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Abstract

A number of application areas such as biomedical engineering require solving an underdetermined
linear inverse problem. In such a case, it is necessary to make assumptions on the sources to restore
identifiability. This problem is encountered in brain source imaging when identifying the source signals
from noisy electroencephalographic or magnetoencephalographic measurements. This inverse problem
has been widely studied during the last decades, giving rise to an impressive number of methods using
different priors. Nevertheless, a thorough study of the latter, including especially sparse and tensor-
based approaches, is still missing. In this paper, we propose i) a taxonomy of the algorithms based on
methodological considerations, ii) a discussion of identifiability and convergence properties, advantages,
drawbacks, and application domains of various techniques, and iii) an illustration of the performance of
selected methods on identical data sets. Directions for future research in the area of biomedical imaging

are eventually provided.

I. INTRODUCTION

In brain source imaging, one is confronted with the analysis of a linear static system - the head
volume conductor - that relates the electromagnetic activity originating from a number of sources located

inside the brain to the surface of the head, where it can be measured with an array of electric or magnetic



sensors using Electroencephalography (EEG) or Magnetoencephalography (MEG). The source signals and
locations contain valuable information about the activity of the brain, which is crucial for the diagnosis
and management of some diseases such as epilepsy or for the understanding of the brain functions in
neuroscience research. Albeit, without surgical intervention, the source signals cannot be observed directly
and have to be identified from the noisy mixture of signals originating from all over the brain, which
is recorded by the EEG/MEG sensors at the surface of the head. This is known as the inverse problem.
On the other hand, deriving the EEG/MEG signals for a known source configuration is referred to as the
forward problem (cf. Fig. 1). Thanks to refined models of head geometry and advanced mathematical
tools that permit to compute the so-called lead-field matrix (referred to as the mixing matrix in other
domains), solving the forward problem has become straightforward, whereas finding a solution to the

inverse problem is still a challenging task.
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Fig. 1. Illustration of the forward and inverse problems in the context of EEG.

The methods that are currently available for solving the inverse problem of the brain can be broadly
classified into two types of approaches that are based on different source models: the equivalent current
dipole and the distributed source [26]. Each equivalent current dipole describes the activity within a

spatially extended brain region, leading to a small number of active sources with free orientations and



positions anywhere within the brain. The lead-field matrix is hence not known, but parameterized by
the source positions and orientations. Equivalent current dipole methods also include the well-known
Multiple Signal Classification (MUSIC) algorithm [42], [1] and beamforming techniques (see [48] and
references therein). These methods are based on a fixed source space with a large number of dipoles,
from which a small number of equivalent current dipoles are identified. On the other hand, the distributed
source approaches aim at identifying spatially extended source regions, which are characterized by a high
number of dipoles (largely exceeding the number of sensors) with fixed locations. As the positions of
the source dipoles are fixed, the lead-field matrix can be computed and is thus known.

In this paper, we concentrate on the solution of the inverse problem for the case where the lead-field
matrix is known, and focus on the distributed source model. This inverse problem is one of the main
topics in biomedical engineering [2], [39], [26], [54] and has been widely studied in the signal processing
community, giving rise to an impressive number of methods. Our objective is to provide an overview of

the currently available source imaging methods that takes into account recent advances in the field.

II. DATA MODEL AND HYPOTHESES

EEG and MEG are multi-channel systems that record brain activity over a certain time interval with
a number of sensors covering a large part of the head. The two-dimensional measurements are stored
into a data matrix X € RV*T where N denotes the number of EEG/MEG sensors and 1" the number of
recorded time samples. The brain electric and magnetic fields are known to be generated by a number
of current sources within the brain, which can be modeled by current dipoles [43]. In this paper, we
assume that the latter correspond to the dipoles of a predefined source space, which can be derived from
structural Magnetic Resonance Imaging (MRI). Furthermore, different hypotheses on the location and
orientation of the sources can be incorporated by considering either a volume grid of source dipoles with
free orientations or a surface grid of source dipoles with fixed orientations. Indeed, most of the activity
recorded at the surface of the head is known to originate from pyramidal cells located in the gray matter
and oriented perpendicular to the cortical surface [16].

Assuming a source space with free orientation dipoles and denoting S € R3”*7 the signal matrix that
contains the temporal activity with which each of the 3D dipole components of the D sources contributes
to the signals of interest, the measurements at the surface constitute a linear combination of the source
signals:

X=GS+N=GS+X;+X, (1)



in the presence of noise N. The noise is composed of two parts: instrumentation noise X; introduced by
the measurement system and background activity X, = GS,, which originates from all dipoles of the
source space that do not contribute to the signals of interest, but emit perturbing signals S; € R3P*T.
The matrix G € RV*3D is generally referred to as the lead-field matrix in the EEG/MEG context. For
each dipole component of the source space, it characterizes the propagation of the source signal to the
sensors at the surface.

In the case of dipoles with fixed orientations, the signal matrices S and Sy are replaced by the matrices
S e RP*T and S, € RP*T, which characterize the brain activity of the D dipoles. Furthermore, the lead-
field matrix G is replaced by the matrix G € RV*P, which is given by G = GO where © e R?P*P
contains the fixed orientations of the dipoles. The lead-field matrix G can be computed numerically based
on Maxwell’s equations. Several methods have been developed to this end and various software packages
are available [23].

In this paper, we assume that the lead-field matrix is known and consider the EEG/MEG inverse
problem that consists in estimating the unknown sources S or S (depending on the source model) from
the measurements X. As the number of source dipoles D (several thousands) is much higher than the
number of sensors (several hundreds), the lead-field matrix is severely underdetermined, making the
inverse problem ill-posed. In order to restore identifiability of the underdetermined source reconstruction
problem, it is necessary to make assumptions on the sources. We discuss a large number of hypotheses that
have been introduced in the context of the EEG/MEG inverse problem. In the following, we distinguish
between three categories of assumptions depending on whether the hypotheses apply to the spatial,
temporal, or spatio-temporal (deterministic or statistical) distribution of the sources. Subsequently, we

give a short description of possible hypotheses.

A. Hypotheses on the spatial distribution of the sources

Spl) Minimum energy: The power of the sources is physiologically limited. A popular approach thus
consists in identifying the spatial distribution of minimum energy.

Sp2) Minimum energy in a transformed domain: Due to a certain synchronization of adjacent neuronal
populations, the spatial distribution of the sources is unlikely to contain abrupt changes and can therefore
be assumed to be smooth. This hypothesis is generally enforced by constraining the Laplacian of the
source spatial distribution to be of minimum energy.

Sp3) Sparsity: In practice, it is often reasonable to assume that only a small fraction of the source

dipoles contributes to the measured signals of interest in a significant way. For example, audio or visual



stimuli lead to characteristic brain signals in certain functional areas of the brain only. The signals of the
other source dipoles are thus expected to be zero. This leads to the concept of sparsity.

Sp4) Sparsity in a transformed domain: If the number of active dipoles exceeds the number of sensors,
which is generally the case for spatially extended sources, the source distribution is not sufficiently
sparse for standard methods based on sparsity in the spatial domain to yield accurate results, leading
to too focused source estimates. In this context, another idea consists in transforming the sources into
a domain where their distribution is sparser than in the original source space and imposing sparsity in
the transformed domain. The applied transform may be redundant, including a large number of basis
functions or atoms, and is not necessarily invertible.

SpS5) Separability in space and wave-vector domains: For each distributed source, one can assume that
the space-wave-vector matrix at each time point, which is obtained by computing a local spatial Fourier
transform of the measurements, can be factorized into a function that depends on the space variable
only and a function that depends on the wave-vector variable only. The space and wave-vector variables
are thus said to be separable. In the context of brain source imaging, this is approximately the case for
superficial sources.

Sp6) Gaussian joint probability density function with parameterized spatial covariance: For this prior,
the source signals are assumed to be random variables that follow a Gaussian distribution with a spatial
covariance matrix that can be described by a linear combination of a certain number of basis covariance
functions. This combination is characterized by so-called hyperparameters, which have to be identified

in the source imaging process.

B. Hypotheses on the temporal distribution of the sources

Tel) Smoothness: Since the autocorrelation function of the sources of interest usually has a full width
at half maximum of several samples, the source time distribution should be smooth. This is, for example,
the case for interictal epileptic signals or event-related potentials.

Te2) Sparsity in a transformed domain: Similar to hypothesis Sp4), this assumption implies that the
source signals admit a sparse representation in a domain that is different from the original time domain.
This can, for instance, be achieved by applying a wavelet transform or a redundant transformation such
as the Gabor transform to the time dimension of the data. The transformed signals can then be modeled
using a small number of basis functions or atoms, which are determined by the source imaging algorithm.

Te3) Pseudo-periodicity with variations in amplitude: If the recorded data comprise recurrent events

such as a repeated time pattern that can be associated with the sources of interest, one can exploit



the repetitions as an additional diversity. This does not necessarily require periodic or quasi-periodic
signals. Indeed, the intervals between the characteristic time patterns may differ, as may the amplitudes
of different repetitions. Examples of signals with repeated time patterns include interictal epileptic spikes
and Event-Related Potentials (ERP).

Ted4) Separability in time and frequency domains: This hypothesis is the equivalent of hypothesis
SpS) and assumes that the time and frequency variables of data transformed into the time-frequency
domain (for example by applying a Short Time Fourier Transform (STFT) or a Wavelet transform to
the measurements) separate. This is approximately the case for oscillatory signals as encountered, for
example, in epileptic brain activity.

Te5) Non-zero higher-order marginal cumulants: Regarding the measurements as realizations of an V-
dimensional vector of random variables, this assumption is required when resorting to statistics of order
higher than two, that offer a better performance and identifiability than approaches based on second order
statistics. It is generally verified in practice, as the signals of interest usually do not follow a Gaussian

distribution.

C. Hypotheses on the spatio-temporal distribution of the sources

SpTe) Synchronous dipoles: Contrary to point sources, which can be modeled by a single dipole, in
practice, one is often confronted with so-called distributed sources. A distributed source is composed of
a certain number of grid dipoles, which can be assumed to transmit synchronous signals. This hypothesis
concerns both the spatial and the temporal distributions of the sources and is generally made in the
context of dipoles with fixed orientations. In this case, it permits to separate the matrix gL, which
contains the signals of all synchronous dipoles of the r-th distributed source, indicated by the set Z,,
into the coefficient vector 1, that characterizes the amplitudes of the synchronous dipoles and thereby
the spatial distribution of the r-th distributed source and the signal vector s that contains the temporal

distribution of the distributed source. This gives rise to a new data model:
X=HS+N (2)

where the matrix H = [hy,... hp| contains the lead-field vectors for R distributed sources and the
matrix S € R®*T characterizes the associated distributed source signals. Each distributed source lead-
field vector h, corresponds to a linear combination of the lead-field vectors of all grid dipoles belonging
to the distributed source: h, = ét/)r. The distributed source lead-field vectors can be used as inputs for
source imaging algorithms, simplifying the inverse problem by allowing for a separate localization of

each source.



D. Hypotheses on the noise

While both the instrumentation noise and the background activity are often assumed to be Gaussian,
the instrumentation noise can be further assumed to be spatially white, whereas the background activity
is spatially correlated due to the fact that signals are mixed. To meet the assumption of spatially white
Gaussian noise made by many algorithms, the data can be prewhitened based on an estimate of the
noise covariance matrix C,,. More precisely, the prewhitening matrix is computed as the inverse of the
square root of the estimated noise covariance matrix. To achieve prewhitening, the data and the lead-field

matrices are multiplied from the left by the prewhitening matrix.

III. ALGORITHMS

In this section, we provide an overview of various source imaging methods that have been developed
in the context of the EEG/MEG inverse problem. Based on methodological considerations, we distinguish
four main families of techniques: regularized least squares approaches, tensor-based approaches, Bayesian
approaches, and extended source scanning approaches. Each class of methods is associated with a certain
number of hypotheses that are exploited by the algorithms. The knowledge of these hypotheses leads to

a better understanding of the functioning of the source imaging techniques.

A. Regularized least squares methods

A natural approach to solve the ill-posed EEG/MEG inverse problem consists in finding the solution
that best describes the measurements in a least squares sense. In the presence of noise, this is generally

achieved by solving an optimization problem with a cost function of the form:
L(S) = ||IX = GS|lf + Af(S). (3)

For methods that do not consider the temporal structure of the data, but work on a time sample by
sample basis, the data matrix X and the source matrix S are replaced by the column vectors x and s,
respectively.

The first term on the right-hand side of (3) is generally referred to as the data fit term and characterizes
the difference between the measurements and the surface data reconstructed from given sources. The
second is a regularization term and incorporates additional constraints on the sources according to the
a priori information. The regularization parameter ) is used to manage a trade-off between data fit and
a priori knowledge and depends on the noise level, since the gap between measured and reconstructed
data is expected to become larger as the SNR decreases. Fig. 2 provides an overview of the regularized

least squares algorithms with different regularization terms that are discussed in the following sections.



Least squares term: Regularization term: Class of source Characteristics of
Data fit A priori information imaging methods source distribution
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Fig. 2. Overview of regularized least squares algorithms (for an explanation of the employed notations for the different algorithms

see the text in the associated sections).

1) Minimum Norm Estimates (MNE) — assumption Spl) or Sp2) : The minimum norm solution is
obtained by employing a prior, which imposes a minimal signal power according to hypothesis Spl),
leading to a regularization term that is based on the Lo-norm of the signal vector: f(s) = |[Ws||3. To
compensate for the depth bias, the diagonal matrix W & ]RiD x3D containing fixed weights was introduced
in the weighted MNE (WMNE) methods. Furthermore, one can consider the variance of the noise or the
sources, leading to normalized estimates. This approach is pursued by the dSPM [15] algorithm, which
takes into account the noise level, and SLORETA [45], which standardizes the source estimates with
respect to the variance of the sources.

The MNEs generally yield smooth source distributions. Nevertheless, spatial smoothness can also be
more explicitly promoted by applying a Laplacian operator L to the source vector in the regularization
term, leading to the popular LORETA method [46], which is based on assumption Sp2). In this case,
the Lo-norm constraint is imposed on the transformed signals, yielding a regularization term of the form

f(s) = ||LWs||3. More generally, the matrix L can be used to implement a linear operator that is applied

to the sources.



The original MNEs have been developed for sources with free orientations. Modifications of the
algorithms to account for orientation constraints can, for example, be found in [53], [34].

2) Methods based on sparsity — assumption Sp3) or Sp4): As the minimum norm estimates generally
lead to blurred source localization results, as widely described in the literature (see for example [56]),
source imaging methods based on hypothesis Sp3), which promote sparsity, were developed to obtain
more focused source estimates. One of the first algorithms proposed in this field was FOCUSS [22], which
iteratively updates the minimum norm solution using an Ly “norm”. This gradually shrinks the source
spatial distribution, resulting in a sparse solution. Around the same time, source imaging techniques

based on an L,-norm (0 < p < 1) regularization term of the form f(s) = |[[Ws|

p» Where W is a
diagonal matrix of weights, were put forward [36]. The parameter p is generally chosen to be equal to 1,
leading to a convex optimization problem'. However, by treating the dipole components independently in
the regularization term, the estimated source orientations are biased. To overcome this problem, Uutela
et al. [50] proposed to use fixed orientations determined either from the surface normals or estimated
using a preliminary minimum norm solution. This gave rise to the MCE algorithm. Extensions of this
approach, which require only the knowledge of the signs of the dipole components, or which permit to
incorporate loose orientation constraints, have been treated in [29], [34]. Another solution to the problem
of orientation bias of the sparse source estimates consists in imposing sparsity dipole-wise instead of
component-wise [20]. In [56], a combination of the ideas of FOCUSS and L,-norm (p < 1) regularization
was implemented in an iterative scheme.

To find a compromise between smoothness and sparsity of the spatial distribution, the use of a prior
that is composed of both an L;-norm and an Ly-norm regularization term was proposed in [52].

Another idea consists in imposing sparsity in a transformed domain. This is generally achieved by
employing a regularization term of the form ||TS||; where T is a transformation matrix. In the literature,
different transformations have been considered. The authors of [10] have used a surface Laplacian, thus
imposing sparsity on the second order spatial derivatives of the source distribution, in combination with
classical L;-norm regularization. Another way to promote a piece-wise constant spatial distribution was
proposed by Ding, giving rise to the VB-SCCD method [19], which is closely related to the Total Variation
(TV) approach. A third approach that makes use of sparsity in a transformed domain considers a spatial

wavelet transform that permits to compress the signals through a sparse representation of the sources in

'Note that the minimization of this cost function is closely related to the optimization problem min ||[Ws||, s.t. |x —

Gs||3 < & with regularization parameter &, on which the algorithm proposed in [36] is based.



the wavelet domain [31], [10].

3) Mixed norm estimates — assumption Sp3) or Sp4) and assumption Tel) or Te2): To impose hypothe-
ses simultaneously in several domains, e.g., the space-time plane, one can resort to mixed norms. Efficient
algorithms that have been developed to deal with the resulting optimization problem are presented in
[24]. In [44], a source imaging method, called MxNE, that imposes sparsity over space (hypothesis Sp3))
and smoothness over time (assumption Tel)) using a mixed L 2-norm regularization has been proposed.

An approach that imposes sparsity over space (hypothesis Sp3)) as well as in the transformed time
domain (assumption Te2)) is taken in the TF-MxNE method. This technique makes use of a dictionary,
®, from which a small number of temporal basis functions are selected to characterize the source signals.
In [25], Gabor basis functions were considered, whereas the authors of [49] employed a data-dependent
temporal basis obtained using an SVD of the measurements and a data-independent temporal basis that
is given by Natural Cubic Splines (NCS). The method is based on mixed norms and uses a composite
prior of two regularization terms similar to [52].

Furthermore, in [28], one can find an approach that imposes sparsity in a spatial transform domain
similar to [10], but which is based on a mixed L1 2-norm to take into account temporal smoothness of
the source distribution. Finally, let us point out that it is also possible to consider both temporal and

spatial basis functions (assumptions Sp4) and Te2)) as suggested in [7] for the ESP algorithm.

B. Tensor-based source localization — assumption SpTe), assumption Sp5), Te3), or Te4), assumptions
Sp4) and Sp3)

The objective of tensor-based methods consists in identifying the lead-field vectors and the signals
of distributed sources, i.e., matrices H and S in data model (2), from measurements. To separate R
simultaneously active distributed sources, tensor-based methods exploit multi-dimensional data (at least
one dimension in addition to space and time) and assume a certain structure underlying the measurements.
The multi-dimensional data is then approximated by a model that reflects the assumed structure and
comprises a number of components which can be associated with the sources. A popular tensor model
is the rank- R Canonical Polyadic (CP) decomposition [14], which imposes a multilinear structure on the
data. This means that each element of a third order tensor X can be written as a sum of R components,

each being a product of three univariate functions, a,, b,, d,:

R
X(O‘kwﬁﬂa’ym) = Zar(ak)br(ﬂﬁ)dr(Vm)- “4)
r=1
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(CKXR = [al, e ,aR],

The samples of functions a,, b,, d, can be stored into three loading matrices A €
B c CE*E = [by,...,bg|,and D € C¥*E = [d,,..., dg] that characterize the tensor X € CK*L*M

In the literature, a certain number of tensor methods based on the CP decomposition have been
proposed in the context of EEG/MEG data analysis. These methods differ in the dimension(s) which
is (are) exploited in addition to space and time. In this paper, we focus on third order tensors. Here, a
first distinction can be made between approaches that collect an additional diversity directly from the
measurements, for instance, by taking different realizations of a repetitive event (see [40]), or methods
that create a third dimension by applying a transform which preserves the two original dimensions, such
as the STFT or wavelet transform. This transform can be applied either over time or over space, leading
to Space-Time-Frequency (STF) data (see, e.g., [17] and references therein) or Space-Time-Wave-Vector
(STWYV) data [5]. Depending on the dimensions of the tensor, the CP decomposition involves different
multilinearity assumptions: for Space-Time-Realization (STR) data, hypothesis Te3) is required, for STF
data, hypothesis Te4) is involved, and for STWYV data, we resort to hypothesis Sp5).

Once several simultaneously active distributed sources have been separated, using the tensor decompo-
sition, and estimates for the distributed source lead-field vectors have been derived, the latter can be used
for source localization. The source localization is then performed separately for each distributed source.
To this end, a dictionary of potential elementary distributed sources is defined by a number of circular-
shaped cortical areas of different centers and sizes, subsequently called disks. Each disk describes a source
region with constant amplitudes, leading to a sparse, piecewise constant source distribution, which can
be attributed to hypotheses Sp3) and Sp4). For each source, a small number of disks that correspond best
to the estimated distributed source lead-field vector are then identified based on a metric and are merged
to reconstruct the distributed source. The steps of the algorithm based on STWV data and referred to as

STWV-DA [5] are schematically summarized in Fig. 3.

C. Bayesian approaches — assumption Sp6)

Bayesian approaches are based on a probabilistic model of the data and treat the measurements, the
sources, and the noise as realizations of random variables. In this context, the reconstruction of the sources
corresponds to obtaining an estimate of their posterior distribution, which is given by:
p(x|s)p(s)

p(x)

where p(x|s) is the likelihood of the data, p(s) is the source distribution, and p(x) is the model evidence.

p(slx) = (5