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Abbreviations 22 

CRLB: Cramer-Rao lower bound 23 

CSF: cerebrospinal fluid 24 

EPI: echo-planar imaging 25 

FO: Fractional Occupancy 26 

Glu: Glutamate 27 

HMM: Hidden Markov Models 28 

ICA: Independent Component Analysis 29 

IPS: intra-parietal sulcus 30 

MNI: Montreal Neurological Institute  31 

MRS: Magnetic Resonance Spectroscopy 32 

NAA: N acetylaspartate  33 

OCT: occipito-temporal cortex 34 

PCA: Principal Component Analysis 35 

ROI: region of interest 36 

rs-fMRI: resting-state functional Magnetic Resonance Imaging 37 

SN: signal-in-noise 38 

SNR: Signal-to-noise ratio 39 

SR: Switching Rate 40 

tDCS: transcranial direct current stimulation  41 
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Abstract 42 

Interpreting cluttered scenes —a key skill for successfully interacting with our environment— 43 

relies on our ability to select relevant sensory signals while filtering out noise. Training is 44 

known to improve our ability to make these perceptual judgements by altering local processing 45 

in sensory brain areas. Yet, the brain-wide network mechanisms that mediate our ability for 46 

perceptual learning remain largely unknown. Here, we combine transcranial direct current 47 

stimulation (tDCS) with multi-modal brain measures to modulate cortical excitability during 48 

training on a signal-in-noise task (i.e. detection of visual patterns in noise) and test directly the 49 

link between processing in visual cortex and its interactions with decision-related areas (i.e. 50 

posterior parietal cortex). We test whether brain stimulation alters inhibitory processing in 51 

visual cortex, as measured by magnetic resonance spectroscopy (MRS) of GABA and 52 

functional connectivity between visual and posterior parietal cortex, as measured by resting 53 

state functional magnetic resonance imaging (rs-fMRI). We show that anodal tDCS during 54 

training results in faster learning and decreased GABA+ during training, before these changes 55 

occur for training without stimulation (i.e. sham). Further, anodal tDCS decreases occipito-56 

parietal interactions and time-varying connectivity across the visual cortex. Our findings 57 

demonstrate that tDCS boosts learning by accelerating visual GABAergic plasticity and 58 

altering interactions between visual and decision-related areas, suggesting that training 59 

optimises gain control mechanisms (i.e. GABAergic inhibition) and functional inter-areal 60 

interactions to support perceptual learning.  61 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 15, 2021. ; https://doi.org/10.1101/2021.09.13.459793doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.459793
http://creativecommons.org/licenses/by/4.0/


4 

 

Introduction 62 

Interacting successfully in our environments entails discerning relevant information from 63 

clutter and identifying target objects in busy scenes. Training is shown to improve such 64 

perceptual judgements —a skill known as perceptual learning— by altering processing in 65 

sensory (i.e. visual) and decision-related (i.e. posterior parietal) areas. For example, perceptual 66 

learning (i.e. training on a visual discrimination task) has been shown to alter functional 67 

connectivity —as measured by rs-fMRI— between visual and posterior parietal cortex (Lewis 68 

et al., 2009). Further, we have previously shown that training in visual discrimination tasks 69 

alters GABAergic processing in visual cortex (Frangou et al., 2019, 2018) —as measured by 70 

MRS—, consistent with the role of GABAergic inhibition in brain plasticity (for a review see 71 

(Ip and Bridge, 2021)). Yet, the interactions between GABAergic plasticity in sensory areas 72 

and learning-dependent functional connectivity between sensory and decision-related areas for 73 

perceptual learning remain largely unknown. 74 

Previous work has proposed that GABAergic inhibition shapes network connectivity 75 

(Kapogiannis et al., 2013; Mann and Paulsen, 2007; Shmuel and Leopold, 2008; Stagg et al., 76 

2014). Here, we employ tDCS to modulate cortical excitability and test directly the link 77 

between local inhibitory processing in visual cortex —as measured by MRS GABA— and 78 

interactions between visual and decision-related areas (i.e. posterior parietal cortex) —as 79 

measured by static and time-varying (using Hidden Markov Models (HMM;  (Vidaurre et al., 80 

2018, 2017)) rs-fMRI connectivity. Anodal tDCS has been shown to be excitatory (Antal et al., 81 

2004a; Nitsche and Paulus, 2000), result in decreased GABA levels in visual (Barron et al., 82 

2016), frontal (Harris et al., 2019) and motor areas (Stagg et al., 2009), and facilitate visual 83 

(Frangou et al., 2018; Sczesny-Kaiser et al., 2016; Van Meel et al., 2016) and motor learning 84 

(O’Shea et al., 2017; Stagg et al., 2011). Further, anodal tDCS in the motor cortex has been 85 
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shown to facilitate learning by decreasing local GABA levels and increasing functional 86 

connectivity within the motor network at rest (Bachtiar et al., 2015; Stagg et al., 2014). 87 

We ask whether anodal tDCS in occipito-temporal cortex (OCT) facilitates learning 88 

and alters GABAergic processing and brain network interactions. We trained participants in a 89 

signal-in-noise discrimination task (i.e. participants were asked to detect radial vs. concentric 90 

patterns embedded in noise) that has been shown to involve occipito-temporal and posterior 91 

parietal cortex (Chang et al., 2014; Frangou et al., 2019, 2018; Mayhew et al., 2012). We tested 92 

for changes in task performance, MRS GABA+ and rs-fMRI connectivity in three groups of 93 

participants: two intervention groups who received anodal vs. sham tDCS during training on 94 

the task, a no-intervention group who received neither stimulation nor training in the task. Our 95 

results show that anodal OCT stimulation results in faster learning and decreased GABA+ 96 

during training, before these changes occur in the sham stimulation group. Further, anodal 97 

tDCS induces changes in occipito-parietal interactions and time-varying connectivity across 98 

the visual cortex. Finally, enhanced local temporal coherence in the visual cortex and decreased 99 

occipito-parietal connectivity relate to decreased OCT GABA+. Our findings suggest that 100 

tDCS boosts learning by altering visual GABAergic processing and network interactions 101 

between visual and decision-related areas.  102 
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Results 103 

Anodal tDCS improves performance in signal-in-noise discrimination   104 

We trained two intervention groups (anodal vs. sham tDCS on OCT) on a signal-in-noise (SN) 105 

task that involves participants discriminating shapes (radial vs. concentric Glass patterns) 106 

embedded in noise (Figure 1). Participants were asked to judge whether each stimulus 107 

presented per trial was radial vs. concentric. 108 

Figure 1 109 

 110 

We tested behavioural improvement in this task by comparing performance before (Pre), during 111 

(During) and after stimulation (Post) (see Behavioural data analysis in Methods). Our results 112 

showed that anodal OCT stimulation enhanced behavioural improvement in this task (Figure 113 

2a), consistent with our previous work (Frangou et al., 2018). In particular, a two-way repeated 114 

measures ANOVA showed a significant Group (Anodal, Sham) x Block (Pre, During, Post) 115 

interaction (F(1.78,76.40)=3.61, p=0.037) and main effect of Block (F(1.78,76.40)=8.94, 116 

p<0.001). Performance before stimulation (i.e. Pre block) did not differ significantly between 117 

the two intervention groups (t(43)=1.02, p=0.313), suggesting that the observed differences in 118 

improvement were not due to variability in starting performance between the intervention 119 

groups. Further, comparing learning rate across training between the two groups (two-sample 120 

t-test) showed that participants in the Anodal group learned faster than participants in the Sham 121 

group (t(43)=2.31, p=0.026; Figure 2b). 122 

Participants in the no-intervention (Control) group (i.e. no-stimulation, no-training 123 

group) showed no behavioural improvement in the SN task when we tested them before and 124 

after the scan (t(20)=0.18, p=0.858) nor in the contrast-detection task during the scan (one-way 125 

repeated measures ANOVA: main effect of Block: F(2.19,46.03)=0.82, p=0.458). 126 

Figure 2 127 
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Anodal tDCS results in GABA+ decrease earlier in training 128 

To test whether anodal tDCS alters GABAergic inhibition in OCT, we measured GABA+ 129 

within an MRS voxel centred in the OCT (Figure 3) before, during and after anodal vs. sham 130 

stimulation in the OCT, while participants trained on the SN task. We compared GABA+ in 131 

the OCT for the intervention groups (i.e. anodal and sham stimulation groups who received 132 

task training) vs. the no-intervention group (i.e. no-stimulation, no-training). Comparing 133 

GABA+ change between groups, a two-way repeated measures ANOVA showed a significant 134 

Group (Anodal, Sham, Control) x Block (Pre, During, Post) interaction (F(4,120)=3.90, 135 

p=0.005; Figure 4a) and main effect of Group (F(2,60)=5.25, p=0.008). Post-hoc comparisons 136 

across blocks showed significantly decreased GABA+ for the Anodal compared to the Control 137 

group (t=-3.21, p=0.006, Bonferroni corrected), but no significant difference between Sham 138 

and Control (t=-1.93, p=0.174, Bonferroni corrected) or Anodal and Sham (t=-1.22, p=0.678, 139 

Bonferroni corrected). Further, comparing the Anodal to the Control group showed 140 

significantly decreased GABA+ for both During (t(41)=-2.23, p=0.031) and Post blocks 141 

(t(41)=-3.77, p=0.001). In contrast, comparing the Sham to the Control group showed 142 

significantly decreased GABA+ for the Post (t(40)=-2.66, p=0.011) but not the During block 143 

(t(40)=-0.88, p=0.387). These results remained significant when we tested GABA+ referenced 144 

to N acetylaspartate (NAA) rather than water (Group x Block: F(4,120)=4.06, p=0.004; main 145 

effect of Group: F(2,60)=6.35, p=0.003; Anodal vs. Control: t=-3.53, p=0.002, Bonferroni 146 

corrected; Anodal vs. Control at During block: t(41)=-2.74, p=0.009, Anodal vs. Control at 147 

Post block: t(41)=-4.46, p<0.001; Sham vs. Control at Post block: t(40)=-2.78, p=0.008). Thus, 148 

our results demonstrate that training with (anodal) or without stimulation (sham) results in 149 

decreased GABA+ in visual cortex compared to a no intervention (i.e. no training nor 150 

stimulation) control. Interestingly, training with anodal stimulation decreases GABA+ in the 151 

OCT during and after stimulation, compared to training without stimulation (i.e. sham) that 152 
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shows decreases in GABA+ only after stimulation. These results suggest that anodal 153 

stimulation induces neurochemical changes earlier in the training, consistent with our 154 

behavioural results showing faster learning for anodal stimulation. 155 

Figure 3 156 

 157 

It is unlikely that these changes in GABA+ for the intervention groups were due to differences 158 

in MRS data quality (i.e. linewidth, Signal-to-noise ratio: SNR) between groups (Table S1). In 159 

particular, a two-way repeated measures ANOVA showed no significant Group x Block 160 

interaction (linewidth: F(4,120)=0.32, p=0.864; SNR: F(4,120)=0.72, p=0.581) nor main effect 161 

of Group (linewidth: F(2,60)=1.44, p=0.246; SNR: F(2,60)=0.85, p=0.432). Further, GABA+ 162 

measured before stimulation did not significantly differ between groups (main effect of Group: 163 

F(2,60)=2.20, p=0.120), suggesting that our results could not be simply due to variability in 164 

GABA+ before stimulation across groups. Finally, comparing glutamate measures between 165 

groups showed no significant Group x Block interaction (F(4,120)=0.80, p=0.528) nor main 166 

effect of Group (F(2,60)=0.37, p=0.692) or Block (F(2,120)=1.33, p=0.269), suggesting that 167 

our results are specific to GABA+. 168 

Next, we tested whether changes in OCT GABA+ relate to behavioural performance. 169 

We computed percent GABA+ change during tDCS (During) compared to GABA+ before 170 

stimulation (Pre) to control for variability in baseline GABA+ measures (i.e. Pre). We 171 

measured GABA+ change during stimulation as our previous analysis showed GABA+ 172 

changes during stimulation for the Anodal rather than the Sham group (Figure 4a). Correlating 173 

OCT GABA+ change with learning rate showed a significant negative correlation for the 174 

Anodal group (r(19)=-0.51, p=0.019; Figure 4b), but not for the Sham group (r(18)=0.25, 175 

p=0.289; Figure 4b). These correlations were significantly different between groups (Fisher’s 176 

z test: z=-2.41, p=0.016). Further, this relationship remained significant when controlling for 177 
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tissue composition within the MRS voxel, controlling for MRS data quality (i.e. linewidth, 178 

SNR), and using GABA+ referenced to NAA rather than water (Table S2). There was no 179 

significant correlation for OCT Glutamate (Glu) change and learning rate, suggesting that this 180 

result is specific to GABA (Table S2). We found no significant correlation between learning 181 

rate on the contrast-detection task and change in GABA+ for the Control group (r(20)=0.06, 182 

p=0.790). Finally, there was no significant correlation between learning rate and OCT GABA+ 183 

change for the post- compared to the pre-stimulation block for any group (Anodal: r(18)=-0.19, 184 

p=0.417; Sham: r(18)=0.17, p=0.473; Control: r(20)=0.02, p=0.945), suggesting that our 185 

results are specific to the GABA+ change during stimulation. These results demonstrate that 186 

learning-dependent changes in GABA+ during training with anodal stimulation rather than 187 

training without stimulation (i.e. sham) relate to learning rate, suggesting that enhanced 188 

GABAergic plasticity due to tDCS in the OCT may facilitate faster learning in detecting targets 189 

in clutter. 190 

Figure 4 191 

 192 

Anodal tDCS alters functional connectivity  193 

We next tested whether anodal tDCS during training on the SN task alters extrinsic (i.e. 194 

between OCT and intra-parietal sulcus [IPS]) or intrinsic (i.e. within OCT) connectivity as 195 

measured by rs-fMRI. First, we tested for changes in extrinsic OCT-IPS connectivity after vs. 196 

before intervention. A two-way repeated measures ANOVA showed a significant Group 197 

(Anodal, Sham) x Block (Pre, Post) interaction (F(1,35)=7.96, p=0.008; Figure 5a), but no 198 

significant main effect of Group (F(1,35)=2.44, p=0.127) or Block (F(1,35)=0.01, p=0.924). 199 

Post-hoc comparisons showed a significant decrease in OCT-IPS connectivity after training for 200 

the Anodal group (t(21)=-2.16, p=0.042), but no significant change for the Sham group 201 

(t(14)=1.96, p=0.071). Next, we asked whether changes in extrinsic connectivity relate to 202 
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behaviour (i.e. learning rate) and OCT GABA+ change during stimulation, as our analysis 203 

showed GABA+ changes during stimulation that relate to behaviour for the Anodal rather than 204 

the Sham group. We found a significant positive correlation of OCT-IPS connectivity change 205 

with learning rate for the Sham (r(11)=0.74, p=0.003; Figure 5b), but not for the Anodal group 206 

(r(20)=-0.24, p=0.286; Figure 5b). Comparing these correlations showed a significant 207 

difference between groups (Fisher’s z test: z=-3.06, p=0.002). Further, we found a significant 208 

positive correlation of change in OCT-IPS connectivity with change in OCT GABA+ for the 209 

Anodal (r(17)=0.48, p=0.036; Figure 5c), but not for the Sham group (r(13)=0.13, p=0.643; 210 

Figure 5c). This relationship remained significant when controlling for tissue composition 211 

within the MRS voxel, controlling for MRS data quality, and using GABA+ referenced to NAA 212 

rather than water (Table S3). There was no significant correlation for OCT Glu change and 213 

learning rate, suggesting that this result is specific to GABA (Table S3). 214 

These results demonstrate that anodal OCT stimulation results in decreased occipito-215 

parietal connectivity after training that relates to decreased OCT GABA+ during stimulation, 216 

suggesting that enhanced GABAergic plasticity due to tDCS in the OCT may relate to local 217 

visual processing rather than occipito-parietal interactions. In contrast, for task training without 218 

stimulation (i.e. sham stimulation), learning-dependent changes in occipito-parietal 219 

connectivity relate to faster learning but not changes in GABA+. 220 

Figure 5 221 

 222 

Second, we tested for changes in intrinsic OCT connectivity after vs. before 223 

intervention. A two-way repeated measures ANOVA showed a significant main effect of Block 224 

(Pre, Post) (F(1,35)=4.66, p=0.038; Figure 6a), but no significant Group (Anodal, Sham) x 225 

Block (Pre, Post)  interaction (F(1,35)=0.55, p=0.463), nor main effect of Group (F(1,35)=3.13, 226 

p=0.086). Next, we asked whether changes in intrinsic connectivity relates to learning rate and 227 
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OCT GABA+ change (during- vs. pre-stimulation). There were no significant correlations of 228 

change in intrinsic OCT connectivity with learning rate (Anodal: r(20)=0.26, p=0.249; Sham: 229 

r(12)=0.52, p=0.056; Figure 6b). However, we observed a significant negative correlation for 230 

change in intrinsic OCT connectivity with change in OCT GABA+ for the Anodal group 231 

(r(14)=-0.52, p=0.039; Figure 6c), but not for the Sham group (r(13)=0.21, p=0.453; Figure 232 

6c). This relationship remained significant when controlling for tissue composition within the 233 

MRS voxel, controlling for MRS data quality, and using GABA+ referenced to NAA rather 234 

than water (Table S3). There was no significant correlation for OCT Glu change and learning 235 

rate, suggesting that this result is specific to GABA (Table S3). Taken together, our results 236 

show that increased local OCT connectivity relates to decreases in OCT GABA+ during anodal 237 

but not sham stimulation, providing converging evidence that enhanced GABAergic plasticity 238 

due to anodal tDCS in the OCT relates to local visual processing. 239 

Figure 6 240 

 241 

Anodal tDCS alters time-varying functional connectivity during training  242 

Our functional connectivity analysis shows that our intervention (anodal tDCS during task 243 

training) alters occipito-parietal interactions that relate to GABAergic plasticity. However, 244 

static connectivity offers a summary measure of the synchrony between two brain regions 245 

across long timescales (i.e. 8mins for our rs-fMRI scans) that does not capture short-lived 246 

changes in inter-regional synchrony and how they propagate across different brain regions. 247 

Recent studies have proposed time-varying connectivity approaches for tracking changes in 248 

functional connectivity at finer timescales (Cohen, 2017; Hutchison et al., 2013; Preti et al., 249 

2017). These methods have been shown to capture task and behavioural variability beyond 250 

static connectivity accounts (Calhoun et al., 2014; Eichenbaum et al., 2021). Here, we employ 251 

a time-varying connectivity analysis (i.e. HMM) to detect brain states that capture recurring 252 
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patterns of activity and connectivity over time and test whether our intervention alters these 253 

brain states. 254 

We conducted this analysis using time courses from early and higher visual areas and 255 

posterior parietal cortex as defined by a topographic atlas ((Wang et al., 2015); Table S4). We 256 

set the number of states to 5 and decomposed the input time courses to 13 Principal Component 257 

Analysis (PCA) components (corresponding to 80% variance explained) across groups and 258 

blocks. Following previous work (Karapanagiotidis et al., 2020; Vidaurre et al., 2017), we then 259 

tested the robustness of the results for a range of these parameters (states: from 4 to 7, PCA: 260 

from 70% to 100%; Table S5). The 5 estimated states capture reoccurring temporal patterns 261 

across participants and are described by a mean activation map (Figure 7a) and a functional 262 

connectivity matrix (Figure S1): State 1 captures concurrent deactivation across all regions; 263 

State 2 captures time periods when OCT (i.e. LO1/2), IPS (i.e. IPS0 and IPS1/2) and V3b are 264 

co-active; State 3 captures time periods when V1 (dorsal and ventral) V2 (dorsal) are co-active; 265 

State 4 captures concurrent activation across all regions; State 5 captures time periods when 266 

IPS (i.e. IPS0), PHC, V3a and VO are co-active. Figure 7b illustrates the transition probabilities 267 

between these states averaged across participants, where higher (lower) values represent more 268 

(less) likely transitions from one state to another. 269 

Figure 7 270 

 271 

To test for temporal differences between anodal and sham OCT stimulation, we 272 

compared the time spent in each state (i.e. Fractional Occupancy: FO) before vs. after training 273 

per group. A two-way repeated measures ANOVA showed a significant State x Block 274 

interaction for the Anodal group (F(1.45,27.93)=6.22, p=0.010; Figure 7c), but no significant 275 

effects for the Sham group (F(1.35,18.82)=1.14, p=0.319; Figure 7c). Post-hoc comparisons 276 

showed that participants in the Anodal group spent more time after training in States 1 and 4 277 
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(State 1: t(21)=2.21, p=0.038; State 4: t(21)=3.46, p=0.002); that is, they spent more time in 278 

states capturing time periods of widespread concurrent deactivation and activation across the 279 

visual cortex. Previous work has suggested that large-scale synchronised activity might denote 280 

integration of information (Varela et al., 2001) and higher sensitivity in error detection 281 

(Breakspear et al., 2003). In contrast, participants in the Anodal group spent less time in States 282 

2 and 3 (State 2: t(21)=-2.44, p=0.023; State 3: t(21)=-2.63, p=0.015) that correspond to the 283 

OCT-IPS and the early visual (V1, V2) states, respectively. Comparing the switching rate (SR) 284 

between states before vs. after training showed that participants in the Anodal group switched 285 

more frequently between states after training (t(21)=2.30, p=0.032), while there was no 286 

significant change for the Sham group (t(14)=1.19, p=0.254). 287 

These results complement our static connectivity results showing that anodal OCT 288 

stimulation during training in the SN task results in more widespread visual activity, and less 289 

localised activity in occipito-parietal and early visual regions. Further, anodal OCT stimulation 290 

may facilitate faster processing within brain states, as indicated by faster switching rate 291 

between states after training in the SN task.  292 
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Discussion 293 

Previous work has shown that training results in changes in GABAergic inhibition that relate 294 

to improved performance in visual (Frangou et al., 2019, 2018; Shibata et al., 2017) and motor 295 

tasks (Kolasinski et al., 2019; Sampaio-Baptista et al., 2015). Here, we employ tDCS to 296 

modulate cortical excitability (Antal et al., 2004a; Nitsche and Paulus, 2000) and test the role 297 

of GABAergic inhibition in perceptual learning. tDCS has been shown to alter performance in 298 

visual tasks (Antal et al., 2004b; Battaglini et al., 2017; Spiegel et al., 2013; Zito et al., 2015) 299 

and facilitate learning in motor (O’Shea et al., 2017) and visual memory tasks (Barron et al., 300 

2016) by reducing GABA. Here, we demonstrate that modulating GABAergic inhibition with 301 

tDCS during training boosts performance in perceptual judgements by altering local processing 302 

in visual cortex and functional connectivity between visual and posterior parietal areas that are 303 

involved in perceptual decision making. Our findings advance our understanding of 304 

GABAergic plasticity mechanisms for perceptual learning in the following respects. 305 

First, we have previously shown that anodal tDCS during training enhances behavioural 306 

improvement on the signal-in-noise task that has been shown to relate to decreased GABAergic 307 

inhibition (Frangou et al., 2018). Here, we demonstrate that tDCS dissociates faster vs. slower 308 

learning and GABAergic plasticity. In particular, we show that training with anodal stimulation 309 

on the visual cortex results not only in behavioural improvement, but also faster learning 310 

compared to training without stimulation (i.e. sham stimulation). Further, training with anodal 311 

tDCS results in decreased OCT GABA+ during and after stimulation, in contrast to training 312 

without stimulation (i.e. sham) that shows a later decrease in OCT GABA+ (i.e. after 313 

stimulation). Next, we show that this decrease in GABA+ during anodal stimulation relates to 314 

faster learning, suggesting that anodal OCT stimulation during training accelerates perceptual 315 

learning by shifting GABAergic plasticity in the OCT earlier in the learning process. 316 
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Second, previous studies have shown that training in a range of tasks (e.g. motor or 317 

perceptual tasks) results in changes in functional connectivity (Guerra-Carrillo et al., 2014; 318 

Karlaftis et al., 2019; Kelly and Castellanos, 2014; Lewis et al., 2009; Sampaio-Baptista et al., 319 

2015). Further, functional connectivity has been shown to relate to GABAergic inhibition 320 

(Frangou et al., 2019; Kapogiannis et al., 2013; Karlaftis et al., 2021; Mann and Paulsen, 2007; 321 

Nasrallah et al., 2017; Sampaio-Baptista et al., 2015; Shmuel and Leopold, 2008; Stagg et al., 322 

2014) and can be altered by tDCS during training in a range of tasks: spatial navigation 323 

(Krishnamurthy et al., 2015), associative learning (Krause et al., 2017), language processing 324 

(Cao and Liu, 2018; Meinzer et al., 2012), visual selective attention (McDermott et al., 2019) 325 

and visual search (Callan et al., 2016). In our previous work, we showed that perceptual 326 

learning in the signal-in-noise task relates to functional connectivity within visual cortex and 327 

between visual and posterior parietal regions measured at rest before training (Frangou et al., 328 

2019). Here, we test whether combining brain stimulation with training results in changes in 329 

functional connectivity. Our results demonstrate that anodal —rather than sham— OCT 330 

stimulation during training, decreases occipito-parietal connectivity. This is consistent with 331 

previous work showing that IPS is involved in identifying salient and task-relevant features 332 

early in training, while OCT is involved in tuning task-relevant feature representation after 333 

training (Chang et al., 2014; Frangou et al., 2019; Mayhew et al., 2012). In particular, our 334 

results show that increased occipito-parietal connectivity relates to faster learning for 335 

participants in the Sham group, who show slower improvement and are therefore engaged in 336 

earlier stages of learning. In contrast, for the Anodal group, occipito-parietal connectivity 337 

shows a significant decrease that correlates with OCT GABA+ decrease during our 338 

intervention (stimulation and training). The relationship between tDCS-induced changes in 339 

GABAergic inhibition and functional connectivity remains debated, with some studies 340 

showing a significant relationship (Antonenko et al., 2017), but some others not (e.g. (Bachtiar 341 
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et al., 2015)). Here, we show that anodal tDCS during training to detect targets in clutter results 342 

in accelerated GABA decrease in visual cortex that relates to reduced occipito-parietal 343 

connectivity, suggesting that anodal tDCS alters functional connectivity between sensory and 344 

decision-related areas. 345 

Further, we show a significant negative correlation between intrinsic connectivity 346 

change and OCT GABA+ change during anodal but not sham stimulation (potentially due to 347 

the delayed GABA decrease in the Sham group). This relationship between changes in OCT 348 

GABA+ and local temporal coherence suggests that decreased GABAergic inhibition within 349 

visual cortex may facilitate signal detection by enhancing local processing. This result is 350 

consistent with our previous work showing higher intrinsic connectivity before training for 351 

greater GABA decrease during training (Frangou et al., 2019). 352 

Previous work has shown that time-varying connectivity captures task and behavioural 353 

variability in addition to what is explained by static connectivity (Calhoun et al., 2014; Liégeois 354 

et al., 2019; Vidaurre et al., 2021). Here, we employ HMM to detect brain states of recurrent 355 

activity and connectivity patterns that have been linked to cognition (Karapanagiotidis et al., 356 

2020; Vidaurre et al., 2017) and investigate learning-dependent plasticity at a finer timescale. 357 

We show that anodal stimulation alters inter-regional synchrony at both coarse (i.e. static 358 

functional connectivity over longer time periods, in the range of minutes) and finer timescales 359 

(i.e. functional changes within shorter time windows, in the range of seconds). In particular, 360 

we find decreased localised activity (occipito-parietal, early visual) after training with anodal 361 

stimulation, consistent with the decreased static occipito-parietal connectivity. In contrast, we 362 

find increased widespread synchronised activation across the whole visual cortex after training 363 

with anodal stimulation. Widespread synchronised activity has been linked to integration of 364 

information (Varela et al., 2001) and higher sensitivity in error detection (Breakspear et al., 365 

2003). These processes are key for our signal-in-noise task that involves integrating 366 
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information across space, detecting the relevant features (i.e. signal) and suppressing irrelevant 367 

information (i.e. noise). 368 

Finally, despite the wide interest that tDCS has attracted in cognitive and clinical 369 

neuroscience, its validity remains debated and our understanding of the tDCS mechanisms of 370 

action remains limited (Fertonani and Miniussi, 2017). Here we address this challenge by 371 

combining tDCS with brain imaging to interrogate the brain mechanisms that underlie the 372 

facilitatory effect of tDCS on learning and brain plasticity. Our findings dissociate faster vs. 373 

slower learning mechanisms and provide evidence for GABAergic plasticity mechanisms 374 

across stages of learning. In particular, we demonstrate that tDCS results in faster learning to 375 

detect targets in clutter by accelerating GABAergic plasticity (i.e. reducing GABAergic 376 

inhibition) and decreasing occipito-parietal connectivity. Our findings propose that brain 377 

stimulation during training optimises sensory processing through local gain control 378 

mechanisms (i.e. reduction of GABAergic inhibition) (Katzner et al., 2011) to support 379 

improved perceptual decisions (i.e. detecting targets in cluttered scenes). 380 

 381 

Materials and Methods 382 

Participants 383 

We tested forty-five healthy volunteers (27 female; mean age 22.9 ± 3.3 years) in two 384 

intervention groups, twenty-four in the stimulation group (Anodal) and twenty-one in the no-385 

stimulation group (Sham). We tested an additional no-intervention group of twenty-two healthy 386 

volunteers who did not receive training nor stimulation (Control: 17 female; mean age 25.8 ± 387 

4.2 years). All participants were right-handed, had normal or corrected-to-normal vision, did 388 

not receive any prescription medication, were naïve to the aim of the study, gave written 389 

informed consent and received payment for their participation. The study was approved by the 390 

University of Cambridge Ethics Committee [PRE.2017.057]. 391 
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Stimuli 392 

We presented participants with Glass patterns (Glass, 1969) generated using previously 393 

described methods ((Zhang et al., 2010); Figure 1a). In particular, stimuli were defined by 394 

white dot pairs (dipoles) displayed within a square aperture on a black background. Stimuli 395 

(size=7.9o x 7.9o), were presented in the left hemifield (11.6 arc min from fixation) contralateral 396 

to the stimulation site to ensure maximal effect of stimulation on stimulus processing. The dot 397 

density was 3%, and the Glass shift (i.e., the distance between two dots in a dipole) was 16.2 398 

arc min. The size of each dot was 2.3 x 2.3 arc min2. For each dot dipole, the spiral angle was 399 

defined as the angle between the dot dipole orientation and the radius from the centre of the 400 

dipole to the centre of the stimulus aperture. Each stimulus comprised dot dipoles that were 401 

aligned according to the specified spiral angle (signal dipoles) for a given stimulus and noise 402 

dipoles for which the spiral angle was randomly selected. The proportion of signal dipoles 403 

defined the stimulus signal level. 404 

We generated radial (0o spiral angle) and concentric (90o spiral angle) Glass patterns by 405 

placing dipoles orthogonally (radial stimuli) or tangentially (concentric stimuli) to the 406 

circumference of a circle centred on the fixation dot. A new pattern was generated for each 407 

stimulus presented in a trial, resulting in stimuli that were locally jittered in their position. 408 

Radial (spiral angle: 0°) and concentric stimuli (spiral angle: ± 90°) were presented at 23% or 409 

25% signal level counterbalanced across trials; noise dipoles were presented at random position 410 

and orientation. To control for potential local adaptation due to stimulus repetition and ensure 411 

that learning related to global shape rather than local stimulus features, we jittered (± 1-3°) the 412 

spiral angle across stimuli. 413 

 414 
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Experimental Design 415 

All participants in the intervention groups took part in a single brain imaging session during 416 

which they were randomly assigned to the Anodal or Sham group. Participants in the Anodal 417 

group received anodal tDCS on the right OCT, whereas participants in the Sham group did not 418 

receive stimulation. We recorded three MRS measurements from the right OCT during 419 

training: before, during and after stimulation. In addition, we recorded whole-brain rs-fMRI 420 

data before and after training while participants fixated on a cross at the centre of the screen 421 

(Figure 1b). Participants in the no-intervention Control group took part in a single brain 422 

imaging session without stimulation or training; we recorded three MRS measurements from 423 

right OCT at the same timings of the MRS measurements as for the intervention groups. We 424 

did not record rs-fMRI data for this group due to time constraints. 425 

During training, participants in the intervention groups were presented with Glass 426 

patterns and were asked to judge and indicate by button press whether the presented stimulus 427 

in each trial was radial or concentric. Two stimulus conditions (radial vs. concentric Glass 428 

patterns; 100 trials per condition), were presented for each training block. For each trial, a 429 

stimulus was presented for 300ms and was followed by fixation (i.e., blank screen with a central 430 

fixation dot) while waiting for the participant’s response (self-paced training paradigm). Trial-431 

by-trial feedback was provided by means of a visual cue (green tick for correct, red ‘x’ for 432 

incorrect) followed by a fixation dot for 500ms before the onset of the next trial. 433 

In the no-intervention control group, participants were tested in a contrast change 434 

detection task. In particular, participants were presented with Glass patterns where 100% of the 435 

dipoles were randomly oriented (0% signal patterns). In each trial, participants were asked to 436 

choose whether the top or bottom half of the pattern underwent a contrast change. Task 437 

difficulty was controlled by a two-up-one-down staircase to ensure participants were not 438 

trained at the task and response accuracy was held at 75%. 439 
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MRI data acquisition 440 

We collected MRI data on a 3T Siemens PRISMA scanner (Cognition and Brain Sciences Unit, 441 

Cambridge) using a 64-channel head coil. T1-weighted structural data (TR = 19.17s; TE = 442 

2.31ms; number of slices = 176; voxel size = 1mm isotropic) and echo-planar imaging (EPI) 443 

data (gradient echo-pulse sequences) were acquired during rest (TR = 0.727s; TE = 34.6ms; 444 

number of slices = 72; voxel size = 2mm isotropic; Multi-band factor = 8; flip angle = 51º; 445 

number of volumes = 660; duration = 8m09s; whole brain coverage). During EPI data 446 

acquisition, we recorded cardiac pulsation (using a pulse oximeter) and respiration (using a 447 

respiratory belt) to model these physiological data for denoising. 448 

 449 

MRS data acquisition 450 

We collected MRS data with a MEGA-PRESS sequence (Mescher et al., 1998): echo 451 

time = 68ms, repetition time = 3000ms; 256 transients of 2048 data points were acquired in 452 

13min experiment time; a 14.28ms Gaussian editing pulse was applied at 1.9 (ON) and 7.5 453 

(OFF) ppm; water unsuppressed 16 transients (Table S6, following guidelines by (Lin et al., 454 

2021)). Measurements with this sequence at 3T have been previously shown to produce reliable 455 

and reproducible estimates of GABA+ (Puts and Edden, 2012). Water suppression was 456 

achieved using variable power with optimized relaxation delays and outer volume suppression. 457 

Automated shimming was conducted to achieve water linewidth below 10Hz. We acquired 458 

spectra from an MRS voxel (20 x 20 x 25 mm3) in the right OCT (Figure 3). We manually 459 

positioned the MRS voxel using anatomical landmarks (superior temporal gyrus, middle 460 

occipital gyrus) on each participant’s structural scan, ensuring that voxel placement was 461 

consistent across participants. The centre of gravity for the MRS voxel was: x=40.8±3.2mm, 462 

y=-61.7±5.2mm, z=10.6±3.6mm in Montreal Neurological Institute (MNI) space. During the 463 
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MRS acquisitions, participants in the intervention groups performed the SN task, while 464 

participants in the no-intervention control group performed the contrast change detection task. 465 

 466 

tDCS data acquisition 467 

We used a multi-channel transcranial electrical stimulator (neuroConn DC-STIMULATOR 468 

MC, Ilmenau, Germany) to deliver anodal or sham stimulation. We used a pair of MR-469 

compatible rubber electrodes (3x3 cm2 stimulating electrode, 5x5 cm2 reference electrode), 470 

which were secured on the head with the help of rubber bands. Ten-20 paste was used as a 471 

conductive medium between the rubber electrodes and the scalp. For the Anodal group, 1mA 472 

current was ramped up over 10s, was held at 1mA for 20min and was subsequently ramped 473 

down over 10s. For the Sham group, the current ramped up (10s) and down (10s) in the 474 

beginning of the session. We used online stimulation (i.e. stimulation during training), as this 475 

protocol has been previously shown to enhance the lasting effect of training (O’Shea et al., 476 

2017). It has been shown that this facilitatory effect is not present or polarity-specific when 477 

stimulation precedes training, with anodal stimulation impeding learning (Stagg et al., 2011). 478 

To achieve consistent electrode placement across participants when targeting the right posterior 479 

OCT (consistent with the MRS acquisition in the right OCT), we placed the bottom right corner 480 

of the square stimulating electrode on T6, using a 10-20 system EEG cap, maintaining the same 481 

orientation across participants, parallel to the line connecting T6 and O2. The reference 482 

electrode was placed on Cz. We have previously used the same electrode montage (Frangou et 483 

al, 2018), following electrical field density simulations showing that this montage results in 484 

unilaterally localised current density, the peak of the electric field density being under the 485 

anode electrode around the posterior OCT and the stimulation reaching the region where the 486 

MRS voxel was placed. 487 

 488 
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Behavioural data analysis 489 

We measured behavioural performance per training block as the mean accuracy per 200 trials. 490 

To quantify learning-dependent changes in behaviour, we computed the behavioural 491 

performance before, during and after stimulation as the average performance of blocks 1-2 492 

(Pre), 3-5 (During) and 6-9 (Post), respectively. Further, we quantified learning rate by fitting 493 

individual participant training data with a logarithmic function: y = 𝑘 ∗ ln 𝑥 + c, where x is the 494 

training run separated into 100 trial bins, y is the run accuracy, c is the starting performance 495 

and k corresponds to the learning rate. Positive learning rate indicates that performance 496 

improved with training, whereas negative or close to zero learning rate indicates no behavioural 497 

improvement. 498 

 499 

MRS data analysis 500 

We pre-processed the MRS data using MRspa v1.5c (www.cmrr.umn.edu/downloads/mrspa/). 501 

We applied Eddy current, frequency and phase correction before subtracting the average ON 502 

and OFF spectra, resulting in edited spectra. We used LC-Model (Provencher, 2001) to 503 

quantify metabolite concentrations by fitting simulated model spectra of γ-amino-butyric acid 504 

(GABA), Glu, Glutamine and NAA to the edited spectra (Figure 3b), setting the sptype 505 

parameter to mega-press-2. We refer to GABA concentration as GABA+, as MRS 506 

measurements of GABA with MEGA-PRESS include co-edited macromolecules (Mullins et 507 

al., 2014). We referenced metabolite concentrations to the concentration of water for our 508 

analyses and then validated our findings by referencing GABA+ to NAA to ensure our results 509 

were not driven by the chosen reference (Lunghi et al., 2015). 510 

GABA+ measurements within 3 standard deviations from the mean across all groups 511 

and blocks (data for 1 participant of the Anodal group were excluded) and with Cramer-Rao 512 

lower bound (CRLB) values smaller than 15% (data for 2 participants of the Anodal group and 513 
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1 of the Sham group were excluded) were included in further steps of MRS related analyses. 514 

SNR was calculated as the amplitude of the NAA peak in the difference-spectrum divided by 515 

twice the root mean square of the residual signal (Provencher, 2001). We report average quality 516 

indices (CRLB, linewidth, SNR) per group and block (Table S1). To control for potential 517 

differences in data quality across participants and blocks, we performed control analyses that 518 

accounted for changes in linewidth and SNR (Table S2, Table S3). We did not include control 519 

analyses for changes in CRLB, as reductions in GABA concentration have been shown to be 520 

inherently linked to increases in CRLB (Emir et al., 2012; Kreis, 2016; Lunghi et al., 2015). 521 

Further, we conducted whole brain tissue-type segmentation of the T1-weighted 522 

structural scan and calculated percentage of grey matter, white matter and cerebrospinal fluid 523 

(CSF) in the MRS voxel. To ensure that correlations with GABA+ were not driven by 524 

variability in tissue composition within the MRS voxel across participants, we conducted two 525 

control analyses (Table S2, Table S3): (a) regressed out the CSF percentage from the GABA+ 526 

concentrations, (b) applied α-correction on the GABA+ values to account for the difference in 527 

GABA+ between grey and white matter (Porges et al., 2017). 528 

 529 

rs-fMRI data analysis 530 

We pre-processed the structural and the rs-fMRI data in SPM12.4 (v7219; 531 

www.fil.ion.ucl.ac.uk/spm/software/spm12/) following the Human Connectome Project 532 

pipeline for multi-band data (Smith et al., 2013). In particular, we first coregistered (non-533 

linearly) the T1w structural images (after brain extraction) to MNI space to ensure that all 534 

participant data were in the same stereotactic space for statistical analysis. We then (a) 535 

corrected the EPI data for susceptibility distortions (fieldmap correction) and any spatial 536 

misalignments between EPI volumes due to head movement (i.e. aligned each run to its single 537 

band reference image), (b) coregistered the second EPI run to the first (rigid body) to correct 538 
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any spatial misalignments between runs, (c) coregistered the first EPI run to the structural 539 

image (rigid body) and (d) normalised them to MNI space for subsequent statistical analyses 540 

(applying the deformation field of the structural images). Data were only resliced after MNI 541 

normalisation to minimise the number of interpolation steps. Following MNI normalisation, 542 

(e) data were skull-stripped, (f) spatially smoothed with a 4mm Gaussian kernel to improve the 543 

signal-to-noise ratio and the alignment between participant data (two times the voxel size; 544 

(Chen and Calhoun, 2018)), (g) wavelet despiked to remove any secondary motion artifacts 545 

(Patel et al., 2014) and (h) had linear drifts removed (linear detrending due to scanner noise). 546 

Slice-timing correction was not applied, following previous work on fast TR (sub-second) 547 

acquisition protocols (Smith et al., 2013). Data from 8 participants (2 anodal, 6 sham) were 548 

excluded from further analysis due to missing the second rs-fMRI run. 549 

Next, we applied spatial group Independent Component Analysis (ICA) using the 550 

Group ICA fMRI Toolbox (GIFT v3.0b) (http://mialab.mrn.org/software/gift/) to identify and 551 

remove components of noise. PCA was applied for dimensionality reduction, first at the subject 552 

level, then at the group level. The Minimum Description Length criteria (Rissanen, 1978) were 553 

used to estimate the dimensionality and determine the number of independent components. The 554 

ICA estimation (Infomax) was run 20 times and the component stability was estimated using 555 

ICASSO (Himberg et al., 2004). Following recent work on back-reconstruction methods for 556 

ICA denoising at the group level (Du et al., 2016), we used Group Information Guided ICA 557 

(GIG-ICA) back-reconstruction to reconstruct subject-specific components from the group 558 

components. We visually inspected the results and identified noise components according to 559 

published procedures (Griffanti et al., 2017). Using consensus voting among 3 experts, we 560 

labelled 8 of the 31 components as noise that captured signal from veins, arteries, CSF 561 

pulsation, susceptibility and multi-band artefacts. 562 
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To clean the fMRI signals from signals related to motion and the noise components, we 563 

followed a soft clean-up ICA denoise approach (Griffanti et al., 2014). That is, we first 564 

regressed out the motion parameters (translation, rotation and their squares and derivatives; 565 

(Friston et al., 1996)) from each voxel and ICA component time course. Second, we estimated 566 

the contribution of every ICA component to each voxel’s time course (multiple regression). 567 

Finally, we subtracted the unique contribution of the noise components from each voxel’s time 568 

course to avoid removing any shared signal between neuronal and noise components. 569 

Following ICA denoise, we performed a first-level analysis modelling the physiological 570 

data as nuisance variables. We used the TAPAS toolbox (Kasper et al., 2017) to create 571 

physiological covariates that model terms for RETROICOR (Glover et al., 2000), heart rate 572 

variability (Chang et al., 2009) and respiratory volume per time (Birn et al., 2008). Following 573 

previous work (Caballero-Gaudes and Reynolds, 2017), we selected a second-order model for 574 

both the cardiac and the respiratory signal (no interaction term) and zero delay for the heart 575 

rate variability and respiratory volume per time terms. Within the GLM, the data were high-576 

pass filtered at 0.01Hz and treated for serial correlations using the FAST autoregressive model, 577 

as it has been shown to perform more accurate autocorrelation modelling for fast TR 578 

acquisitions (Corbin et al., 2018; Olszowy et al., 2019). The residual time course from the last 579 

step was used for all subsequent analyses. 580 

 581 

Static connectivity analysis 582 

We calculated extrinsic functional connectivity between OCT and IPS and intrinsic 583 

connectivity within OCT. First, we created masks for these two regions of interest (ROI). For 584 

OCT, we computed the overlap across participant MRS voxels and created a group MRS mask 585 

that included voxels present in at least 50% of the participants’ MRS voxels. For IPS, we 586 
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created an equally sized cubic mask centred on the intraparietal cortex (centre at 34, -50, 42 in 587 

MNI space (Frangou et al., 2019), edge length = 20mm). 588 

Then, for each participant and ROI, we computed the first eigenvariate across all grey 589 

matter voxels within the region to derive a single representative time course per ROI. We 590 

applied a 5th order Butterworth band-pass filter between 0.01 and 0.08 Hz on the eigenvariate 591 

time course, similar to previous studies (Cordes et al., 2001; Frangou et al., 2019; Murphy et 592 

al., 2013). Extrinsic functional connectivity was computed as the Pearson correlation of the 593 

OCT-IPS time courses. Similarly, intrinsic connectivity was computed as the Pearson 594 

correlation of each OCT voxel’s time course to the eigenvariate time course and then averaged 595 

across voxels (Bachtiar et al., 2015; Frangou et al., 2019; Stagg et al., 2014; Van Dijk et al., 596 

2010). We computed the change in rs-fMRI connectivity as the difference of the pre- from the 597 

post-intervention run (after Fisher z-transform) and tested for: (a) changes in extrinsic and 598 

intrinsic connectivity, (b) correlations of connectivity change with OCT GABA+ change, and 599 

(c) correlations of connectivity change with behaviour. For correlations with GABA+ and 600 

behaviour, we regressed out the pre-intervention connectivity from the difference to control for 601 

baseline differences across participants. 602 

 603 

Time-varying connectivity analysis 604 

We estimated time-varying functional connectivity using the HMM-MAR toolbox (Vidaurre 605 

et al., 2018, 2017). In particular, we estimated a HMM on the visual cortex to detect brain states 606 

representing recurrent patterns of activity and connectivity over time. Using a Bayesian 607 

approach, the model learns a set of parameters for each state and the probability of their 608 

activation at each time point given the recorded data. Specifically, given an active state 𝑍𝑡 at 609 

time 𝑡, the recorded data sample 𝑋𝑡 is described by a multivariate Gaussian distribution: 610 
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𝑃(𝑋𝑡|𝑍𝑡 = 𝑘) ~ 𝑁(𝜇𝑘, Σ𝑘). Each state has distinct mean and covariance parameters that 611 

capture each state’s mean activation and functional connectivity. 612 

To investigate the dynamics of the occipito-parietal (OCT-IPS) interactions with the 613 

rest of the visual cortex, we defined fourteen bilateral regions from the Probabilistic map of 614 

Visual Topography (Wang et al., 2015) (Table S4). We then computed the first eigenvariate 615 

across all voxels within each region to derive a single representative time course per ROI. We 616 

concatenated the time courses of all ROIs across participants and runs to estimate state 617 

distributions (i.e. the spatial parameters of the model) at the group level, whereas the 618 

probability of a state activation is still defined uniquely for each timepoint at the participant 619 

level (i.e. the temporal parameters of the model; (Vidaurre et al., 2016)). 620 

Latent variable models (such as the HMM) can be sensitive to local minima or poor 621 

initialisation (Vidaurre et al., 2019). To ensure stability on the estimation of the HMM states, 622 

we ran the algorithm 10 times with 10 random initialisations for each iteration and selected the 623 

iteration with the lowest free energy for simplicity. Further, we tested whether the results were 624 

robust to variations of key hyperparameters: the number of states ranging from 4 to 10, and the 625 

input data dimensionality by varying the number of retained PCA dimensions to capture 626 

between 70% and 100% of the variance (in increments of 10%). 627 

To describe the state dynamics, we computed two summary measures: FO per state, as 628 

the proportion of time spent in that state, and SR across states, as the frequency of switching 629 

between states. That is, a state with increased (decreased) FO after training indicates that 630 

regions within that state are more (less) involved in the processing of the task, suggesting a 631 

higher (lower) engagement of that state after training. Similarly, increased SR after training 632 

indicates faster switching from one state to another over time, suggesting shorter processing 633 

times within a state after training. Finally, we computed change in FO and SR as the difference 634 

of the pre- from the post-intervention rs-fMRI run and tested for within-group changes. 635 
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Statistical analysis 636 

For ANOVAs, we tested for sphericity and used Greenhouse-Geisser (for epsilon less than 637 

0.75) or Huynh-Feldt (for epsilon greater than 0.75) correction, if sphericity was violated. For 638 

correlational analyses, we used skipped Pearson correlation of the Robust Correlation Toolbox 639 

to account for bivariate outliers and adjusted the degrees of freedom when outliers were 640 

detected (Pernet et al., 2013). 641 
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Figures 

 

 

Figure 1. Stimuli and experiment timeline: (a) Example stimuli comprising radial and 

concentric Glass patterns (stimuli are presented with inverted contrast for illustration 

purposes). Stimuli are shown for the signal-in-noise task (25% signal, spiral angle 0° for radial 

and 90° for concentric). Prototype stimuli (100% signal, spiral angle 0° for radial and 90° for 

concentric) are shown for illustration purposes only. (b) Timeline of the experiment that 

comprises two rs-fMRI scans and three MRS measurements during training on the signal-in-

noise task. tDCS was delivered during the second MRS acquisition for the intervention groups 

(Anodal, Sham).  
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Figure 2. Behavioural performance: (a) Mean behavioural performance across participants 

per group (Anodal, Sham) and block (Pre, During, Post). Error bars indicate standard error of 

the mean across participants. (b) Boxplot of learning rate across training showing faster 

learning for Anodal than Sham group. The upper and lower error bars display the minimum 

and maximum data values, and the central box represents the interquartile range (25th–75th 

percentiles). The red line in the centre of the box represents the median.  
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Figure 3. MRS voxel placement and spectra: (a) For each participant, we positioned the OCT 

MRS voxel using anatomical landmarks (superior temporal gyrus and middle occipital gyrus) 

on the acquired T1 scan to ensure that voxel placement was consistent across participants. 

Placement of the MRS voxel is shown for a representative participant (sagittal, axial view: 

native space). (b) Sample spectra from the MRS voxel of a representative participant. We show 

the LC model fit, the residual and the respective fits for GABA+, Glutamate and NAA. 
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Figure 4. GABA+ change during training and correlations with behaviour: (a) OCT MRS-

measured GABA+ over time is shown per group (Anodal, Sham, Control). We calculated % 

GABA+/water change by subtracting GABA+/water measurements in each of the three blocks 

from the pre-stimulation block and then divided by GABA+/water in the pre-stimulation block. 

(b) Skipped Pearson correlations showing a significant negative correlation of OCT GABA+ 

change (i.e. during- minus pre-stimulation block, divided by pre-stimulation block) with 

learning rate for the Anodal, but not the Sham group. These correlations were significantly 

different between groups. 
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Figure 5. Extrinsic connectivity and correlations with behaviour and GABA+: (a) Mean 

OCT-IPS connectivity (Fisher z) per group (Anodal, Sham) and block (pre-, post-intervention). 

(b) Skipped Pearson correlations showing no significant correlation of OCT-IPS connectivity 

change with learning rate for the Anodal group, but a significant positive correlation for the 

Sham group. These correlations were significantly different between groups. (c) Skipped 

Pearson correlations showing a significant positive correlation of OCT-IPS connectivity 

change with OCT GABA+ change for the Anodal group, but not the Sham. Open symbols 

denote outliers. 
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Figure 6: Intrinsic connectivity and correlations with behaviour and GABA+: (a) Mean 

intrinsic connectivity in OCT (Fisher z) per group (Anodal, Sham) and block (pre-, post-

intervention). (b) Skipped Pearson correlations showing no significant correlation of OCT 

connectivity change with learning rate for the Anodal or the Sham group. (c) Skipped Pearson 

correlations showing a significant negative correlation of OCT connectivity change with OCT 

GABA+ change for the Anodal group, but not the Sham. Open symbols denote outliers. 
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Figure 7: HMM states and Fractional Occupancy change: (a) Normalised mean activation 

maps per state are shown overlaid on the MNI brain. Warm colours (red-yellow) denote 

positive values, cool colours (blue-green) denote negative values for the respective region. (b) 

Transition probabilities between these states. The five states are displayed as nodes and the 

arrows denote the direction of the transition from one state to another. The thickness of the 

arrows is proportional to the transition probability between the corresponding states. Transition 

probabilities lower than 20% were removed for visualisation purposes. (c) Mean Fractional 

Occupancy per state and block (pre-, post-intervention) are shown for each group (Anodal: left, 

Sham: right). Lighter bars correspond to pre-training measures, darker bars to post-training 

measures. 
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Figure S1: Functional Connectivity matrices of HMM states: Functional Connectivity 

matrices are shown as 28x28 matrices per state. For each ROI, data are included for each 

hemisphere (left, right). Warm colours (yellow) denote higher connectivity values, cool colours 
(blue) denote connectivity values close to zero.  
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Supplementary Tables 

Table S1. MRS quality measures: Cramer-Rao lower bound (CRLB), linewidth and signal-

to-noise ratio (SNR) are shown for the OCT MRS voxel per group and block. 

MRS quality measure Block Group Mean Std 

CRLB 

Pre 

Anodal 5.67 1.20 

Sham 5.65 1.14 

Control 5.91 1.31 

During 

Anodal 6.76 2.00 

Sham 6.35 2.13 

Control 6.23 1.27 

Post 

Anodal 6.81 1.89 

Sham 6.50 1.73 

Control 5.82 1.05 

Linewidth 

Pre 

Anodal 7.83 0.67 

Sham 7.96 0.45 

Control 8.14 0.48 

During 

Anodal 7.94 0.70 

Sham 8.07 0.50 

Control 8.20 0.53 

Post 

Anodal 7.95 0.68 

Sham 8.15 0.49 

Control 8.22 0.56 

SNR 

Pre 

Anodal 19.95 3.40 

Sham 20.50 2.98 

Control 19.27 3.58 

During 

Anodal 19.33 3.50 

Sham 20.00 3.34 

Control 18.68 3.63 

Post 

Anodal 20.29 3.77 

Sham 20.15 3.01 

Control 18.91 3.44 
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Table S2: Control analyses for GABA+ correlation with behaviour: Pearson correlations 

(r, p) for GABA+ change and learning rate when: regressing out the CSF percentage or using 

α-correction to control for tissue composition within the MRS mask, using GABA+ referenced 

to NAA (rather than water), regressing out changes in MRS data quality (linewidth, SNR), and 

testing for neurotransmitter specificity (Glu change). 

Group Control r p 

Anodal 

%CSF -0.52 0.017 

α-correction -0.51 0.018 

GABA+/NAA -0.47 0.031 

Linewidth -0.49 0.024 

SNR -0.50 0.022 

Glu -0.28 0.225 

Sham 

%CSF 0.25 0.291 

α-correction 0.26 0.262 

GABA+/NAA 0.27 0.248 

Linewidth 0.25 0.291 

SNR 0.27 0.251 

Glu -0.07 0.782 
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Table S3: Control analyses for GABA+ correlation with resting-state connectivity: 

Pearson correlations (r, p) for GABA+ change and resting-state connectivity when: regressing 

out the CSF percentage or using α-correction to control for tissue composition within the MRS 

mask, using GABA+ referenced to NAA (rather than water), regressing out changes in MRS 

data quality (linewidth, SNR), and testing for neurotransmitter specificity (Glu change). 

Connectivity Group Control r p 

OCT-IPS 

Anodal 

%CSF 0.48 0.039 

α-correction 0.50 0.030 

GABA+/NAA 0.51 0.025 

Linewidth 0.49 0.032 

SNR 0.48 0.037 

Glu 0.03 0.909 

Sham 

%CSF 0.24 0.396 

α-correction 0.12 0.667 

GABA+/NAA 0.19 0.495 

Linewidth 0.14 0.620 

SNR 0.13 0.656 

Glu -0.22 0.426 

OCT 

Anodal 

%CSF -0.50 0.048 

α-correction -0.53 0.035 

GABA+/NAA -0.54 0.033 

Linewidth -0.52 0.037 

SNR -0.51 0.045 

Glu 0.08 0.773 

Sham 

%CSF 0.29 0.299 

α-correction 0.20 0.466 

GABA+/NAA 0.25 0.377 

Linewidth 0.26 0.358 

SNR 0.26 0.353 

Glu -0.13 0.633 
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Table S4. Visual regions for time-varying connectivity analysis: Regions were selected 

from the Probabilistic map of Visual Topography (Wang et al., 2015). The size and the MNI 

coordinates of the centre of gravity for each region are shown. Regions between 30 and 100 

voxels were grouped together with a neighbouring region that serves similar functionality and 

displayed a similar time course. Regions smaller than 30 voxels were excluded from the 

analysis as signals being unreliable. 

Region Hem. Size x y z 

V1v 
L 462 -6 -89 -5 
R 394 8 -87 -2 

V1d 
L 389 -7 -96 2 
R 359 11 -94 5 

V2v 
L 359 -9 -83 -11 
R 368 10 -81 -8 

V2d 
L 309 -10 -99 12 
R 336 15 -96 14 

V3v 
L 247 -17 -79 -12 
R 280 18 -77 -11 

V3d 
L 264 -18 -97 16 
R 253 24 -94 16 

hV4 
L 155 -25 -80 -14 
R 173 26 -79 -12 

VO1, VO2 
L 192 -25 -66 -10 
R 214 26 -64 -9 

PHC1, PHC2 
L 176 -27 -52 -8 
R 164 28 -49 -9 

LO1, LO2 
L 228 -35 -88 7 
R 221 38 -85 9 

V3b 
L 111 -29 -90 17 
R 152 34 -84 18 

V3a 
L 195 -19 -91 24 
R 359 21 -88 28 

IPS0 
L 264 -25 -80 30 
R 235 30 -78 33 

IPS1, IPS2 
L 206 -21 -71 46 
R 155 25 -69 47 
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Table S5: Control analyses for time-varying connectivity analysis: Repeated measures 

ANOVA results (State x Block interaction on Fractional Occupancy) are shown per group for 

a range of HMM parameters (states: from 4 to 7, PCA: from 70% to 100% in increments of 

10%). F and p-values are reported per test and the significant results are shown in italic. 

Model Group F p 

states=4, PCA=70% 
Anodal 7.36 0.006 

Sham 0.62 0.486 

states=4, PCA=80% 
Anodal 7.81 0.006 

Sham 1.12 0.318 

states=4, PCA=90% 
Anodal 7.42 0.009 

Sham 1.10 0.318 

states=4, PCA=100% 
Anodal 9.70 0.004 

Sham 1.73 0.210 

states=5, PCA=70% 
Anodal 5.55 0.013 

Sham 0.74 0.451 

states=5, PCA=80% 
Anodal 6.22 0.010 

Sham 1.14 0.319 

states=5, PCA=90% 
Anodal 7.50 0.007 

Sham 0.66 0.474 

states=5, PCA=100% 
Anodal 7.59 0.005 

Sham 1.84 0.194 

states=6, PCA=70% 
Anodal 5.99 0.005 

Sham 0.41 0.688 

states=6, PCA=80% 
Anodal 6.84 0.005 

Sham 0.52 0.598 

states=6, PCA=90% 
Anodal 7.23 0.008 

Sham 0.54 0.536 

states=6, PCA=100% 
Anodal 6.93 0.009 

Sham 1.87 0.190 

states=7, PCA=70% 
Anodal 4.38 0.013 

Sham 0.47 0.688 

states=7, PCA=80% 
Anodal 5.40 0.008 

Sham 0.65 0.556 

states=7, PCA=90% 
Anodal 6.52 0.008 

Sham 0.63 0.521 

states=7, PCA=100% 
Anodal 4.84 0.009 

Sham 1.54 0.237 
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Table S6: Minimum Reporting Standards in MRS checklist 

Site (Name or Number) MRC Cognition and Brain Sciences Unit 

(University of Cambridge) 

1. Hardware  

a. Field strength [T] 3 

b. Manufacturer  Siemens 

c. Model Prisma 

d. RF coils 32-channel receive head coil 

e. Additional hardware N/A 

2. Acquisition   

a. Pulse sequence  MEGA-PRESS 

b. Volume of Interest (VOI) locations  Occipito-temporal cortex 

c. Nominal VOI size [cm3, mm3] 20x20x25 mm 

d. Repetition Time (TR), Echo Time (TE) 

[ms, s] 

TR=3000ms, TE=68ms 

e. Total number of Excitations or acquisitions 

per spectrum 

256 

f. Additional sequence parameters: Spectral bandwidth: 1200 Hz 

Spectral points: 2048 

g. Water Suppression Method Water suppression was achieved using 

variable power with optimized relaxation 

delays and outer volume suppression. 

h. Shimming Method, reference peak, and 

thresholds for “acceptance of shim” chosen 

Automated 3D head shim (GRE-BRAIN) 

to achieve water peak linewidth below 10 

Hz.  

i. Triggering or motion correction method N/A 
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3. Data analysis methods and outputs  

a. Analysis software MRspa (preprocessing, version v1.5c), 

LCmodel (fitting and quantification)  

b. Processing steps deviating from quoted 

reference or product 

MRspa pre-processing options selected: 

- eddy current corr.: ECC2 + zero phase 

- frequency corr.: absolute (3.01) 

- phase corr.: least square 

c. Output measure Concentrations relative to water or NAA 

d. Quantification references and assumptions, 

fitting model assumptions 

We fitted model spectra of γ-amino-butyric 

acid (GABA), Glutamate (Glu), Glutamine 

(Gln) and N acetylaspartate (NAA) to the 

edited spectra.  The model spectra of were 

generated based on previously reported 

chemical shifts and coupling constants 

using the GAMMA/PyGAMMA 

simulation library of VESPA for carrying 

out the density matrix formalism. A 20 x 

20 spatial matrix was used to simulate the 

spatial variations inside and outside the 

nominal PRESS dimensions. Simulations 

were performed with the same RF pulses 

and sequence timings as that on the 3T 

system in use.  

4. Data Quality   

a. Reported variables  See Table S1 

b. Data exclusion criteria Water peak linewidth > 10 Hz 

CRLB > 15% 

GABA+ concentration outside three 

standard deviations from the mean across 

all groups and blocks.  

c. Quality measures of postprocessing Model 

fitting  

See Table S1 

d. Sample Spectrum See Figure 3 
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