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Abstract

A number of application areas such as biomedical engineering require solving an underdetermined

linear inverse problem. In such a case, it is necessary to make assumptions on the sources to restore

identifiability. This problem is encountered in brain source imaging when identifying the source signals

from noisy electroencephalographic or magnetoencephalographic measurements. This inverse problem

has been widely studied during the last decades, giving rise to an impressive number of methods using

different priors. Nevertheless, a thorough study of the latter, including especially sparse and tensor-

based approaches, is still missing. In this paper, we propose i) a taxonomy of the algorithms based on

methodological considerations, ii) a discussion of identifiability and convergence properties, advantages,

drawbacks, and application domains of various techniques, and iii) an illustration of the performance of

selected methods on identical data sets. Directions for future research in the area of biomedical imaging

are eventually provided.

I. INTRODUCTION

In brain source imaging, one is confronted with the analysis of a linear static system - the head

volume conductor - that relates the electromagnetic activity originating from a number of sources located

inside the brain to the surface of the head, where it can be measured with an array of electric or magnetic
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sensors using Electroencephalography (EEG) or Magnetoencephalography (MEG). The source signals and

locations contain valuable information about the activity of the brain, which is crucial for the diagnosis

and management of some diseases such as epilepsy or for the understanding of the brain functions in

neuroscience research. Albeit, without surgical intervention, the source signals cannot be observed directly

and have to be identified from the noisy mixture of signals originating from all over the brain, which

is recorded by the EEG/MEG sensors at the surface of the head. This is known as the inverse problem.

On the other hand, deriving the EEG/MEG signals for a known source configuration is referred to as the

forward problem (cf. Fig. 1). Thanks to refined models of head geometry and advanced mathematical

tools that permit to compute the so-called lead-field matrix (referred to as the mixing matrix in other

domains), solving the forward problem has become straightforward, whereas finding a solution to the

inverse problem is still a challenging task.

Fig. 1. Illustration of the forward and inverse problems in the context of EEG.

The methods that are currently available for solving the inverse problem of the brain can be broadly

classified into two types of approaches that are based on different source models: the equivalent current

dipole and the distributed source [26]. Each equivalent current dipole describes the activity within a

spatially extended brain region, leading to a small number of active sources with free orientations and



2

positions anywhere within the brain. The lead-field matrix is hence not known, but parameterized by

the source positions and orientations. Equivalent current dipole methods also include the well-known

Multiple Signal Classification (MUSIC) algorithm [42], [1] and beamforming techniques (see [48] and

references therein). These methods are based on a fixed source space with a large number of dipoles,

from which a small number of equivalent current dipoles are identified. On the other hand, the distributed

source approaches aim at identifying spatially extended source regions, which are characterized by a high

number of dipoles (largely exceeding the number of sensors) with fixed locations. As the positions of

the source dipoles are fixed, the lead-field matrix can be computed and is thus known.

In this paper, we concentrate on the solution of the inverse problem for the case where the lead-field

matrix is known, and focus on the distributed source model. This inverse problem is one of the main

topics in biomedical engineering [2], [39], [26], [54] and has been widely studied in the signal processing

community, giving rise to an impressive number of methods. Our objective is to provide an overview of

the currently available source imaging methods that takes into account recent advances in the field.

II. DATA MODEL AND HYPOTHESES

EEG and MEG are multi-channel systems that record brain activity over a certain time interval with

a number of sensors covering a large part of the head. The two-dimensional measurements are stored

into a data matrix X ∈ R
N×T where N denotes the number of EEG/MEG sensors and T the number of

recorded time samples. The brain electric and magnetic fields are known to be generated by a number

of current sources within the brain, which can be modeled by current dipoles [43]. In this paper, we

assume that the latter correspond to the dipoles of a predefined source space, which can be derived from

structural Magnetic Resonance Imaging (MRI). Furthermore, different hypotheses on the location and

orientation of the sources can be incorporated by considering either a volume grid of source dipoles with

free orientations or a surface grid of source dipoles with fixed orientations. Indeed, most of the activity

recorded at the surface of the head is known to originate from pyramidal cells located in the gray matter

and oriented perpendicular to the cortical surface [16].

Assuming a source space with free orientation dipoles and denoting S ∈ R
3D×T the signal matrix that

contains the temporal activity with which each of the 3D dipole components of the D sources contributes

to the signals of interest, the measurements at the surface constitute a linear combination of the source

signals:

X = GS+N = GS+Xi +Xb (1)
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in the presence of noise N. The noise is composed of two parts: instrumentation noise Xi introduced by

the measurement system and background activity Xb = GSb, which originates from all dipoles of the

source space that do not contribute to the signals of interest, but emit perturbing signals Sb ∈ R
3D×T .

The matrix G ∈ R
N×3D is generally referred to as the lead-field matrix in the EEG/MEG context. For

each dipole component of the source space, it characterizes the propagation of the source signal to the

sensors at the surface.

In the case of dipoles with fixed orientations, the signal matrices S and Sb are replaced by the matrices

S̃ ∈ R
D×T and S̃b ∈ R

D×T , which characterize the brain activity of the D dipoles. Furthermore, the lead-

field matrix G is replaced by the matrix G̃ ∈ R
N×D, which is given by G̃ = GΘ where Θ ∈ R

3D×D

contains the fixed orientations of the dipoles. The lead-field matrix G can be computed numerically based

on Maxwell’s equations. Several methods have been developed to this end and various software packages

are available [23].

In this paper, we assume that the lead-field matrix is known and consider the EEG/MEG inverse

problem that consists in estimating the unknown sources S or S̃ (depending on the source model) from

the measurements X. As the number of source dipoles D (several thousands) is much higher than the

number of sensors (several hundreds), the lead-field matrix is severely underdetermined, making the

inverse problem ill-posed. In order to restore identifiability of the underdetermined source reconstruction

problem, it is necessary to make assumptions on the sources. We discuss a large number of hypotheses that

have been introduced in the context of the EEG/MEG inverse problem. In the following, we distinguish

between three categories of assumptions depending on whether the hypotheses apply to the spatial,

temporal, or spatio-temporal (deterministic or statistical) distribution of the sources. Subsequently, we

give a short description of possible hypotheses.

A. Hypotheses on the spatial distribution of the sources

Sp1) Minimum energy: The power of the sources is physiologically limited. A popular approach thus

consists in identifying the spatial distribution of minimum energy.

Sp2) Minimum energy in a transformed domain: Due to a certain synchronization of adjacent neuronal

populations, the spatial distribution of the sources is unlikely to contain abrupt changes and can therefore

be assumed to be smooth. This hypothesis is generally enforced by constraining the Laplacian of the

source spatial distribution to be of minimum energy.

Sp3) Sparsity: In practice, it is often reasonable to assume that only a small fraction of the source

dipoles contributes to the measured signals of interest in a significant way. For example, audio or visual
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stimuli lead to characteristic brain signals in certain functional areas of the brain only. The signals of the

other source dipoles are thus expected to be zero. This leads to the concept of sparsity.

Sp4) Sparsity in a transformed domain: If the number of active dipoles exceeds the number of sensors,

which is generally the case for spatially extended sources, the source distribution is not sufficiently

sparse for standard methods based on sparsity in the spatial domain to yield accurate results, leading

to too focused source estimates. In this context, another idea consists in transforming the sources into

a domain where their distribution is sparser than in the original source space and imposing sparsity in

the transformed domain. The applied transform may be redundant, including a large number of basis

functions or atoms, and is not necessarily invertible.

Sp5) Separability in space and wave-vector domains: For each distributed source, one can assume that

the space-wave-vector matrix at each time point, which is obtained by computing a local spatial Fourier

transform of the measurements, can be factorized into a function that depends on the space variable

only and a function that depends on the wave-vector variable only. The space and wave-vector variables

are thus said to be separable. In the context of brain source imaging, this is approximately the case for

superficial sources.

Sp6) Gaussian joint probability density function with parameterized spatial covariance: For this prior,

the source signals are assumed to be random variables that follow a Gaussian distribution with a spatial

covariance matrix that can be described by a linear combination of a certain number of basis covariance

functions. This combination is characterized by so-called hyperparameters, which have to be identified

in the source imaging process.

B. Hypotheses on the temporal distribution of the sources

Te1) Smoothness: Since the autocorrelation function of the sources of interest usually has a full width

at half maximum of several samples, the source time distribution should be smooth. This is, for example,

the case for interictal epileptic signals or event-related potentials.

Te2) Sparsity in a transformed domain: Similar to hypothesis Sp4), this assumption implies that the

source signals admit a sparse representation in a domain that is different from the original time domain.

This can, for instance, be achieved by applying a wavelet transform or a redundant transformation such

as the Gabor transform to the time dimension of the data. The transformed signals can then be modeled

using a small number of basis functions or atoms, which are determined by the source imaging algorithm.

Te3) Pseudo-periodicity with variations in amplitude: If the recorded data comprise recurrent events

such as a repeated time pattern that can be associated with the sources of interest, one can exploit
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the repetitions as an additional diversity. This does not necessarily require periodic or quasi-periodic

signals. Indeed, the intervals between the characteristic time patterns may differ, as may the amplitudes

of different repetitions. Examples of signals with repeated time patterns include interictal epileptic spikes

and Event-Related Potentials (ERP).

Te4) Separability in time and frequency domains: This hypothesis is the equivalent of hypothesis

Sp5) and assumes that the time and frequency variables of data transformed into the time-frequency

domain (for example by applying a Short Time Fourier Transform (STFT) or a Wavelet transform to

the measurements) separate. This is approximately the case for oscillatory signals as encountered, for

example, in epileptic brain activity.

Te5) Non-zero higher-order marginal cumulants: Regarding the measurements as realizations of an N -

dimensional vector of random variables, this assumption is required when resorting to statistics of order

higher than two, that offer a better performance and identifiability than approaches based on second order

statistics. It is generally verified in practice, as the signals of interest usually do not follow a Gaussian

distribution.

C. Hypotheses on the spatio-temporal distribution of the sources

SpTe) Synchronous dipoles: Contrary to point sources, which can be modeled by a single dipole, in

practice, one is often confronted with so-called distributed sources. A distributed source is composed of

a certain number of grid dipoles, which can be assumed to transmit synchronous signals. This hypothesis

concerns both the spatial and the temporal distributions of the sources and is generally made in the

context of dipoles with fixed orientations. In this case, it permits to separate the matrix S̃Ir
, which

contains the signals of all synchronous dipoles of the r-th distributed source, indicated by the set Ir,

into the coefficient vector ψr that characterizes the amplitudes of the synchronous dipoles and thereby

the spatial distribution of the r-th distributed source and the signal vector s that contains the temporal

distribution of the distributed source. This gives rise to a new data model:

X = HS+N (2)

where the matrix H = [h1, . . . ,hR] contains the lead-field vectors for R distributed sources and the

matrix S ∈ R
R×T characterizes the associated distributed source signals. Each distributed source lead-

field vector hr corresponds to a linear combination of the lead-field vectors of all grid dipoles belonging

to the distributed source: hr = G̃ψr. The distributed source lead-field vectors can be used as inputs for

source imaging algorithms, simplifying the inverse problem by allowing for a separate localization of

each source.
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D. Hypotheses on the noise

While both the instrumentation noise and the background activity are often assumed to be Gaussian,

the instrumentation noise can be further assumed to be spatially white, whereas the background activity

is spatially correlated due to the fact that signals are mixed. To meet the assumption of spatially white

Gaussian noise made by many algorithms, the data can be prewhitened based on an estimate of the

noise covariance matrix Cn. More precisely, the prewhitening matrix is computed as the inverse of the

square root of the estimated noise covariance matrix. To achieve prewhitening, the data and the lead-field

matrices are multiplied from the left by the prewhitening matrix.

III. ALGORITHMS

In this section, we provide an overview of various source imaging methods that have been developed

in the context of the EEG/MEG inverse problem. Based on methodological considerations, we distinguish

four main families of techniques: regularized least squares approaches, tensor-based approaches, Bayesian

approaches, and extended source scanning approaches. Each class of methods is associated with a certain

number of hypotheses that are exploited by the algorithms. The knowledge of these hypotheses leads to

a better understanding of the functioning of the source imaging techniques.

A. Regularized least squares methods

A natural approach to solve the ill-posed EEG/MEG inverse problem consists in finding the solution

that best describes the measurements in a least squares sense. In the presence of noise, this is generally

achieved by solving an optimization problem with a cost function of the form:

L(S) = ||X−GS||2F + λf(S). (3)

For methods that do not consider the temporal structure of the data, but work on a time sample by

sample basis, the data matrix X and the source matrix S are replaced by the column vectors x and s,

respectively.

The first term on the right-hand side of (3) is generally referred to as the data fit term and characterizes

the difference between the measurements and the surface data reconstructed from given sources. The

second is a regularization term and incorporates additional constraints on the sources according to the

a priori information. The regularization parameter λ is used to manage a trade-off between data fit and

a priori knowledge and depends on the noise level, since the gap between measured and reconstructed

data is expected to become larger as the SNR decreases. Fig. 2 provides an overview of the regularized

least squares algorithms with different regularization terms that are discussed in the following sections.
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Fig. 2. Overview of regularized least squares algorithms (for an explanation of the employed notations for the different algorithms

see the text in the associated sections).

1) Minimum Norm Estimates (MNE) – assumption Sp1) or Sp2) : The minimum norm solution is

obtained by employing a prior, which imposes a minimal signal power according to hypothesis Sp1),

leading to a regularization term that is based on the L2-norm of the signal vector: f(s) = ||Ws||22. To

compensate for the depth bias, the diagonal matrix W ∈ R
3D×3D
+ containing fixed weights was introduced

in the weighted MNE (WMNE) methods. Furthermore, one can consider the variance of the noise or the

sources, leading to normalized estimates. This approach is pursued by the dSPM [15] algorithm, which

takes into account the noise level, and sLORETA [45], which standardizes the source estimates with

respect to the variance of the sources.

The MNEs generally yield smooth source distributions. Nevertheless, spatial smoothness can also be

more explicitly promoted by applying a Laplacian operator L to the source vector in the regularization

term, leading to the popular LORETA method [46], which is based on assumption Sp2). In this case,

the L2-norm constraint is imposed on the transformed signals, yielding a regularization term of the form

f(s) = ||LWs||22. More generally, the matrix L can be used to implement a linear operator that is applied

to the sources.
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The original MNEs have been developed for sources with free orientations. Modifications of the

algorithms to account for orientation constraints can, for example, be found in [53], [34].

2) Methods based on sparsity – assumption Sp3) or Sp4): As the minimum norm estimates generally

lead to blurred source localization results, as widely described in the literature (see for example [56]),

source imaging methods based on hypothesis Sp3), which promote sparsity, were developed to obtain

more focused source estimates. One of the first algorithms proposed in this field was FOCUSS [22], which

iteratively updates the minimum norm solution using an L0 “norm”. This gradually shrinks the source

spatial distribution, resulting in a sparse solution. Around the same time, source imaging techniques

based on an Lp-norm (0 ≤ p ≤ 1) regularization term of the form f(s) = ||Ws||p, where W is a

diagonal matrix of weights, were put forward [36]. The parameter p is generally chosen to be equal to 1,

leading to a convex optimization problem1. However, by treating the dipole components independently in

the regularization term, the estimated source orientations are biased. To overcome this problem, Uutela

et al. [50] proposed to use fixed orientations determined either from the surface normals or estimated

using a preliminary minimum norm solution. This gave rise to the MCE algorithm. Extensions of this

approach, which require only the knowledge of the signs of the dipole components, or which permit to

incorporate loose orientation constraints, have been treated in [29], [34]. Another solution to the problem

of orientation bias of the sparse source estimates consists in imposing sparsity dipole-wise instead of

component-wise [20]. In [56], a combination of the ideas of FOCUSS and Lp-norm (p ≤ 1) regularization

was implemented in an iterative scheme.

To find a compromise between smoothness and sparsity of the spatial distribution, the use of a prior

that is composed of both an L1-norm and an L2-norm regularization term was proposed in [52].

Another idea consists in imposing sparsity in a transformed domain. This is generally achieved by

employing a regularization term of the form ||Ts̃||1 where T is a transformation matrix. In the literature,

different transformations have been considered. The authors of [10] have used a surface Laplacian, thus

imposing sparsity on the second order spatial derivatives of the source distribution, in combination with

classical L1-norm regularization. Another way to promote a piece-wise constant spatial distribution was

proposed by Ding, giving rise to the VB-SCCD method [19], which is closely related to the Total Variation

(TV) approach. A third approach that makes use of sparsity in a transformed domain considers a spatial

wavelet transform that permits to compress the signals through a sparse representation of the sources in

1Note that the minimization of this cost function is closely related to the optimization problem min ||Ws||p s. t. ||x −

Gs||22 ≤ δ with regularization parameter δ, on which the algorithm proposed in [36] is based.
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the wavelet domain [31], [10].

3) Mixed norm estimates – assumption Sp3) or Sp4) and assumption Te1) or Te2): To impose hypothe-

ses simultaneously in several domains, e.g., the space-time plane, one can resort to mixed norms. Efficient

algorithms that have been developed to deal with the resulting optimization problem are presented in

[24]. In [44], a source imaging method, called MxNE, that imposes sparsity over space (hypothesis Sp3))

and smoothness over time (assumption Te1)) using a mixed L1,2-norm regularization has been proposed.

An approach that imposes sparsity over space (hypothesis Sp3)) as well as in the transformed time

domain (assumption Te2)) is taken in the TF-MxNE method. This technique makes use of a dictionary,

Φ, from which a small number of temporal basis functions are selected to characterize the source signals.

In [25], Gabor basis functions were considered, whereas the authors of [49] employed a data-dependent

temporal basis obtained using an SVD of the measurements and a data-independent temporal basis that

is given by Natural Cubic Splines (NCS). The method is based on mixed norms and uses a composite

prior of two regularization terms similar to [52].

Furthermore, in [28], one can find an approach that imposes sparsity in a spatial transform domain

similar to [10], but which is based on a mixed L1,2-norm to take into account temporal smoothness of

the source distribution. Finally, let us point out that it is also possible to consider both temporal and

spatial basis functions (assumptions Sp4) and Te2)) as suggested in [7] for the ESP algorithm.

B. Tensor-based source localization – assumption SpTe), assumption Sp5), Te3), or Te4), assumptions

Sp4) and Sp3)

The objective of tensor-based methods consists in identifying the lead-field vectors and the signals

of distributed sources, i.e., matrices H and S in data model (2), from measurements. To separate R

simultaneously active distributed sources, tensor-based methods exploit multi-dimensional data (at least

one dimension in addition to space and time) and assume a certain structure underlying the measurements.

The multi-dimensional data is then approximated by a model that reflects the assumed structure and

comprises a number of components which can be associated with the sources. A popular tensor model

is the rank-R Canonical Polyadic (CP) decomposition [14], which imposes a multilinear structure on the

data. This means that each element of a third order tensor X can be written as a sum of R components,

each being a product of three univariate functions, ar, br, dr:

X(αk, βℓ, γm) =
R∑

r=1

ar(αk)br(βℓ)dr(γm). (4)
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The samples of functions ar, br, dr can be stored into three loading matrices A ∈ C
K×R = [a1, . . . ,aR],

B ∈ C
L×R = [b1, . . . ,bR], and D ∈ C

M×R = [d1, . . . ,dR] that characterize the tensor X ∈ C
K×L×M .

In the literature, a certain number of tensor methods based on the CP decomposition have been

proposed in the context of EEG/MEG data analysis. These methods differ in the dimension(s) which

is (are) exploited in addition to space and time. In this paper, we focus on third order tensors. Here, a

first distinction can be made between approaches that collect an additional diversity directly from the

measurements, for instance, by taking different realizations of a repetitive event (see [40]), or methods

that create a third dimension by applying a transform which preserves the two original dimensions, such

as the STFT or wavelet transform. This transform can be applied either over time or over space, leading

to Space-Time-Frequency (STF) data (see, e.g., [17] and references therein) or Space-Time-Wave-Vector

(STWV) data [5]. Depending on the dimensions of the tensor, the CP decomposition involves different

multilinearity assumptions: for Space-Time-Realization (STR) data, hypothesis Te3) is required, for STF

data, hypothesis Te4) is involved, and for STWV data, we resort to hypothesis Sp5).

Once several simultaneously active distributed sources have been separated, using the tensor decompo-

sition, and estimates for the distributed source lead-field vectors have been derived, the latter can be used

for source localization. The source localization is then performed separately for each distributed source.

To this end, a dictionary of potential elementary distributed sources is defined by a number of circular-

shaped cortical areas of different centers and sizes, subsequently called disks. Each disk describes a source

region with constant amplitudes, leading to a sparse, piecewise constant source distribution, which can

be attributed to hypotheses Sp3) and Sp4). For each source, a small number of disks that correspond best

to the estimated distributed source lead-field vector are then identified based on a metric and are merged

to reconstruct the distributed source. The steps of the algorithm based on STWV data and referred to as

STWV-DA [5] are schematically summarized in Fig. 3.

C. Bayesian approaches – assumption Sp6)

Bayesian approaches are based on a probabilistic model of the data and treat the measurements, the

sources, and the noise as realizations of random variables. In this context, the reconstruction of the sources

corresponds to obtaining an estimate of their posterior distribution, which is given by:

p(s|x) =
p(x|s)p(s)

p(x)
(5)

where p(x|s) is the likelihood of the data, p(s) is the source distribution, and p(x) is the model evidence.

The crucial point consists in finding an appropriate prior distribution p(s) for the sources, which in the
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Fig. 3. Schematic representation of the STWV-DA algorithm.

Bayesian framework incorporates the hypotheses that regularize the ill-posed inverse problem. We can

distinguish three classes of Bayesian approaches [54]: Maximum A Posteriori (MAP) estimation for the

sources, variational Bayes, and empirical Bayes. The first approach employs a fixed prior p(s) leading

to MNE, MCE, and MxNE solutions, which have been addressed in previous sections. In this section,

we focus on variational and empirical Bayesian approaches, which use a flexible, parameterized prior

p(s|γ), which is modulated by the hyper-parameter vector γ ∈ R
L. More particularly, in the EEG/MEG

context, the source distribution is generally assumed to be zero-mean Gaussian with a covariance matrix

Cs that depends on hyper-parameters, such that:

p(s|γ) ∝ exp(−
1

2
STC−1

s (γ)S). (6)

The hyper-parameters can either directly correspond to the elements of Cs (as in the Champagne algorithm

[55]) or parameterize the covariance matrix such that Cs =
∑I

i=1 γiCi. Here, Ci, i = 1, . . . , I , are

predefined covariance components. The hyper-parameters are then learned from the data to perform

some kind of model selection by choosing appropriate components.

1) Variational Bayesian approaches : The variational Bayesian methods (see [21] and references

therein) try to obtain estimates of the posterior distributions of the hyper-parameters p̂(γ|x). To this

end, additional assumptions are required, such as (i) statistical independence of the hyper-parameters

(a.k.a. mean-field approximation), or (ii) a Gaussian posterior distribution of the hyper-parameters (a.k.a.

Laplace approximation). This permits not only to approximate the distribution p(s|x) and thereby to

estimate the sources, but also to provide an estimate of the model evidence p(x), which can be used to

compare different models (e.g., for different sets of covariance components).
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2) Empirical Bayesian approaches : The empirical Bayesian approaches (see, e.g., [37], [55] and

references therein) on the other hand are concerned with finding a point estimate of the hyper-parameters,

which is obtained by marginalization over the unknown sources s:

γ̂ = argmax
γ

∫
p(x|s)p(s|γ)p(γ)ds. (7)

For known hyper-parameters, the conditional distribution p(s|x,γ) can be determined. To obtain a suitable

estimate of the sources, one can for instance apply the Expectation Maximization (EM) algorithm [18],

which alternates between two steps: the M-step in which the maximum likelihood estimates of the hyper-

parameters are updated for fixed s, and the E-step in which the conditional expectation of the sources is

determined based on the hyper-parameters obtained in the M-step. An example for an empirical Bayesian

algorithm is the Champagne algorithm introduced in [55].

D. Extended source scanning methods

Here, the idea is to identify active sources from a dictionary of potential distributed sources. To this

end, a metric is computed for each element of the dictionary. The source estimates are then obtained

from the elementary source distributions that are associated with the maxima of the metric. Based on the

employed metric, we subsequently distinguish two types of scanning methods that correspond to spatial

filtering, a.k.a. beamforming, and subspace-based approaches.

1) Beamforming approaches – assumptions Sp3) and Sp4): Beamforming techniques have originally

been proposed in the context of equivalent current dipole localization from MEG measurements [51]. The

basic approach employs the Linearly Constrained Minimum Variance (LCMV) filter, that is based on the

data covariance matrix and which is derived for each dipole of the source space to reconstruct its temporal

activity while suppressing contributions from other sources. The filter output is then used to compute a

metric which serves to identify the active dipole sources. The LCMV beamformer was shown to yield

unbiased solutions in the case of a single dipole source [48], but leads to source localization errors in the

presence of correlated sources. To overcome this problem, extensions of the beamforming approach to

multiple, potentially correlated (dipole) sources have been considered (see [41] and references therein).

Furthermore, in [33], the beamforming approach has been extended to the localization of distributed

sources. This is achieved by deriving spatial filters for all elements of a dictionary of potential source

regions, also called patches. The source imaging solution is then obtained from dictionary elements

associated with the maxima of the metric which is derived from the filter outputs, resulting in a spatially
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sparse source distribution with a small number of active source regions according to hypotheses Sp3)

and Sp4).

2) Subspace-based approaches – assumptions SpTe), Te5), Sp3) and Sp4): Similar to Bayesian ap-

proaches, subspace-based methods also treat the measurements made by several sensors as realizations

of a random vector. They then exploit the symmetric 2q-th (q ≥ 1) order cumulant matrix C2q,x of

this random vector from which the signal and noise subspaces are identified by means of an EigenValue

Decomposition (EVD). For source imaging purposes, one then exploits the fact that the higher-order

lead-field vector g̃
⊗q
r , r = 1, . . . , R, where g̃

⊗q
r is a shorthand notation for g̃r ⊗ g̃r ⊗ · · · ⊗ g̃r with q− 1

Kronecker products (denoted by ⊗), must lie in the 2q-th order signal subspace and be orthogonal to

the noise subspace. To this end, MUSIC-like algorithms can be employed, which have first been used

in the context of equivalent current dipole localization [42], [1]. Recently, the 2q-MUSIC algorithm [12]

has been adapted to the identification of distributed sources [6], then referred to as 2q-ExSo-MUSIC. In

analogy to the classical MUSIC algorithm, the 2q-ExSo-MUSIC spectrum is computed for a number of

predefined parameter vectors ψ. To this end, one defines a dictionary of disks as described in Section

III-B, assuming a sparse, piece-wise constant source distribution (corresponding to hypotheses Sp3) and

Sp4)) similar to VB-SCCD and STWV-DA. The spectrum is then thresholded and all coefficient vectors

ψ for which the spectrum exceeds a fixed threshold are retained and united to model distributed sources.

An advantage of subspace-based techniques exploiting the 2q-th order statistics with q > 1 over other

source imaging algorithms lies in their asymptotic robustness to Gaussian noise, because cumulants of

order higher than 2 of a Gaussian random variable are null.

IV. DISCUSSION

In this section, we discuss several aspects of the brain source imaging methods described in the previous

section, including identifiability and convergence issues, advantages and drawbacks of representative

algorithms, and application domains. Table I lists several source imaging methods mentioned in the

previous section and summarizes the exploited hypotheses.

A. Identifiability

For methods that solve the inverse problem by exploiting sparsity, the uniqueness of the solution

depends on the conditioning of the lead-field matrix. More particularly, sufficient conditions that are

based on the mutual or cumulative coherence of the lead-field matrix are available in the literature

[11] and can easily be verified for a given lead-field matrix. However, in brain source imaging, these
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TABLE I

CLASSIFICATION OF DIFFERENT ALGORITHMS MENTIONED IN SECTION III ACCORDING TO THE EXPLOITED HYPOTHESES.

BRAIN SOURCE IMAGING Sp1 Sp2 Sp3 Sp4 Sp5 Sp6 Te1 Te2 Te3 Te4 Te5 SpTe

Regularized least squares algorithms

sLORETA [45] X

LORETA [46] X

MCE [50] X

VB-SCCD [19] X

MxNE [44] X X

TF-MxNE [25] X X

Bayesian approaches

Champagne [55] X

Extended source scanning methods

2q-ExSo-MUSIC [6] X X X

Tensor-based methods

STR-DA [5] X X X

STF-DA [5] X X X

STWV-DA [5] X X X

Hypotheses on the spatial distribution Hypotheses on the temporal distribution

Sp1) Minimum energy Te1) Smoothness

Sp2) Minimum energy in a transformed domain Te2) Sparsity in a transformed domain

Sp3) Sparsity Te3) Pseudo-periodicity

Sp4) Sparsity in a transformed domain Te4) Separability in the time-frequency domain

Sp5) Separability in the space-wave-vector domain Te5) Non-zero higher order marginal cumulants

Sp6) Parameterized spatial covariance

Hypotheses on the spatio-temporal distribution

SpTe) Synchronous dipoles

conditions are generally not fulfilled because the lead-field vectors of adjacent grid dipoles are often

highly correlated, making the lead-field matrix ill-conditioned.

A strong motivation for the use of tensor-based methods is the fact that the CP decomposition is

essentially unique under mild conditions on the tensor rank [32]. These conditions are generally verified

in brain source imaging because the rank R of the noiseless tensor corresponds to the number of distributed

sources, which is usually small (less than 10) compared to the tensor dimensions. The limitations of the

tensor-based approach thus arise from the approximations that are made when imposing a certain structure
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on the data and not from the identifiability conditions. Note though, that these identifiability conditions

only concern the CP decomposition, which separates the distributed sources. Additional conditions are

indeed required for the uniqueness of the results of the subsequent source localization step that is applied

for each distributed source separately. Nevertheless, the separation of the distributed sources facilitates

their identification and may alleviate the identifiability conditions for the source localization step.

Finally, for subspace-based approaches, the number of sources that can be identified depends on the

dimensions of the signal and noise subspaces of the cumulant matrix. In the best case, one can identify

at most N2q − 1 statistically independent distributed sources, where N2q ≤ N q denotes the maximal

rank that can be attained by the 2q-th order distributed source lead-field matrix and N is the number

of sensors, while in the worst case, when all distributed sources are correlated, one can identify up to

N − 1 sources. In the context of brain source imaging, these identifiability conditions are usually not

very restrictive.

B. Convergence

The source imaging methods exploiting sparsity may be implemented using two types of convex

optimization algorithms: interior point methods such as SOCP [9] and proximal splitting methods like

FISTA [3] or ADMM [8]. Both types of solvers are known to converge to the global solution of a convex

optimization problem. However, the interior point methods are computationally too expensive to solve

large-scale problems as encountered in brain source imaging and the simpler and more efficient proximal

splitting methods are to be preferred in this case.

To solve the optimization problem associated with the CP decomposition, a wide panel of algorithms,

including alternating methods like Alternating Least Squares (ALS), derivative-based techniques such as

Gradient Descent (GD), or Levenberg-Marquardt (LM) [14], and direct techniques (see, e.g., [47], [35]

and references therein), have been used. Even if local convergence properties hold for most of these

methods, there is no guarantee that they will converge to the global minimum because the cost function

generally features a large number of local minima. However, in practical situations, it has been observed

[30] that good results can, for example, be achieved by combining a direct method such as the DIAG

algorithm described in [35] with a derivative-based technique like GD.

Similar to the tensor decomposition algorithm, there is no guarantee of global convergence for the EM

algorithm, which is popular in empirical Bayesian approaches, or for the alternating optimization method

employed by the Champagne algorithm.
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C. Advantages and drawbacks

Since strengths and weaknesses are often specific to a given source imaging method and cannot be

generalized to other techniques of the same family of approaches, we subsequently focus on seven

representative algorithms. Table II lists the advantages and drawbacks of each of these methods. On

the one hand, the regularized least squares techniques sLORETA, MCE, and MxNE are simple and

computationally efficient, but the source estimates obtained by these algorithms tend to be very focal (for

MCE and MxNE) or blurred (for sLORETA). On the other hand, VB-SCCD, STWV-DA, and 4-ExSo-

MUSIC, which permit to identify spatially extended sources, feature a higher computational complexity.

Furthermore, STWV-DA and 4-ExSo-MUSIC have additional requirements such as knowledge of the

number of sources or the signal subspace dimension, a certain structure of the data (for STWV-DA)

or a sufficiently high number of time samples (for 4-ExSo-MUSIC). While all these methods require

adjusting certain parameters, which are tedious to tune in practice, the main advantage of the Champagne

algorithm consists in the fact that there is no parameter to adjust. However, this method also has a high

computational complexity and leads to very sparse source estimates.

D. Application domains

Brain source imaging finds application both in the clinical domain and in cognitive neuroscience. The

most frequent clinical application is in epilepsy, where the objective consists in delineating the regions

from where interictal spikes or ictal discharges arise [38]. To this end, brain source imaging methods such

as VB-SCCD, STWV-DA, or 4-ExSo-MUSIC, which can identify both the spatial extent and the shape of

a small number of distributed sources, are well suited. In cognitive neuroscience, multiple brain structures

are often simultaneously activated, particularly when the subjects are asked to perform complex cognitive

tasks during the experimental sessions [2]. The source imaging methods employed for the analysis of

these data should thus be able to deal with multiple correlated sources. This is, for example, the case

for VB-SCCD and other regularized least squares techniques, but not for STWV-DA or 4-ExSo-MUSIC.

On the other hand, during simple tasks like those related to perceptual processes, the analysis of EEG

signals of ERPs can also aim at identifying focal sources, in which case methods such as MCE, MxNE, or

Champagne are to be preferred. Finally, there is a rising interest in the analysis of source connectivity [27].

While sLORETA, MCE, MxNE, or Champagne can be employed for this purpose, VB-SCCD, STWV-

DA, and 4-ExSo-MUSIC, which enforce identical signals for dipoles belonging to the same patch, would

theoretically be less suited, especially for the analysis of very local cortical networks. Nevertheless, at a
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TABLE II

ADVANTAGES AND DRAWBACKS OF SOURCE IMAGING ALGORITHMS

algorithm advantages disadvantages

sLORETA [45] • simple to implement

• computationally efficient

• no localization error for a single dipole source

in the absence of noise

• works on a single time sample

• blurred results

• assumes independent dipole sources

MCE [50] • simple

• can localize correlated sources

• works on a single time sample

• low computational cost for small numbers of

time samples

• very focal source estimates

VB-SCCD [19] • identifies spatially extended sources

• flexible with respect to the patch shape

• permits to localize multiple simultaneously

active (and correlated) patches

• works on a single time sample

• overestimates size of small patches

• computationally expensive

• systematic error on estimated amplitudes

MxNE [44] • exploits the temporal structure of the data

• extracts smooth time signals

• small computational cost

• very focal source estimates

Champagne [55] • no parameter to adjust manually

• easy to implement

• permits perfect source reconstruction under

certain conditions

• works on a single time sample

• very sparse source estimates

• assumes independent dipole signals

• high computational complexity

STWV-DA [5] • separates (correlated) sources

• identifies extended sources

• does not require spatial prewhitening to yield

accurate results

• makes strong assumptions on data structure

that are difficult to verify in practice

• requires knowledge of the number of sources

to separate

• computationally expensive for long data

lengths

4-ExSo-MUSIC [6] • identifies extended sources

• robust to Gaussian noise

• high computational complexity

• requires knowledge of the signal subspace

dimension

• requires a sufficiently large number of time

samples (> 500) to estimate the data statistics

• difficulties in localizing highly correlated

sources
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macroscopic level, these algorithms may be employed to identify cortical networks that characterize the

connectivity between distinct brain regions.

V. RESULTS

To give the reader an idea of the kind of source imaging results that can be obtained with different

types of algorithms, in this section, we illustrate and compare the performance of seven representative

algorithms on simulated data for an example of epileptic EEG activity. To this end, we consider two

or three quasi-simultaneous active patches and model epileptiform spike-like signals that spread from

one brain region to another. The sources are localized using the sLORETA, MCE, MxNE, VB-SCCD,

STWV-DA, Champagne, and 4-ExSo-MUSIC algorithms. To quantitatively evaluate the performance of

the different methods, we use a measure called the Distance of Localization Error (DLE) [13], which

characterizes the difference between the original and the estimated source configuration. The DLE is

averaged over 50 realizations of EEG data with different epileptiform signals and background activity. For

detailed descriptions of the data generation process, the implementation of the source imaging methods,

and the evaluation criterion, the reader is referred to [4].

The CPU runtimes that are required for the application of the different source imaging methods,

implemented in Matlab and run on a machine with a 2.7 GHz processor and 8 GB of RAM, are listed in

Table III. Note that the runtime of 4-ExSo-MUSIC cannot be compared to that of the other algorithms

because this method is partly implemented in C.

TABLE III

AVERAGE CPU RUNTIME OF THE DIFFERENT SOURCE IMAGING ALGORITHMS FOR THE CONSIDERED THREE-PATCH

SCENARIOS.

sLORETA VB-SCCD MxNE MCE Champagne STWV-DA 4-ExSo-MUSIC

CPU runtime in s 0.18 120 5.9 2.2 233 156 58

We first consider two scenarios with two patches of medium distance composed of a patch in the

inferior frontal region (InfFr) combined once with a patch in the inferior parietal region (InfPa) and

once with a patch in the middle posterior temporal gyrus (MidTe). The patches are all located on the

lateral aspect of the left hemisphere, but the patch MidTe is partly located in a sulcus, leading to weaker

surface signals than the patches InfFr and InfPa, which are mostly on a gyral convexity. This has an

immediate influence on the performance of all source imaging algorithms except for Champagne. For

the first scenario, the algorithms exhibit high dipole amplitudes for dipoles belonging to each of the
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Fig. 4. Original patches and source reconstructions of different source imaging algorithms for the scenarios InfFr+InfPa,

InfFr+MidTe, and InfFr+MidTe+OccTe.
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true patches. For the second scenario on the other hand, the weak patch is difficult to make out on the

estimated source distributions of sLORETA, slightly better visible on the MCE and MxNE solutions, but

completely missing for 4-ExSo-MUSIC. VB-SCCD and STWV-DA both recover the second patch, but

with smaller amplitude in case of VB-SCCD and smaller size for STWV-DA. According to the DLE,

MCE leads to the best results among the focal source imaging algorithms while STWV-DA outperforms

the other distributed source localization methods.

In the third scenario, we add a patch at the temporo-occipital function (OccTe) to the InfFr and MidTe

patches, which further complicates the correct recovery of the active grid dipoles. The best result in terms

of DLE (see Fig. 7 and lower part of Table IV) is achieved by VB-SCCD. Even though this method

mostly identifies the brain regions that correspond to the active patches, it does not permit to distinguish

the patches MidTe and OccTe into two separate active sources. STWV-DA, on the other hand, identifies

all three patches, even though the extent of the estimated active source region that can be associated

to the patch MidTe is too small. Albeit, this method also identifies several spurious source regions of

small size located between the patches MidTe and InfFr. 4-ExSo-MUSIC and Champagne recover only

one of the two patches located in the temporal lobe. Similar to VB-SCCD, sLORETA does not permit

to distinguish patches MidTe and OccTe. This distinction is better performed by MCE and especially by

MxNE, which displays three foci of brain activity.

TABLE IV

DLE (IN CM) OF SOURCE IMAGING ALGORITHMS FOR DIFFERENT SCENARIOS

scenario sLORETA Champagne MCE MxNE VB-SCCD STWV-DA ExSo-MUSIC

InfFr+InfPa 2.97 4.03 3.51 3.52 1.23 0.59 0.61

InfFr+MidTe 6.13 4.34 4.40 4.50 1.51 1.17 14.90

InfFr+MidTe+OccTe 5.88 4.83 4.59 4.51 2.54 5.99 4.30

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we classified existing source imaging algorithms based on methodological considerations.

Furthermore, we discussed the different techniques, both under theoretical and practical considerations, by

addressing questions of identifiability and convergence, advantages and drawbacks of certain algorithms

as well as application domains, and by illustrating the performance of representative source imaging

algorithms through a simulation study.
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While uniqueness conditions are available for both tensor-based and sparsity-based techniques, in the

context of brain source imaging, these conditions are generally only fulfilled for tensor-based approaches,

which exploit the concept of distributed sources, whereas the bad conditioning of the lead-field matrix

practically prohibits the unique identification of a sparse source distribution. On the other hand, while

convex optimization algorithms used for sparse approaches usually converge to the global minimum, such

algorithms are not available for tensor decompositions, which suffer from multiple local minima, making it

almost impossible to find the global optimum. In practice, despite the limitations concerning identifiability

and convergence, both tensor-based and sparse approaches often yield good source reconstruction.

Since the various source localization algorithms have different advantages, drawbacks and requirements,

source imaging solutions may vary depending on the application. As discussed in this paper, for each

problem, an appropriate source imaging technique has to be chosen depending on the desired properties

of the solution, on the characteristics of the algorithm, and on the validity of the hypotheses employed

by the method. Furthermore, it is advisable to compare the results of different methods for confirmation

of the identified source region(s).

To summarize the findings of the simulation study, we can say that sLORETA, Champagne, MCE, and

MxNE recover well the source positions, though not their spatial extent as they are conceived for focal

sources, while ExSo-MUSIC, STWV-DA, and VB-SCCD also permit to obtain an accurate estimate of

the source size. We noticed that most of the methods except for ExSo-MUSIC and STWV-DA require

pre-whitening of the data or a good estimate of the noise covariance matrix (in case of Champagne) in

order to yield accurate results. On the one hand, this can be explained by the hypothesis of spatially

white Gaussian noise made by some approaches, while on the other hand, the prewhitening also leads to a

decorrelation of the lead-field vectors and therefore to a better conditioning of the lead-field matrix, which

consequently facilitates the correct identification of active grid dipoles. Furthermore, the source imaging

algorithms generally have some difficulties in identifying mesial sources, located close to the midline, as

well as multiple quasi-simultaneously active sources. On the whole, for the situations addressed in our

simulation study, STWV-DA seems to be the most promising algorithm for distributed source localization,

both in terms of robustness and source reconstruction quality. However, more detailed studies are required

to confirm the observed performances of the tested algorithms before drawing further conclusions.

Based on these results, we can identify several promising directions for future research. As the VB-

SCCD algorithm demonstrates, imposing sparsity in a suitable spatial transform domain may work better

than applying sparsity constraints directly to the signal matrix. This type of approach should thus be

further developed. Another track for future research consists in further exploring different combinations
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of a priori information, for example by merging successful strategies of different recently established

source imaging approaches, such as tensor-based or subspace-based approaches and sparsity. In a similar

way, one could integrate the steps of two-step procedures such as STWV-DA into one single step in order

to process all the available information and constraints at the same time.
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