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Abstract: Little is still known about the neuroanatomical
substrates related to changes in specific cognitive abili-
ties in the course of healthy aging, and the existing evi-
dence is predominantly based on cross-sectional studies.
However, to understand the intricate dynamics between
developmental changes in brain structure and changes
in cognitive ability, longitudinal studies are needed. In
the present article, we review the current longitudinal
evidence on correlated changes between magnetic reso-
nance imaging-derived measures of brain structure (e.g.
gray matter/white matter volume, cortical thickness), and
laboratory-based measures of fluid cognitive ability (e.g.
intelligence, memory, processing speed) in healthy older
adults. To theoretically embed the discussion, we refer to
the revised Scaffolding Theory of Aging and Cognition.
We found 31 eligible articles, with sample sizes ranging
from n =25 to n=731 (median n=104), and participant age
ranging from 19 to 103. Several of these studies report pos-
itive correlated changes for specific regions and specific
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cognitive abilities (e.g. between structures of the medial
temporal lobe and episodic memory). However, the num-
ber of studies presenting converging evidence is small,
and the large methodological variability between studies
precludes general conclusions. Methodological and theo-
retical limitations are discussed. Clearly, more empirical
evidence is needed to advance the field. Therefore, we
provide guidance for future researchers by presenting
ideas to stimulate theory and methods for development.

Keywords: brain structure; change; cognitive ability; cor-
related change; healthy aging; longitudinal.

Introduction

Life expectancy has risen steadily due to innovations in
medicine and improved living standards. In 2015, life
expectancy at birth exceeded 80 years in 22 European
countries (World Health Organization, WHO, 2016). Glob-
ally, it is estimated to increase by a further 6 years until
2050 (United Nations, 2017). With an extended lifespan, it
is increasingly important to understand how these addi-
tional years of life can be spent in good health. To foster
research in this matter, the WHO recently announced the
‘Decade of Healthy Aging’ from 2020 until 2030, defining
healthy aging as the ‘process of developing and maintain-
ing the functional ability that enables well-being in older
age’ (WHO, 2015). Cognitive health is of high importance
for aging healthily (Lawton et al., 1999), with a substan-
tial impact on tasks of independent living (Salthouse,
2012), such as medication adherence (Insel et al., 2006),
telephone use, financial management, or nutritional
choices (Gregory et al., 2009). For the present article, we
therefore limit our definition of healthy aging to the cog-
nitive domain. Specifically, we refer to aging processes
that occur in the absence of pathological cognitive impair-
ments, as previous literature has not yet reached a con-
sensus on the definition of healthy cognitive aging.
Previous research has identified cognitive frailty
as one of the most important threats for well being in
healthy aging with an enormous impact on the decision
to discount hypothetical years of life (Lawton et al., 1999)
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and linked cognitive frailty to the degradation of neural
mechanisms. Specifically, a vast number of studies have
focused on the relationship between indicators of brain
function derived from task-related functional mag-
netic resonance imaging (MRI) studies and task-based
indicators of cognitive ability (e.g. episodic memory,
processing speed, working memory) in healthy aging
individuals (see Grady, 2012, for an overview). Much
less is known, however, about the association between
measures of brain structure and cognitive ability,
although brain structure represents the hardware on
which brain function is implemented (the neurobiologi-
cal relevance of these structural measures is discussed
in Box 1). The current article aims to shed more light on
this relationship.

J. Oschwald et al.: Brain structure and cognitive ability in healthy aging

DE GRUYTER

The association between brain structure and cogni-
tive ability can be illuminated from different perspectives,
depending on the research question one is interested in.
Whereas the choice of the research question is mainly
driven by theoretical considerations, the type of data,
and methods available constrain whether one is able to
address it (see Boker and Martin, 2018 for an in-depth
discussion). As follows, we will discuss four research
questions that are of theoretical relevance regarding the
relation between brain structure and cognitive ability in
healthy aging, and relate them to the data and methods
needed to answer them, using Catell’s (1988) data box.
Figure 1 shows how the three dimensions of the data box
(persons x variables x measurement occasion) are related
to the different possible research questions.

Box 1: Neurobiological foundation of age-related change in brain structure and methodological advances in neuroimaging.

Recent reviews of cross-sectional brain imaging studies summarizing data from many subjects as well as large-scale longitudinal brain
imaging studies report mean percentage changes per year for GM and WM ranging between 0.5% and 0.8% (Fjell and Walhovd, 2010;
Ritchie et al., 2015b). The age-related GM loss may result from several neuroanatomical changes comprising loss of neuropil (unmyelinated
axons, dendrites, and glial cells), shrinking of neural bodies, changes to the dendritic morphology (e.g. decline in the number of dendritic
spines, shortening of dendritic shafts, and reduction of dendritic branching), or a decrease in synaptic density, probably indicating a loss
in the number of synapses (Pannese, 2011; Juraska and Lowry, 2012). Furthermore, age-related degradation of WM may result from axonal
degeneration, myelin changes (e.g. demyelination, deformation of the morphological structure), or other changes, such as glial scars or
accumulation of cellular debris (Juraska and Lowry, 2012; Bennett and Madden, 2014). Overall, the cellular foundation of age-related neural
changes as captured by MRI is still poorly understood, as the current knowledge is mostly based on animal research and post-mortem
studies with humans. Nevertheless, several authors argue that the age-related brain tissue loss might be one of the reasons why cognitive
functions decline on average with ongoing age. One technique that has become very popular due to its ease of use and its potential to
study human brain tissue microstructure in vivo is diffusion-weighted MRl (DW-MRI). Tensor-derived diffusion indicators (see Table 1) are
now frequently used to study WM microstructural changes in aging. However, these measures are difficult to interpret with regard to their
biological basis, as many factors of the complex WM architecture (e.g. crossing fibers, glial cells) can modulate diffusion properties (Jones,
2010; Concha, 2014). While most of the current in vivo literature on neuroanatomical aging relies on T1-weighted and/or tensor-derived
diffusion measures, several new promising brain imaging techniques are emerging, which might provide a more detailed view into the
macroanatomical and microanatomical age-related changes.

One alternative to tensor-derived diffusion measures is neurite orientation dispersion, which allows the in vivo estimation of the
microstructural characteristics of axons and dendrites (Zhang et al., 2012). Furthermore, Myelin Water Fraction as modeled based on the
T2 relaxation properties of water captured between myelin sheets was shown to provide more specific estimates of myelin content than
the tensor-based diffusion parameters (Arshad et al., 2016). Particularly promising are recent advances in quantitative MRI, which are
computational methods that allow for the derivation of voxel-wise quantitative maps of MRI biomarkers, reflecting specific microstructural
tissue properties, such as iron, myelin content, or axonal fiber orientation (Draganski et al., 2011; Weiskopf et al., 2015). In addition,
scanners with ultrahigh field strengths of 7 Tesla are now available for practical use. While these scanners allow an increased signal-to-
noise ratio and thus very high spatial resolution of brain images, their applicability is limited by a number of challenges, for example, an
increased sensitivity to motion artifacts, inhomogeneities in the magnetic and radiofrequency field, and an increased specific absorption
rate (Barisano et al., 2019).

Besides advances in MRI techniques, novel methods to process and quantify brain-imaging data hold promise for the study of brain
structure-cognition associations in the future. For example, network connectivity and graph analysis methods allow the inference of
information about organizational properties of structural brain networks based on structural MRI and DW-MRI data (see Bullmore and
Sporns, 2009). These methods are particularly relevant for the cognitive neurosciences, as they can map network properties that are
probably more reflective of the complexity of the underlying cognitive abilities than single structural brain measures. Another interesting
development is the use of machine learning techniques to predict individual’s biological age on the basis of structural brain imaging data
(i.e. brain age) (Gaser et al., 2013; Valizadeh et al., 2017; Cole et al., 2018). Brain age prediction can provide important insights into
potential biomarkers associated with premature brain aging and neurocognitive disorders. For example, higher brain age than chronological
age is associated with increased mortality risk (Cole et al., 2018) and cognitive impairment (Liem et al., 2017). Brain age is found to be a
superior predictor of later dementia conversion compared to common cognitive tests or CSF-derived biomarkers (Gaser et al., 2013).
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Table 1: Glossary of neuroanatomical measures.

Neuroanatomical measure

Description

Gray matter (GM)
Volume-based
GM volume

GM density

Surface-based
Cortical thickness

Surface area

White matter (WM)
Volume-based
WM volume

WM hyperintensity (WMH)
volume

Diffusion-based
Fractional anisotropy (FA)

Diffusivity

Total GM volume consists of the neuropil (neuronal bodies and dendrites), glial cells, axons, and
vasculature (Zatorre et al., 2012). Cortical GM volume is the product of cortical thickness and
surface area (see surface-based measures), whereas subcortical volumes refer to GM volumes in
compartmental structures (e.g. hippocampus)

GM density reflects a proportional measure of GM concentration at a singular voxel, which is
standardized on the average GM concentration at neighboring voxels. GM density can be measured
with voxel-based morphometry (Ashburner and Friston, 2000)

The thickness of the cortex is measured as the distance between GM and WM surface. Cortical
thickness is suggested as the primary driver of plasticity in GM volume (Hogstrom et al., 2013)
Measure of the surface of WM at the boundary to cortical GM

Total WM volume consists of myelinated and unmyelinated axons and glial cells (Walhovd et al.,
2014). Axonal fiber bundles are arranged as pathways connecting intrahemispheric (association),
cortical with subcortical regions (projection), and the cortical hemispheres with each other
(commissural)

Volume of regions of increased signal intensity in WM of structural magnetic resonance imaging
(MRI) images. WMH are linked to demyelination and axonal degradation due to small vessel
disease (Prins and Scheltens, 2015)

Index for the directedness of water diffusion independent of the rate of diffusion. Values range
between 0 (low directedness, isotropic diffusion) and 1 (high directedness, anisotropic diffusion).
As the microstructural properties of dense fiber tracts constrict water diffusion along one direction,
high FA values are often interpreted as a measure for the intactness of WM fibers. FA is modulated
by the packing density of axons, axon diameter, and myelin (Beaulieu, 2002)

Mean diffusivity (MD) describes the average rate of diffusion independent of direction and is thus
a summary measure. In contrast, axial diffusivity (AD) describes the rate of diffusion parallel, and

radial diffusivity (RD) perpendicular to the main axis. AD has been suggested to be modulated by
axon integrity, while RD is more sensitive to myelin (but see Box 1; Song et al., 2002)

Cerebrospinal fluid (CSF)
Ventricular volume

Ventricular volume is typically used as a proxy of CSF, which fills the ventricular compartments of

the brain and the subarachnoidal space. Enlarged ventricles result in increased CSF volume

Global measures
Whole brain volume
Total brain volume (TBV)
Intracranial volume (ICV)
Normalized brain volume (NBV)

Sum of GM and WM volume, whereas the brainstem is typically excluded
Sum of brain tissue (GM and WM), CSF, brain membranes, and volume between skull and membranes
TBV adjusted for an estimate of head size (e.g. ICV)

Research question type 1 (cross-sectional/univariate,
see panel A): ‘Do people differ in specific measures of
brain structure or cognitive ability?’

To answer this question, cross-sectional data of several
participants measured in indicators of brain structure
(e.g. whole brain volume) or cognitive ability (e.g. working
memory performance) are needed. As illustrated by the
gray shaded cubes, this type of data varies along the
dimension persons and is fixed along the dimensions vari-
ables x measurement occasions. Brain structure serves as
an example for the selected variable here; however, cog-
nitive ability could be used interchangeably. The measure

of interest is the mean and the variance between persons
(interindividual differences) in a measure of brain struc-
ture (or cognitive ability). Methodologically, this variance
component can then be related to predictors by using, for
example, regression analysis. A relevant predictor if one is
interested in healthy aging is chronological age: if partici-
pants are sampled at different ages, the between-person
variance also contains information about age-differences.
For example, after controlling for height and sex, a study
found age-related differences in a sample of participants
aged from 18 to 77 years in several regional brain volumes
with a specific vulnerability of the prefrontal cortex, such
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Figure 1: Four different research questions on the relation between brain structure and cognitive ability, as illustrated with Cattell’s (1988)

data box.

Panel A: research question type 1 refers to interindividual differences in a measure of brain structure or cognitive ability assessed at one
measurement occasion. Panel B: research question type 2 refers to intraindividual changes in a measure of brain structure or cognitive
ability assessed across several measurement occasions. Panel C: research question type 3 refers to the bivariate association between

interindividual differences in a measure of brain structure and interindividual differences in a measure of cognitive ability assessed at one
measurement occasion (correlation). Panel D: research question type 4 refers to the bivariate association between intraindividual change in
a measure of brain structure and intraindividual change in a measure of cognitive ability assessed across several measurement occasions

(correlated change).

that older adults had smaller prefrontal gray matter (GM)
volumes than younger adults (Raz et al., 1997).

It is well documented that both brain structure
and cognitive ability are not stationary, but subject to
dynamic changes over the lifespan (Deary, 2001; Hedden
and Gabrieli, 2004; Fjell and Walhovd, 2010; Salthouse,
2010). As the cross-sectional design contains information
about interindividual differences between persons of dif-
ferent chronological ages, it is not a viable basis for the
inference of change processes across time (Lindenberger
et al., 2011). Furthermore, cohort differences are a
common problem in cross-sectional designs, masking
the effects of true change within individuals (Sliwinski
et al., 2010). For example, several recent studies report a

reduction of the prevalence of Alzheimer’s disease (AD)
over the past decade when comparing older adults of dif-
ferent cohorts, but similar age range (e.g. 75-year-olds
in 2000 vs. 2012) (Larson et al., 2013; Matthews et al.,
2016; Langa et al., 2017), suggesting cohort differences
in age-related brain and cognitive changes. Although
less problematic, cohort differences can also confound
longitudinal estimates of change, especially when these
studies include a wide age range (Hofer and Sliwinski,
2001). While longitudinal studies are faced with their
own limitations, such as attrition (e.g. Lindenberger
et al., 2002) or practice effects due to repeated cogni-
tive testing (e.g. Salthouse et al., 2004), longitudinal
measurements are necessary to make valid inferences



DE GRUYTER

on developmental change (Raz and Lindenberger, 2011),
leading to the next type of question:

Research question type 2 (longitudinal/univariate,
see panel B): ‘Do measures of brain structure or cogni-
tive ability change over time within persons?’

To answer this question, longitudinal data of several
people repeatedly measured in indicators of brain struc-
ture (or cognitive ability) are needed. In contrast to the
previous example, the observations shaded in gray now
also vary along the dimension measurement occasions
(besides the persons dimension). The dimension vari-
ables is still held constant to one level, in this example it
is again a measure of brain structure, but cognitive ability
can be used as well. This type of data represents interindi-
vidual differences in how the values of one person in brain
structure (or cognitive ability) change across measurement
occasions within this individual (intraindividual change).
Methodologically, such data can be analyzed in two ways.
First, one can compute a difference score for each person
to represent intraindividual change between two measure-
ment occasions. This procedure reduces the dimension
‘measurement occasion’ to one value, allowing the appli-
cation of the same methods as in research question type 1.
The resulting outcome carries information about changes
in interindividual differences. A second possibility is to
use sophisticated methods for the analysis of change. With
these methods, it is possible to analyze intraindividual
change trajectories, and interindividual differences in
intraindividual change, with the advantage of retaining all
values along the dimension measurement occasion in the
analysis, as well as all persons, regardless of how much
longitudinal information they provide (see section ‘The
benefits of longitudinal designs’ for more detail).

Taken together, these two types of data complement
each other to generate valuable insights into how brain
structure and cognitive ability each develop across the
lifespan. As the cross-sectional design is less time and
cost intensive, it has the advantage of informing about
age-differences across a wide age range. In contrast, the
feasibility of a longitudinal study covering the entire
adult lifespan is highly unlikely, especially when study-
ing brain aging, as MRI scanners would need to endure
over a period of around 60 or 70 years. Even if this would
be possible, technological advances would most likely
result in the collected data being outdated and no longer
meaningful. Longitudinal data are needed, however,
to examine developmental change processes, both in
the individual domains as well as on their associated
changes. The next two questions focus on the associa-
tion of brain structure and cognitive ability:
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Research question type 3 (cross-sectional/bivariate,
see panel C): ‘Do people with more intact structural
brain features demonstrate higher (or lower) levels of
specific cognitive abilities’?
This question builds upon research question type 1, with
the only difference that now two variables are included:
brain structure and cognitive ability. Thus, the measured
values vary along the dimensions persons x variables, and
measurement occasions is held constant. The association
of interest can be calculated via the correlation between
these two dimensions, as indicated by the purple arrow.
Asimplied by the question above, cross-sectional data
convey information about how specific structural brain
characteristics and levels of cognitive ability are related
in the population. However, another perspective that we
deem specifically important and that has not received
enough attention yet focuses on how change processes
in brain structure and cognitive ability are differentially
related within individuals:

Research question type 4 (longitudinal/bivariate, see
panel D): ‘Are changes in measures of brain structure
differentially associated with changes in measures of
cognitive ability within persons?’

This question is based upon research question type 2,
with the only difference that two variables are assessed
longitudinally and the two trajectories are related to
one another. In the data box, the measured values vary
along all dimensions: persons x variables x measurement
occasions. The association of interest is the correlation
between changes in these two dimensions as shown by
the purple arrow, which is henceforth defined as cor-
related change. Building on the methods described in
research question type 2, correlated change can be com-
puted by correlating either the difference scores, or the
intraindividual change slopes between two variables with
each other across people. Different types of correlated
changes can be distinguished depending on the sampling
intensity and timing of measurements in each domain
(see section ‘A theoretical framework on longitudinal
brain-cognition-environment interactions’ for a detailed
explanation). With a high number of repeated measure-
ment occasions in both domains, intraindividual change
slopes could also be correlated entirely within individu-
als. However, to date, only a small number of longitudi-
nal studies have investigated correlated changes in brain
structure and cognition, with typically low sampling
intensity. This is not surprising, due to the financial and
time-consuming expenses of conducting longitudinal MRI
studies. Correlated changes between brain structure and
cognitive ability are of major interest, however, as they
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can provide new insights into the intricate developmen-
tal dynamics and interactions between these two domains
as people age. This knowledge is especially important for
the development of personalized interventions to promote
better health and well-being in old age. Therefore, the
present article will review the literature on correlated
brain-cognition changes (section ‘Literature review’) in a
broader context of a current theoretical model on brain-
cognition-environment relations, which will be presented
in the next section. Furthermore, the present article
will discuss methodological limitations of the reviewed
studies and present ideas for method development and
application (section ‘Methodological limitations and the
need for method development’). Of specific relevance to
the field of cognitive neuroscience, statistical methods
for handling longitudinal neuroimaging and cognitive
data are presented and explained (section ‘The benefits of
longitudinal designs’), and issues related to the handling
of big data are discussed (section ‘Handling and profit-
ing from big data’). Finally, we present several trends
and ideas for the development of theories on correlated
changes between brain structure and cognitive ability in
the future (section ‘Theoretical limitations and the need
for theory development’).

A theoretical framework on
longitudinal brain-cognition-
environment interactions

One of the most pressing questions in the cognitive neu-
roscience of aging is to explain why some healthy aging
individuals experience drastic age-related cognitive
decline while others can maintain their levels of cogni-
tive ability. Accordingly, several theoretical concepts have
emerged that revolve around the idea that aging individu-
als may differ with regard to compensatory resources that
support the maintenance of cognitive performance in the
face of age-related brain degeneration (Reuter-Lorenz
and Park, 2010; Park and Festini, 2016). For example, the
different theoretical ideas of reserve assume that people
differ in either neural capacity (brain reserve: e.g. number
of neurons or brain size) or cognitive processing mecha-
nisms (cognitive reserve: e.g. mental flexibility, strategy
use) that allow them to cope with pathological brain
damage, and thus stave off detrimental impacts on cog-
nitive ability (for a detailed explanation see Stern, 2002,
2009). One multifactorial theoretical model that includes
the dynamic interrelations between environmental vari-
ables, brain structure and function, and cognitive ability
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is the revised Scaffolding Theory of Aging and Cognition
(STAC-r) model (Reuter-Lorenz and Park, 2014). STAC-r
is a regulatory model, which assumes that compensa-
tory mechanisms, termed compensatory scaffolding, can
directly regulate the impact that brain structure or function
changes exert on cognitive ability. The exact mechanisms
of compensatory scaffolding are not clearly established,
however, the authors suggest scaffolding to reflect a form
of positive brain plasticity (Reuter-Lorenz and Park, 2014).
For example, from functional imaging studies, it is known
that healthy older as compared to younger adults recruit
different brain regions (e.g. functional over-recruitment
of prefrontal regions, or bilateral overactivation) during
demanding cognitive tasks (see Eyler et al., 2011, for a
review). These distinct functional activation patterns
are interpreted as compensatory, if they are also related
to better memory performance. Furthermore, structural
brain reorganization, such as (to a limited extent) neuro-
genesis, synaptic, or axonal changes (Zatorre et al., 2012),
or the use of different cognitive strategies (Stern, 2002,
2009), may potentially also serve a compensatory func-
tion. To illustrate STAC-r as a framework for the current
literature review, Figure 2 displays the key parts of the
model. Please note that we introduced a small adaptation
to tailor the model to the specific focus of this review: the
broad term ‘cognitive function’ of the original model is
changed in Figure 2 to the more specific term ‘cognitive
ability,” as we will refer only to basic cognitive abilities as
assessed by cognitive tests in the laboratory and not to
cognitive functioning, for example, during daily activities
like solving a crossword puzzle (Verhaeghen et al., 2012).
The factors of specific interest in the present article are
highlighted in white.

According to STAC-r, different pathways can be distin-
guished through which brain structure might be related
to cognitive ability. Brain structure can affect cognitive
ability via a direct pathway. For example, brain atrophy
in old age might be linked to declines in cognitive ability.
This is the hypothesis typically posited in the literature.
Additionally, the model proposes an indirect pathway,
in which the relation between brain structure and cog-
nitive ability is shaped via compensatory scaffolding.
For example, during a difficult cognitive task, additional
brain networks might be recruited to compensate for age-
related structural alterations in the primary network. First
attempts were made to study this indirect path between
brain structure, function, and cognitive ability longitu-
dinally. These studies suggest a link between age-related
structural brain reductions and increased functional acti-
vation in healthy older adults (Hakun et al., 2015; Fjell
et al., 2016; Pudas et al., 2018; Vidal-Pifieiro et al., 2018).
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Figure 2: Scaffolding Theory of Aging and Cognition (STAC-r) model adapted from Reuter-Lorenz and Park (2014).
*Under brain structure we subsume both structural brain properties and rate of brain structure change.

However, with regard to the association with cognitive
ability, it is still unclear whether these findings reflect
compensation or rather an age-related loss of efficiency
(Pudas et al., 2018). Arguing from the theoretical basis
proposed by STAC-1, as long as compensatory scaffolding
mechanisms function properly, the relationships between
rate of brain structure and cognitive ability change would
be expected to be weakened or even close to zero in
healthy older adults, as compensatory scaffolding can
buffer the immediate impact of brain structure deficits
within individuals. Hence, the indirect pathway between
brain structure and cognitive ability is especially relevant
when focusing on the population of healthy older adults.
The STAC-r model further proposes that compensatory
scaffolding is impacted by a variety of factors. Besides
changes in brain structure or function, neurally enriching
or depleting experiences, termed life-course experiences,
are assumed to stimulate scaffolding across the lifespan
(Reuter-Lorenz and Park, 2014). Neurally enriching factors
relate to activities or behaviors which positively stimulate
brain plasticity, such as education, physical exercise, or
multilingualism, while neurally depleting factors denote
activities or influences that have a detrimental impact
on the brain, such as high blood pressure, smoking, or
stress (see Hertzog et al., 2009). As depicted in Figure 2,
life-course experiences can either directly influence brain
plasticity or stimulate compensatory scaffolding and thus

potentially attenuate or delay cognitive decline. Also,
interventions, for example, in the form of cognitive train-
ing or neurofeedback, can directly trigger compensatory
scaffolding (Reuter-Lorenz and Park, 2014).

Using STAC-r as a theoretical framework, important
implications can be derived for the present purpose.
As compensatory scaffolding is assumed to modify the
impact of detrimental structural brain alterations on cog-
nitive ability, the strength of the concurrent association of
brain structure and cognitive ability is expected to be weak
in healthy aging individuals. Due to the variety of factors
influencing the capacity of compensatory scaffolding,
however, large interindividual and intraindividual varia-
bility in the strength of brain structure-cognition relations
can be expected. In the following sections, we will review
the current literature regarding the four research ques-
tions discussed in the introduction (see Figure 1), using
the STAC-r model as a theoretical framework.

To introduce the terminology that will be used in
this context, Figure 3 shows the possible cross-sectional
and longitudinal cross-domain relations between brain
structure and cognitive ability. As the literature so far has
mainly investigated the direct pathway between brain
structure and cognitive ability, scaffolding is not included
in this figure. However, as the indirect pathway is con-
sidered as specifically relevant in the context of healthy
aging, future theoretical development is encouraged to
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and lagged correlated change) relations between brain structure (=Brain) and cognitive ability (= Cog). T=time/measurement occasion.

A

Tn+1-Tn
a specific measurement occasion.

move into this direction (see section ‘Theoretical limi-
tations and the need for theory development’ for an
extended discussion).

In this figure, measures of brain structure proper-
ties and levels of cognitive ability (square shapes) and
respective changes (A, . in these variables are depicted
between subsequent measurement occasions. Linking
this figure to the multivariate research questions pre-
sented in the introduction, research question type 3 can
be answered by looking at the cross-sectional correlation
between specific structural brain features and levels of
cognitive ability at a fixed measurement occasion. Regard-
ing research question type 4 of longitudinal relations
between brain structure and cognitive ability, several
associations can be conceptually distinguished.

First, level-change associations might be observed,
referring to any relationship between a cross-sectional
measure — hereafter termed as level — of either structural
brain properties or cognitive ability and longitudinal
changes in the respective other domain. The term level
is used in a statistical sense here to distinguish baseline
assessments from longitudinal changes. For example,
people with more intact structural brain features at base-
line might be less likely to show age-related cognitive
decline than people with lower levels of healthy brain
tissue (in the sense of brain maintenance; see Nyberg

represents developmental change between two measurement occasions. Square shapes represent observed measures of a domain at

et al., 2012). The reverse directionality is also plausible —
higher levels of cognitive ability might protect from pre-
mature brain aging (in the sense of a cognitive reserve;
see Stern, 2009; Barulli and Stern, 2013). In addition,
both directions might be observed, such that bidirec-
tional influences are at play. However, level-change asso-
ciations are only quasi-longitudinal, as at least for one of
the two variables, information on intraindividual change
processes is lacking. It is impossible to know whether
an individual with a seemingly more atrophied brain at
baseline actually experienced intraindividual declines
before the study period, as this longitudinal informa-
tion is missing. As such, level-change associations only
provide partial insights into change relations between the
two domains.

Second, correlated change relationships between
brain structure and cognitive ability might be observed.
We refer to correlated change relationships to describe
any temporal relationship between changes in both struc-
tural brain measures and cognitive measures. Further-
more, any correlated change relationship can either occur
simultaneously or in a time-lagged fashion, such that
changes in one variable over a certain time correlate with
changes in the other variable at a later time-period. Simul-
taneous correlated changes between structural brain fea-
tures and a specific cognitive ability carry information
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about the association of changes that occur within the
same observational time frame. Conceptually, such paral-
lel cross-domain associations might either reflect directed
relationships between the two domains that occur within
the studied time frame, or the influence of a third vari-
able on both developmental trajectories, in the sense of
a common cause (Baltes and Lindenberger, 1997; Linden-
berger and Ghisletta, 2009), which is, however, impossi-
ble to disentangle with this type of data.

The advantage of investigating lagged correlated
changes is that they can yield more insights into the tem-
poral dynamics of the association between changes in
measures of brain structure and cognitive ability, allowing
to investigate leading and lagging relationships (Grimm
et al., 2012). Especially as scaffolding networks might be
able to compensate for accumulating brain damage only
until a certain threshold, such as posited by the theory of
brain reserve (Satz et al., 2011), it is to be expected that
detrimental changes in structural brain measures might
significantly impact cognitive performance only after a
certain time lag. As can be seen from looking at Figure 3,
more than two measurement occasions are needed to
study lagged correlated change associations.

Literature review

In the following sections, we will first summarize the exist-
ing literature on age-differences and changes (research
questions type 1 and 2) in selected measures of brain struc-
ture and cognitive ability across the adult lifespan, with a
focus on healthy old age, which — according to traditional
conceptions — is defined as age 60 and older (e.g. Baltes
and Smith, 2003). Second, cross-sectional and longitudinal
associations between the two domains (research question
type 3 and 4) will be discussed in the context of the STAC-r
model (see Figure 1), presenting a systematic literature
review of the available evidence on longitudinal correlated
changes between brain structure and cognitive ability.

Age-differences and changes in brain
structure in adult development

The brain undergoes substantial structural changes
throughout the lifespan (Lockhart and DeCarli, 2014).
With the advent of MRI, it has become possible to observe
these changes in vivo. The MRI-derived parameters com-
monly used to describe aging can be roughly divided in
measures of GM, white matter (WM) tissue, and cerebro-
spinal fluid (CSF), which together constitute whole brain
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volume (see Table 1 for detailed explanations). GM indices
include volume-based measures, such as GM volume or
density, and surface-based measures, such as cortical
thickness or surface area. WM indices consist of volume-
based measures, such as WM volume and WM hyperin-
tensity (WMH) volume, and measures of WM anisotropy,
and diffusivity, which yield information about the restrict-
edness of water diffusion in the WM tissue of the brain,
and thus indirectly, about WM microstructural properties.
Regarding whole brain volume and CSF, different meas-
ures are distinguished (see Table 1). As follows, we will
give an overview over age-differences and changes in
these structural brain indices in healthy aging.

GM

The GM volume gradually declines across the adult lifes-
pan (Hedman et al., 2012). However, the onset, and the
shape (e.g. linear, quadratic) of tissue loss are dependent
on the brain region under study (Ziegler et al., 2012). Cross-
sectional estimates of age-differences suggest that the
implied decline of GM volume typically follows a last-in-
first-out pattern, with anterior brain regions (e.g. prefron-
tal cortex) being the latest to mature and the first to show
age-related deficits, and posterior regions that mature
early in development (e.g. visual, auditory cortex) being
less vulnerable to GM atrophy (Sowell et al., 2004). This
pattern of structural brain differences across age is con-
firmed by a longitudinal study, with the exception of struc-
tures of the medial temporal regions (e.g. hippocampus,
amygdala), which showed moderate reductions in chil-
dren and young adults, but declined substantially in older
adults (Tamnes et al., 2013). Regarding the shape of GM
change across the adult lifespan, an age-heterogeneous
longitudinal study (age range 23-87 years) reported non-
linear (implied) declines over age for GM volume in most
areas of the cortex, with accelerating declines in temporal
and occipital, and decelerating declines in prefrontal and
anterior cingulate regions (Storsve et al., 2014). As cortical
thickness and surface area are the two constituent meas-
ures of GM volume, those measures were also investigated.
Interestingly, larger and nonlinear changes were found
for cortical thickness, while surface area showed smaller
and predominantly linear curves across most regions of
the cortex. The authors interpreted this as evidence that
cortical thickness contributes more strongly to GM volume
changes in old age than surface area. Measuring middle-
aged to older adults for up to five measurement occasions,
Rast et al. (2017) reported nonlinear cortical thinning over
8 years in five lobar composites across the cortex, but
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with decelerating changes, which were most pronounced
for older adults in frontal, temporal, and cingulate corti-
ces. With regard to subcortical structures, cross-sectional
evidence across multiple sites shows a pattern of age-
differences indicative of predominantly nonlinear decline
trajectories across chronological age (e.g. hippocampus,
caudate), but also of linear decline slopes for some struc-
tures (e.g. thalamus, accumbens; Walhovd et al., 2011;
Ziegler et al., 2012; Fjell et al., 2013). These findings need
to be interpreted with caution, however, as the automated
reconstruction of subcortical structures is shown to be of
variable reliability, depending, for example, on segmenta-
tion choices or the size of the structures (i.e. lower reliabil-
ity for small structures, Morey et al., 2010).

WM

Cross-sectional estimates of age-differences (Westlye
et al., 2010; Liu et al., 2016) and longitudinal estimates of
change (e.g. Hedman et al., 2012) suggest that WM volume
follows a nonlinear developmental pattern across the
adult lifespan, with (implied) increases up to around age
50, and accelerated age-differences or declines thereafter.
Similar to GM volume, the onset of WM volume decline is
region-specific. The largest age-differences and declines
were found in the frontal cortex, succeeded by the tem-
poral (Bartzokis et al., 2001; Raz et al., 2005) and parietal
cortices (Resnick et al., 2003), whereas occipital regions
remain relatively spared (Raz et al., 2005).

Besides volumetric deficits, WM degradation in
the course of healthy aging manifests itself also as
age-differences and declines in microstructural properties
of WM fiber tracts, and as an accumulation of WMH with
increasing age (see Bennett and Madden, 2014 for a review).
The former can be estimated with diffusion-weighted MRI
(DW-MRI), a MRI method sensitive to the diffusion of water
molecules in the brain (Jones, 2010). Compared to non-
restricted diffusion of water molecules (i.e. in a glass of
water), diffusion is highly directed in WM with the fibers
acting as natural boundaries limiting the diffusion move-
ment in certain directions. Indices derived from a tensor
model fitted at each voxel reflect, for example, the degree
of directedness of diffusion (fractional anisotropy, FA), or
the mean rate of diffusion of a tissue (mean diffusivity,
MD), independent of directionality (see Table 1; Beaulieu,
2002). Findings from cross-sectional studies show lower
FA and higher MD in older as compared to younger adults
(e.g. Cox et al., 2016), which is often interpreted as age-
related deficits in the integrity of WM tracts. However, this
interpretation is criticized (Jones, 2010), due to the lack
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of specificity of these measures with regard to their neu-
robiological foundation (see also Box 1). The few existing
longitudinal studies demonstrate changes in WM micro-
structure with increasing age that are indicative of WM
degradation, with prefrontal fiber systems being especially
vulnerable to degradation (e.g. Barrick et al., 2010; Sulli-
van et al., 2010; Teipel et al., 2010). In addition, some lon-
gitudinal studies are suggestive of a similar last-in-first out
pattern of change as seen in brain volumetric indices (e.g.
Bender et al., 2016b; Storsve et al., 2016). However, excep-
tions to this trend is noted, with larger declines in posterior
than frontal regions (Salat et al., 2005), and some support
also exists for a superior-inferior gradient of WM aging
(e.g. Sexton et al., 2014). Also, studies of WM microstruc-
ture in healthy aging increasingly differentiate between
diffusion parallel (axial diffusivity; AD) and perpendicu-
lar (radial diffusivity; RD) to the main axis (see Table 1).
Besides the changes in diffusion properties, increasing age
is associated with a higher amount of WMHs, with cross-
sectional estimates indicating a linear trajectory (e.g.
Birdsill et al., 2014). WMHs can be detected and extracted
from T2-weighted MRI images (particularly from pulse
sequences; Fluid-Attenuated Inversion Recovery) using
manual or (semi)-automated approaches (see Wardlaw
et al., 2015) and are linked to pathological changes in vas-
cular functions (Bennett and Madden, 2014). In a longitu-
dinal study with healthy elderly, WMH volume increase
was most pronounced in anterior regions of deep WMH
(Sachdev et al., 2007).

CSF

Cross-sectional estimates suggest that CSF volume is larger
in older compared to younger adults, and the CSF-filled
ventricles appear to expand quadratically over the lifespan,
with relative stability up to middle adulthood, and acceler-
ated expansion thereafter (DeCarli et al., 2005; Carmichael
etal., 2007; Fjell et al., 2013). Ventricular expansion is often
used as a nonspecific proxy for global structural brain dif-
ferences and changes and is shown a sensitive biomarker
for AD progression (Madsen et al., 2013).

Whole brain volume

Especially in earlier publications, authors used variables
reflecting combinations of tissue classes in order to make
conclusions about differences and changes in whole brain
volume. Depending on whether CSF is included in these
measures or not one can dissociate total brain volume
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(TBV) from intracranial volume (ICV); (for more details, see
Table 1). Some authors also use a measure of TBV that is
normalized for some estimate of overall head size (e.g. ICV),
hereafter termed as normalized brain volume (NBV). NBV
is a widely used index for brain atrophy, as overall head
size as measured by ICV remains relatively stable across
the lifespan and thus serves as a good measure to reduce
between-subject differences with regard to maximum
healthy brain size (e.g. Whitwell et al., 2001). A meta-anal-
ysis of 22 longitudinal studies implies a gradual decline in
whole brain volume of 0.2% per year around the age of 35,
and accelerated declines around age 60 (0.5% per year;
Hedman et al., 2012). As whole brain volume includes both
GM and WM, this estimated trajectory reflects a combina-
tion of the latter indices. Consequently, whole brain volume
is a rather crude estimate of structural brain changes.

Summary

The mean trends reported above show that age exerts
a stronger influence on brain structure in older than
younger adults, which is reflected in the dominance of
age-differences and decline in healthy old age. Interest-
ingly, the average onset and the shape of age-related
structural brain degradation varies depending on the
type of tissue and the brain region under investigation,
implying regional differences in structural brain aging
that are shared among individuals. Roughly, GM atrophy
onset is estimated at earlier ages, while WM remains
relatively stable until old age. Moreover, a mean trend
towards higher vulnerability of anterior, late developing
regions as opposed to posterior, early developing regions
is reported by several studies of WM and GM aging. A
premise of STAC-r is that life course experiences of various
kinds shape brain structure besides the mere influence of
passing time. Assuming that the brain remains plastic up
into higher ages, variability between healthy aging indi-
viduals with regard to the onset and shape of brain struc-
ture change can be expected (i.e. including maintenance
and growth as potential trajectories). The finding of pre-
dominantly nonlinear average trajectories for many brain
structures (e.g. cortical thickness, subcortical GM, WM)
lends some support to this hypothesis.

Age-differences and changes in cognitive
ability in adult development

To date, research in the field of cognitive aging has pro-
vided ample support for the multidirectional development
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of cognitive abilities across the lifespan (Baltes, 1987). A
prominent theory is the division of cognitive abilities
into fluid and crystallized intelligence proposed half a
century ago by Cattell (1963). Fluid intelligence describes
the ability of reasoning and novel problem solving, and is
often discussed as a higher-order factor of fluid cognitive
abilities. Crystallized intelligence refers to well-practiced
abilities and knowledge accumulated across the lifes-
pan. In general, fluid processing mechanisms, (e.g.
perceptual speed, working memory) gradually decline
with age, whereas well-practiced crystallized abilities,
such as vocabulary, knowledge, and autobiographical
memory show patterns of increase, and stability well into
older adulthood (Hedden and Gabrieli, 2004; Salthouse,
2010). However, recent evidence also suggests that the
broad division into fluid and crystallized abilities falls
somewhat short on the complexity and heterogeneity of
developmental patterns of cognitive domains (Hartshorne
and Germine, 2015). Therefore, we will summarize the
evidence of age-differences and changes separately for a
selected set of specific cognitive abilities relevant in the
scope of the current review.

Memory

Roughly, memory can be divided in retrospective and
prospective memory (Baddeley et al., 2009). First, retro-
spective memory refers to the memory for information
acquired in the past and can be further distinguished
into short-term and long-term memory. Regarding the
memory for short-term information, age-differences and
changes are mainly observed for working memory, which
is discussed separately below. Long-term memory can
be divided into explicit memory (involving episodic and
semantic memory) and implicit memory (Schacter, 1987).
Episodic memory refers to the recollection of events expe-
rienced in the past and is especially vulnerable to aging
(Tulving, 1972). Tasks testing episodic memory require
participants to memorize a set of stimuli (e.g. words) and
later, to recall them (free recall) or decide whether they
have encountered the stimulus before (recognition). Older
adults show more difficulties with recall than recognition
of previously memorized information (Craik and McDowd,
1987). Whereas age-related differences suggest an early
onset of episodic memory decline in young adulthood
(Salthouse, 2003), longitudinal evidence does not support
age-related declines before age 60 (Ronnlund et al., 2005;
Schaie, 2005). Semantic memory describes the memory
for factual knowledge (e.g. vocabulary) and comprehen-
sion (Tulving, 1972). Due to life-long accumulation of
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knowledge, longitudinal evidence suggests that semantic
memory increases or remains stable at least until age 55
(Ronnlund et al., 2005), with late-life declines smaller in
size than for episodic memory. Longitudinal findings from
the Berlin Aging Study demonstrated stability in verbal
knowledge even up to the age of 90 (Park et al., 2002).
Implicit memory refers to the unconscious influence of
previously acquired information on present performance.
A meta-analysis of the cross-sectional literature showed
that the deficit that older participants show in implicit
memory performance as compared to younger partici-
pants is much smaller compared to the age-differences in
episodic memory (Light et al., 2000). Furthermore, a lon-
gitudinal study did not show implicit memory declines in
healthy older participants over 3 years, suggesting relative
stability of implicit memory in healthy aging (Fleischman
et al., 2004).

Second, prospective memory is needed to remem-
ber and enact a previously made plan in the future. In
the laboratory, prospective memory is tested by abstract
tasks, for example, remembering to ask for a pen at 9 AM
(time-based) or whenever the investigator mentions a
code word (event-based). Prospective memory is highly
relevant in everyday situations, for example, when one
needs to remember taking medication every morning.
Evidence from cross-sectional studies shows that older
adults perform worse in laboratory-based prospective
memory tasks as compared to young adults (Henry et al.,
2004; Kliegel et al., 2016), especially in strategically
more demanding tasks (i.e. specified task order, see Ihle
et al., 2013; nonfocal task cues, see Kliegel et al., 2008).
However, outside of the laboratory, older adults show
similar or even superior performance in naturalistic pro-
spective memory tasks. This paradoxical finding has been
related to differences between the two settings, such as
higher motivation, more flexibility for self-management,
and less engagement in distracting activities in older
adults when tested in their everyday life (Schnitzspahn
et al., 2011).

Executive functions

Executive functions (EF) are higher-order abilities
needed to pursue complex tasks of planning, organiza-
tion, and goal-directed behavior (Burgess, 1997). Besides
a general component, EF are composed of a set of basic
abilities involving the inhibition of prepotent responses,
shifting between mental representations, and updat-
ing of representations held in working memory (Miyake
et al., 2000). As updating tasks tap into working memory
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ability (Schmiedek et al., 2009), we will discuss this line
of research in the section on working memory. Overall,
absolute age-differences can be found in tasks requiring
executive control compared to tasks involving only little
control demands (Verhaeghen, 2011). Regarding inhibi-
tion and shifting, cross-sectional (Healey et al., 2014;
Treitz et al., 2007) and longitudinal studies have shown
age-differences and declines (Goh et al., 2012; Van der Elst
et al., 2013; Adolfsdottir et al., 2017). However, a meta-
analysis could not support age-related deficits specific to
inhibition, as compared to a baseline condition with the
inhibitory control aspect removed (Verhaeghen, 2011),
suggesting age-differences in more basal processes. For
shifting, specific age-related deficits of older adults were
only found for global shifting (Wasylyshyn et al., 2011), a
measure for monitoring ability in dual-task as opposed to
single-task situations.

Attention

Attention involves the capacity-limited ability to direct
one’s focus to selected stimuli in the environment (Jancke,
2017). Important aspects of attention are sustained atten-
tion (maintain focus and vigilance over a prolonged
time), selective attention (focus on one stimulus while
ignoring irrelevant information), and divided attention
(focus on two stimuli at the same time) (Drag and Bieli-
auskas, 2010). While older adults typically do not differ
from younger adults regarding sustained attention (e.g.
Berardi et al., 2001), selective and divided attention seem
to be more sensitive to aging. First, selective attention
requires the inhibition of distracting information. Similar
to the literature on inhibition, negative age-differences
are reported for selective attention (e.g. Plude and Hoyer,
1986; Brink and McDowd, 1999). However, recent evi-
dence suggests that these deficits are limited to specific
modalities (e.g. auditory task with visual distraction),
and it is yet unclear whether this modality-dependency
can be explained with age-differences in inhibition (Van
Gerven and Guerreiro, 2016). Second, divided attention
is assessed with the performance in dual-task situations,
and task-switching experiments that are also used to
assess the shifting factor of EF (Verhaeghen and Cerella,
2002). The results from a meta-analysis indicate negative
age-differences in dual-task situations for older adults
beyond age-related slowing (Verhaeghen et al., 2003).
Regarding the performance in task-switching experi-
ments, age-differences are restricted to a global disadvan-
tage of managing dual-task situations (compare to results
of EF shifting).
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Working memory

Working memory describes a limited-capacity system
that is involved in the simultaneous storage, and pro-
cessing or updating of information (Cowan, 1995; Bad-
deley, 1998; Oberauer, 2009). It is typically tested with
tasks that require participants to hold a certain number
of stimuli in working memory, while simultaneously
updating or manipulating information. For example, the
reading span task requires participants to read sentences,
answer related questions, and then recall the last word of
each sentence (Daneman and Carpenter, 1980). Working
memory is discussed to be highly related to fluid intel-
ligence, however, it still has independent explanatory
value (Salthouse and Pink, 2008). Age-related differences
are reported as early as from young adulthood (20 years),
following a linear trend (Brockmole and Logie, 2013).
Longitudinal evidence has suggested declines in working
memory capacity in middle-aged to older adults over the
time span of 3 years (Hultsch et al., 1992).

Processing speed

Processing speed refers to the speed with which infor-
mation is processed and can be divided in measures of
psychomotor speed and perceptual speed. While psych-
omotor speed refers to the speeded performance in very
basic motor task (e.g. finger tapping), perceptual speed
tasks additionally include varying amounts of executive
control (e.g. copying symbols or substituting digits with
symbols) (Cepeda et al., 2013). As the distinction between
these two types of speed measure is often neglected in the
literature, we will hereafter refer to processing speed as a
broader construct. Processing speed is a core component
of higher-order cognitive abilities and thus suggested to
drive age-related changes in other fluid cognitive domains
(Robitaille et al., 2013). The rationale is that if simple
processing steps take up more time due to age-related
slowing, the remaining time for more complex opera-
tions is consequently limited. Furthermore, the slowing
of basic mental operations might lead to the loss of infor-
mation (e.g. through mechanisms of decay) by the time
it is required for higher-order operations (see Salthouse,
1996). Cross-sectional studies indicate that age-deficits in
processing speed can already be found in early adulthood,
implying an early onset of cognitive slowing (Salthouse,
2010). While longitudinal findings of the Seattle Longitu-
dinal study suggest a much later onset of decline around
the age 60, processing speed is still one of the earliest fluid
cognitive abilities to decline (Schaie, 2005).
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Summary

On average, age-differences and declines with old age are
found for episodic and prospective memory, EF (although
driven partly by basal processes), selective and divided
attention, working memory, and processing speed,
whereas implicit, semantic memory, and sustained atten-
tion show relative stability into older age. From the per-
spective of STAC-r, such multidirectional changes might
reflect differences in the extent to which these cognitive
domains rely on cognitive processes which can be com-
pensated by strategy use or experience when biologi-
cal resources are not sufficient anymore. For example,
vocabulary knowledge (semantic memory) might be
more strongly influenced by experience (i.e. education,
frequent social interactions or reading the newspaper)
and thus more adept to compensatory maintenance than
the ability to complete a task as fast as possible (process-
ing speed). The latter might thus rely more on a youth-
ful brain structure and function. Regarding the onset
of age-related differences and declines, cross-sectional
studies typically estimate an earlier onset than longitu-
dinal studies. This discrepancy can be explained in part
by methodological limitations inherent to the respective
study designs (e.g. practice effects in longitudinal studies,
Salthouse, 2014; cohort-effects in cross-sectional studies,
Schaie, 2005). As scaffolding is a regulatory process that
occurs within individuals over time, only longitudinal
studies can directly capture this process. This might
also explain why longitudinal studies report stability
of cognitive ability into much higher ages. Specifically,
accelerated cognitive declines (e.g. of episodic memory,
processing speed) observed in longitudinal studies could
reflect a turning point when compensatory mechanisms
start to lose their functionality (e.g. due to degradation of
the frontal cortex).

Associations between changes in
brain structure and cognitive ability
in healthy aging

So far, the relation between brain structure and cognitive
ability was mainly investigated by cross-sectional studies.
This literature has previously been reviewed elsewhere
(see Kaup et al., 2011; Salthouse, 2011), which is why we
refer to these works for an in-depth discussion. In brief,
cross-sectional studies typically correlate a measure of
brain structure and a measure of cognitive ability while
controlling for age (see research question 3). Several of
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these studies show a trend toward a positive brain-cogni-
tion correlation (but see Salat et al., 2002; Van Petten et al.,
2004), suggesting that people with larger brain volumes,
a thicker cortex, or better WM health (i.e. less WMH load,
more intact WM microstructure) on average perform better
in a variety of cognitive tasks, independent of their age.
However, the results remain largely inconclusive with
regard to the association of specific brain regions and
single cognitive domains, given vast methodological differ-
ences between studies in terms of brain structure proxies,
the selection of cognitive tasks, or varying sample sizes.
Furthermore, the focus has often not been on (healthy)
aging, but more generally on brain-cognition relations.
Although other studies have tested more specific hypothe-
ses with regards to aging (e.g. investigating brain structure
as a mediator of age-effects on cognitive performance),
these studies often fall short in contrasting their findings
with alternate theories (Salthouse, 2011). Moreover, media-
tional analyses are not sufficient to disentangle directional
relationships (Hofer et al., 2006; Lindenberger et al., 2011).
As is discussed already in the introduction, longitudinal
studies are necessary to draw inferences about the inter-
relation of change trajectories in brain structure and cogni-
tion over time. Therefore, we will comprehensively review
this literature in the following sections.

Literature search and inclusion criteria

To review the longitudinal literature on brain struc-
ture-cognition relations in healthy aging, we searched
Pubmed using the terms (‘brain structure’ OR ‘brain
volume’ OR ‘white matter’ OR ‘grey matter’ OR ‘gray
matter’ OR ‘cerebrospinal fluid’ OR ‘CSF’ OR ‘ventricle’
OR ‘ventricular’ OR ‘cortex’ OR ‘cortical’ OR ‘diffusion’ OR
‘hippocampus’ OR ‘hippocampal’) AND (‘cognition’ OR
‘cognitive’ OR ‘speed’ OR ‘memory’ OR ‘executive func-
tions’ OR ‘EF’ OR ‘intelligence’ OR ‘attention’) AND (‘old
age’ OR ‘aging’ OR ‘ageing’ OR ‘elderly’) AND (‘change’
OR ‘changes’ OR ‘trajectory’ OR ‘trajectories’) AND (‘lon-
gitudinal’ OR ‘over time’ OR ‘follow-up’). Figure 4 shows
a flow-diagram of our search procedure, adapted from
the Preferred Reporting Items for Systematic Reviews
and Meta-analyses (PRISMA) guidelines (Moher et al.,
2009). The search was conducted on 13 February 2019,
and yielded 1180 results. In addition, we identified four
articles from other sources (i.e. reference lists of the
screened articles) that seemed relevant, resulting in
1184 articles. We screened the titles and abstracts and
included only those articles that:
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(1) studied older participants over 60 years of age (arti-
cles spanning a wider age range were also included if
part of the sample was older than 60 years),

(2) studied cognitively healthy participants (full sample
or a subset),

(3) reported two or more measurement occasions of
both a measure of brain structure and cognitive
ability,

(4) reported information regarding the statistical analy-
sis of correlated changes between brain structure and
cognitive ability,

(5) and were prospective observation studies.

We retained 268 articles for closer examination that
fulfilled these criteria or that were not providing suf-
ficiently clear information in the title/abstract to be
excluded. In the next step, we screened the full text of
these articles for eligibility and excluded 238 articles (for
reasons see Figure 4), resulting in 31 relevant articles,
which will be reviewed in the following sections. The
results for GM (see Table 2), WM (see Table 3), and whole
brain volume and CSF (see Table 4) are reported sepa-
rately (see column brain-cognition relations). Whole
brain volume and CSF are reported in the same table,
as both measures reflect direct or indirect (in the case
of CSF) estimates of global changes in brain tissue. If an
article included results for multiple indicators (e.g. both
GM and WM), the results for these indicators are listed
in separate tables, thus leading to overlapping samples
between tables. In addition, if an article reported results
for both cognitively healthy and pathological partici-
pants, only the results for the healthy subgroup are
reported. If some initially healthy participants converted
to mild cognitive impairment or dementia during the
time of the study, we only included the respective article
if it reported results without the cognitively impaired
participants. Due to a lack of consensus in the field on
a definition of healthy aging in general and cut-offs for
cognitive health in specific, we decided to leave the deci-
sion on exclusion criteria for healthy cognitive aging up
to the researchers (see column ‘Healthy cognitive aging’
in Tables 2-4), while, however, discussing this variability
as a methodological limitation (see section ‘Methodolog-
ical limitations’). In the scope of this literature review,
we limited our search to brain structure measures that
are commonly reported in the literature (see Table 1). For
the cognitive ability measures, we did not include meas-
ures from screening instruments for the detection of cog-
nitive impairment [e.g. mini mental state examination
(MMSE)], unless they were part of a composite score with
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=
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p— Records after duplicates removed

(n=1184)
o
=
H
E ¥
a Records screened _

(n=1184) "

k.
Full-text articles assessed

£ for eligibility >
E (n=268)
= Reasons:
w
°
'g Studies included in
El qualitative synthesis results reported
- (n=31)

Full-text articles excluded
(n=237)

- No longitudinal brain
structure and/or cognitive
measurements available

- Participants not healthy at
baseline and/or follow-up
(converted to MCI/AD)

- Participants not > age 60

- No correlated change

- Brain structure measures
or cognitive measures not
in the scope of this review

Figure 4: Preferred reporting items for systematic reviews and meta-analyses flow-chart of the literature search procedure.

other neuropsychological and/or psychometric cognitive
tasks. In addition, in Tables 2-4, we list only structural
brain and cognitive measures that were also considered
for the analysis of brain-cognition relations. All reviewed
studies used MRI to measure brain structure. Only one of
the reviewed studies reported lagged correlated changes.
For reasons of simplicity, we thus refer to correlated
changes when reporting results on simultaneous corre-
lated changes and will specifically highlight the discus-
sion of lagged correlated changes.

Due to the similarities in study design and meas-
ures investigated, we also give an overview of the litera-
ture on cognitive training in healthy older adults (see
Box 2). In addition to delivering a cognitive interven-
tion, these studies also included cognitive and neuro-
imaging assessments at least at pretest and post-test.
We limit our discussion to cognitive training studies
that included a control group (active or passive) and
administered a substantive amount of training sessions
(at least 10).

Results

The results discussed in the following sections can be
interpreted as follows: (1) positive level-change correla-
tions suggest that higher levels of brain structure (or cog-
nitive ability) are associated with a more positive change
(i.e. less decline) in cognitive ability (or brain structure)
and vice versa, (2) positive change-change correlations
suggest that a more positive change (i.e. increase or less
decline) in brain structure (or cognitive ability) is associ-
ated with a more positive change in cognitive ability (or
brain structure) and vice versa. To avoid misinterpreta-
tions, the results are presented such that higher values in
cognitive tasks reflect better performance.

GM and cognitive ability

In total, 18 studies investigated longitudinal associations
between measures of GM structure and cognitive ability
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Box 2: Evidence from cognitive training studies.

According to STAC-r, interventions such as cognitive training can stimulate compensatory scaffolding directly. Consequently, experimental
training studies using neuroimaging provide the unique opportunity to investigate the indirect pathway between structural brain and
cognitive aging, deepening the understanding of how compensatory mechanisms on the level of structural brain changes may reverse

or attenuate age-related cognitive decline. In recent years, there has been an increasing interest in cognitive training interventions,
because they constitute a potentially powerful, safe, and economical approach to prevent age-related cognitive decline. Compared to
nonexperimental longitudinal studies, combined training, and neuroimaging studies provide strong causal inference on the influence of
cognitive exercising on brain structure. To gain insight into the neuroanatomical underpinnings associated with training-related cognitive
changes in older adults, a number of neuroimaging studies were conducted to reveal alterations in GM and WM, respectively (see Valkanova
et al., 2014; ten Brinke et al., 2017, for reviews).

Cortical increases in GM in areas that are associated with the trained cognitive ability are found after an 8-week strategy memory training
(i.e. the method of loci; Engvig et al., 2010) and 12-week computer-based multi-domain training targeting memory, attention, response
speed, EF, and language (Lampit et al., 2015). Interestingly, the observed structural changes seem to be stronger at the beginning of
training than in later stages of training. In the study of Lampit et al. (2015), more than half of the increase in GM occurred within the

first 3 weeks of training, whereas the following 9 weeks of training resulted in relatively smaller increase. These findings are in line with
the recently proposed expansion-renormalization model (Wenger et al., 2017). According to this model, learning- or training-related
neuroanatomical changes are characterized by three stages: expansion, selection, and renormalization. Whereas at the beginning of a
training intervention brain tissue expands (potentially by changes to synapses, glial cells, or vasculature and to a limited extent via the
generation of additional neurons), brain tissue starts to return to the normal, baseline level when the cognitive process can be optimally
performed. However, as the cellular mechanisms underlying GM tissue changes in humans are still not sufficiently understood and studied,
this model requires further validation. In addition, these promising findings are contrasted by studies that found no differences in GM
tissue between the experimental and a control group after an 8-week attention and distractibility training (Mozolic et al., 2010), a 26-week
multidomain COGPACK training (Suo et al., 2016), and a 16-week spatial navigation training (Wenger et al., 2012). However, Wenger et al.
(2012) found a trend towards cortical thinning in the control group, which was not observed in the navigation group.

A small number of studies have also investigated training-related changes in WM. They consistently found that the experimental group
exhibited an increase in FA compared to the control groups (both passive and active) in related brain areas (Lévdén et al., 2010; Engvig
etal., 2012; Chapman et al., 2015; de Lange et al., 2017). Further, training-related changes in MD have also been reported (Lovdén et al.,
2010, 2012; de Lange et al., 2017). One study has also investigated long-term changes in WM 12 months after completion of a cognitive
training intervention compared to an active control (Cao et al., 2016). The authors found an overall trend that in the multidomain training
group, AD decreased while FA, MD, and RD remained stable. In the control group, however, FA decreased, while MD and RD increased.

Only few studies have, however, directly investigated the association between the size of training gains and the size of training-

induced structural brain changes. Some of them reported a positive relationship between training-induced cognitive improvement and
neuroanatomical change indices, indicating that individuals who showed the largest improvements during training also showed the
strongest changes in GM (Engvig et al., 2010; Lampit et al., 2015), and WM (Engvig et al., 2012; de Lange et al., 2017). But again, other
studies found no correlation between cognitive training performance and training-induced changes in GM (in younger adults; Wenger et al.,
2012) and WM (Lovdén et al., 2010, 2012). So far, only one study has investigated the effect of repeated phases of cognitive training on
neural plasticity and training-gains (de Lange et al., 2018). The authors could show that age-related WM microstructural decline over the
study period of 40 weeks was attenuated during phases of memory training, supporting a mitigating effect of cognitive training on brain
aging. In contrast, memory performance was less dependent on continued training, showing stability after an initial training-induced gain.

In conclusion, so far only a small number of cognitive intervention studies have investigated training-induced structural brain changes,
finding either increases or stability in brain structure, as compared to a control group. In addition, if reported, associations between
structural brain changes and cognitive training-gains were either positive or nonsignificant. However, large methodological differences
between studies limit the generalizability of these findings. In general, the field of cognitive intervention studies is still emerging and
further research is required to determine what type of cognitive training and in which dosage (i.e. intensity, frequency, and duration) is
required to achieve maximum training gains and structural brain changes. Besides cognitive interventions, studies administering physical
interventions have also reported training-induced structural brain and cognitive performance changes, however, this literature goes beyond
the scope of the present literature and is reviewed elsewhere (e.g. Brehmer et al., 2014; Mandolesi et al., 2018). While most of the existing
training studies rely on a group design, a promising trend for future research is the development of individually targeted interventions,
based on neuroanatomical predispositions (Park et al., 2018) and nonbiological factors (Guye et al., 2016) that can help individuals to best
maintain their health and well-being far into old age.

(see Table 2). Among these articles, 10 reported level- two did not (Leow et al., 2009; Ritchie et al., 2015b).
change associations, of which eight showed a significant Moreover, 16 studies were able to compute results for
result (Raz et al., 2008; Persson et al., 2012; Fjell et al.,, correlated changes, of which eight were also significant
2014; Moller et al., 2016; Persson et al., 2016; Hohman (Persson et al., 2012; Fjell et al., 2014; Ritchie et al., 2015b;
et al., 2017; Anblagan et al., 2018; Yuan et al., 2018) and Moller et al., 2016; Gorbach et al., 2017; Leong et al., 2017;
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Sala-Llonch et al., 2017; Anblagan et al., 2018) and eight
were nonsignificant (Cohen et al., 2001; Raz et al., 2007;
Leow et al., 2009; Daugherty et al., 2015; Mak et al., 2015b;
Fjell et al., 2016; Persson et al., 2016; Hohman et al., 2017).
However, as not all studies did report results for both
level-change and correlated change associations, the pro-
portion of significant results might be biased. In addition,
the potential threat of a publication bias needs to be taken
into account. Studies with nonsignificant associations are
less likely to get published (Ioannidis et al., 2014), and it
is possible that the studies reported here are a selective
subset of the literature reporting significant results.

Intelligence

Five studies observed level-change or correlated change
associations of GM with a measure of intelligence (Raz
et al., 2008; Ritchie et al., 2015b; Persson et al., 2016;
Leong et al., 2017; Yuan et al., 2018). Two very well-
powered studies used latent change score models (LCS;
McArdle and Hamagami, 2001; McArdle, 2009) to assess
correlated changes between latent measures of GM
volume and latent measures of cognitive ability (Ritchie
et al., 2015b: n=657; Persson et al., 2016: n=167). The
LCS model is estimated in the structural equation mod-
eling (SEM) framework and allows the estimation of a
latent change score between two subsequent measure-
ment occasions, thus separating true change (at least
in part) from measurement error. Furthermore, using
the LCS model, it is possible to separate interindividual
differences from intraindividual change (for a further
explanation of this model, see section ‘The benefits of lon-
gitudinal designs’ on latent change models). Ritchie et al.
(2015b) found significant correlated changes between GM
volume and fluid intelligence, such that steeper declines
in GM volume were associated with steeper declines in
fluid intelligence over a period of 3 years. Furthermore,
Persson et al. (2016) reported that participants with lower
baseline GM volume in cerebellar hemispheres, para-
hippocampal gyrus, and hippocampus showed larger
declines in fluid intelligence over 2 years. Also using the
LCS model, Raz et al. (2008) found that steeper changes
in entorhinal cortex volume were associated with lower
levels of fluid intelligence in a sample of young and older
adults (age range 20-77). Moreover, Yuan et al. (2018)
reported differential effects of fluid and crystallized intel-
ligence on GM aging: while participants with higher fluid
intelligence levels demonstrated reduced cortical GM
volume shrinkage over a time span of around 5 years,
participants with higher levels of crystallized intelligence
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showed steeper declines in cortical GM volume and total
cortical thickness. The authors were, however, unable to
compute correlated change, due to a lack of interindivid-
ual differences in the cognitive variables. Finally, using a
composite of global cognition across five fluid cognitive
tasks (i.e. EF, processing speed, verbal, and visuospatial
memory), Leong et al. (2017) reported positive correlated
changes of this measure with total GM volume (specifi-
cally frontal, parietal, and temporal lobar volumes) and
hippocampal volume. In contrast, the authors reported
negative correlated changes between lobar GM in the
occipital cortex and global cognition, indicating that on
average, increases in occipital GM were associated with
decreases in global cognition.

Memory

The most consistent evidence was found for correlated
changes between episodic memory and GM volume or GM
thickness in medial temporal regions (Persson et al., 2012;
Fjell et al., 2014; Gorbach et al., 2017; Hohman et al., 2017;
Leong et al., 2017; Anblagan et al., 2018). With one excep-
tion (n=26: Persson et al., 2012), these studies included
large (e.g. n=111: Leong et al., 2017) to very large (e.g.
n=655: Anblagan et al., 2018) sample sizes.

Two studies could show positive longitudinal associa-
tions between hippocampal volume and episodic memory,
such that older adults with larger baseline hippocam-
pal volumes (Hohman et al., 2017), or less hippocam-
pal atrophy over time (Leong et al., 2017) showed less
declines in episodic memory over a period of 4-8 years,
respectively. Furthermore, Persson et al. (2012) reported
that changes in episodic memory were positively corre-
lated with changes in the right hippocampus, as well as
hippocampal volume at follow-up (after 6-10 years) in
a sample of middle-aged to older healthy participants.
Similarly, Gorbach et al. (2017) found positive correlations
between 15-year changes in an episodic memory compos-
ite of five tasks and simultaneous 4-year changes (towards
the end of the same testing period) in GM volume of the
hippocampus in a sample of healthy middle-aged to older
adults. Notably, this effect was driven by the participants
aged over 65. To reduce practice effects, the authors used
slightly different versions of the episodic memory tasks
across measurement occasions (i.e. by switching item
lists between tasks or changing the item order). Also, one
study found that baseline hippocampal microstructure as
measured with MD (more conventionally used to detect
WM changes; see Table 1), was associated with changes
in verbal episodic memory (Anblagan et al., 2018), such
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that participants with higher MD showed steeper subse-
quent declines in episodic memory performance. In con-
trast, correlated changes between hippocampal volume
and verbal episodic memory did not survive correction for
multiple comparisons. The authors speculate that higher
MD values might reflect an age-related increase in water
content in hippocampal tissue that could be a precursor
for age-related pathological changes that influence cogni-
tive abilities before brain atrophy can be observed (Anbla-
gan et al., 2018).

Positive correlated changes with episodic memory
were also reported for cortical thickness in the entorhinal
cortex (Fjell et al., 2014) and in right hemispheric regions
(Sala-Llonch et al., 2014; Méller et al., 2016). Finally, one
study reported a significant association of higher base-
line episodic memory performance with reduced 2-year
GM volume declines in the lateral prefrontal cortex in a
sample including younger and older adults (age span of
19-79 years; Persson et al., 2016).

EF

Four studies reported level-change associations for a
measure of GM and EF: in a large sample of healthy con-
trols of the Alzheimer’s disease and neuroimaging initia-
tive (ADNI; n=379), baseline hippocampal volume was
positively related to changes in EF over 4 years (Hohman
et al., 2017), suggesting that older adults with lower hip-
pocampal volume showed steeper declines in EF. Similarly,
Leong et al. (2017) reported positive correlated changes
between hippocampal volume and EF over 8 years of fol-
low-up. In addition, in one study, 2-year changes in corti-
cal thickness of the right occipital cortex were negatively
correlated with simultaneous performance changes in EF
tasks (Moller et al., 2016).

Working memory

Only one study found longitudinal relationships between
hippocampal MD and working memory (Anblagan et al.,
2018): unlike the level-change association, which went
into the expected direction, correlated changes between
MD and working memory were positive, suggesting that
increases in MD (usually interpreted as disruptions in
WM microstructure) were related to improvements in
working memory. However, due to the lack of specific-
ity of MD, other influences (e.g. crossing fibers) could
potentially have led to a local increase in MD (Zatorre
etal., 2012).
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Processing speed

In two well-powered studies using data from the Lothian
Birth cohort, more intact hippocampal GM at baseline
(i.e. lower MD; Anblagan et al., 2018), and less decline in
whole brain GM volume (Ritchie et al., 2015b) were associ-
ated with reduced declines in a latent measure of process-
ing speed over 3 years.

However, nine studies did not show any longitudi-
nal relationships between GM and cognition regarding
correlated change (Cohen et al., 2001; Raz et al., 2007;
Daugherty et al., 2015; Mak et al., 2015b; Fjell et al., 2016;
Persson et al., 2016; Hohman et al., 2017), level-change
(Ritchie et al., 2015b) or both (Leow et al., 2009). Several
of these studies had comparatively small sample sizes
(between n=25 and 56) and might have thus not been suf-
ficiently powered to detect any significant effects (Cohen
et al., 2001; Raz et al., 2007; Leow et al., 2009; Mak et al.,
2015b; Fjell et al., 2016).

WM and cognitive ability

In total, 18 studies investigated longitudinal associa-
tions between measures of WM structure and cognitive
ability (see Table 3). Out of these, nine studies reported
level-change associations, of which four were signifi-
cant (Ritchie et al., 2015a,b; Persson et al., 2016; Moon
et al., 2017), and five were not (Raz et al., 2008; Silbert
et al., 2008; Charlton et al., 2010; Bender et al., 2016a;
Song et al.,, 2018). Moreover, 17 studies reported cor-
related change associations, of which 14 were signifi-
cant (Schmidt et al., 2005; Raz et al., 2007; Silbert et al.,
2008; Charlton et al., 2010; Lovdén et al., 2014; Ritchie
et al., 2015a,b; Bender et al., 2016a; Kohncke et al., 2016;
Persson et al., 2016; Fjell et al., 2016, 2017; Leong et al.,
2017; Moon et al., 2017), and three were not (Schmidt et al.,
1999; Gorbach et al., 2017; Song et al., 2018). Again, many
studies did not report results for both level-change and
correlated change, therefore the proportion of significant
results should be interpreted with caution.

Intelligence

Several studies found positive level-change or corre-
lated change associations between global measures of
WM health and some measure of fluid intelligence, such
that lower baseline WM volumes or faster degradation of
WM were associated with larger declines in intelligence
performance. Specifically, accumulation of global WMH
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volume over time (Schmidt et al., 2005; Raz et al., 2007;
Ritchie et al., 2015b), decrease in global FA (Ritchie et al.,
2015a), and both lower baseline prefrontal WM volume
and atrophy therein (Persson et al., 2016) were associated
with declines in intelligence over time. These studies all
covered a time span between 2 and 6 years. Furthermore,
several of these studies used LCS models to investigate
interindividual differences in intraindividual changes
(Ritchie et al., 2015a,b; Persson et al., 2016), and included
large to very large sample sizes given the standards in the
field (n=731: Ritchie et al., 2015a; n=657: Ritchie et al.,
2015b; n=167: Persson et al., 2016).

Memory

Some evidence also exists for correlated change asso-
ciations between WM health and measures of episodic
memory (Schmidt et al., 2005; Silbert et al., 2008; Ritchie
et al., 2015b; Fjell et al., 2016; Bender et al., 2016a; Leong
et al., 2017). In one study, larger declines in global and
lobar (i.e. parietal and frontal) WM volume were related
to steeper declines in a composite reflecting verbal epi-
sodic memory performance (Leong et al., 2017). Further-
more, three studies reported negative correlated changes
between WMH and episodic memory (global WMH:
Schmidt et al., 2005; subcortical WMH: Silbert et al.,
2008; global WMH: Ritchie et al., 2015b), which can be
interpreted as a positive relationship between changes
in WM health and episodic memory. Also, one study
reported a relationship between changes in WM micro-
structure (increases in MD of the cingulate gyrus) typically
understood as WM deterioration, and declines in episodic
memory (Fjell et al., 2016). However, Bender et al. (2016a)
observed the opposite relationship. In their study, changes
in WM microstructure (decreases in FA, increases in RD),
which are commonly interpreted as WM degradation were
correlated with improvements in episodic memory. Given
the uncertainty regarding the cellular mechanisms of
change in diffusion properties, however, it is also possible
that the pattern of WM changes reflects a form of plastic
reorganization (Bender et al., 2016a).

EF

Two studies reported evidence for level-change or corre-
lated change associations between WM and EF (Fjell et al.,
2017; Moon et al., 2017). Fjell et al. (2017) found a negative
correlation between MD changes in the inferior and supe-
rior longitudinal fasciculi (averaged across hemispheres)
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with performance changes in a shifting condition of the
stroop task across a period of 3 years. However, the result for
the superior longitudinal fasciculus did not survive control
for age. This means that increases in MD in the inferior lon-
gitudinal fasciculus were related to declines in inhibitory
control, independent of participant age. In a subsample
of cognitively healthy elderly, Moon et al. (2017) reported
a negative association between WMH progression and
steeper 3-year declines in EF, measured as performance in
the Trail Making Test B. This relationship was not found for
the entire sample, which contained also participants with
impaired cognition (i.e. clinical dementia rating scale >0).

Working memory

One study reported negative correlated changes between
a measure of WM microstructure (i.e. MD; higher values
reflect lower integrity) and a composite of two working
memory tasks (Charlton et al.,, 2010). These tasks are
elsewhere interpreted as measures of fluid intelligence
(Ritchie et al., 2015a,b).

Processing speed

Overall, five studies found level-change or correlated
change associations between WM health and processing
speed. Notably, these studies were very well-powered,
with sample sizes above n=400 (with the exception of
Moon et al., 2017). Based on participants from the same
sample of healthy older adults, two studies reported posi-
tive correlated changes over 2 years between indices of
WM microstructure (decreases in FA, increases in MD)
of the corticospinal tract and processing speed (Lovdén
et al., 2014; Kohncke et al., 2016), indicating that older
adults with less intact WM microstructure in the corti-
cospinal tract show steeper declines in processing speed.
Furthermore, lower baseline global FA (Ritchie et al.,
2015a), higher global WMH at baseline, and higher WMH
increases were associated with steeper declines in pro-
cessing speed (Ritchie et al., 2015b; Moon et al., 2017).
Finally, seven studies did not show any longitudi-
nal relationships between WM and cognition regarding
correlated changes (Schmidt et al., 1999; Gorbach et al.,
2017), level-change associations (Raz et al., 2008; Silbert
et al., 2008; Charlton et al., 2010; Bender et al., 2016a), or
both (Song et al., 2018). The sample sizes of these studies
were very heterogeneous, with some including smaller
(e.g. n=84: Charlton et al., 2010; n=55: Song et al., 2018),
and others large samples of more than 200 participants
(Schmidt et al., 1999, 2005; Gorbach et al., 2017).



DE GRUYTER

Whole brain volume, CSF, and cognitive
ability

Overall, six studies reported longitudinal associations
between measures of whole brain volume or CSF, and cog-
nitive ability (see Table 4). Four of these studies reported
level-change associations, of which one showed a signifi-
cant result (Ritchie et al., 2015b), and three did not (Charl-
ton et al., 2010; Grimm et al., 2012; Mak et al., 2015a).
Moreover, all six studies reported results for correlated
changes, of which three were also significant (Schmidt
et al., 2005; Grimm et al., 2012; Leong et al., 2017), and
three were nonsignificant (Charlton et al., 2010; Mak
et al., 2015a; Ritchie et al., 2015b).

Memory

Three studies found positive level-change (Ritchie et al.,
2015b) or correlated change associations (Schmidt et al.,
2005; Leong et al., 2017) of a measure of episodic memory
and of a measure of whole brain volume (see Table 1), in
the direction that participants with lower levels of epi-
sodic memory performance at baseline, or decreases
therein, showed on average steeper decline in whole brain
volume. These studies were well to very well-powered
(n=329: Schmidt et al., 2005; n=657: Ritchie et al., 2015b;
n=111: Leong et al., 2017).

With regard to CSF, two studies found negative cor-
related change associations between ventricular volume
and episodic memory performance, such that ventricular
enlargement (CSF increases) was related to simultaneous
or subsequent declines in memory performance (Grimm
et al., 2012; Leong et al., 2017). Specifically, we would like
to highlight the study by Grimm et al. (2012), which was the
only one to model lagged correlated changes. The authors
assessed 149 participants in a measure of CSF (lateral ven-
tricle volume) and episodic memory with seven repeated
measurements over a maximum period of 10 years. They
estimated change across participant age (60—90 years) in
a bivariate dual change score model (a variant of a LCS
model). Conducting a series of model comparisons, they
concluded that a final model where previous changes
in CSF led to subsequent changes in episodic memory
reflected the data best, whereas the other directional-
ity (cognitive changes leading to brain changes) lowered
model fit substantially. We would like to emphasize this
study, as it provides the methodological tools to explore
directional hypotheses in the study of dynamic within-per-
son associations between changes in brain structure and
cognitive ability. As the expansion of CSF in the ventricles
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indicates a loss of brain volume, these results, when taken
together, mirror the findings for whole brain volume.

Other

In addition, Schmidt et al. (2005) reported positive cor-
related changes of NBV with a composite of four cogni-
tive tasks that tap into attention and processing speed.
Another study reported a negative association of ventricu-
lar expansion with executive function declines (Leong
et al., 2017).

However, two studies did not find any significant
association regarding level-change and correlated change
associations (Charlton et al., 2010; Mak et al., 2017). These
studies had smaller sample sizes compared to the studies
reported above that found significant brain structure-cog-
nition relations (i.e. n=106: Charlton et al., 2010; n=33:
Mak et al., 2017), thus having less power to detect any sig-
nificant effects.

Summary

In conclusion, so far only a small number of studies have
investigated level-change or correlated change associa-
tions between measures of brain structure and cognitive
ability. Several of these studies report positive associations,
indicating that declines (or increases) in structural brain
intactness are related to simultaneous losses (or gains) in
cognitive performance. However, others have found the
opposite relation, such that brain structure was negatively
associated with cognitive ability, or showed no significant
correlation at all. In light of the scarcity of evidence, the
positive association between structural brain properties
of medial temporal regions (specifically the hippocam-
pus) and global brain metrics with episodic memory has
received comparatively more attention. As the hippocam-
pus is involved in neurogenesis up into old age (Lillard
and Erisir, 2011), this structure is highly relevant for brain
plasticity, and potentially also for compensatory scaffold-
ing (see also Park and Reuter-Lorenz, 2009). We also found
some support for level-change or correlated changes of
global GM and WM indices with fluid intelligence, and a
few studies showed brain structure relations with EF and
processing speed, however, these findings are more hetero-
geneous. Generally, the interpretation of significant corre-
lated change associations between structural brain indices
and cognitive abilities poses a challenge, as it is impos-
sible to disentangle whether age-related neuroanatomi-
cal changes are causally linked to simultaneous cognitive
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declines, or whether a (positive) relationship between these
variables reflects a common, underlying causal mecha-
nism. Based on STAC-1, we expected associations between
brain structure and cognitive ability to be weak especially
in healthy older adults as they should be able to compen-
sate for age-related brain atrophy and thus maintain cog-
nitive performance. Unfortunately, it was not possible to
derive a fully comparable measure of the strength of the
correlated change relationships, due to large methodologi-
cal differences between studies. Even if it was possible to
gain an effect size estimate, it would be impossible to judge
at the present moment if weak brain structure-cognition
relationships resulted from methodological limitations of
the reviewed studies or actually from intraindividual com-
pensatory resources as predicted by STAC-r. We therefore
conclude that the current limitations of the reviewed lit-
erature prohibit general conclusions on correlated change
relationships in healthy aging. In the following sections, we
will discuss these limitations in-depth, and provide ideas
for the advancement of methods and theories in the field.

Methodological limitations and the
need for methods development

The concerted findings from prospective observa-
tion studies provide evidence for intertwined changes
between WM and GM and whole structural brain corre-
lates and cognitive abilities in healthy aging individuals
(see Tables 2-4). Furthermore, the results gained from
cognitive intervention studies provide causal insights into
the relation between brain structure and cognitive ability
changes. However, taken together, the results are far from
being consistent with respect to the brain regions and
cognitive measures that are associated with each other, or
even regarding the directionality of the relation between
brain structure and cognition (Bender et al., 2016a; Leong
et al., 2017; Anblagan et al., 2018). In the following sec-
tions, we will discuss methodological limitations of the
reviewed studies and potential avenues for methodologi-
cal advancement.

Methodological limitations
Reliability, shape, and dynamics of change
The majority of the reviewed studies assessed only two

measurement occasions. However, two-occasion studies
are limited with regard to the reliability of the change
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estimate (Willett, 1989). A line drawn through two obser-
vations will always fit perfectly and hence measurement
error will be ignored (King et al., 2018). Consequently, the
reliability of the change estimate in two-occasion studies
is highly dependent on the accuracy of the individual
brain or cognitive measures observed at each occasion (see
the sections on reliability and validity of structural brain
measures/cognitive ability measures below). Regarding
the shape of change, two-occasion studies allow only the
estimation of linear change. Ideally, at least four occa-
sions are required to estimate nonlinear trajectories of
change (King et al., 2018). As already touched upon in the
beginning of this article, cross-sectional and longitudinal
evidence supports nonlinear age-related changes in brain
structure and cognitive ability. Furthermore, only with
more than two measurement occasions it is possible to
study time-lagged relations between changes in two vari-
ables, and thus test directional hypotheses of the dynam-
ics between structural brain and cognitive changes. It is
reasonable to assume that changes in two developmental
variables are not perfectly synchronized, but rather follow
a lagged pattern, potentially even with bidirectional rela-
tions (Salthouse, 2011). Only few studies included three or
more measurement occasions (Schmidt et al., 2005; Silbert
etal., 2008; Grimm et al., 2012; Gorbach et al., 2017; Leong
et al., 2017; Moon et al., 2017; Yuan et al., 2018) that would
allow the estimation of more complex change dynamics.
Of these studies, all assumed linear curves to estimate cor-
related change, and only two studies specifically tested
first if a nonlinear trajectory fit the data better (which it
did not; Hohman et al., 2017; Leong et al., 2017). Further-
more, only one study estimated lagged change relations,
using, however, a rough measure of global brain structure
changes (lateral ventricle size; Grimm et al., 2012).

Choice of age-range

The samples used in the reviewed studies differed substan-
tially regarding the age ranges covered. Several studies
selected a lifespan approach, covering a broad age range
from young or middle adulthood to old age. Such lifespan
samples are useful for research, as they can inform about
development across a longer time span that would other-
wise be almost impossible to gather from following one
cohort across the entire lifespan. However, one needs to
be careful when comparing results of age-heterogeneous
studies to those from studies with more narrow age
ranges. In age-heterogeneous studies, average change is
composed of both within-person change and between-
person age-differences. This can be problematic if these
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two types of age effects do not converge. Age convergence
can be formally tested for (Sliwinski et al., 2010), however,
it is often not realistic to find age convergence in studies
with broad age ranges, as very different developmental
mechanisms might be at work in adults of different ages.
For example, the chance of experiencing declines in struc-
tural brain features and cognitive performance is much
higher around age 70 than age 50, and negligibly small
for adults in their twenties. Thus, if these two sources of
variance are not properly distinguished, estimated rates of
change can be confounded with an increased probability
of change with age at the between-person level (Hofer and
Sliwinski, 2001). Different methodological approaches
exist to include between-person age differences better into
the analysis. For example, participant’s baseline age can
be included as a predictor to control for between-person
age differences (see Sliwinski et al., 2010 for an extended
discussion).

Definition of healthy aging

As already touched upon in the introduction of this article,
healthy aging is not a well-defined term. The current
definition of healthy aging provided by the WHO places
importance on the interplay between a person’s resources
(i.e. intrinsic capacity) and the living context on the micro
to macro level that is necessary to retain satisfactory levels
of well-being through the successful pursuit of one’s per-
sonal goals. This definition of healthy aging is more inclu-
sive than the more general definition of health as a state
of ‘complete physical, mental, and social well-being and
not merely the absence of disease or infirmity’ (WHO,
1946). The recent definition from the First World Report on
Ageing and Health (WHO, 2015) states that healthy aging
is a process that applies to individuals at varying levels of
functional capacity and health.

Given that the current review focuses on the asso-
ciation between brain and cognition, and that cognitive
health is an important predictor of well-being in old age,
we understand healthy aging from a cognitive ability
point of view. Thus, when using the term healthy aging,
we mean aging in the absence of clinically relevant cogni-
tive impairment. All of the studies reviewed here tested for
cognitive impairment using one or more common screen-
ing instruments for dementia or psychiatric illness related
to cognitive impairment (i.e. depression) or described
their participants as cognitively normal or dementia-
free without closer information on specific instruments
or cut-offs used (see column ‘Healthy cognitive aging’
in Tables 2-4). However, they showed vast differences

J. Oschwald et al.: Brain structure and cognitive ability in healthy aging = 35

regarding the exact protocols used to determine cognitive
health (e.g. medical screening by trained experts vs. brief
health interview), and the level of detail they provided in
describing these protocols, which is why we direct inter-
ested readers to the original publications for more infor-
mation. Many studies used the same instruments to screen
for cognitive impairment (e.g. MMSE; Folstein et al., 1975),
lending to some comparability. However, the cut-off
values for healthy cognitive aging varied substantially
between studies (e.g. from a minimum score of 24 up to a
score of 28 in the MMSE). Moreover, many studies applied
additional exclusion criteria beyond cognitive health [e.g.
diabetes, cardiovascular disease, or vascular risk (VR)],
leading to substantial differences in the overall health
status between study samples. For example, besides
screening for a range of medical conditions (including
neurological disorders such as AD), Moller et al. (2016)
excluded participants with cerebrovascular disease. In
contrast, Raz et al., specifically included a subsample of
participants with medically treated hypertension, as they
were interested in the effect of VR on brain and cognitive
health (Raz et al., 2007, 2008). The choice of criteria influ-
ences the prevalence of people categorized as healthy
agers substantially (McLaughlin et al., 2012; Rodriguez-
Laso et al., 2018). This discrepancy in the use of screen-
ing instruments and cut-off criteria underlines the urgent
need for a clear consensus on a definition of healthy aging.
Finally, on a conceptual level, it is still a matter of debate
whether cognitive decline is a normal aspect of healthy
aging and disease represents a qualitatively different state
of the brain or whether it simply reflects the starting point
on a continuum to later disease progression (i.e. demen-
tia) — and age serves as a proxy for pathological changes.

Choice of time interval

The time intervals between measurement occasions varied
between studies, ranging from 1 year (Leow et al., 2009;
Grimm et al., 2012; Fjell et al., 2014; Mak et al., 2015a,b)
up to 15 years (Gorbach et al., 2017). Also, for some studies
the time intervals were different for the MRI and cognitive
measurements (e.g. Fjell et al., 2014; Gorbach et al., 2017).
Depending on the width of the time window under inves-
tigation, it is possible that changes are driven by different
developmental processes or external influences (Hofer
and Piccinin, 2009). When planning a longitudinal study,
researchers need to be aware that different neuroanatomi-
cal substrates (e.g. volumetric or surface-based measures,
WMH, WM microstructure), or different regional structures
most likely vary with regard to the timing and duration of
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age-related change processes. Thus, especially if neuro-
anatomical measurements are also combined with cogni-
tive performance assessments, there will probably not be
any ideal time interval that is suited to capture all of these
change processes. Importantly, the choice of the length
of the time intervals substantially influences the magni-
tude of the parameters estimated in traditional statistical
models for the analysis of longitudinal data (Voelkle and
Oud, 2013). Unfortunately, not many guidelines exist that
help researchers in choosing the optimal spacing between
measurements when planning a longitudinal study of
aging (Dormann and Griffin, 2015).

Choice of covariates

Many authors included one or more covariates into their
statistical analysis, to control for the potentially confound-
ing influence of third variables on the relationship between
changes in brain structure and cognitive performance (see
column ‘Covariates’ in Table 2). Notably, the selection of
covariates was heterogeneous between studies, further
preventing direct comparisons of the level-change and cor-
related change relations. For example, while some authors
controlled for age only, others additionally included other
covariates (e.g. VR, apolipoprotein E allele 4) to control for
the impact of neurally depleting factors. A source of het-
erogeneity was also introduced by different approaches
to control for brain size. While some authors decided to
adjust the raw brain volumes with a measure of maximum
healthy brain size such as ICV (e.g. Persson et al., 2016),
others included it as a covariate (e.g. Leong et al., 2017).
At the present moment, no clear consensus is reached on
one approach in the literature, as many factors play a role
(e.g. the measure of brain size: Jancke et al., 2015), and it
is yet unclear how the correction with a global measure of
brain size impacts findings in longitudinal developmental
studies (Mills and Tamnes, 2014). We acknowledge that
the choice of covariates is not a trivial matter, and often
neglected in the discussion of results. Furthermore, covar-
iates are often selected retrospectively, based on the vari-
ables that are available in a dataset, and not necessarily
based on the most relevant potential confounds. This is
especially an issue when using large, publicly available
datasets that might not be designed for the research ques-
tion at hand. Even in an ideal scenario where all potential
confounds are observed, the decision on which variables
to include into an analysis still remains subjective. Impor-
tantly, the choice of covariates can substantially alter the
results of an analysis, as is nicely demonstrated in a recent
study by Silberzahn et al. (2018). They asked 29 teams of
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researchers to independently analyze the same dataset
and answer the question, whether soccer referees are
more likely to give red cards to dark skinned players. The
conclusions the researchers made varied immensely, in
part because of their choice of covariates. Especially with
regard to observational studies, the inclusion of certain
types of covariates can impose a threat to causal conclu-
sions (see Rohrer, 2018). To enable future meta-analytical
comparisons, we thus advocate the transparent reporting
of the results both with and without the included covari-
ates. In addition, future studies might consider including
time-varying covariates in their analyses, if theoretical
reasons exist that they impact brain and/or cognitive per-
formance differentially over time. For example, high body
mass index or hypertension is associated to higher risks of
developing dementia if experienced in midlife (Kennelly
et al., 2009; Kiviméki et al., 2018).

Statistical method

Another source of variation between studies relates to
the statistical methods used to model correlated change
associations. In most cases, the investigators decided
to compute two change scores (raw difference score or
a change ratio) and either run a standard correlation
between them, or include one score as a predictor and the
other as a dependent variable in a regression model (see
column ‘Statistical method’ in Tables 2-4). In contrast to a
raw difference score, a change ratio is typically standard-
ized with regard to baseline values of brain structure or
cognitive ability, thus reflecting a relative difference. As
many authors used different methods to compute change
ratios (e.g. annual percentage change vs. the proportion
of level at T2 to level at T1), this lack of consensus intro-
duces another source of noise complicating the compara-
bility of previous findings. Irrelevant of the computation,
however, change scores include not only variation due
to change within individuals over time but they are also
confounded by variation stemming from between-person
differences. Importantly, the main interest of every inves-
tigation of brain structure-cognition relations is to make
assertions on how the two variables of interest are related
to each other within individuals. Thus, appropriate sta-
tistical methods for the analysis of longitudinal change
are necessary that are able to isolate these different por-
tions of variance. Such methods are, for example, variants
of latent growth curve models (i.e. random coefficient
or multilevel models) (Raudenbush and Bryk, 2002), or
latent change models (McArdle and Hamagami, 2001;
McArdle, 2009), which allow to estimate interindividual
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(i.e. between-person) differences in intraindividual (i.e.
within-person) change. Specifically, a variant of latent
change modeling, the bivariate LCS model estimated in
a SEM framework is well-suited to address questions of
correlated change associations between two variables
(Kievit et al., 2018; for more details on the method see
section ‘The benefits of longitudinal designs’). Several
of the reviewed publications have already adopted this
approach (Raz et al., 2008; Grimm et al., 2012; Lévdén
et al., 2014; Daugherty et al., 2015; Ritchie et al., 2015a,b;
Kohncke et al., 2016; Bender et al., 2016a; Persson et al.,
2016; Anblagan et al., 2018).

Power to detect change

The sample sizes studied were highly diverse between
studies. Especially, to detect correlated change, sufficient
statistical power is necessary. While this is not usually a
concern for moderately sized longitudinal studies cover-
ing a few years, power can be an issue for short-term lon-
gitudinal studies with few measurement occasions, few
participants and small effect sizes (cf., Rast and Hofer,
2014). Generally, in order to investigate developmental
change in both, cognitive abilities and brain structure,
studies will need to cover years rather than months to
provide robust estimates of (correlated) change (von
Oertzen and Brandmaier, 2013).

Problem of multiple comparisons

Especially in the field of neuroimaging, many statistical
tests are often conducted concurrently (e.g. for voxel-wise
comparisons across the brain). Specifically, as in the case of
the studies reviewed here, when testing hypotheses about
correlated changes between different regions of the brain
and multiple cognitive abilities, the number of simultane-
ous hypothesis tests is high, leading to an increased risk
of making a type I error (Lindquist and Mejia, 2015). Some
authors solved this problem by applying a correction for
multiple comparisons (Lovdén et al., 2014; Persson et al.,
2014, 2016; Ritchie et al., 2015b; Fjell et al., 2017; Gorbach
et al., 2017). Such corrections typically lower the thresh-
old of the p-value, which lowers the risk of false positive
results, however, on the downside also leads to a reduction
of the statistical power to find the effect of interest (e.g. cor-
related change). Different methods for dealing with multi-
ple comparisons exist that are designed to keep the loss in
statistical power to a minimum (see Lindquist and Mejia,
2015 for an overview). Another possibility in the current
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context is to use advanced multivariate statistical methods
that are able to run multiple hypothesis tests in one model
(see section ‘The benefits of longitudinal designs’). In
any case, we consider it of high importance to report the
applied procedure transparently, and ideally results both
with and without corrections for multiple comparisons, as
was done, for example, by Ritchie et al. (2015b).

Reuse of data

Several of the reviewed publications use the same sample,
or a subsample of the larger participant pool, to address
different research questions. Conducting large-scale
longitudinal studies requires a lot of time and resources
and we strongly agree that it is important to pool efforts
and use the collected data in a sustainable and efficient
manner. However, it would be desirable to openly com-
municate this matter and to explicitly address the statisti-
cal consequences of using data from the same sample to
answer different research questions. We therefore advo-
cate the transparent documentation of the publications
that have used data from the same longitudinal database,
for example, via an open science platform, such as the
Open Science Framework (Foster and Deardorff, 2017).

Reliability and validity of structural brain measures

Another limitation relates to the reliability and validity
of indices derived from brain imaging. First, the proto-
cols used to process longitudinal brain imaging data vary
greatly between research groups. Whereas some groups
use manual or semi-automated methods to delineate ana-
tomical regions of interest, others rely on fully automated
procedures. Some use default settings and others addi-
tionally apply fine-tuning to such default protocol para-
meters. This variety introduces unwanted noise into any
efforts of replication (Mills and Tamnes, 2014).

An important topic for longitudinal investigations is
the concern of retest-reliability. Generally, the measure-
ment of compartmental volumes, surface area and corti-
cal thickness with automated methods is reliable across
repeated testing (Vijayakumar et al., 2017), with regional
scan-rescan reliabilities ranging between 0.8 and 0.9
(Liem et al., 2015). However, factors such as the measured
structure (Morey et al., 2010), choice of segmentation
software and protocol (Jovicich et al., 2013; Heinen et al.,
2016), or magnetic field strength (Heinen et al., 2016) can
impact the reliability. With regard to the assessment of
brain structure-cognition relationships, Dickerson et al.
(2008) reported reliable estimation of cortical thickness
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correlates of cognitive performance across different ses-
sions, scanners, and field strengths in a group of healthy
older adults. In comparison, measurements from DW-MRI
are less robust, with estimated scan-rescan reliabilities
between 0.5 and 0.8 in dependence of preprocessing
choices and WM measure of interest (cf., Madhyastha
et al., 2014). As DW-MRI registers signal-loss due to the
movement of water-molecules, the sensitivity to detect
changes is specifically affected by head motion artifacts
(Yendiki et al., 2014). Even though to a lesser extent, head
motion has also been reported to bias estimates of cortical
thickness and GM compartmental volumes (Reuter et al.,
2015; Alexander-Bloch et al., 2016; Pardoe et al., 2016;
Savalia et al., 2017). Especially in longitudinal studies,
artefacts such as head motion or changes in scanning
systems across occasions (e.g. from field strength 1.5-3T)
can increase measurement error and substantially reduce
the sensitivity to detect change. To diminish the impact
of measurement error when aligning multiple occasion
imaging data in three-dimensional space, longitudinal
imaging pipelines are now emerging that are designed to
re-align the brain images within participants over time
(e.g. Reuter et al., 2012; Yendiki et al., 2016). However,
only limited evidence is available on how these process-
ing streams perform in the case of long-term longitudinal
studies (Willis et al., 2013). Simulation studies would help
to shed light on the conditions under which longitudi-
nal processing streams perform optimally or result in an
underestimation of change.

Regarding the validity of the brain structure indices
with regard to the underlying biological basis, all studies
suffer from the same limitation that structural brain meas-
urements from MRI are only estimates of the underlying
cellular structure (see Box 1). Furthermore, most of the
reviewed studies correlated individual brain measures
(either local or global structural indices) with one or more
cognitive measures. However, cognitive abilities are most
likely based on distinct and distributed brain networks.
Thus, a single regional brain measure may capture only a
fraction of the variance of the underlying cognitive ability
of interest. Another limitation is that single structural
brain measurements are often biased by noise. One solu-
tion to reduce measurement error and thus to increase
the validity of the assessed construct is the use of latent
variables to capture the shared variance across multiple
brain measures (Kievit et al., 2018). Using such a latent
approach, it is also possible to separate more brain-wide
effects of aging, which are shared among different struc-
tural brain measures from measurement-specific changes
(for an example, see Lovdén et al., 2014; Ritchie et al.,
2015a,b; Bender et al., 2016a).
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Quality control procedures

The reporting and application of quality control pro-
cedures was very heterogeneous across the studies
reviewed here. This is not surprising, as no consensus
exists on standardized procedures for the control of head
motion (but see: Yendiki et al., 2016), or quality of the
MR images in general (see Vijayakumar et al., 2017, for
a review). While there exist many metrics that quantify
image quality and can be calculated with tools like QAP
(Quality Assessment Protocol, Shehzad et al., 2015) or
MRIQC (MRI Quality Control tool, Esteban et al., 2017),
determining which metrics provide a good judgment
of image quality is nontrivial. Rosen et al. (2018) have
recently proposed the Euler number as a metric for the
quality of surface reconstruction. Importantly for the
fields of development and aging, they demonstrated in
a young sample that scan quality mediated the relation-
ship between age and cortical thickness. Furthermore,
Esteban et al. (2017) proposed an automatic prediction of
an image quality label. However, further work is needed
in order to derive quality control standards for those
measures.

Reliability and validity of cognitive ability measures

Regarding the assessment of cognitive ability, similar
challenges can be discussed that threaten the reliability
and validity of repeated assessments. It is well known
that in longitudinal studies, practice effects can lead
to the underestimation of age-related decline and thus
negatively impact reliability (Hertzog and Nesselroade,
2003). One intuitive solution to deal with this problem
is to use longer time intervals. However, this might not
match the theoretical question at hand. In addition,
Salthouse et al. (2004) showed that very long time inter-
vals are required (between 7 and 13 years) until practice
effects are no longer observable. Other possibilities are
the inclusion of a new subsample at each wave to esti-
mate the performance gains due to repeated testing, or
the administration of parallel task versions. Also, esti-
mates of long-term longitudinal change in a cognitive test
can be compared to performance gains in a control con-
dition where a subset of the same sample or a different
group of individuals complete the same test repeatedly
over a short time interval (Tucker-Drob and Salthouse,
2008). Furthermore, practice effects can be explicitly
included in the statistical model, if the time intervals
between measurements are not confounded with age (see
Ferrer et al., 2004).
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Regarding the validity of the cognitive measure-
ments, the reviewed studies differ substantially with
regard to the assessment of the ability of interest.
Whereas some investigators tested associations between
brain structure indices and single tasks, others created
composites, or latent variables of multiple tasks. The
advantage of using multiple tasks is that the problem
of task-impurity can be lowered (Miyake and Friedman,
2012). Specifically, estimating latent factors of cognitive
abilities with multiple indicators has the advantage of
extracting their shared variance, which is free from task-
specific measurement error. Another source of variance
between studies was the choice of the type of tasks that
were used as indicators of a respective cognitive domain.
Due to the aforementioned problem of task-impurity, it
is often not possible to clearly assign a cognitive task
to a specific cognitive ability. For example, whereas
one study used the digit span backwards and the letter-
number sequencing task as indices for a latent factor of
fluid intelligence (Ritchie et al., 2015a), another study
combined the same tasks into a composite of working
memory (Charlton et al., 2010). As many tasks assess-
ing working memory resemble those measuring some
aspect of fluid intelligence (Salthouse and Pink, 2008),
both methods are defendable, however. Especially tasks
developed in the field of neuropsychology, as were used
by many of the reviewed studies, are designed to assess
multiple aspects of cognitive abilities (Snyder et al.,
2015). For example, the verbal fluency task (i.e. list
words of a semantic category or a given starting letter),
taps into verbal ability, as well as aspects of executive
function (shifting between word clusters, inhibiting non-
relevant words).

In general, we note that the lack of common stand-
ards for the assessment of cognitive ability in older age is
a major reason for inconsistencies in the results of brain-
behavior correlations.

Method development and application

To address the methodological limitations discussed
above, we distinguish two different topics relevant for the
advancement of future method development and applica-
tion. First, the benefits of longitudinal designs and lon-
gitudinal statistical methods are discussed (see section
‘The benefits of longitudinal designs’). Second, with more
and more large-scale longitudinal studies emerging, it is
of utmost importance to reflect on how to best handle and
profit from big data (see section ‘Handling and profiting
from big data’).
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The benefits of longitudinal designs

As outlined above, the currently best way to extract infor-
mation on development and correlated change over time
is by relying on longitudinal studies. Only data from lon-
gitudinal research designs offer the possibility to partition
within- from between-person variance and only longitudi-
nal methods provide unbiased parameter estimates under
repeated sampling. While these designs are still rare in
neuroscience, an increasing number of ongoing studies
are now reaching the stage in which actual longitudinal
inference can be drawn. For example, Rast et al. (2017)
used five waves covering 8 years from the Seattle Longi-
tudinal Study (SLS) to characterize and identify change in
cortical thickness in midlife and adulthood. While long-
term longitudinal studies are not yet the norm in the field
of developmental neuroscience the path in this direction
is set and it is helpful to consider some of the advantages
and caveats inherent in planning longitudinal studies.

Study design and power to detect change

Attention to study design (i.e. number and temporal
spacing of assessments) and measurement-related issues
(i.e. reliability, number of indicators, measurement mod-
eling) are fundamental to life course and lifespan devel-
opmental research and will have direct influence on the
type and quality of results obtained from a research study.
Given the extensive costs associated with longitudinal
research, especially when neuroimaging is involved, we
need to be able to make informed decisions about our
designs beforehand in order to get sufficient statistical
power with minimal requirements. As such it is imperative
to understand what design elements increase statistical
power while keeping participant burden, sample size, and
measurement occasions minimal without compromising
the quality of the data.

Longitudinal studies vary in a number of elements
(Lerner et al., 2009; von Oertzen and Brandmaier, 2013;
Rast and Hofer, 2014) such as differences in samples (e.g.
age homogeneous vs. age heterogeneous; representa-
tiveness), number of occasions (e.g. few, many), spacing
between assessments (e.g. widely spaced panel designs;
single session repeated testing experiment), and whether
new samples of individuals are obtained at subsequent
measurement occasions (e.g. sequential designs). More-
over, depending on the questions of interest, individu-
als can be drawn from different populations of birth
cohorts, cultures, and nations, born at different historical
periods, with short-term or long-term intervals between
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assessments, and with measures that are time-invariant
or time varying within individuals. These features can
be combined in a number of ways to create study designs
that are particularly suitable for answering research ques-
tions that vary in scope from regarding population change
across birth cohorts to focusing on the dynamics of short-
term within-person processes.

Once the type and expected temporal trajectory of
the change process of interest is identified, the longitu-
dinal study needs to be designed accordingly. Assuming
that the effect sizes of the phenomenon (e.g. covariance
among cortical thinning and cognitive decline) are given
in the population and cannot be modified experimentally,
researchers typically only have control over the duration
of the study, the number and spacing of measurement
occasions, and the number of participants that enter
the study. These decisions can be optimized in terms of
detecting individual differences in change and correla-
tions among change processes. Rast and Hofer (2014), for
example, illustrate the interplay among study duration,
number of measurement occasions and interval lengths
among measurements for statistical power to detect (co)
variances of rates of change. Importantly, they showed
how statistical power differentially reacts to changes
of the study design — these changes can be exploited to
optimize the study design. For example, power can be
maximized if measurement occasions are spaced out
unequally towards the beginning and the end of a longi-
tudinal study. While these decisions can optimize power
in general, they should not replace a tailored analysis to
investigate what the exact data requirements are for a
specific research question and what precautions need to
be taken, especially to get the most out of studies in early
stages. While Monte Carlo simulations are the most flex-
ible tool as they can recreate the conditions, which our
modeling assumption ultimately will be based on, they
can also be rather complex. To mitigate the complexity
of designing a power analysis and to obtain a ‘feeling’
of how study ingredients are interrelated, Brandmaier
et al. (2015) developed the LIFESPAN tool for that specific
purpose, which builds on the notion of power equiva-
lence to analytically, and immediately, derive power
for different parameter and design combinations (von
Oertzen, 2010).

Statistical models
A variety of statistical approaches can be used for the

estimation of change and the interaction of change pro-
cesses in brain structures and cognitive abilities. From
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our perspective, regression models that have often been
used in the past do not adequately capture the between-
person variability that is present in datasets of healthy
older adults. The multilevel approach and the SEM
approach are well suited to model this important aspect.
Both approaches contain different techniques, which
focus on different modeling aspects. For example, a
distinction might be drawn according to the number of
dependent variables present in the model (univariate vs.
multivariate). Also, models can be divided into ‘static’
and ‘dynamic’ models for change. While static models
capture the change process in terms of a given functional
form, such as a slope or a nonlinear trajectory, dynamic
models follow the tradition of dynamical systems where
the focus is on the dynamics underlying the change
process itself. While the focus of multilevel approaches
is mainly on the measurement model, that is, on the link
between observed and latent variables, the SEM approach
focuses on the structural models that links the latent con-
structs to additional covariates or to each other. There is
no clear distinction between the two different classes of
models, as they can be made equivalent for the most part,
but they tend to be applied in different fields and as a
result, they have approached longitudinal data from dif-
ferent perspectives.

Univariate multilevel models

A rather simple representation of such an approach and
a common analytic method for the analysis of longitudi-
nal data is the technique of latent growth curve modeling
(i.e. random coefficient or multilevel modeling). Repeated
measurement designs yield at least two levels of analysis:
the Level 1 model summarizes individual level outcome
data at three or more occasions in terms of ‘true’ initial
level of performance (intercept), slope (improvement or
rate of change), and error (residual) parameters. The Level
2 model estimates fixed (i.e. average), and random (i.e.
individually varying) interindividual and intraindividual
differences and can include predictors of individual/
group differences in Level 1 parameters (i.e. intercept,
slope). Detailed descriptions of these methods are availa-
ble elsewhere (McArdle and Epstein, 1987; McArdle, 1988;
McArdle and Hamagami, 1992; Snijders and Bosker, 1999;
Verbeke and Molenberghs, 2000; Raudenbush and Bryk,
2002; Ferrer and McArdle, 2003; Singer and Willett, 2003).
Conceptually, growth curve analysis involves estimating
within-individual regressions of change or performance
over time and on expected predictors of these individual
regression parameters.
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Multivariate multilevel models (MMLM)

One step towards higher complexity is to use more than
one dependent variable. For the particular case of brain-
behavior relationships, one automatically has multiple
dependent variables of interest. In addition, within the
domain of longitudinal structural brain data several
levels of dependency need to be addressed in a statistical
model. Measurements of GM or WM can be obtained for
certain parcels nested within larger areas, nested within
both hemispheres and obtained within individuals who
were measured repeatedly over time. These data points
are highly dependent on each other and any attempt to
take this hierarchical structure into account will yield
better parameter estimates in terms of biased and stand-
ard errors (e.g. Verbeke and Davidian, 2009). Multilevel
or mixed-effects models are optimally suited to account
for this dependency. Moreover, they make full use of the
available data as they do not require that all participants
have the same number of visits, or require all participants
to be measured at common time points (cf., Raudenbush,
2001). To complicate matters, brain related data are also
multivariate in the sense that GM or WM can be obtained
from adjacent and correlated areas. To account for the
multivariate nature of these data one may jointly examine
the association structure in longitudinal change among
different areas and composites within individuals. For
example, Rast et al. (2017) modeled up to five depend-
ent variables simultaneously over 8 years with a MMLM
(MacCallum et al., 1997). In addition to estimating covari-
ances among growth parameters (intercept and slope) the
MMLM also accounts for covariances among all random
effects between the different dependent variables. For
example, in a model with random intercept and slope,
the univariate MLM estimates the variance for both para-
meters (intercept variance and slope variance) as well as
the covariance among the intercept and slope. In addition
to these estimates, the multivariate MLM also accounts
for the covariances among the dependent variables of the
intercept and slope. That is, if five areas are included in
the model as dependent variables, the MMLM estimates
covariances for each of the random effect within and
across these areas. In that case, the MMLM with random
intercepts and slopes for each dependent variable esti-
mates 45 different covariances and 10 variances. At the
same time, the MMLM addresses seamlessly the issue of
multiple comparisons, which typically arises in analy-
sis of variance-type analyses. MMLMs do not necessitate
pairwise comparisons and post-hoc alpha-value correc-
tions because group mean comparisons are obtained via
according coding patterns (e.g. dummy coding) that enter
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the model as predictors. With this approach, predictors
compete for explained variance and significance tests of
each predictor will be stringent. While the fit of the model
to the data will increase with more parameters entering
the model, the significance for each single parameter
decreases. Further, multilevel techniques shrink group-
level variances toward the mean, which inherently reduces
the number of statistically significant comparisons, thus
reducing the risk of type I errors in multiple comparisons
(cf., Gelman et al., 2012). These classes of models can be
expanded to address nonlinear trajectories or non-Gauss-
ian processes. Moreover, they can be expanded to include
submodels for the within-person variance structure. This
is especially useful if within-person variability is the focus.

A note on the metric of change

In these models, a level and a slope parameter are gener-
ally specified for change relative to a particular time metric.
The selection of the time metric is not trivial as it results in
different models that reflect different assumptions about
the underlying process of change. A common choice is to
define the level as the initial point of measurement in a
longitudinal data set whereas the slope parameter cap-
tures the rate of change over time in study. Especially in
models with higher order terms or interactions (including
all models with predictors of slope variance) the choice
of the centering method influences the interpretation of
the parameters (cf., Biesanz et al., 2004). The intercept
or initial level should be carefully chosen to reflect the
hypotheses tested in this context, especially when time-
varying covariates are used as predictors of change (e.g.
Curran and Bauer, 2011; Hamaker and Grasman, 2015;
Wang and Maxwell, 2015).

While age heterogeneity of the sample is not a problem
for growth models in particular, it is necessary to consider
it in all cross-sectional or longitudinal models. Unlike tra-
ditional single-cohort longitudinal designs, individuals
may vary considerably in age (and birth cohort member-
ship) at each wave in the study, and the range of these
between-person, cross-sectional, age differences tends
to exceed the range of within-person, longitudinal, age
changes over the course of data collection. A common
technique to obtain ‘longitudinal’ data from studies with
few (e.g. two) measurement occasions, is to combine the
longitudinal with the cross-sectional age information by
indexing change via the age of the study participants (e.g.
Grimm et al., 2012). These age-heterogeneous samples
were seen as an opportunity to virtually ‘accelerate’ lon-
gitudinal designs (e.g. McArdle and Bell, 2000; Mehta
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and West, 2000) by representing time as the different
ages available in the study, rather than as time as the
inception of the study. While this enables one to model
growth trajectories that exceed the individual time-in-
study span over the full age range they also bear the risk
of confounding between-person differences with within-
person change. That is, without the continued inclusion
of baseline age differences, the resulting model produces
estimates that represent a mix of the cross-sectional and
longitudinal effects.

For models using chronological age as the time basis
with a focus on random effects, it is important to keep
in mind the variance component shrinkage due to the
extrapolation beyond individual data (i.e. random effects
will be estimated closer to the population mean) (e.g.
Raudenbush and Bryk, 2002, Ch. 5). With greater age het-
erogeneity than study duration, the population mean will
be dominated by the cross-sectional information. In addi-
tion, the confounding of between-person age differences
and within-person age changes in longitudinal models
muddles the potential for inference to increasingly selec-
tive, and thus conditional, ‘aging’ populations. Selectivity
of participants must be accounted for as between-person
sampling will be based on the proportion of the popula-
tion who are alive (population mortality selection) and
healthy but will also dropout from the study due to health
and mortality causes. Such inference to aging populations
must, therefore, be conditional on survival, and may be
more directly obtained using between-person age differ-
ences and survival age (or time-to-death) as conditional
predictors in a time-in-study longitudinal model (e.g.
Johansson et al., 2004; Hoffmann, 2012).

Latent change models

Multilevel models can also be specified in the SEM frame-
work, which has the advantage of incorporating additional
models that operate at the latent level. For instance, instead
of averaging dependent measures from several cogni-
tive tasks into one composite score, a latent factor for the
respective cognitive ability can be specified, thus estimat-
ing the shared variance among tasks while attenuating the
effect of error variance. This also means that SEMs can be
expanded to higher orders to include, for example, mecha-
nisms of change. This can be in the form of latent growth
models that define a linear (or nonlinear) model for lower
order factors or in the form of LCS models that define the
observed change from an occasion to the next as a sum of
higher order factors. Moreover, SEMs easily lend themselves
to measurement invariance (MI) testing. By constraining
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different elements of the measurement model, MI defines
conditions under which meaningful comparisons among
groups or within individuals across time can be drawn.

While most models discussed so far serve the field
well, they might be considered static models because they
define change resulting from static element such as the
slope in a linear model. For example, Figure 5 represents a
simple univariate latent growth model for five time points
in the typical structural equation path diagram notation.
The squares represent manifest variables (x1 to x5) and the
circles represent latent, unobserved variables, the inter-
cept (I) and the slope (S). Double-headed arrows denote
undirected relationships such as covariances and single-
headed arrows represent directed relationships such as
regression weights, or loadings. Both, the intercept and
slope have associated variances that capture the individ-
ual differences therein. Moreover, the intercept and slope
are allowed to covary.

Another approach is to capture the change trajec-
tory through models that originate in dynamical systems
where the current state of the system is defined by pre-
vious states of the system (e.g. Boker and Wenger, 2007).
Notably, the LCS (McArdle and Hamagami, 2001; McArdle,
2009) model and its multivariate extension, the bivariate
LCS have been applied successfully in recent years to lon-
gitudinal data. The LCS addresses change, from one time
point to the next, from a SEM standpoint. That is, while
one could index change from one time point -1 to t on
the observed data, the LCS indexes these changes at the
latent level, thus separating measurement error from the
true score. Once the differences among time points are

Figure 5: A univariate latent growth curve model. Circles represent
latent variables while squares represent manifest variables.

One headed arrows denote directed relationships and double
headed arrows represent undirected relationships. Here, | is

the latent intercept and S is the latent slope, each with their
corresponding variances o” and o’%.
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defined, the LCS focuses on the rate of change, rather
than latent change itself. Figure 6 represents a basic LCS
for one common factor over five time points. The mani-
fest variables (x1 to x5) are again symbolized by squares.
n1-n5 represent latent true scores, An0O—An4 are the LCS
and I and S define the latent intercept and slope, or rate
of change. Unlabeled paths are fixed to 1. Here, the first
change score is defined as An0. The change does not
affect the prior score n1 but it does influence the second
true score directly and it is an indirect part of all the other
latent variables. The same holds for the following change
scores. o, paths represent constant change and 3 paths rep-
resent proportional change from the variable measured at
the previous time point. The rate of change is passed into
the latent change scores, typically with a constant weight
of 1 for equally spaced time intervals. Essentially, the rate
of change is defined as the difference between two latent
variables divided by the length of the given discrete time
interval among them. A constant rate of change would
be nothing else than the first partial derivative of a linear
function with respect to time—but with nonlinear changes,
the rate of change will take different values for different
measurement occasions.

Figure 6: A univariate latent change score model. x1-x5 represent
the observed variable measured at five time points, n1-n5 represent
latent true scores, An0—-An4 are the latent change scores and | and
S define the latent intercept and slope o paths represent constant
change and f paths represent proportional change from the variable
measured at the previous time point.
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While the constraint for discrete time seems rather
restrictive, Voelkle et al. (2012) expanded the LCS to a
continuous time model where this constraint is resolved.
Importantly, LCS and continuous time models (and vari-
ants thereof) can be readily expanded to the multivariate
case which makes them ideal candidates for modeling cor-
related changes in brain related and cognitive longitudinal
data. Moreover, given that these models do not impose a
functional form of change, they are very flexible and can
handle a multitude of curvilinear trajectories in one or more
processes and relate changes in one variable to changes in
another. While the adoption of latent change models is slow,
likely due to a rather high level technical sophistication in
order to implement these models, new software develop-
ments now facilitate the use of LCS models (see Kievit et al.,
2018 for a tutorial). For example, to depict the models in
Figures 5 and 6, we used Qnyx (von Oertzen et al., 2015), a
freely and openly accessible graphical tool that provides an
easy and intuitive approach to depicting SEM-based models.

Advanced models

Besides the models discussed above, other methodological
advances have recently emerged and/or are being devel-
oped that are of particular relevance for aging and lifespan
studies. For example, growth mixture models permit the
identification of subpopulations that exhibit distinct mul-
tivariate patterns of change and are therefore well suited
for exploratory analyses. Similar to latent class models,
growth mixture models (e.g. Muthén, 2001) assume that
the sample is composed of members from more than one
population that exhibit distinct patterns of change. Using
individual response patterns in a longitudinal setting with
repeated measurements to define trajectories, growth
mixture models (1) identify homogeneous groups of indi-
viduals or trajectory classes, (2) assign each participant a
probability of belonging to a particular trajectory class, and
(3) use class membership information to estimate the influ-
ence of individual characteristics on trajectory shape. A
related, but less familiar method are SEM trees (Brandmaier
and McArdle, 2013), which split the data into homogene-
ous subgroups based on a set of predictors and fit an SEM
separately to each of these subgroups (see Jacobucci et al.,
2017, for a comparison of the two methods). In contrast
with other SEM-based statistical approaches, SEM trees are
designed as an exploratory method. Especially in light of
the many variables that influence aging, such approaches
of data reduction gain more and more importance.
Ultimately, most of the above-discussed models can
also be estimated in a Bayesian framework. The Bayesian
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approach to inferential statistics has the advantage that it
can overcome the typical problems surrounding the p-value
in null hypothesis testing (e.g. corrections for multiple
comparisons), and allows to incorporate previous knowl-
edge about the expected effect into the analysis (Kruschke,
2010). For example, Bayes Factors provide an estimate of
the strength of evidence both for the null hypothesis (i.e.
absence of the effect), and the alternative hypothesis (i.e.
presence of the effect), necessitating researchers to think
about what they would actually consider plausible values
for the alternative hypothesis (Dienes, 2014). Thus, using
Bayesian estimation, it is possible to test specific theoreti-
cal predictions, and gain an estimate of the strength of the
evidence for the presence or absence of the predicted effect.
Recent software developments have provided novel tools to
efficiently estimate Bayesian models of change both in the
MLM (Biirkner, 2017) and the SEM framework (Asparouhov
and Muthén, 2010; Merkle and Rosseel, 2016).

Overall, a wide range of longitudinal modeling tools
now exist or are emerging that can capture multivariate
change and correlated change with models that are able
to accommodate a wide range of developmental questions
in brain and cognitive aging.

Handling and profiting from big data

Making science more reproducible is a growing concern in
cognitive neuroscience and beyond (Munafo et al., 2017).
This can be achieved by making science more transpar-
ent, for instance, by openly sharing data sets and analy-
sis tools. Additionally, the need for well powered brain
imaging studies (Button et al., 2013; Nord et al., 2017)
resulted in steadily growing sample sizes over the last two
decades (Poldrack et al., 2017). Early data sharing initia-
tives pooled data from multiple sites to increase sample
size (for instance the 1000 Functional Connectomes
Project; Biswal et al., 2010).

More recently, data from large-scale projects, inves-
tigating hundreds to thousands of participants, have
been made public. The mode of accessing the data varies
from download without registration, to signing a data
usage agreement to submitting a project proposal. Open
brain-behavior data sets investigating the adult lifes-
pan in a cross-sectional approach and providing a large
variety of brain (functional, structural), and cognitive
data include the Nathan Kline Institute-Rockland Sample
(Nooner et al., 2012), the Cambridge Centre for Ageing
Neuroscience study (Cam-CAN) (Shafto et al., 2014; Taylor
et al., 2017), the UK Biobank (Palmer, 2007), and the
Harvard Aging Brain Study (HABS) (Dagley et al., 2017).
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Some of those projects aim to also provide longitudinal
data in the future (Cam-CAN and HABS). Additionally, the
dementia-focused projects Open Access Series of Imaging
Studies (Marcus et al., 2010) and the ADNI (Petersen et al.,
2010) currently provide longitudinal anatomical brain
data. Another effort to combine several lifespan cognitive
neuroscience samples has recently been launched, the
Lifebrain project (Lifebrain, n.d.).

Open data enables researchers to validate their results
in independent data sets. However, the heterogeneity in
data organization between projects can make it tedious to
apply a processing pipeline to a new data set. The recently
introduced brain imaging data structure (BIDS) initiative
proposes a system to harmonize data organization and
provides guidelines for the documentation of important
imaging meta-data (Gorgolewski et al., 2016).

As analysis pipelines are complex and cannot be fully
described in the text of a scientific paper, many research-
ers make analysis code repositories publicly available on
websites like GitHub (GitHub, n.d.) or the Open Science
Framework (Open Science Framework, n.d.). A more
recent trend in simplifying software (re)use is to provide
executable code as software containers, making the
installation of dependencies obsolete and facilitating
archiving of entire software environments for later (re)
analysis. This approach is championed by the BIDS Apps
project (Gorgolewski et al., 2017), which provides neuro-
imaging analysis pipelines that seamlessly can be applied
to BIDS-formatted data sets, making it very efficient to
run (1) established pipelines on newly acquired data, and
(2) newly developed pipelines on available data sets.

As a consequence of increasing sample size and the
increased availability of high performance computing
resources, data processing is moving from local computers
to clusters and cloud systems (Sherif et al., 2014; Vogelstein
et al., 2016; Kiar et al., 2017). For instance, this can be in
the form of OpenNeuro (OpenNeuro, n.d.), a neuroimaging
analysis service that allows scientists to upload their raw
data to a server, which executes standard analysis pipelines.
Another innovative approach for collaborative neuroscience
is followed by the Open Neuroimaging Laboratory (Open
Neuroimaging Laboratory, n.d.), which allows scientists to
conjointly work on publicly available data via the web.

Theoretical limitations and the need
for theory development

The study of the relationship between the structure of the
brain and observable cognitive performance is tapping
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into one of the oldest problems of psychological science
and philosophy: the relation of the mind and body. While
initial conceptions proposed a dualistic theory of mind
and body as separate and independent entities (Descartes,
1641/2013), modern-day approaches are moving towards
more holistic theories (e.g. the principle of complementa-
rity; Fahrenberg, 1979). Yet, still no final consensus has
been reached on how to integrate these different levels
of observation theoretically and methodologically. Gen-
erating and developing theories is a major challenge for
researchers in this field, and it does not come as a sur-
prise that the studies we reviewed here did not build their
hypotheses on strong theoretical grounds. As a conse-
quence, we believe that future efforts are needed to invest
in the development of theories on the intersection between
brain and behavior. Here, we outline several theoretical
ideas and trends that we deem important in the context of
studying correlated changes between brain structure and
cognitive ability.

Refining and developing existing theories

While the STAC-r model provides a multifactorial frame-
work for the complexity of cognitive aging (Reuter-Lor-
enz and Park, 2014), more specific theories are needed
to derive concrete, testable hypotheses for individual
components within this larger framework. Several
well-established theories already exist that serve this
function. For example, the theories of reserve propose
that individuals differ with regard to their neural (brain
reserve) or cognitive resources (cognitive reserve), such
that some individuals are better able to compensate for
age-related brain changes than others (Stern, 2002, 2009).
Comparable to compensatory scaffolding in the STAC-r
model, reserve is assumed to be malleable by life course
experiences (Reuter-Lorenz and Park, 2014). Empirically,
however, it is still a matter of debate how to best opera-
tionalize compensatory scaffolding and reserve capacity
(Nilsson and Lovdén, 2018). For example, some authors
assess cognitive reserve with enriching life course expe-
riences (leisure time activities: Hertzog et al., 2009; edu-
cation: Boots et al., 2015; occupational complexity: Serra
et al., 2015) and others via levels of cognitive ability (e.g.
intelligence: Barulli et al., 2013). We therefore argue that
future efforts of theory development need to be directed
towards refining and consolidating already existing the-
ories, and towards developing a common consensus of
how to operationalize the theoretical core mechanisms
of interest and their interactions (see Cabeza et al., 2018;
Stern et al., 2018 for promising advances in this direction).
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Besides working towards more consistent operational-
izing, the conceptual integration of advantageous, and
adverse life course experiences in theories on age-related
structural brain and cognitive changes presents an impor-
tant challenge in the near future (e.g. K6hncke et al., 2016).

One potentially fruitful approach to inform and
complement established theories is the use of predictive
methods (Yarkoni and Westfall, 2017; Bzdok and loan-
nidis, 2019). The goal of predictive methods is to make
use of large data sets and to identify patterns therein that
most accurately predict individual behavior. For instance,
machine learning approaches are used to detect those var-
iables that best predict a relevant outcome in a subset of a
sample, a process which then needs to be cross-validated
in another subset of the sample (or in a new sample), to
ultimately identify the algorithm that most accurately
approximates an outcome of interest (e.g. change in cog-
nitive abilities). The relative importance of individual
predictors can be evaluated by comparing the predic-
tive accuracy of different models with and without the
predictors of interest (Yarkoni and Westfall, 2017). In the
context of investigating correlated changes between brain
structure and cognitive ability, such an approach may be
helpful to determine the relative importance of changes in
a number of structural brain measures (e.g. WM and GM
volume, cortical thickness, WMH etc.) for the prediction of
changes in certain cognitive abilities. Finally, traditional
theory-guided statistical approaches can benefit from
cross-validating models in independent datasets as it is
usually done in predictive modeling (Yarkoni and West-
fall, 2017).

Correlated change relationships across the
lifespan

So far, studies on correlated change have focused more on
the direct relation between brain structure and cognitive
ability (direct path in STAC-r), ignoring the role of com-
pensatory scaffolding networks as a moderator of brain
structure-cognition relations (indirect path in STAC-1;
see Figure 2). Related to testing the latter, future research
would be welcome to further elaborate how correlated
changes between structural brain and cognitive abilities
change across the lifespan. A first step into this direction
would be to investigate whether specific structural brain
measures and cognitive abilities show increased (de)cou-
pling over the adult lifespan, such that the strength of
correlated changes between brain structure and cognitive
ability either varies between persons of different ages or
changes within persons with increasing age. According
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to STAC-r, correlated changes between brain structure
and cognitive ability should be higher in younger than
(healthy) older adults, as scaffolding networks should
gain more importance with increasing age, when brain
damage starts to accumulate. Moreover, after a certain
advanced age, when compensatory scaffolding networks
are no longer functional to compensate for brain damage,
change correlations might increase again. According to
this rationale, larger brain structure-cognition correla-
tions should also be found in individuals with preclinical
pathological brain changes, who are most likely included
in many aging samples. However, it is still unclear how
much pathology can be accumulated before observable
detrimental brain changes manifest in cognitive perfor-
mance measures. So far, the hypothesis of developmen-
tal (de)coupling of brain structure and cognitive ability
with aging has only been directly tested in cross-sectional
studies (e.g. de Mooij et al., 2018).

Insight from imaging brain function

Another fruitful avenue for future research is the applica-
tion of findings and theories derived from functional MRI
studies to structural brain measures. The functional MRI
literature has paid more tribute to the indirect path of the
STAC-r model. For example, functional evidence found
that older adults show different patterns of functional
brain activation than younger adults when faced with a
difficult cognitive task (Reuter-Lorenz and Park, 2010),
suggestive of a compensatory reorganization of func-
tional brain networks (comparable to scaffolding; but see
Morcom and Johnson, 2015).

One prominent theory in the functional literature
interprets these activation patterns as a sign of neural
dedifferentiation in the sense that older adults show lower
neural specificity than younger adults when performing
distinct cognitive tasks (e.g. Cabeza, 2002; Park et al.,
2004). This theory originates from behavioral findings
relating the deterioration of fluid cognitive abilities with
aging to sensory declines, which is interpreted as evidence
for a common cause of cognitive aging (Baltes and Lin-
denberger, 1997). Only little research has, however, inves-
tigated whether this loss in neural specificity with aging
can also be found in structural brain measures, and the
results are difficult to reconcile: Cox et al. (2016) showed
that single WM fiber pathways were more correlated with
increasing age, suggesting similar age-related dediffer-
entiation as reported in functional MRI studies. In con-
trast, de Mooij et al. (2018) reported the opposite pattern
of lower correlations between regional GM volumes and
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FA in a subset of WM pathways with increasing age, indi-
cating age-related differentiation. Importantly, however,
there is a lack of research studying neural (de)differentia-
tion longitudinally.

Interdisciplinary contributions to theory
advancement

To develop novel ideas or to refine existing theories that
capture the manifold factors influencing brain and cog-
nitive aging, interdisciplinary collaborations are gaining
more and more importance. This pertains to closely related
research fields, such as child and youth development, as
well as to more distant disciplines. Given the multitude of
collaboration opportunities, we restrict ourselves to pro-
viding some examples to substantiate our claim.

Aging research, for example, can clearly benefit from
insights made in other domains of life span research (e.g.
Goddings et al., 2014; Mills et al., 2014, 2016) given that
theoretical approaches and methodology is partly over-
lapping. Moreover, recent studies suggest a link between
early life influences, such as birth weight, parental educa-
tion, or childhood cognitive ability, on cognitive and brain
developmental processes in older adulthood (Karama
et al., 2014; Walhovd et al., 2016). Also, the liaison with
medicine seems very promising. For example, by merging
epidemiological research with healthcare databases, a
wide array of health-related information can be obtained
and fed into models and analyses. The epidemiological
UK Biobank project, which combines questionnaire, cog-
nitive and neuroimaging data from 500 000 participants
with biological samples (e.g. blood, saliva) and genomic
data (e.g. genotyping) (Miller et al., 2016), follows this
approach. By linking the newly collected data with partici-
pant’s health records from the UK National Health Service
it allows the long-term monitoring of the participants’
health state. Most importantly, big, interdisciplinary data-
bases, such as the UK Biobank, might enable researchers
to detect biomarkers which can serve as early predictors of
future pathologies. Future efforts will need to be increas-
ingly directed towards determining how the resulting
multimodal data can be meaningfully aggregated across
multiple levels of analysis (e.g. from genes, to cognitive
performance and brain properties, to the larger societal
context) (Falk et al., 2013).

Third, aging research is benefiting from technological
advances in various disciplines, such as geoinformatics
or computer science in general. While life course experi-
ences, for example, are traditionally assessed via self-
report, new mobile technologies facilitate ambulatory
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assessment. With small electronic devices, people’s
behaviors (e.g. physical activity, social engagement,
mobility), or physiology (e.g. blood pressure, electroder-
mal activity) can be sampled with high density and in real-
time as people go about their life (Conner and Mehl, 2015)
and, in a further step, linked to processes of cognitive and
brain aging (e.g. Seresinhe et al., 2015). Besides person-
specific variables, also information about the broader
contextual situation (e.g. weather conditions, air pollu-
tion, etc.) can be recorded via sensor technology and inte-
grated into theoretical models. While many of these tools
and devices are just emerging and still awaiting further
validation, these developments hold great promise to gain
new, ecologically valid insights into the daily processes
influencing brain and cognitive aging.

Conclusion and outlook

In the present article, we have provided a broad overview
over the literature on the association of the neural architec-
ture and cognitive abilities in healthy old age. Specifically,
we reviewed the existing longitudinal studies that inves-
tigated correlated changes between these domains over
time, and discussed the present stance of the literature
from a theoretical perspective, adopting the STAC-r model
(Reuter-Lorenz and Park, 2014). While the overall evidence
suggests a trend towards positive change-associations
between measures of brain structure and cognitive ability
in healthy aging, the number of longitudinal studies
reviewed here is small, and the variability between them
regarding the methods used (e.g. study design, statistical
analysis) precludes meta-analytical comparisons of effect
sizes. While some evidence supports correlated changes
for specific regions and specific cognitive abilities (e.g.
between structures of the medial temporal lobe and epi-
sodic memory), the number of studies reporting converg-
ing results is considerably small, and most of the reported
change relations are very heterogeneous and far from
conclusive. One reason for these mixed findings is cer-
tainly that large methodological differences exist between
studies. However, we argue that from the perspective of
an individual regulatory model such as STAC-r, weak rela-
tionships between brain and cognitive ability, and large
interindividual variability in these relations are to be
expected in healthy aging individuals, since many other
influencing factors play a role that have an impact on the
capacity of the brain to compensate. The inclusion of such
factors into future research will impose a challenge, but
also a chance to advance the study of aging. Moreover,
it would be even more interesting for future research to
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focus on alternative metrics such as change trajectories
in the strength of brain-behavior correlations through-
out adult life. To capture such dynamic processes such as
in the case of brain cognitive development, many more
measurement occasions and complex statistical models
are needed. Current longitudinal studies, such as the
SLS, or the longitudinal healthy aging brain (LHAB) study
are moving towards this direction, by including multiple
repeated assessments of cognitive and MRI assessments
(SLS; Schaie, 1996; Schaie and Willis, 2010; LHAB; Zollig
et al., 2011). In addition, in the moment of writing this
review, further measurement occasions in these and other
large-scale longitudinal studies are under way. The devel-
opment towards open science and big data sharing will
help to cover a broad spectrum of variables influencing
structural brain and cognitive aging and will in the future,
facilitate the development of individually targeted inter-
ventions to promote health and well-being.
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