, and a measure of manual dexterity (all described in SI Text). We then

brought together data on success and performance measures during zoo trials

with previously published data on total brain size and body mass (46).

We used Bayesian phylogenetic generalized linear mixed-effects models

based on a Markov Chain Monte Carlo algorithm implemented in the R

package MCMCglmm (47–49) to identify the variables predicting success or

failure in solving this puzzle. These models allowed us to assess the effects of

predictor variables on carnivores’ success at opening the puzzle box after

controlling for shared phylogenetic history.

For our analyses of howbrain volumeaffected theability of carnivores to open

the puzzle box, we constructed 12 different models containing different com-

binations of the morphological, behavioral, and social characteristics of tested

species or individuals (Table 1). In all models except that shown in Table S2, we

included species’ average body mass as a covariate so that we could assess the

effects of brain volume on puzzle box performance relative to body mass (50,

51). We used DIC (51) to examine the relative degree of fit of the different

models. DIC is analogous to Akaike’s information criterion (52), and lower values

for DIC suggest a better fit. We present DIC values for all models (Table 1) but

only present results from the model with the lowest DIC (Table 2) (53).

In separate analyses, we performed five different Bayesian phylogenetic

generalized linearmixed-effectsmodels to determinewhether the volumeof any

specific brain region better predicted success in opening the puzzle box than

overall endocranial volume (Table 3). These models also included species’ aver-

age body mass and total brain volume as covariates (27). Computed tomogra-

phy data were available documenting both total endocranial volume and the

volumes of specific brain regions from 17 different carnivore species in six

families (Dataset S1). Overall endocranial volume was subdivided into (i) cere-

brum anterior to the cruciate sulcus, (ii) cerebrum posterior to the cruciate

sulcus, (iii) total cerebrum, and (iv) hindbrain, which includes both cerebellum

and brainstem. The cerebrum anterior to the cruciate sulcus is comprised mainly

of frontal cortex. Additional methodological details on the estimation of these

brain region volumes can be found elsewhere (54–56) (SI Text).

Our response variable was binary (did or did not open puzzle box); therefore,

we used a categorical error structure in MCMCglmm, and we fixed the prior for

the residual variance to one (V= 1; fix= 1).We included randomeffects for species

and individual identity in these models. We used weakly informative inverse

γ-priors with a low degree of belief (V = 1; μ = 0.002) for the random effect

variance. All models were run for appropriate numbers of iterations, burn-ins, and

thinning intervals to generate a minimum effective sample size of >2,000 for all

parameters in all of the different models. We provide the mean, mode, and 95%

credible interval from the posterior distribution of each parameter. We considered

parameters to be statistically significant when the 95% credible intervals did not

overlap zero and pMCMCwas<0.05 (47). Detailed statistical methods are in SI Text.

Appropriate ethical approval was obtained for this work. This work was

approved by Michigan State University Institutional Animal Care and Use

Committee (IACUC) Approval 03/08-037-00 and also, the IACUCs at all nine zoos

(St. Louis Zoo, Bergen County Zoo, Binder Park Zoo, Potter Park Zoo, Columbus

Zoo, The Living Desert, Wild Canid Survival and Research Center, Turtle Back

Zoo, and Denver Zoo) where testing was done.

Table 3. Model comparisons using DIC model selection to investigate whether the volumes of

specific brain regions better predicted success in opening the puzzle box than total brain volume

in 17 mammalian carnivore species

Model name Fixed effects λ-Posterior mode λ-Mean (95% CI) DIC ΔDIC

Anterior cerebrum AC + BM + BV 0.006 0.42 (0.0003–0.99) 88.4 0

Posterior cerebrum PC + BM + BV 0.004 0.37 (0.0002–0.98) 88.4 0

Brainstem/cerebellum BS/CL + BM + BV 0.006 0.42 (0.004–0.99) 88.6 0.2

Cerebrum C + BM + BV 0.006 0.41 (0.0003–0.99) 88.7 0.3

Brain BV + BM 0.005 0.36 (0.0002–0.98) 90.6 2.2

Model terms are volume of anterior cerebrum (AC), body mass (BM), volume of brainstem and cerebellum (BS/

CL), volume of total brain (BV), volume of total cerebrum (C), and volume of posterior cerebrum (PC). 95% CI,

95% credible interval.
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