
 
 

University of Birmingham

Brain tumor classification from multi-modality MRI
using wavelets and machine learning
Usman, Khalid; Rajpoot, Kashif

DOI:
10.1007/s10044-017-0597-8

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Usman, K & Rajpoot, K 2017, 'Brain tumor classification from multi-modality MRI using wavelets and machine
learning', Pattern Analysis and Applications, vol. 20, no. 3, pp. 871–881. https://doi.org/10.1007/s10044-017-
0597-8

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 26. Aug. 2022

https://doi.org/10.1007/s10044-017-0597-8
https://doi.org/10.1007/s10044-017-0597-8
https://doi.org/10.1007/s10044-017-0597-8
https://birmingham.elsevierpure.com/en/publications/830967a1-8959-45e8-85f4-e1c6aa51e817


SHORT PAPER

Brain tumor classification from multi-modality MRI using

wavelets and machine learning

Khalid Usman1 • Kashif Rajpoot1,2

Received: 7 December 2015 / Accepted: 18 January 2017

� The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract In this paper, we propose a brain tumor seg-

mentation and classification method for multi-modality

magnetic resonance imaging scans. The data from multi-

modal brain tumor segmentation challenge (MICCAI

BraTS 2013) are utilized which are co-registered and skull-

stripped, and the histogram matching is performed with a

reference volume of high contrast. From the preprocessed

images, the following features are then extracted: intensity,

intensity differences, local neighborhood and wavelet tex-

ture. The integrated features are subsequently provided to

the random forest classifier to predict five classes: back-

ground, necrosis, edema, enhancing tumor and non-en-

hancing tumor, and then these class labels are used to

hierarchically compute three different regions (complete

tumor, active tumor and enhancing tumor). We performed

a leave-one-out cross-validation and achieved 88% Dice

overlap for the complete tumor region, 75% for the core

tumor region and 95% for enhancing tumor region, which

is higher than the Dice overlap reported from MICCAI

BraTS challenge.

Keywords Multi-modality � MRI � Wavelet transform �
Random forest � Brain tumor � Segmentation

1 Introduction

The detection and diagnosis of brain tumor from MRI is

crucial to decrease the rate of casualties. Brain tumor is

difficult to cure, because the brain has a very complex

structure and the tissues are interconnected with each other

in a complicated manner. Despite many existing approa-

ches, robust and efficient segmentation of brain tumor is

still an important and challenging task. Tumor segmenta-

tion and classification is a challenging task, because tumors

vary in shape, appearance and location. It is hard to fully

segment and classify brain tumor from mono-modality

scans, because of its complicated structure. MRI provides

the ability to capture multiple images known as multi-

modality images, which can provide the detailed structure

of brain to efficiently classify the brain tumor [1]. Figure 1

shows different MRI modalities of brain.

Brain tumor segmentation and detailed classification

based on MRI images has received considerable interest

over last decades. It has been explored in many studies

using uni-modality MRI. Recently, researchers have

explored multi-modality MRI to increase the accuracy of

tumor segmentation and classification.

Machine learning and edge/region-based approaches

have been used with multi-modality (T1, T2, T1C and

FLAIR) MRI [2]. The machine learning techniques often

rely on voxel intensities and texture features. Individual

voxel is classified on the basis of feature vector [2].

Intensity, intensity difference, neighborhood and other

texture features have been explored on benchmark dataset

[3]. To the best of our knowledge, wavelet-based features

have not yet been explored on multi-modality MRI brain

tumor dataset. In this paper, we investigate wavelet texture

features along with various machine learning algorithms.
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In this work, we used multi-modality images to classify

the brain tumor. This work makes the following

contributions:

1. extracting wavelet-based texture features to predict

tumor labels and

2. exploring supervised classifiers for brain tumor

classification.

This paper is organized as follows: Sect. 2 reviews the

related work; Sect. 3 discusses the proposed algorithm,

while Sect. 4 presents the results, leading to conclusion in

Sect. 5.

2 Literature review

Brain tumor segmentation is a challenging process because

tumor exhibits inhomogeneous intensities and unclear

boundaries. Intensity normalization or bias field correction

is often applied to balance the effect of magnetic field

inhomogeneity [1]. Intensities, neighborhood and texture

are common features used in various studies [1–3]. Vari-

ous machine learning and edge/region-based techniques

used in segmentation are summarized in Table 1, where

we present a concise review of the previous work. Few

techniques are fully automatic, while remaining need user

involvement.

Fluid vector flow (FVF) [4] is introduced to address the

problem of unsatisfactory capture range and poor

convergence for concavities. Harati et al. [5] demonstrated

an improved fuzzy connectedness (FC) algorithm, where

seed points are selected automatically to segment the tumor

region. Saha et al. [6] proposed a fast novel method to

locate the bounding box around tumor or edema using

Bhattacharya coefficient [7]. In their proposed clustering

technique axial view of brain image is divided into left and

right halves, and then a rectangle is used to compare the

corresponding regions of left half with right half to find the

most dissimilar region within the rectangle. Zhu et al. [8]

proposed a semiautomatic brain tumor segmentation

method, where initial segmentation is performed through

ITK-Snap tool. Voxel-based segmentation and deformable

shape-based segmentation are combined into the software

pipeline. Sachdeva et al. [9] used texture information with

intensity in active contour model (ACM) to overcome the

issue observed in previous techniques like FVF, boundary

vector flow (BVF) and gradient vector flow (GVF). In

previous techniques selection of false edges or false seeds

corresponds to preconvergence problem and selection of

weak edges leads to over-segmentation due to the edema

around the tumor. Rexilius et al. [10] proposed a new

region growing method for segmentation of brain tumor.

Probabilistic model is used to achieve the initial segmen-

tation, which is further refined by region growing to give

better segmentation results. Global affine and non-rigid

registration method is used to register multi-spectral his-

tograms gathered from patients’ data with a reference

histogram.

Fig. 1 Brain multi-modality

MRI images showing a T1,

b T2, c T1-Contrast (T1C) and

d fluid-attenuated inversion

recovery (FLAIR)
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Corso et al. [11] used a top-down approach to distribute

the product over generative model. Later, sparse graph is

given as input to graph cut method, where each edge uses

features to find similarity between neighboring nodes

having the affinity. Segmentation by weighted aggregation

(SWA) is used to provide the multi-level segmentation of

data. Ruan et al. [12] proposed a supervised machine

learning technique to track the tumor volume. The com-

plete process is categorized into two main steps. In the first

step to make it efficient and reduce computational time,

only T1 modality is used to identify the abnormal area. In

the second step, the abnormal area is extracted from all

modalities and fused to segment the tumor. Irfan et al. [13]

introduced a technique in which brain images are separated

from non-brain part, and then ROI is used with the saliency

information to bind the search of normalization cut (N-Cut)

[14] method. Saliency information is the combination of

multi-scale contrast and image curvature points. Multi-

scale contrast image is acknowledged when image is

decomposed at multiple scales by using Gaussian pyramid

(GP), and Euclidean distance is calculated with neighbor-

ing pixels at those scales.

Automatic segmentation is performed using the random

forest (RF) [3], where features include MR sequence

intensities, neighborhood information, context information

and texture. Post-processing is performed for the sake of

good results. Zhao et al. [15] used Markov random field

(MRF) model on supervoxels to automatically segment

tumor. ACM combines the edge-based and region-based

techniques [16], where user draws region of interest (ROI)

in different images on the basis of tumor type and grade.

In machine learning availability of benchmark data

became important in comparing different algorithms.

Recently, this idea has also become popular in the domain

of medical image analysis. Sometime challenge word is

used instead of benchmark that shares the common char-

acteristic in a sense that different researchers used their

own algorithms to optimize on a training dataset provided

by the organizers of event and then apply their algorithm to

a common, independent test dataset. The benchmark idea is

different from other published comparisons in a sense that

in benchmark each group of researchers uses the same

dataset for their algorithm. The BraTS benchmark was

established in 2012, and first event was held in the same

year [2]. Dataset consists of real and simulated images.

Various studies presented different accuracy measures

and dataset as shown in Table 1; therefore, it is difficult to

compare them and draw conclusion about the best

Table 1 Brain tumor extraction and classification by machine learning or edge/region-based algorithm

No. Work Modalities Method Accuracy Time Automatic

1 Wang et al. [4] T1 FVF and brain tumor

segmentation

0.6 (Tanimoto) 5 s SA

2 Harati et al. [5] T1C Fully automatic Fuzzy

Connectedness algorithm

0.93 (similarity index) 2.5 m FA

3 Saha et al. [6] T1C Quick detection of tumor

using symmetry

92% (classification accuracy) 0.5 m FA

4 Zhu et al. [8] T1C, T2 Software pipeline with

post-processing

0.25–0.81 (Jaccard) 4 m SA

5 Sachdeva et al. [9] T1, T1C, T2 Texture features ? ACM 0.73–0.98 (Tanimoto) – SA

6 Rexilius et al. [10] T1C, T2, FLAIR Region growing ? multi-

spectral histogram model

adaption

0.73 (Jaccard) 10 m SA

7 Corso et al. [11] T1, T1C, T2, FLAIR Generative affinity model

and graph cut method are

used with SWA

0.62–0.69 (Jaccard) 7 m FA

8 Ruan et al. [12] T1, T2, FLAIR, PD Multi-modality MRI with

SVM classification

0.99 (true positive) 5 m FA

9 Irfan et al. [13] T1, T1-weighted, T2, T2-

weighted

Prioritization of brain MRI

volumes using image

perception model

83% (classification accuracy) – FA

10 Festa et al. [3] T1, T1C, T2, FLAIR

(MICCAI BRATS 2013)

Multi-sequence MRI using

RF

0.83 (Dice) 20–25 m FA

11 Zhao et al. [15] T1, T1C, T2, FLAIR

(MICCAI BRATS 2013)

MRF ? supervoxels 0.83 (Dice) 4 m FA

12 Guo et al. [16] T1, T1C, T2, FLAIR

(MICCAI BRATS 2013)

Semiautomatic

segmentation using ACM

0.54–0.94 (Dice) 1 m SA

Different dataset is used except in last three rows. FA denotes fully automatic, and SA denotes semiautomatic [1]
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technique. Furthermore, in previous studies, the value of

Dice and Jaccard was not high enough and there is room

for further improvement in classification accuracy; there-

fore, we explored wavelet-based texture features which

were not explored before on MICCAI BraTS dataset.

3 Proposed method

The proposed algorithm uses MICCAI BraTS dataset and

the main flow of our proposed technique is presented in

Fig. 2, with further details presented in subsection.

3.1 Preprocessing

The BraTS dataset has four modalities of MRI: T1, T2,

T1C and FLAIR. Each modality scan is rigidly co-regis-

tered with T1C modality to homogenize data, because T1C

has the highest spatial resolution in most cases. Linear

interpolator is used to resample all the images to 1-mm

isotropic resolution in axial orientation. Images are skull-

stripped with expert annotation [2]. All the images are

visualized through ITK-Snap [17], while histogram

matching is performed with Slicer3D [18] to enhance the

image contrast by choosing a high-contrast image as the

reference.

The next preprocessing step is to determine the bound-

ing box around the tumor region. Our adapted technique for

locating bounding box consists of the following steps:

1. Remove complete blank slices from ground truth,

remaining slices contain tumor part.

2. Create a mask and use it to locate bounding box in

ground truth.

3. Use the above bounding box to crop multi-modality

images.

3.2 Feature extraction

The proposed feature extraction includes four types of

features: (1) intensity, (2) intensity difference, (3) neigh-

borhood information and (4) wavelet-based texture

features.

Intensity features are shown Fig. 1. Intensity difference

is the differences between the above modalities, and we

used three prominent intensity difference features that

represent the global characteristics of brain tissues [19] as

shown in Fig. 3.

Neighborhood information features include mean,

median and range of 3D neighbors centered at voxel being

considered. The isotropic neighborhood size of 3, 9, 15 and

19 mm was used in 3D as these were found to be appro-

priate for mean and range filters [3], while we used median

filter with neighborhood size 3 mm.

The novelty of the proposed approach is to extract

wavelet features, which has not been explored and applied

on MICCAI BraTS dataset. Wavelet has the property of

multi-resolution analysis, where we can decompose and

visualize the images at different scales [20]. Discrete

wavelet transform can be defined as:

Wj;k tð Þ ¼ 2
�j

2 # 2�jt � k
� �

ð1Þ

where j; k 2 Z, j controls the dilation, k controls the

translation of wavelet function, and # tð Þ is the mother

wavelet. Performing scaling and shifting on initial wavelet

and convolving it with the original image is a part of

wavelet decomposition. It has the property to reconstruct

Classification 

Random forest classifier 

Feature extraction 

Intensity, Intensity differences, 
Neighbourhood information and wavelet 

features 

Pre-processing 

Histogram matching, Bounding box 

Classification 
Label 

Image 

Fig. 2 Block diagram of

proposed method takes multi-

modality MRI as input and

gives tumor labels as output
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the original image without loss of information [21].

Wavelet-based texture segmentation is compared with

simple single resolution texture spectrum, co-occurrences

and local linear transforms on Brodatz dataset, where

wavelet-based texture segmentation performed better than

other approaches [22]. Wavelet has been used on brain,

liver and kidney 3D images to produce accurate recon-

struction from decomposed subimages [23].

For 3D wavelet decomposition, the image volume is ini-

tially convolved in x dimension with low-pass filter to pro-

duce approximation subband (L) and with high-pass filter to

produce detail subband (H). In the same way, the approxi-

mation and detail subbands are further convolved in y

dimension and z dimension, respectively, with both the low-

pass and high-pass filters. As a result, eight subbands: LLL,

LLH, LHL, HLL, LHH, HLH, HHL and HHH [21] are

obtained, where L indicates low-pass-filtered subband and H

indicates high-pass-filtered subband. Level 2 decomposition

is achieved by considering the LLL subband as the main

image and decomposing with the same process as above.

Block diagram of wavelet-based feature extraction is

shown in Fig. 4. In wavelet-based feature extraction, an

intensity difference image (from T1C, T1C-FLAIR, T1C-T1

or T2-T1C) is given as input for 3D wavelet decomposition.

Input image is decomposed into subbands, and subbands

containing useful information are then selected based on

their discriminatory ability assessed by visual analysis.

Feature images are reconstructed from selected subband, and

Gaussian filter is applied after absolute function to make the

features more prominent. We performed decomposition at

second level, because subbands of third level were not found

to be useful in our experiments. Moreover, the subbands at

third level of decomposition are at too small scale to contain

sufficiently useful discriminatory information. We tried

various filter families for wavelet decomposition including

Daubechies4, Symlets4 and Symlets8, while Symlets8 was

selected due to superior performance.

Wavelet reconstruction is a process in which feature

images are constructed from each subband, and useful

feature images are then selected based on discriminatory

information present in visual analysis. We applied absolute

function and Gaussian smoothing to make the edges of

feature images more prominent [24] as shown in Fig. 5.

In this work, we extracted intensity, intensity differ-

ences, neighborhood information and wavelet-based tex-

ture features. In the next section, we will use these features

to perform supervised classification.

3.3 Classification

Supervised classification is a machine learning approach in

which training data are used to construct the model and test

data are used to evaluate the constructed model on unseen

data to measure the performance of algorithm. There are a

Fig. 3 Intensity difference features: a T1C-FLAIR, b T1-T1C, c T2-T1C

Gaussian Smoothing

Wavelet Reconstruction from individual 
subbands

Wavelet 
Image (Intensity or 

Intensit  Difference

Feature Image (for 
each subband

Fig. 4 Block diagram of

wavelet-based feature

extraction, while input to

wavelet decomposition can be

intensity differences or T1C

modality and output represents

the feature images [24]
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number of classifiers that exist to classify data, and below

we will discuss the classifiers which we have explored in

this work.

The kNN (k-nearest neighbor) is a lazy learning tech-

nique, which calculates the Euclidean distance from all the

points. The classification label is then assigned based upon

majority voting as per ‘k’ nearest neighbors.

Random forest (RF) is a combination of decision trees.

Each tree in ensemble is trained on randomly sampled data

with replacement from training vector during the phase of

training. Multiple trees are trained to increase the correlation

and reduce the variance between trees. In test phase, vote of

each tree is considered and majority vote is given to the

unseen data. RF is useful because it gives internal estimates

of error and variable importance, and also it can be easily

parallelized [25]. RF has become a major data analysis tool

within a short period of time, and it became popular because

it can be applied to nonlinear and higher-order dataset [26].

AdaBoostM2 (adaptive boosting) [27] is the enhanced

version of AdaBoostM1 [27], which is used for multi-class

classification. It is a boosting algorithm, where many weak

learners are combined to make a powerful algorithm and

instances are reweighted rather than resampled (in bag-

ging) [25].

Random under sampling (RusBoost) is suitable for

classifying imbalanced data when instances of one class

dominate many times than the other. Machine learning

techniques fail to efficiently classify skewed data, but

RusBoost solved the problem by combining sampling and

boosting. We explored these classification algorithms, and

the results are reported in the next section.

4 Results

In this section, we present the results and compare them

with previous work on the BraTS dataset of real patients

containing 20 high-grade (HG) and 10 low-grade (LG)

subjects. Three measures are used for quantitative evalua-

tion, and visual segmentation results are also shown. The

results are obtained on HP-probook 4540, Core i5,

2.5 GHz, 8 GB RAM using MATLAB 2013a, and it takes

about 2 min to test a new patient.

4.1 Out of bag error (ooBError)

OoBError is the mean-squared error or the misclassifica-

tion error for out of bag observations in the training. There

is no need of separate test set of cross-validation to get the

unbiased estimated error for test cases, because ooBError is

calculated internally during RF model creation phase.

Figure 6 shows that ooBError is lowest when 25 trees are

used.

4.2 Evaluation measures

We used various evaluation measures to assess the results,

and these measures are described below. The Dice coeffi-

cient is the similarity/overlap between two images [28]. It

is graphically explained in Fig. 7:

Dice P; Tð Þ ¼
2 P1 \ T1j j

P1j j þ T1j j
ð2Þ

where \ is the logical AND operator, | | is the size of the set

(i.e., the number of voxels belonging to it). P1 and T1
represent the numbers of voxels belonging to algorithm’s

prediction and ground truth, respectively. The Dice score

normalizes the number of true positives to the average size

of predicted and ground truth-segmented area. It also gives

us the voxel wise overlap between the result and ground

truth [2].

The Jaccard coefficient measures the similarity between

two images and can be defined as the size of intersection

divided by the size of union of two sets [29]. Jaccard

coefficient is also known as Jaccard index and can be

measured as:

Fig. 5 Selected feature images: a HHH1, b HHL1, c HLH1, d LHH1, e HHH2, f HHL2, g HLH2, h LHH2, where H denotes high frequency,

L denotes low frequency and the right most number represents the level of decomposition
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Jaccard P; Tð Þ ¼
P1 \ T1

P1 [ T1
ð3Þ

Sensitivity is true positive rate, it is prioritized when

disease is serious, and we want to identify all the possible

true cases. It can be measured as:

Sensitivity P; Tð Þ ¼
P1 \ T1

T1
ð4Þ

Specificity is true negative rate, it is prioritized when

treatment is dreadful, and we only want to treat those

which are surely having disease. It can be measured:

Specificity P; Tð Þ ¼
P0 \ T0

T0
ð5Þ

4.3 Hierarchical classification

Each voxel is initially classified as one of the five target

classes [background (0), necrosis (1), edema (2), non-en-

hancing (3) and enhancing (4)]. Subsequently, tumor

regions are computed hierarchically from these class labels.

Our classification system extracts the following three

tumor regions in a hierarchical manner:

1. Complete Tumor: This region is the combination of

four classes (1) ? (2) ? (3) ? (4), which are sepa-

rated from class (0).

2. Core Tumor: In this region, we exclude edema (2)

from complete tumor identified in step above.

3. Enhancing Tumor: Subsequent to core tumor classifi-

cation, enhancing tumor (4) is extracted from necrosis

and non-enhancing (1) ? (3).

For our initial experiments, in order to identify experi-

mental choices, we performed leave-one-out cross-valida-

tion on a subset of BraTS data (four real HG patients) with

the assumption that the identified choices will perform

similar on complete BraTS data. The initial experiments on

a subset of data were conducted for computational reasons.

Table 2 presents the comparison between different types of

features and shows that wavelet features are helpful in

improving Dice coefficient. We utilized all the extracted

Fig. 6 Graph shows

relationship between the

number of trees and ooBError.

The ooBError decreases rapidly

till the number of trees equals to

25 and then it becomes steady

Fig. 7 Dice score is calculated by deriving formula from the

diagram. T1 is the ground truth lesion, and T0 is the area outside T1
within the brain. P1 is the algorithm’s predicted lesion, and P0 is the

algorithm’s predicted area outside P1 within the brain. Overlapped

area between T1 and P1 gives us the true positive [2]
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features to compare different classifiers as shown in

Table 3.

4.4 Quantitative evaluation

Table 3 shows that RF is performing best among other

classifiers for the extracted features, therefore we used RF

classifier, and the quantitative results of the proposed

method are compared with the results presented by the

MICCAI BraTS challenge in Table 4. Table 5 shows the

detail results of proposed methodology.

4.5 Visual results

Visual results of the work are shown in Fig. 8, indicating

the success of brain tumor classification with the proposed

method.

5 Discussion

We proposed an algorithm for brain tumor classification.

The proposed algorithm used MICCAI BraTS data and

relies on intensity-related features and wavelet texture

features. The algorithm is applied on BraTS challenge

training dataset, and it gives better results than the state-of-

the-art methods as shown in Table 4.

In feature extraction process, we calculated intensity,

intensity difference and neighborhood information features

[3] and the wavelet texture features. For wavelet features,

we initially decomposed the multi-modality images into

third level and visualized all the feature images produced

by these. We restrict wavelet decomposition at second

level after visualization, because the feature images at third

level are too small and not much useful for us. We ana-

lyzed all the feature images at first and second level and

Table 2 Classification is performed by varying the type of features to analyze the importance of extracted features

Region Intensity Intensity ? intensity diff. Intensity ? intensity

diff ? neighborhood

Intensity ? intensity

diff ? neighborhood

? wavelets

Complete 0.91 ± 0.03 0.91 ± 0.03 0.91 ± 0.03 0.92 – 0.01

Core 0.71 ± 0.07 0.71 ± 0.07 0.73 ± 0.06 0.76 – 0.1

Enhancing 0.86 ± 0.14 0.86 ± 0.13 0.88 ± 0.07 0.9 – 0.05

Bold values indicate higher accuracy

Dice mean value with standard deviation is calculated for four real HG patients

Table 3 Comparison of RF,

KNN, AdaBoostM2 and

RusBoost (leave-one-out cross-

validation) for brain tumor

classification

Region Random forest KNN AdaBoostM2 RusBoost

Complete 0.90 – 0.03 0.88 ± 0.03 0.89 ± 0.03 0.90 – 0.02

Core 0.79 – 0.1 0.65 ± 0.22 0.58 ± 0.18 0.74 ± 0.12

Enhancing 0.94 – 0.04 0.93 ± 0.01 0.92 ± 0.07 0.93 ± 0.04

Bold values indicate higher accuracy

Dice mean and standard deviation are calculated for four real HG patients

Table 4 Comparison of Dice coefficient on BraTS dataset [2], for the high-grade (HG) and low-grade (LG) subjects

S. no. Method Complete (HG) Core (HG) Enhancing (HG) Complete (LG) Core (LG) Time (min)

1 Bauer et al. [30] 0.74 0.54 0.57 0.49 0.30 8 (CPU)

2 Doyle et al. [31] 0.78 0.45 0.42 0.63 0.41 15 (CPU)

3 Festa et al. [3] 0.77 0.56 0.61 0.24 0.33 30 (CPU)

4 Guo et al. [16] 0.75 0.67 0.49 0.71 0.59 \1 (CPU)

5 Menze et al. [32] 0.76 0.59 0.54 0.81 0.58 20 (CPU)

6 Reza et al. [19] 0.77 0.50 0.55 0.52 0.39 90 (CPU)

7 Subbanna et al. [33] 0.82 0.75 0.59 0.55 0.54 70 (CPU)

8 Tustison et al. [34] 0.78 0.60 0.52 0.68 0.42 100 (Cluster)

9 Zhao et al. [35] 0.84 0.68 0.49 0.78 0.60 15 (CPU)

10 Proposed Method 0.88 0.75 0.95 0.81 0.62 \2 (CPU)

Bold values indicate higher accuracy
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selected only those, which contain high-frequency com-

ponents. Future work will focus on improving subband

selection process to make it more automatic rather than

based on visualization and to test the algorithm on larger

dataset to verify robustness.

We utilized all the extracted features with different

classifiers (kNN, RF, AdaBoostM2 and RusBoost) as in

Table 3 and observed that RF is better for our extracted

features to classify brain tumor. Leave-one-out cross-vali-

dation is performed separately for HG and LG on real

dataset. We further performed detailed classification that

classifies the tumor into three different regions: complete

tumor, core tumor and enhancing tumor. Proposed tech-

nique gives comparable or favorable results with other

existing techniques.

6 Conclusion

This paper presented an algorithm to hierarchically clas-

sify the tumor into three regions: whole tumor, core tumor

and enhancing tumor. Intensity, intensity difference,

neighborhood information and wavelet features are

extracted and utilized on multi-modality MRI scans with

various classifiers. The use of wavelet-based texture fea-

tures with RF classifier has increased the classification

accuracy as evident by quantitative results of our pro-

posed method which are comparable or higher than the

state of the art.
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Table 5 Average results (by

leave-one-out cross-validation)

of proposed method by

measuring different metrics on

high-grade (HG) and low-grade

(LG) data

Similarity measure Complete (HG) Core (HG) Enhancing (HG) Complete (LG) Core (LG)

Dice 0.88 ± 0.08 0.75 ± 0.24 0.95 ± 0.03 0.81 ± 0.09 0.62 ± 0.1

Jaccard 0.79 ± 0.12 0.65 ± 0.25 0.91 ± 0.06 0.69 ± 0.08 0.48 ± 0.19

Specificity 0.86 ± 0.1 0.81 ± 0.19 0.89 ± 0.12 0.83 ± 0.1 0.55 ± 0.13

Sensitivity 0.95 ± 0.03 0.9 ± 0.14 0.95 ± 0.04 0.87 ± 0.04 0.72 ± 0.09

Fig. 8 Segmentation results using proposed method. Each row represents a distinct subject. a T1, b T2, c T1C, d FLAIR, e ground truth and

f proposed method’s results
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image data used in this work were obtained from the NCI-MICCAI

2013 Challenge on Multimodal Brain Tumor Segmentation (http://

martinos.org/qtim/miccai2013/index.html) organized by K. Farahani,

M. Reyes, B. Menze, E. Gerstner, J. Kirby and J. Kalpathy-Cramer.

The challenge database contains fully anonymized images from the

following institutions: ETH Zurich, University of Bern, University of

Debrecen and University of Utah and publicly available images from

the Cancer Imaging Archive (TCIA).

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea
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