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Although classication of astrocytic tumors is standardized by the WHO grading system, which is mainly based on microscopy-
derived, histomorphological features, there is great interobserver variability. �e main causes are thought to be the complexity
of morphological details varying from tumor to tumor and from patient to patient, variations in the technical histopathological
procedures like staining protocols, and nally the individual experience of the diagnosing pathologist. �us, to raise astrocytoma
grading to a more objective standard, this paper proposes a methodology based on atomic force microscopy (AFM) derived images
made fromhistopathological samples in combination with datamining techniques. By comparing AFM images with corresponding
light microscopy images of the same area, the progressive formation of cavities due to cell necrosis was identied as a typical
morphological marker for a computer-assisted analysis. Using genetic programming as a tool for feature analysis, a best model was
created that achieved 94.74% classication accuracy in distinguishing grade II tumors from grade IV ones. While utilizing modern
image analysis techniques, AFMmay become an important tool in astrocytic tumor diagnosis. By this way patients su�ering from
grade II tumors are identied unambiguously, having a less risk for malignant transformation. �ey would benet from early
adjuvant therapies.

1. Introduction

Following the classication of theWorldHealthOrganization
(WHO) astrocytic tumors (gliomas) are divided into four
grades, which are typically assigned on the microscopic
appearance of the tumor [1]. Grade I comprises pilocytic
astrocytoma, and grades II to IV represent invasive tumors
having progressive malignancy and worse prognosis. Grade I
gliomas aremainly localized respecting anatomic boundaries,
whereas grades II to IV gliomas are inltrating the tissue at
di�erent extents [2, 3]. �is characteristic makes an exact
localization and an accurate determination of the grade by
surgical biopsy di�cult [4]. To reach more e�cacy nonin-
vasive imaging techniques are used. Computed tomography
(CT) scanning, magnetic resonance imaging (MRI), positron
emission tomography (PET) scanning, and a lot of advanced
MR techniques enhance the ability to localize the tumor
and to determine the grading enormously [5]; nevertheless
in some individual cases there is noticeable disagreement

in clinical diagnosis. �e reason for this may be mainly
attributed to great interobserver variability [6]. Every pathol-
ogist assesses individually each of the grading criteria dened
in the WHO grading scheme, based on the subjective evalu-
ation of the tumor. So an objectication based on statistically
derived features independent from subjective analysis would
be an important additional element in astrocytoma grading.

Atomic force microscopy (AFM) has become a widely
used technique for characterizing biological samples at
nanometer resolution. In a lot of studies [7–16] AFM has
been successfully used to image living brain cells under
physiological conditions. An imaging of native brain tissue,
however, has not been done so far because of the elastic
compliance of the so� brain tissue which reduces imaging
quality. A few studies [17–19] have been performed using
histological brain slices. Di�erent types of brain cells, some
of their organelles, and the neuropil were recognizable at the
tissue level.
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A common method to decide grading of astrocytoma is
the examination ofH&E-stained histological brain slices with
a light microscope [5, 20] using characteristic histopatho-
logical features, such as hypercellularity, distinct vascular
proliferation, mitotic activity, grade of pleomorphism, and
necrosis [21].�is method, however, strongly depends on the
staining protocol itself and the quality of the used optics of
the examiningmicroscopes. Slight variations in the thickness
of the slices, di�erences in xation time, or di�erences in
the chemical purity of the used staining reagents in�uence
the quality of the images. A robust and objective way to
analyse histological samples like astrocytoma neuropatho-
logical slides would o�er AFM. AFM requires no staining,
which has the additional advantage that the samples are not
masked by any chemistry. Due to the fact that AFM scan

size is limited (100 × 100 �m2), overview images cannot be
acquired, so special large-scaled histopathological features
like vascular proliferation or number of mitosis are hard
to observe. Small-scaled phenomena like pleomorphism or
the local formation of cavities due to neuropil reduction,
however, may be observed very well and could serve as
additional features to the conservative grading method.

Accurate classication of brain tumor grading is very
important in the diagnosis because it denes prognosis and
treatment decision for the patient. Dependant on the used
standard imaging technique many rened methods were
developed to increase grading accuracy [22–24]. All these
methods have lack of imaging brain tissue down to the cel-
lular level, and thus in addition a histological examination of
biopsied or resected tumor tissue is always being performed.
Both techniques, imaging and histology, use special datamin-
ing methods [6, 25–36]. Besides morphology, a lot of recent
investigations have specialized in molecular techniques, spe-
cially in the analysis of gene expression proles [37]. �ey
correlate with clinical outcome and in some cases predict a
better survival than histological classication [38, 39].

In this study, we present an objective method, which is
well suited to enhance the accuracy in the determination of
specic tumor features. �e presented method di�ers from
other ones by the combination of two key elements: (a)
high-resolution microscopy where we will show that AFM
imaging on histological unstained brain samples is able to
deduce relevant morphological information, which can be
used for grading astrocytoma; (b) image analysis where we
will demonstrate that the application of special data mining
algorithms based onMinkowski functionals enables an objec-
tive, automatic identication of histomorphological features
also in such a complex task like astrocytoma grading. �is
automatic approach enables improved classication accuracy
in the future and could o�er new diagnostic elements for an
objectivized morphological tumor categorization.

2. Material and Methods

2.1. Sample Preparation. �e clinical material comprised
brain tumor samples from 14 patients that were made
available from the pathological institute of the Nerve Clinic
Wagner-Jauregg in Linz (Austria).�e sampleswere classied
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Figure 1: �e main processing steps in image analysis.

as low (astrocytoma grade II, � = 7) and high (glioblastoma
multiforme grade IV, � = 7) brain tumors according to the
WHOgrading system by experienced histopathologists.�ey
represent a small selection of typical patterns and do not fully
represent the diagnostic category.

�e samples were prepared according to standard pathol-
ogy protocol [19]. In short, the histological preparation con-
tained the following steps: (1) xation in 4% formaldehyde in
phosphate bu�er saline (PBS), (2) dehydration with ethanol
and embedding in para�n, (3) sectioning in 3 �m slices
using a microtome (Leica RM 2155), (4) depara�ning by
submerging in xylol and following treating with ethanol and
(5) conservation in distilled water. Before the measurements
took place, all samples were washed with distilled water to
remove salt residues which would produce artifacts on the
images. Additionally, slices from the same para�n block
(patient) were stained with haematoxylin and eosin (HE-
staining). �ese specimens were used as a reference for
assigning the grading of the tumor and for dening regions of
interest (ROI) in a light microscope prior to AFM scanning.

2.2. Microscopy

2.2.1. Atomic Force Microscopy. �e AFM measurements
were performed on an Agilent 5400 AFM/SPM (Agilent
Technologies Inc., Santa Clara, CA, USA), equipped with a
large multipurpose scanner and a digital camera (Navitar
Inc., Rochester, NY, USA). All images were acquired in air at
room temperature in contact mode using commercial non-
conductive silicon nitride cantilevers (Bruker Corporation,
Camarillo, CA, USA) with a spring constant between 0.005–
0.06 N/m.�e images were taken at 512 × 512 pixels quality at
a scanning rate of 1.0 lines/second. All images were recorded
with PicoView 1.4.2 (Agilent Technologies Inc., Chandler AZ,
USA) and further processed with Pico Image Basic 5.0.4.5170
(Agilent Technologies Inc., Chandler, AZ, USA). Altogether
the analysis comprised images of 113 samples (54 astrocytoma
grade II and 59 glioblastoma multiforme grade IV).

2.2.2. Light Microscopy. Light microscopy was performed
on a Nikon eclipse ME 600 (Nikon Instruments Austria,
Vienna). �e magnications were 50, 100, and 500.

2.3. Image Analysis. Figure 1 shows themain processing steps
in image analysis. �e AFM images were rst processed
by rst order �attening to remove background slope (back-
ground correction). As we focus primarily on image struc-
tures and spatial correlations (and not so much on absolute
image height values), we applied a processing step named
“histogram equalization” which increases the global contrast
of the image. �is is accomplished by a transformation that
spreads out the (usually Gauss-curve shaped) height level



BioMed Research International 3

Original image

100 200 300 400 500

100

200

300

400

500

0

10

20
×10−7

(a)

0

2000

4000

6000

8000
Histogram (original)

(m) ×10−6
0 1 2 3−1

(b)

Equalized image

100 200 300 400 500

100

200

300

400

500
0

100

200

(c)

0 100 200
0

1000

2000

3000
Histogram (equalized)

Gray level

(d)

Figure 2: Histogram equalization for a typical astrocytoma grade II AFM image. (a) Original AFM image composed of 512 × 512 pixels. �e
corresponding scan size was 100 × 100 �m2. �e vertical bar shows di�erences in height in m. (b) Height histogram of the original data. (c)
Equalized AFM image a�er the transformation step spreading out the height level histogram to a full dynamic range of 256 gray levels. (d)
Corresponding equalized histogram.

histograms to a full dynamic range of 256 gray levels. �is
preprocessing step ensures the comparability of the resulting
analysis step. Figures 2 and 3 give the corresponding set
of images (original image, original histogram, equalized
image, and equalized histogram) according to this process
for a typical astrocytoma grade II (Figure 2) and a typical
glioblastomamultiforme grade IV (Figure 3).�e increase in
global contrast can be clearly seen in both types of samples.

We nally used Minkowski functionals (or to be more
precise “Minkowski measures”)—in particular the Euler-
characteristic—as a feature descriptor to characterize global
geometric structures related to the topology of the AFM
images. �e Euler-characteristic is dened as the total num-
ber of objects in an imageminus the number of holes in those
objects. Figure 4 gives an illustration. Minkowski functionals
were rst applied in the study of the topology of the density
distribution of galaxies in astrophysics [40, 41]. Meanwhile, it

is appointed for the quantitative description of complex struc-
tures, for example, in medicine (analysis of bone structures
in order to improve the diagnosis of osteoporosis [42], X-ray
analysis in digital mammography [43]) or materials research.

In two dimensions, theMinkowski functionals are related
to more familiar quantities like the covered image area,
the boundary (or contour) length between homogeneous
domains, and the Euler-characteristic (i.e., the number dif-
ference of connected domains and holes). Here, we focused
on Minkowski functionals to characterize the morphology
of image domains that result from thresholding AFM height
maps at di�erent height levels (i.e., binarization of the AFM
image at di�erent gray levels to transform the AFM height
map to a stack of level sets).

Figure 5 shows the original AFM image of an astrocytoma
grade II and 5 image examples of binarization corresponding
to the threshold levels 32, 64, 128, 192, and 224. Figure 6 gives



4 BioMed Research International

Original image

100 200 300 400 500

100

200

300

400

500

0

10

20

×10−7

(a)

0

2000

4000

6000
Histogram (original)

(m) ×10−6
0 1 2 3−1

(b)

100 200 300 400 500

100

200

300

400

500
0

100

200

Equalized image

(c)

0 100 200
0

1000

2000

3000
Histogram (equalized)

Gray level

(d)

Figure 3: Histogram equalization for a typical glioblastoma multiforme grade IV AFM image. (a) Original AFM image composed of 512 ×
512 pixels. �e corresponding scan size was 100 × 100�m2. �e vertical bar shows di�erences in height in m. (b) Height histogram of the
original data. (c) Equalized AFM image a�er the transformation step spreading out the height level histogram to a full dynamic range of 256
gray levels. (d) Corresponding equalized histogram.

the same threshold scheme for a glioblastoma multiforme
grade IV. In this way, the Euler-characteristic is an integral
geometrical measure that can provide an estimate of the
connectivity of a level set structure. �is description is
topologically invariant (which means it does not change
under deformation or scaling) and represents a very compact
way to characterize complex image structures.

3. Results

3.1. Morphological Feature Extraction in AFM Images. To
prove AFM as a morphological tool in pathology images,
brain tumor specimens with light microscopy stained by
routine H&E were compared with our AFM results. Typical
glioma features like pleomorphic cells or the pseudoglomeru-
lus endothelial proliferation could be recognized very clear
in AFM images. Figure 7(a) is a typical H&E-stained light

microscopy image of an astrocytoma grade II with 100x
magnication. Microglia and lymphocytes as well as tumor
cells can be identied. �e nuclei of the healthy microglia
cells are regular in shape with a typical size of about 8�m
(small black arrows), whereas the tumorous ones appear large
and irregular with a size of up to 20�m (large black arrows).
Figure 7(b) is an H&E-stained image of a glioblastoma mul-
tiforme grade IV with the same magnication. �e cells are
polymorphous. �ere are numerous dark areas (black aster-
isks) up to 25�m in size. Two isolated blood vessels are also
apparent by erythrocytes and atypical endothelial cells (large
red arrows). Figure 7(c) is the corresponding AFM image of
the astrocytoma grade II in Figure 7(a). It was taken at a
resolution of about 120 nm. Because of the better resolution
all relevant morphological features are recognizable. Particu-
larly, eye-catching is the dense network of ne bres running
in all directions.Most of them form junctions with other ones
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1 (connected) object

3 holes

Figure 4: Illustration of the Euler-characteristic. �e Euler-
characteristic is dened as the total number of objects in the image
minus the number of holes in those objects. Exemplarily, the Euler-
characteristic of the given binary image is equal to −2.

building a well-organizedmeshwork of bundled strands.�is
meshwork is called the neuropil. Healthy cell nuclei are also
well observed; they appear as raised structures having nearly
all the same sizes (small white arrows). �e three tumor cells
of Figure 7(a), however, cannot be clearly identied; they
blend into the background (large white arrows). Tumor cells
are o�en surrounded by large cavities (white asterisks). �eir
formation is a consequence of retraction artifact, neuropil
reduction, or necrosis. Figure 7(d) is the corresponding AFM
image of Figure 7(b). Despite the high resolution only the
two isolated blood vessels are well recognized (large white
arrows). Distinct cell features, however, are not recognizable
like in routine HE samples. As additional morphological
feature the ne arrangement of the neuropil is reduced; the
tissue appears as a pulpy proliferating mass with irregular
large-scaled cavities (white asterisks).

By comparing images of low-grade and high-grade
tumors the gradual loss in ne regular anatomy of the
neuropil appeared as a noticeable new characteristic tumor
feature, because it occurred in close accordance with the
tumor type and grading.�is gradual loss, which is consistent
with a tumor associated loss of functional organization, is
accompanied by an increase in neuropil-free areas, which
appear dark in the AFM images. �us, the formation of dark
areas was taken as the key feature for the further processing
in determining the grading of brain tumors.

3.2. Grade Classi	cation. Figure 8 shows the resulting mean
value (solid line) of the Minkowski functional Euler-
characteristic and the 1� condence intervals (dashed lines)
for astrocytomas (red curves) and glioblastoma multiforme
(green curves) a�er having performed the image processing
pipeline described in section image analysis. Both types of
tumor exhibit sigmoid curves which di�er in a very char-
acteristic way in prole. �e green glioblastoma multiforme
curves show an overall �at prole with a mean value of

minimum−582 at gray level 16 and amean value ofmaximum
238 at gray level 217.�e red astrocytoma curves appear more
rounded; their mean value of minimum −905 is shi�ed to
gray level 46 and their mean value of maximum 341 to gray
level 210. Not only has the position of the extreme values
(minimum, maximum) changed, but also their correspond-
ing Euler-characteristics (�-values). At the minimum the
mean value reduced by a factor of 1.55 from −582 to −905,
whereas at themaximum themean value increased by a factor
of 1.43 from 238 to 341.

Another topological descriptor is the Minkowski func-
tional contour length, which is also plotted for both tumor
types (astrocytoma: red curves, and glioblastomamultiforme
green curves) in Figure 9. Both curves show a similar
parabola-like pattern but di�er very characteristically with

respect to theirmeanmaximal value, which is 2.4⋅104 pixel for
glioblastoma multiforme and 3.2 ⋅ 104 pixel for astrocytomas.

4. Discussion

An accurate classication of brain tumors is of utmost
importance, because it is the basis for an optimal therapy.
�e search for new grading markers is necessary to improve
personalized therapies in a devastating disease like high-
grade brain tumors. �e WHO has published a classica-
tion scheme which is used worldwide for neuropathological
typing and grading of brain tumors. �e scheme is mainly
based on histomorphological features [1], which in case of
the great variety of brain tumors and the complexity of
morphological features in brain tumors and also within a
single tumor are very di�cult and subjective.�erefore inter-
and intra-observer variabilities of the WHO grading system
are high. �e literature is full of studies highlighting the lack
of reproducibility in evaluating the degree of tumor malig-
nancy [21]. �e introduction of exact quantitative methods
in image analysis o�ers the possibility to objectify tumor
grading. Recently, a few attempts have been made using light
microscopy on routinely stained specimens, and the data
are very encouraging [26, 29, 44–50]. As a complete new
tool we introduced ultramicroscopic techniques with higher
resolution in combination with modern image analysis.

In our study, we used AFM on routine brain tumor sam-
ples. Tumor diagnosis and tumor grading were performed
by experienced neuropathologists. Artifact-free specimens
were selected, showing characteristic tumor features, and the
adequate para�n block was chosen for routine microtome
slices 5�m thick. �en the routine depara�ning was carried
on and uncovered tumor slices weremeasured with the AFM.

�e total dataset comprises 113 samples, containing
54 samples of astrocytoma (Grade II) and 59 samples of
glioblastoma (Grade IV).�us, the dataset is nearly balanced
which is important for validating the signicance of obtained
classication accuracies.

For a data-modeling process, creation and selection of
appropriate features are essential to the reachable model
accuracy. In particular when using image processing for
classication, these steps majorly in�uence the achiev-
able classication results because extracting features from
images concern extracting the highest possible amount of
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Figure 5: Original AFM image of an astrocytoma grade II, and 5 image examples of binarization corresponding to the height threshold levels
32, 64, 128, 192, and 224.

information. Here, the given Euler-characteristics provide
some very useful data that shall be applied for classication.
When using Euler-characteristics directly for classication,
for each sample 256 features would need to be considered
(i.e., the characteristic’s values at 256 gray levels), which gives
an unfavorable sample size to dimensionality ratio. However,
even if [51] reported that it is possible to derive discriminative
models directly out of Euler-characteristics data in such
a case, some feature processing shall be applied in order
to reduce the dataset’s dimensionality. Since according to
Figures 8 and 9 di�erent Minkowski functionals (viz. Euler-
characteristics and contour length) can be well represented
as curves, an obvious step is to reduce the measurements
at 256 gray levels to some signicant metrics regarding
their curves. In this way, [51] presented the usage of 15
distinct geometrical features that have a su�cient descriptive
nature for characterizing the Minkowski functionals, such
as absolute value and position of extremum points, position
of the zero-crossing, steepness measures, or areas under the
curves. In this way, a dataset with 113 samples each of 15
features has been obtained.

When aiming at creating generalizable models out of
data, the distinction of proper training and test sets is
fundamental. Since (as in most biologic applications where
measurement costs are high and samples are di�cult to
obtain) the sample size is very limited, cross-validation is
applied for classication. Cross-validation is the method of

dividing the available data into � subsets, while using � − 1
subsets for training, and nally the �th subset for testing the
model. �erefore, when computing a classication model,
its performance can be tested on � di�erent congurations
of training and test data within the same dataset, while
avoiding bias in the evaluation. In this way a signicant and
generalizable estimate on themodel’s classication accuracies
can be performed even if the sample size is low.

Genetic programming (GP) is an evolutionary algorithm-
based method for symbolic classication. It produces inter-
pretable models that allow the assessment of the impact of
each single feature in the Minkowski functional curves by
this way optimizing the resulting classication accuracy [52,
53]. Analyzing the shape of both, Euler-characteristics and
contour length, in all AFM images 15 characteristic features
containing discriminative information were identied out of
originally 256 ones [51]. UsingGP, theywere nally computed
over all possible parameter congurations.Having performed
100 runs to overcome stochasticity of results, a bestmodel was
created that achieved 94.74% classication accuracy. Table 1
gives the corresponding parameter settings.

GP’s best model resulted in 0.93% better classication
accuracy by reducing the dimension � of the feature space
from 256 to 15. �us, GP has several advantages. It enables
better classication accuracy and works with a manage-
able number of features that can be extracted from both
Minkowski functionals and nally leads to interpretable
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Figure 6: Original AFM image of a glioblastoma multiforme grade IV and 5 image examples of binarization corresponding to the height
threshold levels 32, 64, 128, 192, and 224.

Table 1: Parameter settings for best GP result.

Parameter Tested values

Maximum generations 70, 100

Mutation probability
[%]

10, 15

Population size 70

Selector Mutator

Tournament sector
Multisymbolic expression tree
manipulator: replace branch

manipulation, change node type
manipulation, full tree shaker, one point

shaker

Maximum expression
tree depth

8, 10

Maximum expression
tree length

25, 50, 80

Symbolic expression
tree grammar

Logical operators (the corresponding
expression tree symbol set implemented
in Heuristic-Lab contains too numerous

functions to be mentioned here.
Generally, it contains all usually handled

logic operators).

models. Further information on achievable classication
models on this work can be obtained from [51].

A closer view at the Minkowski functional Euler-
characteristic revealed a noteworthy, discriminative detail.

Between the gray levels 80 and 105, there is a region where
the condence intervals of both mean curves do not inter-
sect. �is fact was additionally considered algorithmically
using GP and the analysis of this single feature resulted
in a prediction accuracy of 89.38%. Obviously, this feature
alone has a very high-discriminative capability. Maybe it is
a new additional key feature to the conventional grading
procedure to separate tumors that are di�cult to distinguish,
for example, grade II tumors from grade III ones or grade III
tumors from grade IV ones. It is also conceivable that this
special feature will help in understanding unusual courses
of illness. In our analysis, about 10% of the data did not
t the above mentioned prediction accuracy. �ese data has
to be analyzed in the future in a medical orientated paper.
Despite the high accuracy of our grading tool the 10% have to
be correlated with special tumor features, the tumor region,
and nally with the patient history and the tumor outcome.
Tumor discovery is mainly based on medical imaging tech-
niques (MRI, CT, or PET), and tumor diagnosis is done by

histopathological examination on biopsied or resected tumor
tissues. To achieve highest accuracy in classication data
mining techniques have been successfully performed in some
special cases, especially in MRI and light microscopy images.
Reference [36] applied support vector machines (SVM) on
MRI images on healthy and brain-tumor-su�ering patients.
�e used algorithm succeeded in classifying all healthy
patients and 65% of the tumor-su�ering ones. Reference
[25] used a special adaptive neurofuzzy interference system
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Figure 7: Typical images of brain tumor samples. (a) Light microscopy image of a stained astrocytoma grade II sample at 100x magnication.
Healthy microglia (small black arrows), lymphocytes, and tumor cells (large black arrows) can be identied. (b) Light microscopy image of a
glioblastomamultiforme grade IV at 100xmagnication.�eneuropil is highly porous.Most of the polymorphous tumor cells are surrounded
by large cavities (black asterisks). Two isolated blood vessels are apparent by erythrocytes and atypical endothelial cells (large red arrows).
(c) Corresponding AFM image at 98 × 98�m scan size of (a). �e neuropil as well as many nuclei of healthy cells are well observed (small
white arrows). Tumor cells, however, cannot be clearly identied; they are surrounded by large cavities (white asterisks) and blend into the
background (large white arrows). (d) Corresponding AFM image at 98 × 98 �m scan size of (b). �e tissue is highly degenerated showing
irregular large-scaled cavities (white asterisks). Beside two isolated blood vessels no distinct cell features are recognizable.

based on articial neural networks and fuzzy logic technique
for MRI brain tumor classication. Investigating 4 types of
tumors (meningioma, astrocytoma, metastases, and glioma),
they resulted in an average classication accuracy of 93.3%.
Applied to H&E-stained images, [33] proposed an algorithm
based on SVM and least squares mapping. �ey were able to
separate grade II from grade III tumors with a certainty of
97.3% and grade III from grade IV with a certainty of 95.2%,
respectively. Taking another model based on fuzzy cognitive
maps, [21] achieved a diagnostic output of 90.3% and 93.2%
for brain tumors of grade II and grade III, respectively.
Another approach was performed by [29] on standard-
ized hematoxylin stained samples performing densitometric
analysis of tumor cell nuclei. �ey compared densitomet-
ric features of digitized images with variables of nuclear

size, nuclear shape, and proliferation and succeeded in one
characteristic feature: the standard deviation of the kurtosis
of the gray value histogram which showed a signicantly
higher value in anaplastic astrocytoma, whereas the other
densitometric variables did not give a characteristic hint.

Depending on the used imaging method and the per-
formed data mining technique, classication accuracies
between 90.3% and 97.3% were achieved, only taking val-
ues concerning the di�erentiation between di�erent tumor
types into account. �e proposed AFM-based classication
method using GP as classier achieves 94.74%, which is
absolutely comparable with the literature data. AFM has one
additional advantage above all concerning the analysis of
H&E-stained images. �e quality of the images does not
depend on the staining protocol, because objects are not
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viewed, but rather scanned. �us, variations in color are
not detected, which makes AFM insensitive with respect to
varying staining conditions and artifacts.

Imaging histological brain samples using AFM, we were
able to discover a new diagnostic feature, the neuropil
density, which is a perfect structure for modern computer-
based imaging analysis. In combination with data mining
techniques this characteristic feature can be used to raise
astrocytoma grading to a more objective standard to improve
classication accuracy in combination with conventional
pathological tumor diagnosis and grading procedure. Addi-
tional morphological criteria are of great value to subdivide
known tumor entities and to nd new grading criteria
for therapy decisions. AFM is easily performed on routine
pathological samples without additional processing steps.
�erefore, themethod is easily integrated in the daily routine;
AFM could be performed a�er depara�nation and before
the sample staining procedure without diagnostic relay. A
further advantage is that AFM is able to analyze sections of
old para�n tumor blocks stored in many pathological labs.
�erefore, the method is also useful for retrospective studies
on well-dened tumor collections and clinical data.

5. Conclusion

Brain tumor classication based on AFM images by using GP
has not been done so far. It is a new methodology bringing
high-resolution microscopy closer to the clinical practice. It
is able to achieve a classication accuracy, which matches
or outperforms most of the proposed techniques described
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Figure 9: �e Minkowski functional contour length and the cor-
responding 1� condence intervals (dashed lines) for astrocytoma
(red) and glioblastoma multiforme (green). Both curves show a
similar parabola-like pattern but di�er very characteristically with
respect to their mean maximal value.

in the literature. Additionally, the potential of imaging
in the submicron regime enables the characterization of
ultrastructures as new diagnostic details within samples in
routine pathology that are not visible using conventional
medical imaging techniques or light microscopy in tumor
diagnostics. AFM is easily implementable in the diagnostic
process. Together with data mining techniques, AFM could
serve as a powerful new tool in pathological diagnosis and in
objectifying morphological features for tumor diagnosis and
grading.
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