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ABSTRACT
With the growth of information on the Web, most users heavily
rely on information access systems (e.g., search engines, recom-
mender systems, etc.) in their daily lives. During this procedure,
modeling users’ satisfaction status plays an essential part in im-
proving their experiences with the systems. In this paper, we aim
to explore the benefits of using Electroencephalography (EEG) sig-
nals for satisfaction modeling in interactive information access
system design. Different from existing EEG classification tasks, the
arisen of satisfaction involves multiple brain functions, such as
arousal, prototypicality, and appraisals, which are related to dif-
ferent brain topographical areas. Thus modeling user satisfaction
raises great challenges to existing solutions. To address this chal-
lenge, we propose BTA, a Brain Topography Adaptive network
with a multi-centrality encoding module and a spatial attention
mechanism module to capture cognitive connectives in different
spatial distances. We explore the effectiveness of BTA for satisfac-
tion modeling in two popular information access scenarios, i.e.,
search and recommendation. Extensive experiments on two real-
world datasets verify the effectiveness of introducing brain topog-
raphy adaptive strategy in satisfaction modeling. Furthermore, we
also conduct search result re-ranking task and video rating predic-
tion task based on the satisfaction inferred from brain signals on
search and recommendation scenarios, respectively. Experimental
results show that brain signals extracted with BTA help improve the
performance of interactive information access systems significantly.
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1 INTRODUCTION
Web-based information access systems (e.g., search engines and
recommender systems) heavily rely on implicit feedback (e.g., clicks,
dwell time, and eye-tracking) to improve user experience [12, 54].
However, implicit feedback acts as an indirect probe of user feelings
and thus is sometimes biased and misleading [3, 32, 52]. Therefore,
advancement is still required with novel user signals to model the
information access process. In recent years, the developments of
electroencephalogram (EEG) devicesmake it feasible to collect brain
signals in almost real-time. EEG directly captures brain activities,
which can potentially reveal the true underlying user satisfaction
while users are accessing information on the Web. Based on the
estimated user satisfaction, the user’s intent or preference can be
better understood and successfully used to improve user experience.

However, to the best of our knowledge, few studies have thor-
oughly investigated the methods of utilizing brain signals for sat-
isfaction modeling in the information access procedure. Little is
known about to what extent search and recommendation system
can be benefited by brain signals. In Figure 1, we provide a pos-
sible interactive system that re-ranks the search results upon the
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real-time satisfaction modeling. A user examines two search results
corresponding to the query “Jaguar”, and our system estimates the
user satisfaction with brain signals. Based on the satisfaction mod-
eling, we reestimate the user intent and find that the user intent
is related to the “Jaguar animal”. Then unseen search results (i.e.,
search results on the next screen/page) are re-ranked, and the ones
with the subtopic of “Jaguar animal” are placed higher than those
of “Jaguar browser” and “Jaguar car”.

Different from existing EEG classification tasks, modeling user
satisfaction is challenging since satisfaction involve both cognitive
processes (e.g., prototypicality [33] and appraisals [46]) and affec-
tive states (e.g., arousal [5]). This combined process starts at the
occipital region and engages frontal-parietal attentional circuits,
which involve brain functions in dorsolateral frontal region and me-
dial temporal region [6, 37]. To connect and aggregate the signals
in various brain regions, we believe capturing the topographical
relations of brain signals is necessary in satisfaction modeling.

Jaguar Satisfaction  
modeling

Intent  
estimationSearch results  

re-ranking

#1

#2

#3

Unseen  
results

Historical 
results

#1

#2

#3

Figure 1: An example of EEG-enhanced search engine. By
modeling user satisfaction, we interactively predict user in-
tent and provide potentially more satisfactory results.

Existing studies have achieved many compelling outcomes by
introducing the topographical information into EEG classification
models. Among thesemodels, convolutional neural network (CNN) [25,
28] or graph convolutional network (GCN) [20, 29, 47, 61] are most
widely used. They have achieved high classification performance
in motion imaginary [28] and emotion recognition tasks [29]. How-
ever, most of them fail to capture the adaptive topography con-
nections. For example, EEGNet [28] utilizes convolutions in lo-
cal brain regions yet ignores the ulterior topographical relations.
DGCNN [47] and RGNN [61] apply a public adjacency matrix for
graph convolutions, and thus the topography connections are fixed
among different data samples. Since satisfaction is associated with
several cognitive processes and affective states, the topographical
relations of brain signals is changing and sophisticated. Thus it is
challenging yet valuable to capture the topographical relations in a
data-dependent way.

To tackle above challenges, we design a novel architecture for
EEG-based satisfaction modeling named Brain Topography Adap-
tive network (BTA). The network applies a multi-centrality encod-
ing module to generate encodings with 3D topographical infor-
mation. Then, motivated by the success of the attention mecha-
nism [50], we adopt a spatial attention module to capture the brain’s
cognitive connectivity in a data-dependent manner. The effective-
ness of BTA is verified in two typical interactive information access
scenarios, i.e., search and recommendation. Experimental results

in two public datasets (i.e., one for search and one for recommen-
dation) demonstrate that BTA outperforms various baselines in
terms of satisfaction estimation. Furthermore, we explore to what
extent we can utilize the satisfaction estimated with brain signals to
improve search result re-ranking and video rating prediction perfor-
mance for search and recommendation scenarios, respectively. We
demonstrate that the performance can be significantly improved
with the satisfaction inferred from brain signals.

In summary, our contributions are three-fold. 1) We identify
and tackle a novel problem of satisfaction modeling for interac-
tive information access systems using brain signals. 2) We propose
the Brain Topography Adaptive Network (BTA), which adaptively
captures the topographical information to solve the EEG-based
satisfaction prediction problem. Empirical experiments show that
our method outperforms state-of-the-art EEG classification models.
3) We explore the possible advancements in interactive information
systems brought by the estimated user satisfaction inferred from
brain signals. As far as we know, this is the first time EEG-based sat-
isfaction modeling is successfully applied to interactive search (i.e.,
search result re-ranking) and recommendation (i.e., video rating
prediction) tasks.

2 RELATEDWORK
2.1 User Satisfaction in Information Access
Satisfaction measures users’ subjective feelings about the system,
which can be treated as the fulfillment of their information require-
ment [22]. It has been noticed that modeling user satisfaction is
valuable for performance improvement and evaluation in informa-
tion systems [2, 31].

Researchers have focused on modeling users’ satisfaction with
users’ implicit feedback signals (click, dwell time, scroll, etc.) [12,
16]. Recent years have witnessed much research introducing novel
additional user signals and corresponding strategies to estimate
user satisfaction, e.g., mouse movements [8] and eye-tracking [54].
However, implicit feedback signals are just indirect probes of real
user satisfaction and thus are often incorrect [3]. In search scenarios,
Liu et al. [32] reveal that a large proportion (45.8%) of eye fixations
are irrelevant to relevance estimation. In news recommendation,
Wang et al. [52] find that users’ click behaviors can not be simply
treated as positive signals due to the “clickbait” effect.

In this study, we explore satisfaction modeling with brain signals
with our proposed BTA. Besides, we conduct search and recommen-
dation tasks with the satisfaction inferred from brain signals. We
aim to demonstrate the benefits of brain signals as effective user
feedback for designing an interactive information access system.

2.2 Neuroscience & Information Access System
Recent research has applied brain imaging tools to study aspects
of the information access process from a neuroscience perspective.
For example, Moshfeghi et al. [35, 36] conduct a series of stud-
ies to unravel the neural basis of information need. Apart from
neurological-based analysis, researchers also utilize brain signals
to predict user judgments in the information access process. For
example, Gwizdka et al. [15], Kim and Kim [23] conduct extensive
studies to judge text relevance and topical relevance of visual shots
using EEG signals. Davis III et al. [10] conduct an interesting study
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to estimate facial preference with brain signals and then utilizes
the estimated preference for collaborative filtering. However, few
studies have thoroughly investigated the satisfaction modeling in
information systems and explored to what extent the system can
be improved with it.

What we add on top of prior works is that we design special EEG
classification models and conduct interactive information access
tasks to demonstrate the benefits of introducing brain signals into
user satisfaction modeling.

2.3 EEG-based Classification
EEGhas the advantages of high temporal resolution, non-invasiveness,
and relatively low financial cost. It is widely used in researches in-
volving motion imaginary [25, 28], emotion recognition [20, 29, 61],
and sleep stage scoring [21, 48]. Recently trends of EEG-based
classification have been developed substantially from topology-
invariant algorithms (e.g., support vector machines (SVM) [53],
Gradient Boosting Decision Tree (DT) [14], and Recurrent Neural
Network (RNN) [30]) to topology-aware methods such as CNN and
GCN. The topology-aware models take the topological structure of
EEG features into account when learning the representations. For
example, Lawhern et al. [28] and Kostas et al. [25] map the 3D EEG
topographical information into 2D representations and adopt CNN-
based architecture to aggregate channel informations. Additionally,
there are some studies [47, 59, 61] applying GCN-based methods,
and a public adjacency matrix is adopted to automatically learn
the aggregation weight between EEG channels. And Li et al. [29]
exploit multi-domain information to build the adjacency matrix for
their GCN-based model.

However, as satisfaction is related to various cognitive processes
and affective states [5, 33, 46], the brain connectivities might be
different due to different stimulus factors [17, 57]. Few studies adap-
tively learn the brain connectivities in a completely data-dependent
way. One exception is the HetEmotionNet [20], which utilizes mu-
tual information [26] to construct the adjacencymatrix for each data
sample and then applies the graph convolution with it. However,
the mutual information indicates the similarity of EEG features.
Simply aggregating EEG channels with similar features is not al-
ways reasonable. For example, previous studies have suggested that
the asymmetry in neuronal activities between the left and right
hemispheres is informative [45]. Our study differs from previous
work in using a completely data-dependent aggregation strategy
with the specially designed multi-centrality encoding and spatial
attention mechanism.

3 EEG-BASED SATISFACTION MODELING
3.1 Problem statement
In this paper, we define the temporal features of EEG signals as
𝑋 𝑡 = {𝑥𝑡1, 𝑥

𝑡
2, ..., 𝑥

𝑡
𝑁
} ∈ R𝑁×𝐸 , where 𝑁 is the length of temporal

features, 𝐸 is the number of EEG channels. The spectral features of
EEG signals are denoted as 𝑋𝑠 = {𝑥𝑠1, 𝑥

𝑠
2, ..., 𝑥

𝑠
𝐵
} ∈ R𝐵×𝐸 , where 𝐵

is the length of spectral features, 𝐸 is the number of EEG channels.
The spectral features are the differential entropy (DE) [11] extracted
from 𝐵 frequency bands (e.g., 𝛿, \, 𝛼, 𝛽 , and 𝛾 ). Then the EEG-based
satisfaction modeling problem is to learn a mapping function 𝐹𝑠
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Figure 2: The architecture of proposed BTA.

based on the proposed model, which can be formulated as:

𝑦 = 𝐹𝑠 (𝑋 𝑡 , 𝑋𝑠 )

where𝑦 denotes the estimated satisfaction score. With the predicted
satisfaction score on historical items, information system can in-
teractively provide more satisfying unseen items. In this paper, we
explore two common information access scenarios, i.e., search and
recommendation, which are detailed in Section 4.

3.2 Brain Topography Adaptive Network
3.2.1 Model overview. An overview of the proposed satisfaction
modeling method is illustrated in Figure 2. We propose a Brain
Topography Adaptive Network (BTA), which consists of a tem-
poral data stream and a spectral data stream, and these two data
streams have similar structures. The model is composed of five com-
ponents: (1) Input encoding module. (2) Multi-centrality encoding
module. (3) Spatial attention module. (4) Fusion and classification
module. (5) Subtask module. Firstly, the spectral features or tem-
poral features are linearly projected into a latent space with the
input module. Then, the multi-centrality encoding module generates
a spatial encoding for each channel according to its topographical
relation to various spatial centralities. After that, the spatial at-
tention module aggregates the channel information with attention
mechanisms to capture the brain’s cognitive connectivity. Finally,
the fusion and classification module fuses the temporal data stream
and spectral data stream to classify user satisfaction in information
access tasks. Additionally, to initialize the centrality embedding vec-
tors, we replace the fusion and classification module with a subtask
module before the model training.

3.2.2 Input encoding module. The spectral features or temporal
features are linearly projected into a latent space, which can be
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formulated as:

𝐻𝑡 =𝑊 𝑡 ∗ 𝑋 𝑡 + 𝐵𝑡 , 𝐻𝑠 =𝑊 𝑠 ∗ 𝑋𝑠 + 𝐵𝑠

where 𝑋 𝑡 ∈ R𝐸×𝑁 , 𝑋𝑠 ∈ R𝐵×𝑁 are temporal and spectral EEG
features, respectively,𝑊 𝑡 ∈ R𝐻×𝑁 ,𝑊 𝑠 ∈ R𝐻×𝐵 , 𝐵𝑡 ∈ R𝐻×𝐸 , 𝐵𝑠 ∈
R𝐻×𝐸 are learnable parameters, 𝐻𝑡 ∈ R𝐻×𝐸 , 𝐻𝑠 ∈ R𝐻×𝐸 are the
input vectors. We transform 𝑋 𝑡 and 𝑋𝑠 into latent spaces with
the same dimension since the multi-centrality encoding module,
which adds topographical information to the input vectors (see in
Section 3.2.3), is shared between them.

For simplicity, in Section 3.2.3 and Section 3.2.4, we omit the
subscripts 𝑡 and 𝑠 (e.g., 𝐻 ∈ {𝐻𝑡 , 𝐻𝑠 }) since the temporal and
spectral data stream share the same architectures.

3.2.3 Multi-centrality encoding module. To map each channel with
a meaningful spatial encoding, we adopt multi-centrality encoding
as an additional signal to the neural network. Specifically, we select
𝑀 spatial points𝐶1,𝐶2, ...,𝐶𝑀 in the brain topography space as the
centralities. For each centrality 𝐶 𝑗 , we build a spherical coordinate
system ℱ𝑗 with 𝐶 𝑗 being regraded as the origin. And the zenith
direction and the azimuth direction of ℱ𝑗 are defined as straight
above and ahead of the human brain, respectively. Then, we develop
a centrality encoding 𝑝𝑖, 𝑗 which assigns each EEG channel 𝐸𝑖 three
learnable embedding vectors according to its spherical coordinate
in ℱ𝑗 . The centrality encoding 𝑝𝑖, 𝑗 ∈ R𝐻 of a EEG channel 𝐸𝑖
according to a centrality 𝐶 𝑗 is formulated as:

𝑝𝑖, 𝑗 = 𝜌𝑖, 𝑗 ∗ 𝑐 𝑗,𝜌 + \𝑖, 𝑗 ∗ 𝑐 𝑗,\ + 𝜑𝑖, 𝑗 ∗ 𝑐 𝑗,𝜑
where (𝜌𝑖, 𝑗 , \𝑖, 𝑗 , 𝜑𝑖, 𝑗 ) ∈ R3 is the spherical coordinate of 𝐸𝑖 in
ℱ𝑗 , (𝑐 𝑗,𝜌 , 𝑐 𝑗,\ , 𝑐 𝑗,𝜑 ) ∈ R3×𝐻 are the centrality embedding vectors
related to 𝐶 𝑗 . To enrich the spatial representation of EEG channels
and increase their distinction, we obtain𝑀 centrality encodings for
an EEG channel 𝐸𝑖 , i.e., 𝑝𝑖, 𝑗 , 𝑗 ∈ {1, ..., 𝑀}. The centrality encodings
are then combined with the input vector by:

𝑧𝑖 = ℎ𝑖 ⊕
∑︁

1≤ 𝑗≤𝑀
𝑝𝑖, 𝑗

where ℎ𝑖 ∈ R𝐻 is the subvector of 𝐻⊺ = {ℎ1, ..., ℎ𝑒 }, 𝐻⊺ is the
transposed matrix of 𝐻 ∈ {𝐻𝑡 , 𝐻𝑠 }, ⊕ is an element-wise operator.
Then the input vector after adding the multi-centrality encoding
can be expressed as 𝑍 = {𝑧1, ..., 𝑧𝑒 }⊺ ∈ R𝐸×𝐻 . We adopt a direct
addition as ⊕ since it is simple to implement and adds minimal
overhead to training time and model size. We also tried more com-
plex interaction operators, but the results are similar, so we omit
them. By using the multi-centrality encoding in the input, the in-
put encoding vectors obtain additional topographical information.
Therefore, the model can capture both the topographical correlation
and the spectral or temporal information.

3.2.4 Spatial attention module. The brain’s cognitive connectiv-
ity between EEG channels should not be neglected in EEG-based
classification tasks. Therefore, we adopt attention mechanisms to
capture the adaptive channel correlations for each data sample. We
first apply a multihead attention layer to calculate the interacted
sequence:

𝑍1 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑍⊺, 𝑍⊺, 𝑍⊺)

= 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, ..., ℎ𝑒𝑎𝑑𝐷 )𝑊𝑂

whereℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑍⊺𝑊𝑄 , 𝑍⊺𝑊𝐾 , 𝑍⊺𝑊𝑉 ),𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 ∈
R𝐻×𝐻/𝐷 are trainable parameters, 𝐷 is the number of heads, and
𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) is the scaled dot-product attentionmechanism [50].
𝐶𝑜𝑛𝑐𝑎𝑡 (·) denotes the concatenation operation in the second di-
mension and the concatenated vector is fed into a linear matrix
𝑊𝑂 ∈ R𝐻×𝐻 to obtain the spatial interacted vectors 𝑍1 ∈ R𝐸×𝐻 .

Next, we apply a batch normalization layer 𝐵𝑁 to accelerate the
training procedure and obtain the output vector 𝑍2 = 𝐵𝑁 (𝑍1) ∈
R𝐸×𝐻 . In spite of using the layer normalization as Transformer [50]
does, we adopt batch normalization since it performs better than
layer normalization. We suggest that using batch normalization
can mitigate the effect of instability and outline values related to
EEG signals [58].

3.2.5 Fusion and classification module. With the above modules,
the input temporal features 𝑋𝑡 and spectral features 𝑋𝑠 are trans-
formed into output vectors 𝑍 𝑡2 and 𝑍

𝑠
2 , respectively. We concatenate

the output vectors to obtain 𝑍3 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑧2,1, ..., 𝑧2,𝑒 ) ∈ R𝐸𝐻 ,
where 𝑍2 = {𝑧2,1, ..., 𝑧2,𝑒 } ∈ R𝐸×𝐻 , 𝑍2 ∈ {𝑍 𝑡2, 𝑍

𝑠
2 }, and 𝑍3 ∈

{𝑍 𝑡3, 𝑍
𝑠
3 }. Then to fuse 𝑍 𝑡3 and 𝑍

𝑠
3 , we adopt a fully connected layer,

an activation function, and a softmax function, which can be for-
mulated as:

𝑦 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝜎 (𝐶𝑜𝑛𝑐𝑎𝑡 (𝑍 𝑡3, 𝑍
𝑠
3)) + 𝐵)

where 𝜎 denotes as activation function (𝐺𝑒𝑙𝑢 in our experiments),
𝑊 ∈ R𝐸𝐻×1 and 𝐵 ∈ R1 are trainable parameters,𝑦 is the estimated
satisfaction score. Finally, the classification cross entropy is used
as the loss function, which is defined as follows:

𝐿 = −𝑦 lg(𝑦) − (1 − 𝑦) lg(1 − 𝑦)
where 𝑦 is the true label.

3.2.6 Subtask module. Besides, to initialize the centrality embed-
ding vectors 𝑐 𝑗,𝜌 , 𝑐 𝑗,\ , and 𝑐 𝑗,𝜑 for each 𝑗 in {1, 2, ...𝑀}, we adopt
an unsupervised subtask prior to the satisfaction modeling task.
The unsupervised subtask is a reconstruction task to predict some
mask EEG features, which share the same architecture except for
the classification layer. Specially, randomized binary noise masks
𝑊𝑡,𝑚𝑎𝑠𝑘 ∈ R𝐻×𝑁 and𝑊𝑠,𝑚𝑎𝑠𝑘 ∈ R𝐻×𝑁 are generated for each data
sample, and the input𝑋𝑡 and𝑋𝑠 are masked by𝑋 =𝑊𝑚𝑎𝑠𝑘 ⊙𝑋,𝑋 ∈
{𝑋𝑡 , 𝑋𝑠 }. Then, we replace 𝑋 with 𝑋 to generate the output vector
𝑍2 with BTA. After that, 𝑋 ′ is reconstructed with 𝑍2 using a linear
connection layer: 𝑋 ′ = 𝑙𝑖𝑛𝑒𝑎𝑟 (𝑍2). Finally, we utilize the mean
squared error loss to present the reconstruction loss, which can be
formulated as:

𝐿𝑀𝑆𝐸 =
∑︁

(𝑖, 𝑗) ∈𝑄
(𝑋 ′(𝑖, 𝑗) − 𝑋 (𝑖, 𝑗))2

where we utilize 𝑄 = {(𝑖, 𝑗) |𝑊𝑚𝑎𝑠𝑘 (𝑖, 𝑗) = 0} to obtain the loss
related to the predictions on the masked values. After the subtask,
the centrality vectors of 𝑐 𝑗,𝜌 , 𝑐 𝑗,\ , and 𝑐 𝑗,𝜑 for each 𝑗 in {1, 2, ...𝑀}
are set as the initialized parameters for the satisfaction modeling
task. The training procedures of our proposed BTA model are sum-
marized in Algorithm 1. Note that the unsupervised subtask aims
to initialize a better mutli-centrality encoding which reflects the
spatial relations of EEG channels. We find that the initialization
process is effective when supervised labels are limited while not
when using a larger dataset, which is elaborated in Section 5.1.
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4 EXPERIMENTAL SETUP
This section details the datasets and experimental settings. The
Search-Brainwave [56] dataset and the AMIGOS [34] dataset are
applied for the satisfaction modeling experiments (detailed in 8.1).
Then, we explore the performance of EEG-enhanced interactive
search and recommendation systemswith a search result re-ranking
task on the Search-Brainwave dataset and a rating prediction task
on the AMIGOS dataset, respectively. The implementation code of
our experiment is based on PyTorch 1 and is publicly available in
https://github.com/YeZiyi1998/DL4EEG-Classification.

4.1 Satisfaction prediction
4.1.1 Baselines. We exploit three types of EEG classification mod-
els as baselines, topology-invariant models, CNN-based models,
and GCN-based models.

Topology-invariantmodels include SVM [49], DT [44], andmultilayer
perceptron (MLP) [10]. We implement these models with the scikit-
learn library [38].

CNN-based models include EEGNet [28] and the recently pro-
posed BENDR [25]. EEGNet stacks several CNN layers to boost
its performance. BENDR applies CNN to extract EEG features and
then uses transformers to capture temporal patterns of EEG signals,
which achieves state-of-the-art performances in various brain–computer
interface (BCI) tasks. It also adopts a cross-dataset pre-training task
to initialize the parameters. We implement EEGNet and BENDR
with their open-sourced code and use the public pre-trained weights
to initialize the BENDR model.

GCN-based models include DGCNN [47], RGNN [61], and Het-
EmotionNet [20]. DGCNN applies a public adjacency matrix to
aggregate multichannel EEG information dynamically. RGNN uses
two regularizers to improve the robustness. Het-EmotionNet uses
mutual information to model the topographical information and
fuse the temporal and spectral information together. Here we im-
plement RGNN and Het-EmotionNet with open-sourced codes and
DGCNN by ourselves since their code is not available.

4.1.2 Parameter Setups. We train BTAwith theAdamoptimizer [24].
The centralities’ number𝑀 is selected from {1, 3, 5, 7, 9, 14}. Results
show that 3 is a proper setting and achieves the best performance.
Besides, we find that selecting centralities in different spatial po-
sitions (e.g., randomly selecting three channels as the centralities)
leads to only a marginal difference. Therefore, we choose these
three centralities (i.e., 𝐶1, 𝐶2, 𝐶3) for simplicity and representative
of the spatial distribution of EEG channels. Among them, 𝐶1 is
selected as a center point in the international 10-20 EEG system.𝐶2
and 𝐶3 are selected as the left and right mastoid points since they
are widely used as the reference channels in existing EEG stud-
ies [55]. The initialize learning rate, min-batch size, and the hidden
dimension𝐻 (as denoted in Section 3.2) are tuned and selected from
{0.01, 0.05}, {8, 32} and {8, 16, 32}, respectively. The head number
in the multihead attention mechanism is set to eight. Besides, in
the unsupervised subtask, we set the random mask ratio as 15%,
the same as prior work in time sequence prediction [58].

4.1.3 Protocols. We apply Area Under Curve (AUC) and F1-score
as evaluation metrics in our experiments. For Search-Brainwave
1https://pytorch.org/

dataset, we conduct experiments on each subject and evaluate the
models with a task-independent ten-fold cross validation: search
tasks are partitioned into ten folds, and we leave each fold for
evaluation after training with the remaining folds. For AMIGOS
dataset, following existing studies [13, 18], we randomly split the
data and apply a ten-fold cross validation for each subject.

4.2 Downstream task1: Search result
re-ranking

4.2.1 Task definition. In the search result re-ranking task, unseen
search results are re-ranked by the estimated satisfaction of his-
torical search results. We present a search task within a query 𝑄
whose search results is a list𝐷 = ⟨𝑑1, ..., 𝑑𝑁 ⟩. We assume that a user
historically examines the top several results 𝐷ℎ𝑖 = ⟨𝑑1, ..., 𝑑𝑁ℎ𝑖 ⟩,
hence the interaction on the 𝑖-th search result is formulated as
𝐼𝑖 = {𝑦𝑖 , 𝑑𝑖 }, where 𝑦𝑖 is the estimated satisfaction score to search
result 𝑑𝑖 . Then we would like to place the relevant search results
in the unseen search results list 𝐷𝑢𝑛 = ⟨𝑑𝑁ℎ𝑖+1, ..., 𝑑𝑁 ⟩ as high as
possible. Therefore, the goal of the search result re-ranking task is:

max
∑︁
𝑄

𝜋 (�̂�𝑢𝑛, 𝑅𝑢𝑛), �̂�𝑢𝑛 = 𝐹𝑠𝑒𝑎𝑟𝑐ℎ (𝑄, 𝐷𝑢𝑛, 𝐼1, ..., 𝐼𝑁ℎ𝑖
)

where 𝜋 denotes the evaluation metric, e.g., Normalized Discounted
Cumulative Gain (NDCG) [19] orMeanAverage Precision (MAP) [62],
𝑅𝑢𝑛 is the true relevance label of𝐷𝑢𝑛 , �̂�𝑢𝑛 is the returned re-ranked
list, 𝐹𝑠𝑒𝑎𝑟𝑐ℎ denotes the re-ranking strategy that re-ranks the un-
seen search results according to historical interactions, which is
elaborated in Section 4.2.2.

4.2.2 Methods. To generate a better re-ranked list for unseen
results �̂�𝑢𝑛 , we build a language model (LM) [27] and rewrite
the query for a better intent estimation. The language model es-
timates the relevance of the words in historical search results
𝑑𝑖 = {𝑤𝑖,1,𝑤𝑖,2, ...} ∈ 𝐷ℎ𝑖 to find the most relevant words related
to the query 𝑄 = {𝑞1, ..., 𝑞𝑘 }. Then, the query is rewritten with 𝑙
most relevant words as 𝑄

′
= {𝑞1, ..., 𝑞𝑘 ,𝑤1, ...,𝑤𝑙 }. In the language

model, the word relevance 𝑅(𝑤) can be formulated as:

𝑅(𝑤) = 𝐿𝑀 (𝐷ℎ𝑖 , 𝑄, 𝐹𝐷ℎ𝑖
)

where 𝐹𝐷ℎ𝑖
is a probability distribution of 𝐷ℎ𝑖 . Generally, a word

will have higher relevance if it appears in search results with higher
distribution probabilities. Convention language model sets 𝐹𝐷ℎ𝑖

as a
uniform distribution since we have no prior knowledge, which can
be denoted as uniformed language model (ULM). With the estimated
satisfaction inferred from brain signals, we adjust 𝐹𝐷ℎ𝑖

to assign a
higher probability 𝑃 (𝑑 |𝐷ℎ𝑖 ) for satisfying search results:

𝑃 (𝑑 |𝐷ℎ𝑖 ) = (_ + 𝑦 (𝑑))/(_ |𝐷ℎ𝑖 | +
∑︁
𝑑∈𝐷ℎ𝑖

𝑦 (𝑑))

where _ is a hyperparameter to smooth the estimated satisfaction
score 𝑦 (𝑑). Here we denote our method as satisfaction-enhanced
language model (SLM). After extending the query 𝑄 to 𝑄

′
with

the language model, we adopt ranking algorithms (e.g., BM25 [43])
with 𝑄

′
to generate the re-ranked search results list �̂�𝑢𝑛 .

In our experiment, we use BM25 [43] as the ranking algorithm
and exploit the performance of the original ranking list generated by
BM25 and the re-ranked lists with ULM or SLM rewriting the query.
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For parameter settings, we empirically set the length of rewritten
words 𝑙 and the hyperparameter _ as 5 and 2, respectively.

4.2.3 Protocols. For each search task in the Search-Brainwave
dataset, if the user examines 𝑐𝑢 search results, we will re-rank the
remanent 𝑁 − 𝑐𝑢 search results and evaluate the re-ranked list
with the true relevance label of search results. Note that 𝑐𝑢 varies
with search tasks since the user can stop her search at any time.
Finally, ranking evaluation metrics NDCG and MAP are adopted
to evaluate the averaged performance among all search tasks.

4.3 Downstream task2: Rating prediction
4.3.1 Task definition. In the rating prediction task, we predict the
ratings of unseen user-item pairs based on historical user-item
interactions. Specially, we denote the user and item set as 𝑈 and
𝑉 , respectively. The historical user-item interactions are denoted
as 𝐼ℎ𝑖 = {(𝑢, 𝑣,𝑦𝑢,𝑣) |𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 }, where 𝑦𝑢,𝑣 is the satisfaction
score of item 𝑣 for user 𝑢 estimated with brain signals. Note that
in conventional recommendation tasks, 𝑦𝑢,𝑣 is replaced by explicit
ratings or implicit feedback (e.g., click, liked). Then the rating pre-
diction task is to better estimate the true label 𝑦𝑢,𝑣 in the unseen
user-item pairs 𝐼𝑢𝑛 = {(𝑢, 𝑣,𝑦𝑢,𝑣) |𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 }. Therefore, the
task is formulated as:

max𝜋 (𝐼𝑢𝑛, 𝐹𝑟𝑒𝑐 (𝐼ℎ𝑖 , {(𝑢, 𝑣) | (𝑢, 𝑣,𝑦𝑢,𝑣) ∈ 𝐼𝑢𝑛}))

where 𝜋 denotes the evaluation metric, i.e., AUC , 𝐹𝑟𝑒𝑐 is the rating
prediction strategy elaborated in Section 4.3.2, and we use the
explicit annotation as true label 𝑦𝑢,𝑣 .

4.3.2 Methods. The personalized recommendation aims to learn a
mapping function 𝐹 that maps the rating of a given user-item pair
with their embeddings:

𝑦 (𝑢,𝑣) = 𝐹 (𝑒𝑢 , 𝑒𝑣)

where 𝑒𝑢 , 𝑒𝑣 indicate the user embeddings and item embeddings,
respectively, 𝑦 (𝑢,𝑣) is the rating of the user-item pair (𝑢, 𝑣). For
a recommendation system, the true labels 𝑦 (𝑢,𝑣) are difficult to
obtain [52]. Therefore, in the training process, we hypothesize that
we can obtain the true labels 𝑦 (𝑢,𝑣) for a 𝛼 ratio of user-item pairs.
And we use the estimated satisfaction score 𝑦 (𝑢,𝑣) for other user-
item pairs to introduce more training data. Finally, the true label
𝑦 (𝑢,𝑣) is applied to evaluate the model performance.

We denote function 𝐹 using 𝛼 ratio of true labels 𝑇 as 𝐹𝑇 (𝛼) ,
and 𝐹 using 𝛼 ratio of true labels 𝑇 and the estimated satisfaction
𝑆 as 𝐹𝑇 (𝛼),𝑆 . We exploit prevalent personalized recommendation
methods as 𝐹 , including LR [42], FM [41], and Wide&Deep [9]. All
recommendation methods are implemented with the open-sourced
code of Recbole [60] and are applied with its default settings.

4.3.3 Protocols. We treat each video segment in the AMIGOS
dataset as an item and assign it with one-hot encoding as item
embedding. For user embedding, the collected users’ demographic
information, personality profiles, and the mood (PANAS) files are
used and expressed as 71-dimensional embedding vectors. We ran-
domly split the user-item pairs into training, validating, and testing
sets with a ratio of 8:1:1. In the training set, we replace the true
labels with the satisfactions inferred from brain signals, and we

Table 1: The performance of satisfaction estimation for each
model. ∗ indicates difference compared to the BTA is signif-
icant with 𝑝-value < 0.01.

Model Search-Brainwave AMIGOS
F1 AUC F1 AUC

Topography-invariant
DT 0.5642∗ 0.5205∗ 0.5608∗ 0.6245∗
MLP 0.6196∗ 0.5204∗ 0.5629∗ 0.6123∗
SVM 0.6227∗ 0.5189∗ 0.5580∗ 0.5892∗

CNN-based
BENDR 0.7118∗ 0.7291∗ 0.5580∗ 0.5869∗
EEGNet 0.7254∗ 0.7614∗ 0.6025∗ 0.6920∗

GCN-based
DGCNN 0.7170∗ 0.7374∗ 0.6630∗ 0.7663∗
HetEmotionNet 0.7362∗ 0.7717∗ 0.6428∗ 0.7405∗
RGNN 0.7440∗ 0.7663∗ 0.6694∗ 0.7782∗

BTA (ours) 0.7837 0.8278 0.7143 0.8353

evaluate rating prediction performance with the true labels in the
validating and testing set.

5 RESULTS AND DISCUSSIONS
We empirically evaluate BTA in the satisfaction prediction task and
utilize the estimated satisfaction to boost interactive information
access performance to address the following research questions:

• RQ1 Can we effectively estimate satisfaction feedback sig-
nals (e.g., feedback on search results and preference of items)
with BTA from brain signals?

• RQ2Canwe interactively provide satisfying information (e.g.,
helpful search results and users’ preferred items) with the
satisfaction inferred from the brain signals?

To addressRQ1, we compare BTAwith prevalent EEG classification
baselines and delve into BTA’s components in Section 5.1. Then,
we summarize the performance of the search result re-ranking task
and the rating predicting tasks to answer RQ2 in Section 5.2 and
Section 5.3, respectively.

5.1 Satisfaction Prediction
5.1.1 Overall performance. Table 1 presents the satisfaction esti-
mation performance in terms of F1-score and AUC [39] of differ-
ent models. From Table 1, we have the following observations:
(1) All CNN-based models and GCN-based models outperform
topography-invariant models in most of the evaluation metrics.
The topography-invariant models directly concatenate all the EEG
channels’ features together. Thus the topographical information is
omitted, which leads to limited performance. (2) In general, CNN-
based models perform worse than GCN-based models. CNN-based
architectures compress the 3D topographical information into 2D
representation and aggregate the information in adjacent EEG chan-
nels. Conversely, GCN-based models utilize learnable adjacency
matrixes to learn a more flexible aggregation strategy, which better
exploits the topographical information than CNN-based models.
(3) The proposed BTA performs the best among all models. On
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the one hand, BTA introduces multi-centrality encoding to exploit
the 3D spatial relations. , while previous models don’t take the 3D
information into account On the other hand, the spatial attention
mechanism is applied to capture the topographical information
adaptively. Thus we can learn different aggregation strategies in
different data samples. Conversely, previous CNN-based and GCN-
based models utilize common aggregation weights shared by all
data samples. One exception is HetEmotionNet, which uses mu-
tual information between EEG channels to learn the aggregation
weight. More detailed comparison on the exploitation of topograph-
ical information between BTA and HetEmotionNet is conducted in
Section 5.1.3.

5.1.2 Ablation study. To explore the effectiveness of different com-
ponents in BTA, we compare it to a series of baselines without
considering a variety of model structures or training strategies. Fig-
ure 3 shows the results of BTA and its variants. w/o A, w/o M, and
w/o S indicate the BTA model that masks the spatial attention mod-
ule, the multi-centrality encoding module, and the subtask module,
respectively. As shown in Figure 3, there are different degrees of
performance degradation in both tasks when masking one of the
three components. This implies that all of them facilitate the model
performance. Among these components, the spatial attention mod-
ule plays the most important role, which suggests the effectiveness
of adaptively aggregating the channel information. Besides, the
subtask module leads to the least performance improvement. Es-
pecially in the AMIGOS dataset, the performance improvement of
BTA is merely 0.003 in terms of F1 compared to BTA w/o S. We sug-
gest that the AMIGOS dataset contains more training samples and
supervised labels, and thus the unsupervised procedure to initialize
the parameters is less necessary.

5.1.3 Brain topography analysis. In this subsection, we explore the
brain topographical information in our proposed model and the
baseline HetEmotionNet by visualizing their aggregation weight.
Although BTA and HetEmotionNet have different architectures,
both of their aggregation weights indicate how the model aggregate
the information from other EEG channels to a certain channel. For
BTA, the aggregation weight denotes the averaged attention weight
between EEG channels among all data samples. For HetEmotionNet,
the aggregation weight indicates the averaged edge weight [20]
between EEG channels among all data samples.

Figure 4 presents the visualization of the aggregation weight
of various EEG channels to channel F4 in the Search-Brainwave

0.784

(a) F1 (Search-Brainwave)

0.72

(b) F1 (AMIGOS)

Figure 3: Performance comparisons between BTA and its
variants. A: spatial attention; M: multi-centrality encoding;
S: unsupervised subtask.

F4F4F4 F3Left  
frontal

F4
Right 

frontal

Right 
frontal

Left  
frontal F3 F4F4

(a) BTA (Satisfied)

F4F4F4 F3Left  
frontal

F4
Right 

frontal

Right 
frontal

Left  
frontal F3 F4F4

(b) BTA (Unsatisfied)

F4F4F4 F3Left  
frontal

F4
Right 

frontal

Right 
frontal

Left  
frontal F3 F4F4

(c) Het (Satisfied)

Figure 4: The visualization of the aggregation weights in
BTA/HetEmotionNet and satisfied/unsatisfied data samples.
The darker color indicates higher aggregation weight to
channel F4 and the highlighted channels have the highest
weights among all channels. Het indicates HetEmotionNet.

dataset. Here we select channel F4 because previous neurological
studies [1, 45] suggest that the frontal alpha asymmetry (i.e., the 𝛼
band difference between left and right frontal) indicates motivation,
desire, and positive/negative feelings. From Figure 4, we can ob-
serve that the aggregation weight to channel F4 is higher in brain
regions of right frontal and left frontal for HetEmotionNet and
BTA, respectively. HetEmotionNet adopts mutual information [26]
to obtain the edge weight. Since adjacent channels usually share
higher mutual information scores, the aggregation process is just
aggregating some of the most adjacent channels. Conversely, BTA
adaptively captures the topographical relationships between EEG
channels with attention mechanism and multi-centrality encoding.
Thus it aggregates information in a flexible manner. Interestingly,
the aggregation weights of BTA are higher in left frontal. BTA uti-
lizes a higher weight to capture the relationship between F4 and
channels in left frontal, including F3, which implies BTA has good
coherence to existing neurological studies [1]. Besides, the satisfied
and unsatisfied samples in BTA have different topographical rela-
tionships, which also demonstrate the data-dependent modeling
strategy can be adaptive to different user statuses.

5.2 Search result re-ranking performance
Table 3 summarizes the performance of the search result re-ranking
task. We can observe that the proposed SLM outperforms BM25
and ULM. It demonstrates the effectiveness of SLM, which rewrites
the query with additional relevant words inferred from the search

Figure 5: The performance of Wide&Deep using only the
estimated satisfaction 𝐹𝑇 (0),𝑆 , different ratios of true labels
𝐹𝑇 (𝛼) , and their combination 𝐹𝑇 (𝛼),𝑆 .
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Table 2: A case study to investigate the rewriting performance. The bold words are related to the user intent.

Query Search result/Satisfaction ULM rewriting SLM rewriting
permanent
teeth

(1) ..., online medical advice: dentist Mr.Song //
(2) how old does a child grow its permanent teeth, ... /,

permanent, teeth, dentist,
know, online, child, kid

permanent, teeth, child,
old, when, know, kid

Table 3: The performance of search result re-ranking for
each model. ∗ indicates difference compared to SLM is sig-
nificant with 𝑝-value < 0.01.

Model NDCG@1 NDCG@5 NDCG@10 MAP@10

BM25 0.6881∗ 0.7397∗ 0.8164∗ 0.7333∗
ULM 0.7237∗ 0.7620∗ 0.8309∗ 0.7687∗
SLM 0.7351 0.7767 0.8337 0.7741

Table 4: The AUC performance of personalized rating pre-
diction for each model. 𝐹𝑇 (0.1),𝑆 indicates models using 0.1
ratio of true labels 𝑇 and the estimated satisfaction 𝑆 .

Model LR FM Wide&Deep

𝐹𝑇 (0.1) 0.6798 0.5010 0.7027
𝐹𝑇 (0.1),𝑆 0.7537 0.8056 0.8207

results with higher estimated user satisfaction. The significant im-
provements of SLM also demonstrate the benefits of introducing
the estimated satisfaction into interactive search scenarios.

To investigate the rewriting performance of SLM and ULM, we
conduct a case study to analyze their difference. Table 2 shows
a search task that requires the user to explore information about
when the period of growing permanent teeth is. The ULM rewrites
the query with words appeared in both search result 1 (e.g., “online”,
“dentist”) and search result 2 (e.g., “child”, “kid”). On the other hand,
with the help of the estimated satisfaction, the SLM tends to rewrite
the query with words that appeared in satisfying search results,
i.e., search result two. Therefore, words such as “child”, “old”, and
“when” are used for rewriting in SLM, and the rewritten query can
better present user intent. Then, the re-ranking performance can
be improved with the rewritten query.

5.3 Rating prediction performance
Table 4 summarizes the rating prediction performances of different
models using a true label ratio of 0.1 (see in Section 4.3.2). As shown
in Table 4, all recommendation models improve a large margin with
the enhancement of the estimated satisfaction 𝑆 . This suggests the
effectiveness of introducing brain signals into recommendation by
utilizing the estimated satisfaction to train the model.

Additionally, to better understand to what extent brain signals
can improve the interactive recommendation system, we explore
the performance of Wide&Deep using different ratios of true la-
bels 𝑇 and whether using the estimated satisfaction 𝑆 or not. Fig-
ure 5 presents their performance comparison. We observe that
Wide&Deep using only the satisfaction estimated with brain sig-
nals 𝑆 (i.e., 𝐹𝑇 (0),𝑆 ) are as effective as Wide&Deep using about
30%-40% true labels 𝑇 (i.e., 𝐹𝑇 (𝛼) ). Besides, 𝐹𝑇 (𝛼),𝑆 outperforms

𝐹𝑇 (𝛼) at the same true label ratio 𝛼 , which indicates introducing
the estimated satisfaction 𝑆 can boost the performance stably. Note
that in recommendation scenarios, true user satisfaction is often
scarce [51]. Thus, the estimated satisfaction is valuable and here we
demonstrate to what extent the satisfaction estimated with brain
signals can improve the performance.

6 CONCLUSION
In this paper, we addresss a problem of utilizing brain signals for
satisfactionmodeling in interactive information systems. Compared
to conventional user signals, brain signals can directly present user
status and thus contain less bias. We then propose a Brain Topog-
raphy Adaptive network (BTA) to estimate user satisfaction with
EEG signals. BTA exploits the 3D topographical information of EEG
channels bymulti-centrality encodingmodule and adaptively learns
data-dependent aggregation strategies with spatial attention mech-
anisms. Extensive experiments on the Search-Brainwave and the
AMIGOS datasets demonstrate the outstanding performance of our
model in comparison with various competitive baselines. Moreover,
to verify that the estimated satisfaction can help the interactive in-
formation access procedures, we conduct two downstream tasks in
search and recommendation scenarios. Experimental results show
that brain signals can boost the system performance of result re-
ranking in search and rating prediction in recommendation.

With wearable devices becoming more portable and cheaper,
information systems are possible to collect users’ psychophysio-
logical signals in situations such as Virtual Reality (VR) applica-
tions [4] and the disabled service [7]. As BCIs become more preva-
lent and cheaper, we believe that more application scenarios will
soon emerge. Besides directly controlling information systems, we
reveal another benefit of BCI for information systems. We suggest
utilizing brain signals to automatically predict user satisfaction with
well-designed models, and then, the system can better understand
the user and interactively provide useful information. Future stud-
ies may include interactive systems in broad situations, an overall
framework for EEG-enhanced search systems, and online learning
algorithms for real-life EEG based satisfaction estimation.
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8 SUPPLEMENTARY MATERIAL
8.1 Dataset
8.1.1 Search-Brainwave dataset. The Search-Brainwave dataset [56]
records the brain signals generated by 18 participants when per-
forming search tasks. Each participant averagely accomplishes 69.6
search tasks and examines 3.6 corresponding search results in a
search task. During the procedures, their explicit feedback (i.e.,
satisfied or dissatisfied) to search results are collected. And the
dataset also provides the true relevance label of each search result
for performance evaluation. We choose this dataset because it is a
public benchmark specially designed for interactive search tasks.

For feature extraction, we utilize the officially preprocessed tem-
poral and spectral features (i.e., raw signals and DE [11] features,
respectively) and treat the brain signals in response to each search
result as a data sample.

8.1.2 AMIGOS dataset. TheAMIGOS dataset [34] is a public dataset
that includes EEG, electrocardiogram (ECG), and other psychologi-
cal signals generated by 40 participants under video stimulations.
Each participant watches 16 short videos and 4 long videos in two
experiments. They rate each video in “valence”, “arousal”, “domi-
nance”, “familiarity”, and “liking” from 1 to 9. Although the AMIGOS
dataset is not specially designed for recommendation scenarios,
we choose this dataset for recommendation scenario because it
contains rich participant profiles (anonymized participants’ data,
personality profiles, and mood (PANAS) profiles). The user profile
can be utilized as user embeddings for the presonalized rating pre-
diction task (see in Section 4.3.1). Conducting a specially designed
user study on interactive recommendation scenarios is left as future
work.

In our experiments, we adopt the data in short videos experi-
ment since the long videos experiment is conducted in different
configurations. We divide the “liking” annotation into satisfied and
unsatisfied with a threshold of five for our satisfaction estimating
tasks. For feature extraction, we utilize the officially preprocessed
EEG signals and apply a non-overlapping window with a length of
one second to divide each video into several segments. The window
length is different from the original paper [34] but agrees with a lot
of existing EEG classification tasks [20, 47]. We utilize a different
time window since the original paper also considers other physio-
logical signals, such as ECG, which requires a longer time window
than EEG [40]. For brain signals in response to each video segment,
the raw signals are used as temporal features, and we use Fourier
transform over four frequency bands (i.e., \, 𝛼, 𝛽,𝛾 ) to extract the
DE [11] features as spectral features.

8.2 Parameter Setups of Satisfaction Prediction
Baselines

For the satisfaction prediction baselines of various EEG classifica-
tion models (see in Section 4.1.1), we use the original parameter
settings according to their original papers and released codes [20,
25, 28, 47, 61]. However, there exist some implementation details
as follows. For EEGNet [28], the original parameter settings are
not suitable for AMIGOS dataset due to the difference in input data
length. Thus we decrease the second convolution layer’s kernel size
to 7 and the last pooling layer’s kernel size to (2, 1) for experiments
on AMIGOS dataset. For RGNN [61], the released code excludes
the regularized parameters, and we empirically set it as 0.001. The
implementation code of our experiment is publicly available in
https://github.com/YeZiyi1998/DL4EEG-Classification.

Algorithm 1: The Training Procedures of BTA.
Input: User’s brain signals in response to search results

⟨𝑋 1, ..., 𝑋𝑁 ⟩; Usefulness of search results
⟨𝑌 1, ..., 𝑌𝑁 ⟩; The Initialize BTA model Φ.

1 Generate time domain and spectral domain features
𝑋 𝑡 = ⟨𝑥1,𝑡 , ..., 𝑥𝑁,𝑡 ⟩ and 𝑋𝑠 = ⟨𝑥1,𝑠 , ..., 𝑥𝑁,𝑠 ⟩.

2 Φ
′
= 𝐶𝑜𝑝𝑦 (Φ).

3 for iteration=1,2,... do
4 for all 𝑋 in ⟨𝑋 1, ..., 𝑋𝑁 ⟩ do
5 Generate randomized binary noise masks𝑊𝑡,𝑚𝑎𝑠𝑘

and𝑊𝑠,𝑚𝑎𝑠𝑘 .
6 𝑋 =𝑊𝑚𝑎𝑠𝑘 ⊙ 𝑋,𝑋 ∈ {𝑋𝑡 , 𝑋𝑠 }.
7 Compute reconstruction loss

𝐿𝑀𝑆𝐸 = 𝐿𝑀𝑆𝐸 (Φ
′
, 𝑋, 𝑋 ).

8 Update Φ
′
with 𝐿𝑀𝑆𝐸 .

9 end
10 end
11 Replace the centrality embedding vectors of Φ with Φ

′
.

12 for iteration=1,2,... do
13 for all 𝑋 in ⟨𝑋 1, ..., 𝑋𝑁 ⟩ and 𝑌 in ⟨𝑌 1, ..., 𝑌𝑁 ⟩ do
14 Compute classification loss 𝐿 = 𝐿(Φ, 𝑋,𝑌 ).
15 Update Φ with 𝐿.
16 end
17 end
18 return Φ;
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