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Abstract
Brain tumor occurs owing to uncontrolled and rapid growth of cells. If not treated at an initial phase, it may lead to death.
Despite many significant efforts and promising outcomes in this domain, accurate segmentation and classification remain a
challenging task. Amajor challenge for brain tumor detection arises from the variations in tumor location, shape, and size. The
objective of this survey is to deliver a comprehensive literature on brain tumor detection through magnetic resonance imaging
to help the researchers. This survey covered the anatomy of brain tumors, publicly available datasets, enhancement techniques,
segmentation, feature extraction, classification, and deep learning, transfer learning and quantum machine learning for brain
tumors analysis. Finally, this survey provides all important literature for the detection of brain tumors with their advantages,
limitations, developments, and future trends.
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Introduction

The central nervous system disseminates sensory informa-
tion and its corresponding actions throughout the body [1–3].
The brain, along with the spinal cord, assists in this dissem-
ination. The brain’s anatomy [4] contains three main parts;
brain stem, cerebrum, and cerebellum. The weight of a nor-
mal human brain is approximately 1.2–1.4 K, with a volume
of 1260 cm3 (male brain) and 1130 cm3 (female brain) [5].
The frontal lobe of brain assists in problem-solving, motor
control, and judgments. The parietal lobe manages body
position. The temporal lobe controls memory and hearing
functions, and occipital lobe supervises the brain’s visual
processing activities. The outer part of cerebrum is known as
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cerebral cortex, and is a greyish material; it is composed of
cortical neurons [6]. The cerebellum is relatively smaller than
the cerebrum. It is responsible for motor control, i.e., system-
atic regulation of voluntary movements in living organisms
with a nervous system. Due to variable size and stroke terri-
tory, ALI, lesionGnb, and LINDA methods fail to detect the
small lesion region. Cerebellum is well-structured and well-
developed in human beings as compared to other species
[7]. The cerebellum has three lobes; an anterior, a poste-
rior, and a flocculonodular. A round-shaped structure named
vermis connects the anterior and posterior lobes. The cere-
bellum consists of an inner area of white matter (WM) and
an outer greyish cortex, which is a bit thinner than that of the
cerebrum. The anterior and posterior lobes assist in the coor-
dination of complex motor movements. The flocculonodular
lobe maintains the body’s balance [4, 8]. The brain stem, as
the name states, is a 7–10 cm-long stem-like structure. It con-
tains cranial and peripheral nerve bundles and assists in eye
movements and regulations, balance and maintenance, and
some essential activities such as breathing. The nerve tracks
originating from the cerebrum’s thalamus pass through the
brain stem to reach the spinal cord. From there, they spread
throughout the body. The main parts of the brain stem are
midbrain, pons, and medulla. The midbrain assists in func-
tions such as motor, auditory, and visual processing, as well
as eye movements. The pons assists in breathing, intra-brain
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communication, and sensations, andmedulla oblongata helps
in blood regulation, swallowing, sneezing, etc. [9].

Brain tumor and stroke lesions

Brain tumors are graded as slow-growing or aggressive [2,
10–20]. A benign (slow-growing) tumor does not invade the
neighboring tissues; in contrast, a malignant (aggressive)
tumor propagates itself from an initial site to a secondary
site [16, 17, 21–27]. According to WHO, a brain tumor is
categorized into grades I–IV. Grades I and II tumors are con-
sidered as slow-growing, whereas grades III and IV tumors
are more aggressive, and have a poorer prognosis [28]. In
this regard, the detail of brain tumor grades is as follows.

Grade I: These tumors grow slowly and do not spread
rapidly. These are associated with better odds for long-term
survival and can be removed almost completely by surgery.
An example of such a tumor is grade 1 pilocyticastrocytoma.

Grade II: These tumors also grow slowly but can spread to
neighboring tissues and become higher grade tumors. These
tumors can even comeback after surgery.Oligodendroglioma
is a case of such a tumor.

Grade III: These tumors develop at a faster rate than grade
II, and can invade the neighboring tissues. Surgery alone is
insufficient for such tumors, and post-surgical radiotherapy
or chemotherapy is recommended. An example of such a
tumor is anaplastic astrocytoma.

Grade IV: These tumors are the most aggressive and are
highly spreadable. Theymay even use blood vessels for rapid
growth. Glioblastoma multiforme is such a type of tumor
[29].

Ischemic stroke: Ischemic stroke is an aggressive disease
of brain and it is major cause of disability and death around
the globe [30]. An ischemic stroke occurs when the blood
supply to the brain is cut off, resulting underperfusion (in
tissue hypoxia) and dead the advanced tissues in hours [31].
Based on the severity, stroke lesions are categories into differ-
ent stages such as acute (0–24 h), sub-acute (24 h–2 weeks)
and chronic (>2 weeks) [32].

Brain imagingmodalities

Three major methods (PET, CT, DWI and MRI) for brain
tumors are widely used to analyze the brain structure.

Positron emission tomography

Positron emission tomography (PET) uses a special type
of radioactive tracers. Metabolic brain tumor features such
as blood flow, glucose metabolism, lipid synthesis, oxy-

gen consumption, and amino acid metabolism are analyzed
through PET. It is still considered as one of themost powerful
metabolic techniques and utilizes the best nuclear medicine
named as fluorodeoxyglucose (FDG) [33]. FDG is a widely
used PET tracer in brain images. Nevertheless, FDG-PET
images have limitations, e.g., an inability to differentiate
between necrosis radiation and a recurrent high-grade (HG)
tumor [34]. Moreover, during a PET scan, radioactive trac-
ers can cause harmful effects to the human body, causing
a post-scan allergic reaction. Some patients are allergic to
aspartame and iodine. In addition, PET tracers do not pro-
vide accurate localization of anatomical structure, because
they have a relatively poor spatial resolution as compared to
an MRI scan [35].

Computed tomography

Computed tomography (CT) images provide more in-depth
information than images obtained from normal X-rays. The
CT scan has receivedwidespread recommendation and adop-
tion since its inception. A study [36] determined that in the
USA alone, the annual CT scan rate is 62 million, with 4 mil-
lion for children. CT scans show soft tissues, blood vessels,
and bones of different human body parts. It uses more radi-
ation than normal X-rays. This radiation may increase the
risk of cancers when multiple CT scans are performed. The
associated risks of cancers have been quantified according to
CT radiation doses [37, 38]. MRI can even help in evaluating
structures obscured in a CT scan, and provides high contrast
among the soft tissues, providing a clearer anatomical struc-
ture [39].

Magnetic resonance imaging

An MRI scan is used to completely analyze different body-
parts, and it also helps to detect abnormalities in the brain
at earlier stages than other imaging modalities [40]. Hence,
complex brain structures make tumor segmentation a chal-
lenging task [41–47]. This review discusses preprocessing
approaches, segmentation techniques [48, 49], feature extrac-
tion and reduction methods, classificationmethods, and deep
learning approaches. Finally, benchmark datasets and perfor-
mance measures are presented.

Diffusion weighting imaging

MRI sequences are utilized to analyze the stroke lesions
based on the several parameters such as age, location and
extent regions [50]. In the context of treatment, a comput-
erized method might be utilized for accurate diagnosis of
the disease progression rate [51]. The neuroscientists of cog-
nitive, who frequently conduct research in which cerebral
impairments are linked to cognitive function They observed
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Fig. 1 Datasets for brain tumor detection

that segmentation of the stroke lesions is a vital task to ana-
lyze the total infected region of brain that provide help in
the treatment process [52]. However, segmentation of the
stroke lesions is a difficult task, because stroke appearance is
change as the passage of time. TheMRI sequence such as dif-
fusion weighted imaging (DWI) and FLAIR are utilized for
stroke lesions detection. In acute stoke stage DWI sequence
highlight the infection part as a hyperintensity. The under-
perfusion region represents the mapping magnitude of the
perfusion [53]. The dis-similarity among two regions might
be considered as penumbra tissue. Stroke lesions appear in
distinct locations and shapes. Different types of lesions are
appeared in a variable size and shape and these lesions are
not aligned with vascular patterns and more than one lesions
might appeared on similar time. The size of the stroke lesions
is in radii of the few millimeters and appears in a full hemi-
sphere. The structure of the hemisphere is dissimilar, and its
intensity might significantly vary within the infected region.
Furthermore, automated stroke segmentation is difficult due
to the similar appearance of the pathology such as white mat-
ter hyperintensities and chronic stroke lesions [54].

Evaluation and validation

In the existing literature, experimental results are evaluated
on publicly available datasets to verify the robustness of algo-
rithms.

Publicly available datasets

Several datasets are publicly available that are used by the
researchers to evaluate the proposed methods. Some impor-
tant and challenging datasets are discussed in this section.
BRATS are the most challenging MRI datasets [55–57].
BRATS Challenge is published in different years with more
challenges having 1 mm3 voxels resolution. The detail of
datasets is given in Fig. 1 as well as in Table 1.

Fig. 2 List of performance measures for evaluation of brain tumor

Performancemetrics

The performancemeasures play a significant role to compute
the method’s effectiveness. A list of performance metrics is
provided in Fig. 2.

Preprocessing

Preprocessing is a critical task [61] to extract the requisite
region. 2D brain extraction algorithm (BEA) [62], FMRIB
software library [63], and BSE [64] are used for non-brain
tissue removal as shown in Fig. 3. The bias field is a key
problem that arises in MRI due to imperfections of radio
frequency coil called intensity inhomogeneity [65, 66]. It is
corrected as shown in Fig. 4 [67]. The preprocessingmethods
like linear, nonlinear [68], fixed, multi-scale, and pixel-based
are used in distinct circumstances [69–72]. The small varia-
tions among normal and abnormal tissues due to noise [68]
and artifacts often provide difficulty in direct image analysis
[73, 74]. AFINITI is used for brain tumor segmentation [63].
Consequently, automated techniques are adopted in which
computer software performs segmentation and eliminates the
need for manual human interaction [75, 76]. Fully and semi-
automated techniques are used widely [77, 78]. The results
of brain tumor segmentation are mentioned in Table 2. The
segmentation methods are divided into the following cate-
gories.

• Conventional methods.
• Machine learning methods.
• Different inhomogeneities related toMRI noise have shad-
ing artifacts and partial volume effects.

When different types of tissues [61] take the same pixel,
then it is called partial volume effect [92]. The random noise
related to MRI [19, 93, 94] has Rician distribution [95]. In
the literature, different filters such as wavelet, anisotropic
diffusion, and adaptive are presented to enhance edges [96].
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Table 1 Summary of the publicly available datasets

Datasets Description Sequences Number of slices (images)

BRATS series BRATS 2012 challengeimage
(Patients) dataset (05 LGG, 10 HGG)
casesSyntheticdataset (04
LGG,11HGG) cases

T1weighted, T1C weighted, T2
weighted and Flair

240×240×155

BRATS 2012 Trainingimage dataset
(10 LGG, 20 HGG)
casesSyntheticdataset (25 LGG, 25
HGG) cases

BRATS 2013 challenge30 Subjects

BRATS 2013 Leaderboard, 25 Subjects

2014 challenge, 400 Subjects

2015 challenge, 274 Subjects

2016 challenge, Training cases of
BRATS 2015

BRATS 2017 challenge, 285 Subjects

BRATS 2018 challenge, 191 Subjects

BRATS 2019 challenge, 22,087
training and 22,087 testing slices

BRATS 2020 challenge, 25,962
training and 25,962 testing slices

Harvard [58] 65 tumor and 35 non-tumor images T2 weighted 256× 256 (100 images)

RIDER[59] 126 Subjects T1 weighted, T2 weighted, and Flair 256× 256 126 cases

ISLES 2015 64 Subjects SISS- ISLES
DWI, T1 weighted, T2 weighted, Flair
SPES-ISLES
CBF, CBV, DWI, T1C weighted, T2
weighted, Tmax, TTP

SISS- ISLES 230× 230× 154 (154
slices in each case)

SPES-ISLES 230× 230× 154 (154
slices in each case)

ISLES 2016 75 Subjects MTT, rCBV, relative rCBF, Tmax, TTP 192× 192× 19 (19 slices in each case)

ISLES 2017[60] 57 Subjects PWI, ADC, MTT, rCBV, rCBF, Tmax,
TTP

192× 192× 19 (19 slices in each case)

Fig. 3 Skull removal a input, b skull removed [1]

An anisotropic diffusion filter is more suitable in practical
applications due to low computational speed [97, 98]. When
the noise level is high in the image, it is difficult to recover

the edges [99]. Normalizing the image intensity is another
part of the preprocessing phase [2, 100, 101] and modified
curvature diffusion equation (MCDE) [102] are applied for
intensity normalization. Wiener filter is used to enhance the
local and spatial information in medical imaging [103]. The
widely utilized preprocessing methods are N4ITK [104] for
the correction of bias field, median filter [104] for image
smoothing, anisotropic diffusion filter [105], image regis-
tration [106], sharpening [107], and skull stripping through
brain extraction tool (BET) [108].

Conventional methods

The conventional methods [46] are further categorized into
the following:

• Thresholding methods.
• Region growing methods.
• Watershed methods.
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Table 2 Summary of the
existing segmentation
approaches

References Year Segmentation methods Datasets Outcomes

[79] 2005 Hybrid level set (HLS)
segmentation

10 patients 79.12 to 93.25% matching
(PM)

[78] 2013 A semi-automatic method
based on individual and
population information

137 clinical images 94.1±3.0 DSC

[80] 2015 Fully automated
generative method

BRATS (2013 Challenge,
2013 Leaderboard, 2015
Challenge)

0.87 DSC complete, 0.82
core, 0.70 enhance on
BRATS 2013
Challenge, 0.83
complete, 0.71 core,
0.54 enhance on BRATS
2013 Leaderboard, 0.81
DSC complete, 0.68
core DSC, 0.65 DSC
enhance on BRATS
2015 Challenge

[81] 2016 Expectation maximization SPES and SISS 2015 0.78±0.08 DSC on SPES
and 0.53±0.26 DSC on
SISS

[82] 2017 Otsu algorithm BRATS 2013 Synthetic 0.93±0.04 DSC on HG,
0.90±0.02 DSC on LG
0.87±0.06 Jaccard
Index on HG,
0.82±0.04 Jaccard
Index on LG

[83] 2017 Non-negative matrix
factorization (NMF)

21 HGG patients 0.80 complete DSC, 0.74
core DSC and 0.65
active DSC tumor

[84] 2017 HCSD BRATS2012 Challenge 0.9102±0.0627 DSC,
0.9501±0.0518 SE,
0.9980±0.0023 SP

[85] 2018 Improved thresholding
method

Harvard and Private
collected images

0.948 Jaccard index on
clinical and 0.961
Jaccard index on
Harvard

[86] 2018 Novel saliency method BRATS 2013 Challenge 0.86±0.06 HG DSC,
0.85±0.07 LG DSC

[87] 2018 BA and RG BRATS 2015 Challenge 0.8741 Jaccard index,
0.9036 DSC, 0.9827
sensitivity, 0.9772
specificity, 0.9753
accuracy and 0.9585
precision

[88] 2019 EM and FODPSO 192 MRI scan 0.93.4 ACC

[89] 2019 Adaptive threshold and
morphological
operations

1340 Clinical MR images 0.85 DSC, 0.89 Jaccard
index

[90] 2020 3D semantic segmentation BRATS 2019 challenge 0.826 enhance, 0.882
complete, 0.837 core
tumor

[91] 2021 CNN model FLAIR, (T1T1C, and T2)
weighted

0.957 ACC
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Fig. 4 Bias field correction a input, b estimated, c corrected [67]

Segmentation

Segmentation extracts the required region from input images.
Thus, segmenting accurate lesion regions is a more crucial
task [109]. As manual segmentation process is erroneous
[110]; therefore, semi- and fully automated methods are
utilized [46]. Segmentation of tumor region using semi-
automatedmethods achieves acceptable outcomes over man-
ual segmentation [111, 112]. Semi-automated methods are
further divided into three forms: initialization, evaluation,
and feedback response [113, 114].

Thresholdingmethods

The thresholding method is a basic and powerful method
to segment the required objects [18] and the selection of an
optimized threshold is a difficult task in low-contrast images.
Histogram analysis is used to select threshold values based
on image intensity [115]. Thresholding methods are clas-
sified into local and global. If high homogeneous contrast
or intensity exists among the objects and background, then
the global thresholding method is the best option for seg-
mentation. The optimal threshold value can be determined
by Gaussian distribution method [116]. These methods are
utilized when the threshold value cannot be measured from
the whole image histogram or single value of the threshold
does not provide good results of segmentation [117]. In most
cases, the thresholding method is applied at the first stage

for segmentation and many distinct regions are segmented
within the gray-level images as shown in Fig. 5.

Region growing (RG) methods

In RG approaches, image pixels form disjoint areas are ana-
lyzed through neighboring pixels, which are merged with
homogeneousness characteristics based onpre-defined simil-
itude criteria. The region growingmight fail to provide better
accuracy due to the partial volume effect [118, 119]. To over-
come this effect, MRGM is preferred [86, 120]. The region
growing with BA methods is also introduced [87].

Watershedmethods

AsMRimages havemore proteinaceousfluid intensity, there-
fore, watershed methods are utilized to analyze the intensity
of the image [114, 121, 122]. Due to noise [123], watershed
method leads to over-segmentation [124]. The accurate seg-
mentation [125] results can be obtained by the combination
of watershed transform with the merging of statistical meth-
ods [126, 127]. Some watershed algorithms are topological
watershed [128], image foresting transform (IFT) watershed
[129], and marker-based watershed [130].

The comprehensive literature review [131] on brain tumor
detection shows that there is room for improvement [72]. As
a brain tumor appears in variable sizes and shapes, existing
segmentation approaches require additional improvements
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Fig. 5 Segmentation using Otsu thresholding a original images, b Otsu
thresholding [82]

for tumor segmentation. In overcoming the limitations of
existingmethods, enhancement [132–134] and segmentation
[135–137] have significance in tumor detection.

Feature extractionmethods

The feature extraction approaches [12, 138–140] including
GLCM [15, 141, 142], geometrical features (area, perime-
ter, and circularity) [15], first-order statistical (FOS), GWT
[143, 144], Hu moment invariants (HMI) [145], multifrac-
tal features [146], 3D Haralick features [147], LBP [148],
GWT [11], HOG [14, 137], texture and shape [82, 143,
149, 150], co-occurrence matrix, gradient, run-length matrix
[151], SFTA, curvature features [152, 153], Gabor likemulti-
scale texton features [154], Gabor wavelet and statistical
features [142, 143] are utilized for classification. Table 3 lists
the summary of feature extraction methods.

Feature selectionmethods or feature
selection/reductionmethods

In machine learning and computer vision applications, high-
dimensional features maximize the system execution time
and memory requirement for processing. Therefore, to dis-
tinguish between relevant and non-relevant features, several

feature selection methods are required to minimize redun-
dant information [168]. The optimal feature extraction is still
a challenging task [47]. The single-point heuristic search
method, ILS, genetic algorithm (GA) [169], GA+ fuzzy
rough set [170], hybrid wrapper-filter [171], TRSFFQR,
tolerance rough set (TRS), firefly algorithm (FA) [172],
minimum redundancy maximum relevance (mRMR) [152],
Kullback–Leibler divergence measure [173], iterative sparse
representation [174], recursive feature elimination (RFE)
[175], CSO-SIFT [176], entropy [11, 177, 178], PCA [179],
and LDA [180] are utilized to remove redundant features. A
summary of classification methods as shown in Table 4.

Classificationmethods

The classification approaches are used to categorize input
data into different classes in which training and testing are
performed on known and unknown samples [16, 24, 25,
181–192]. Machine learning is widely used for tumor clas-
sification into appropriate classes, e.g., tumor substructure
(complete/non-enhanced/enhanced) [193], tumor and non-
tumor [26], and benign and malignant tumor [15, 47, 163,
194, 195]. KNN [196], SVM, nearest subspace classifier,
and representation classifier [143] are supervised, whereas
FCM [197, 198], hidden Markova random field [199] self-
organization map [101], and SSAE [200] are unsupervised
methods.

Recent trends in medical imaging to detect
malignancy

Deep learning and quantummachine learningmethodologies
are widely utilized for tumor localization and classification
[201]. In these techniques, automatic feature learning helps
to discriminate complicated patterns [186, 202–213].

Deep learningmethods

The variety of state of the art deep learningmethodologies are
used to learn the data in the medical domain [214] including
CNN [215, 216], DeepCNN, cascadedCNN [217], 3D-CNN
[218], convolutional encoder network, LSTM, CRF [218],
U-Net CNN [219], dual-force CNN [220] and WRN-PPNet
[221].

The brain tumor classification problem has been solved by
employing a LSTMmodel. In thismethod, inputMRI images
smooth using N4ITK and 5×5 Gaussian filter and passed as
input to the four LSTM model. The LSTM model is con-
structed on the four hidden Units such as 200, 225, 200, 225,
respectively. The performance of this model has been tested
on BRATS (2012–2015 and 2018) series and SISS-2015

123



3168 Complex & Intelligent Systems (2022) 8:3161–3183

Table 3 Summary of the feature
extraction methods References Year Extracted features Dataset Results

[154] 2013 Gabor-like multiscale
texton features

BRATS2012 0.73 DSC

[148] 2015 GLCM features 120 MR images 0.817 similarity index,
0.817 overlap function,
0.182 extra function,
and 0.817 PPV

[15] 2017 Shape, texture, and
intensity features

Harvard, RIDER, Private
collected images

0.79 ACC on the cubic
kernel of SVM (Private
collected images), 0.96
ACC on the cubic kernel
of SVM (RIDER), 0.87
ACC on the cubic kernel
of SVM (Harvard)

[144] 2017 371 texture and intensity
features

Harvard 0.9334 ACC

[145] 2017 Shape descriptor 90 MR images 0.9889 ACC

[146] 2017 Multi-fractal features Harvard 98.01%±0.07 ACC, 1.00
SE, and 94.78%±0.02
SP

[147] 2017 GLCM, GLGCM,
GLCCM and Tamura
features

62 patients 0.7581 ACC, 0.8122 AUC

[14] 2018 GWF, HOG, LBP SFTA
features

2012 Image, 2013
challenge, 2015
challenge [BRATS],
ISLES 2015

0.98 SE on 2012 Image,
0.98 SE, on 2013
challenge, 0.98 SE, on
2015 challenge, 1.00
SE, on ISLES 2015

[11] 2019 LBP and GWF and fusion
of both LBP and GWF
features

BRATS2013 Challenge,
BRATS

2015 Challenge
Private collected images

1.00 SP on BRATS 2013,
0.90 SP on Fused
feature vector (ensemble
classifier) on BRATS
2015, 0.83 SP, 0.91 on
Fused feature vector
(ensemble classifier) on
private collected images

[150] 2019 GLCM features 105 MR images 0.9882 ACC, 1.00 SE,
0.9783 SP, and 1.17
Error rate

[155] 2020 Stochastic texture features 9 Patients of BRATS 2015 0.852±0.063 complete,
0.812±0.074,
0.851±0.093 enhance

[156] 2020 CNN, LBP, and HOG
features

BRATS 2015 0.81 complete, 0.76 core
and 0.73 enhance

[157] 2021 (PCA), entropy, mean,
and wavelet transform

BRATS 2015 0.96 ACC

benchmark datasets [222]. In this work, a new framework
is presented based on the fusion of different kinds of MRI
sequences. The fused sequence provides more information
as compared to single sequence. Later, fused sequence has
been supplied to the 23 CNNmodel. The suggested model is
trained on brat’s series for the detection of glioma [16]. The
14 layers CNN model has been trained from the scratch on
six Brats series datasets for detection of glioma and stroke
lesions [25]. The classification is performed using ELM and
RELM classifiers. This method has been tested on BRATS

series such as 2012 to 2015 [189]. The 09-layerCNNmodel is
trained from the scratch for classification of different types
of tumors such as pituitary, glioma and meningioma. The
method achieved an accuracy of the classification is 98.71%
[223]. This model is trained from the scratch on publicly 696
weighted-T1 sequences. The model provides an accuracy of
greater than 99% for tumor classification [224]. The existing
methods are summarized in Table 5.

Although much work is done on deep learning methods,
still there exist many challenges. The present methods do not
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Table 5 Summary of the deep learning methods

References Year DL model Datasets (BRATS
2012–2019)

Types of tumor Performance measures (DSC)

Complete Core/non-enhanced Enhanced

[225] 2014 CNN 2013 Glioma 83.7±9.4 73.6±25.6 69.0±24.9

[226] 2015 CNN 2014 0.81±15 0.79±13 0.81±11

[227] 2016 CNN 2013 0.88 0.83 0.77

[193] 2017 Input cascade CNN 2012 0.81 0.72 0.58

2013 Leaderboard 0.84 0.71 0.57

2013 Challenge 0.88 0.79 0.73

[219] 2017 U-Net CNN 2015 0.86 0.86 0.65

[218] 2017 DeepMedic + CRF 2015 0.84 0.67 0.62

ISLES 2015 0.66 DSC – –

[228] 2018 FCNN + CRF (2013 Challenge 0.85 0.83 0.74

2013 Leaderboard 0.88 0.84 0.77

2015 Challenge) 0.82 0.72 0.62

[229] 2018 DNN (ILinear nexus
architecture)

2013 0.87 0.89 0.92

2015 0.86 0.87 0.90

[220] 2019 Dual-force CNN 2015 0.83 0.67 0.63

2017 0.87 0.73 0.69

[221] 2019 WRN-PPNet 2015 0.94 – –

2018 0.91

[230] 2021 YOLOv2 2018, 2019, 2020 0.90 – –

[231] 2020 3D U-Net and
DeepMedic

2017 0.90 0.81 0.78

2018

[186] 2018 Patch-based CNN
model

2015 0.95 – –

ISLES 2015 Stroke 1.00 – –

ISLES 2017 0.98 – –

[217] 2016 CNN ISLES 2015 (SISS,
SPES)

0.59 on SISS, 0.77
on SPES

– –

achieve maximum results in the sub-structure of the tumor
region. For example, if the accuracy of the complete tumor
is increased, then the accuracy of the core and the enhanced
tumor is decreased (as shown in Table 5).

Brain tumor detection using transfer learning

The manual detection of brain tumors is difficult due to
asymmetrical lesions shape, location flexibility, and unclear
boundaries. Therefore, a transfer-learning model has been
suggested based on the super-pixel. The VGG-19 is a pre-
trained model that has been utilized for the classification
of the different grades of the glioma such as high/low
glioma. The method achieved 0.99 AUC on the brats 2019
series[232]. The three different types of pre-trained mod-
els i.e., VGG network, Google network and Alex network
are employed on the brain datasets for the classification
of glioma, pituitary and meningioma. In this method, aug-
mentation methods are also employed on MRI slices to
generalize the outcomes and reduced the overfitting prob-

lem by increasing the quantity of the input data. After the
experimental analysis using different pre-trained models, we
conclude that VGG-16 provides greater than 98% classifi-
cation accuracy [233]. The classification of brain tumors
has been done using two different types of networks, i.e.,
visual attention network and CNN are utilized for classifica-
tion of different types of brain tumor i.e., glioma, pituitary
I and meningioma [234]. A pre-trained model i.e., VGG-16,
Alex and Google net are investigated for the analysis of brain
tumors. The frequency domain techniques have been applied
on input slices to improve the image contrast. The contrast
improved images are passed in the next phase. Where pre-
trained VGG-16 provides maximum classification outcomes
[235]. The Laplacian filter with a multi-layered dictionary
model is utilized for the recognition of brain tumors. The
model performed better as compared to existing works
[236]. The method consists of the three major steps such
as pre-processing, augmentation of data, and segmentation
and classification using transfer learning models. In which
ResNet-50, DenseNet-201, MobileNet-v2 and Inceptionv3
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Table 6 Summary of the
transfer learning methods References Year Methods Datasets/images Results

[241] 2019 Pre-trained Alex-net and
Google net

BRATS [2013, 2014,
2015, 2016] and
ISLES-2018

Up to 95% ACC

[16] 2020 Features from VGG-19
and LBP and HOG

BRATS) [2015, 2016, and
2017]

0.99, 1.00 and 0.99 Dice
scores, respectively

[237] 2020 ResNet50, InceptionV3,
MobileNet -V2,
NASNet and
DenseNet201

233 MRI patient’s data ACC of 92.9%, 92.8%,
91.8%, 99.6%, 93.1%,
respectively

[235] 2020 Alexnet, Resnet50,
GoogLeNet, VGG-16,
Resnet101, VGG-19,
Inceptionv3, and
InceptionResNetV2

Harvard and local datasets ACC of 100%, 94%, and
95.92%

[234] 2020 Pre-trained visual
attention model

3064 tumor slices of local
data

95.5% ACC

[233] 2020 Alex, Google and VGG 233 MRI patient’s data 97.3% ACC

[232] 2020 VGG-19 with
post-processing

2019 BRATS series 93.2 dice scores

[243] 2020 Inception-v3 and
DensNet201

3064 tumor slices of local
data

99.34%, and 99.51%

[244] 2020 ResNet-attention gate BRATS (2017, 2018 and
2019)

86.5% ACC

[247] 2020 VGG19 233 MRI patient’s data 96.13% ACC

[223] 2020 AlexNet, VGG16,
ResNet18, ResNet50,
VGG19,
ResNet-Inception-v2,
SENet, GoogleNet,
ResNet101

233 MRI patient’s data Up to 95% ACC

[248] 2020 UNet-VGG16 Local data Up to 96% ACC

[249] 2019 GoogLeNet 233 MRI patient’s data 98% ACC

[250] 2019 AlexNet Local data 100% ACC

[251] 2019 ResNet34 Local data 0.7380±0.16 ACC

[252] 2020 InceptionV3 233 MRI patient’s data 99% ACC

[253] 2020 InceptionV3, SqueezeNet,
VGG19 and ResNet50

Local data Up to 97% ACC

[254] 2018 AlexNet and GoogLeNet Local data Up to 80% ACC

[255] 2019 VGGNet and ResNet Local data 97% ACC

[256] 2021 AlexNet 2019 BRATS 82% AUC

[257] 2021 Resnet-50, VGG-16 and
Inception-V3

Local data ACC of 95%, 90% and
55%, respectively

[240] 2021 ResNet, MobilNet-V2
and Xception

Local data Up to 98% ACC

[239] 2021 ResNet-50 model with
average global pooling

Local data Up to 97% ACC

[238] 2021 8 layers of Alex-network Local data 100% ACC
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are utilized to classify the brain lesions with 0.95 IoU [237].
The deep features are extracted from the transfer learning
AlexNet model. The model has eight layers, five of which
are convolutional and three of which are fully linked. The
SoftMax layer has been employed for classification between
the different types of brain lesions [238]. The transfer learn-
ing ResNet-50 model with average global pooling is utilized
to reduce the gradient vanishing and overfitting issues. The
performance of this model has been evaluated on three dis-
tinct types of brain imaging benchmark samples that contain
3064 input images. The method achieved an accuracy of
the 97.08% that is maximum as compared to latest exist-
ing works [239]. A deep CNN was used in this study that
based on transfer learning such as ResNet, Xception and
Mobilenetv2 are utilized for the extraction of deep features
has been for tumors classification using MRI images. This
method achieved an accuracy of up to 98% [240]. In this
method, Grab Cut method has been employed for segmen-
tation of the brain lesions. Later hand-crafted such as LBP
features dimension of 1×20 andHOG features dimension of
1×100 are extracted and serially fused to the deep features
dimension of 1×1000 that are extracted from the pre-trained
VGG-19 model and final fused features vector length of 1×
that is supplied to the different kind of classifiers. The exper-
imental analysis proves that fused features vector provide
good results as compared to existing work in this domain
[16, 187]. The global thresholding method is applied to seg-
ment the actual lesion region. After segmentation, texture
features such as LBP and GWF are extracted from the seg-
mented images. After that, the retrieved features are fused
to form a single fused feature vector, which is then pro-
vided to the classifiers for differentiation between healthy
and unhealthy images [26]. There are two key stages to the
procedure. The brain lesions are enhanced and segmented
using spatial domain approaches in the first stage, then deep
information’s are extracted using pre-trained models, i.e.,
Alex and Google-network and score vector is achieved from
softmax layer that is supplied to the classifiers such as for
discrimination between the glioma/non-glioma images of
brain. The Brats series dataset was used to test this tech-
nique’s efficiency [241]. For brain tumor segmentation, the
superpixel approachhas been suggested. From the segmented
images, Gabor wavelet information are retrieved and given
to SVM and CRF for discrimination between the healthy/un-
healthyMRI images [242].The transfer learningmodels such
as inceptionv3, densenet-201, and to form a single vector,
extracted features are merged serially and passed to soft-
max for tumor classification. Furthermore, different dense
blocks of the densenet201 are extracted and classify the
brain tumor using softmax. The approach had a 99% accu-
racy rate. The evaluation outcomes clearly state that the
fused vector outperformed as compared to the single vec-
tor [243]. A novel U-net model with the RESnet model has

been trained on the input MRI images. The classifiers are fed
the salient features derived from its pictures. This method
has been tested on BRATS 2017, 2018 and 2019 datasets
[244]. The tumor region is localized on Flair sequences of
brats 2012 series. The skull is removed from of the input
pictures, and a noise-reduction filter is applied bilaterally.
During the segmentation, texton features are recovered from
the input images using the superpixel approach. For brain
tumor classification, the leave out validation technique is
used. This strategy yielded an 88 percent dice score [245].
The deep segmentation has been designed that contains two
major parts such as encoder and decoder. The spatial infor-
mation is extracted using a CNN in the encoder section.
For determining the whole probability map resolution, the
semantic mappings information is entered into the decoder
component. On the basis of U-network distinct CNN net-
works such as ResNetwork, dense network and Nas-network
are utilized for features extraction.Thismodel has been tested
successfully on Brats-2019 series. The method achieved dice
scores of 0.84 [246]. The wavelet homomorphic filter has
been employed for noise removal. The tumor infected region
has been localized using improved YOLOv2 model [230].
The summary of the transfer learning methods is mentioned
in Table 6.

Brain tumor detection using quantummachine
learning

Superposition of quantum states/parallelism/entanglement
can all be used to establish quantum computer supremacy
[258]. However, exploring entanglement of quantum features
for efficient computation is a difficult undertaking due to a
shortage of computational resources for execution of quan-
tum algorithms. With the progress of quantum techniques,
classical computers based on quantum theory and influenced
through qubits are no longer able to fully exploit the benefits
of quantum state and entanglement. QANNhas been found to
be effective in a variety of computer tasks, including classifi-
cation and pattern recognition due to the intrinsic properties
supplied by quantum physics [259]. On the other hand, quan-
tum models based on genuine quantum computers use big
bits of the quantum/qubits as a simple representation of
matrix and the linear functions. However, the computational
complexity of the quantum-inspired neural network (QINN)
designs increases several fold due to complicated and time-
consuming back-propagation quantum model [260]. The
automatic segmentation of brain lesions from I (MRI), which
removes the onerous manual work of human specialists or
radiologists, greatly aids brain tumor detection. Manually,
brain tumor diagnosis, on the other hand, suffers from large
variances in size, shape, orientation, illumination variations,
greyish overlaying, and cross-heterogeneity. Scientists in the
computer vision field have paid a lot of emphasis in recent
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years to building robust and efficient automated segmenta-
tion approaches. The current research focuses on a unique
quantum fully supervised learning process which is defined
by qutrits for timely and effective lesions segmentation.
The proposed work’s main goal is to speed up the QFS-
convergence Net’s and make it appropriate for computerized
segmentation of the brain lesions without the need for any
learning/supervision. To leverage the properties of quantum
correlation, suggested a quantum fully self-supervised neural
network (QFS-Net) model uses qutrits/three states of quan-
tum for segmentation of the brain lesions [261]. TheQFS-Net
uses a revolutionary fully supervised qutrit-based counter
propagation method to replace the sophisticated quantum
back-propagation method that utilized in supervised QINN
networks. This approach allows for iterative quantum state
that propagates among the layers of network.

Limitations of existing’s machine/deep
learningmethods

In this survey, recent literature regarding the detection of
brain tumors is reviewed, and it is indicated that there is still
room for improvement. During image acquisition, noise is
included in MRI, and noise removal is an intricate task [2,
262–264]. Accurate segmentation is a difficult task [265],
as brain tumors have tentacles and diffused structures [43,
193, 220, 266]. Selecting and extracting optimal features
and appropriate number of training/testing samples for better
classification is also an important task [191, 192].Deep learn-
ing models are gaining attention as the learning of features
is accomplished automatically; however, they require high
computing power and large memory. Therefore, still there is
a need to design a lightweight model that provides high ACC
in less computational time. Some existing machine learning
methods with their limitations are mentioned in Table 7.

The following are the main challenges of brain tumor
detection.

The glioma and stroke tumors are not well contrasted. It
consists of tentacle anddiffused structures thatmake segmen-
tation and classification processes more challenging [270].

A small volume of tumor detection is still a challenge as
it can be detected as a normal region [269, 273].

Some of the existing methods work well for only a com-
plete tumor region and do not provide good results for other
regions (enhanced, non-enhanced) and vice versa [267, 271,
274].

Research findings and discussion

After a comprehensive review of the state-of-the-art exiting
methods, the following challenges are found:

• The size of a brain tumor grows rapidly. Therefore, tumor
diagnosis at an initial stage is an exigent task.

• Brain tumor segmentation is difficult owing to the follow-
ing factors.

• MRI image owing tomagnetic field fluctuations in the coil.
• Gliomas are infiltrative, owing to fuzzy borders. Thus, they
become more difficult to segment [43].

• Stroke lesion segmentation is a very intricate task, as stroke
lesions appear in complex shapes and with ambiguous
boundaries and intensity variations.

• The optimized and best feature extraction and selection is
another difficult process inaccurate classification of brain
tumors.

Conclusion

The accurate brain tumor detection is still very demanding
because of tumor appearance, variable size, shape, and struc-
ture.Although tumor segmentationmethods have shownhigh
potential in analyzing and detecting the tumor inMR images,
still many improvements are required to accurately segment
and classify the tumor region. Existing work has limitations
and challenges for identifying substructures of tumor region
and classification of healthy and unhealthy images.

In short, this survey covers all important aspects and latest
work done so far with their limitations and challenges. It will
be helpful for the researchers to develop an understanding of
doing new research in a short time and correct direction.

The deep learning methods have contributed significantly
but still require a generic technique. These methods pro-
vided better results when training and testing are performed
on similar acquisition characteristics (intensity range and
resolution); however, a slight variation in the training and
testing images directly affects the robustness of the methods.
In future work, research can be conducted to detect brain
tumors more accurately, using real patient data from any
medium (different image acquisition (scanners).Handcrafted
and deep features can be fused to improve the classifica-
tion results. Similarly, lightweight methods such as quantum
machine learning play significant role to improve the accu-
racy and efficacy that save the time of radiologists and
increase the survival rate of patients.

Declarations

Conflict of interest There is no grant received from any resources. All
authors declare that they have no conflict of interest.

Research involving human participants and/or animals It is declared
that research has not involved any human participants and animals.

123



3176 Complex & Intelligent Systems (2022) 8:3161–3183

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Park JG, Lee C (2009) Skull stripping based on region growing
for magnetic resonance brain images. Neuroimage 47:1394–1407

2. Khan MA, Lali IU, Rehman A, Ishaq M, Sharif M, Saba T et al
(2019) Brain tumor detection and classification: A framework of
marker-basedwatershed algorithmandmultilevel priority features
selection. Microsc Res Tech 82:909–922

3. Raza M, Sharif M, Yasmin M, Masood S, Mohsin S (2012) Brain
image representation and rendering: a survey. Res J Appl Sci Eng
Technol 4:3274–3282

4. Watson C, Kirkcaldie M, Paxinos G (2010) The brain: an intro-
duction to functional neuroanatomy. Academic Press, New York

5. (2015). https://en.wikipedia.org/wiki/Brain_size. Accessed 19
Oct 2019

6. Dubin MW (2013) How the brain works. Wiley, New York
7. Koziol LF, Budding DE, Chidekel D (2012) From movement to

thought: executive function, embodied cognition, and the cerebel-
lum. Cerebellum 11:505–525

8. Knierim J (1997) Neuroscience Online Chapter 5: Cerebellum.
The University of Texas Health Science Center, Houston

9. NuñezMA,Miranda JCF, de Oliveira E, Rubino PA, Voscoboinik
S, Recalde R et al (2019) Brain stem anatomy and surgi-
cal approaches. Comprehensive overview of modern surgical
approaches to intrinsic brain tumors. Elsevier, Amsterdam, pp
53–105

10. DeAngelis LM (2001) Brain tumors. N Engl J Med 344:114–123
11. Amin J, Sharif M, Raza M, Saba T, Sial R, Shad SA (2020) Brain

tumor detection: a long short-term memory (LSTM)-based learn-
ing model. Neural Comput Appl 32:15965–15973

12. Sajjad S, Hanan Abdullah A, Sharif M, Mohsin S (2014) Psy-
chotherapy through video game to target illness related problem-
atic behaviors of children with brain tumor. Curr Med Imaging
10:62–72

13. Yasmin M, Sharif M, Masood S, Raza M, Mohsin S (2012) Brain
image reconstruction: a short survey. World Appl Sci J 19:52–62

14. Amin J, Sharif M, Raza M, Yasmin M (2018) Detection of brain
tumor based on features fusion and machine learning. J Ambient
Intell Human Comput:1–17

15. Amin J, Sharif M, Yasmin M, Fernandes SL (2020) A distinctive
approach in brain tumor detection and classification using MRI.
Pattern Recogn Lett 139:118–127

16. Saba T, Mohamed AS, El-Affendi M, Amin J, Sharif M (2020)
Brain tumor detection using fusion of hand crafted and deep learn-
ing features. Cogn Syst Res 59:221–230

17. Sharif M, Amin J, Nisar MW, Anjum MA, Muhammad N, Shad
SA (2020)A unified patch basedmethod for brain tumor detection
using features fusion. Cogn Syst Res 59:273–286

18. Sharif M, Tanvir U, Munir EU, Khan MA, Yasmin M (2018)
Brain tumor segmentation and classification by improved bino-

mial thresholding and multi-features selection. J Ambient Intell
Human Comput:1–20

19. Sharif MI, Li JP, Khan MA, Saleem MA (2020) Active deep
neural network features selection for segmentation and recog-
nition of brain tumors using MRI images. Pattern Recogn Lett
129:181–189

20. Sharif MI, Li JP, Naz J, Rashid I (2020) A comprehensive review
on multi-organs tumor detection based on machine learning. Pat-
tern Recogn Lett 131:30–37

21. Ohgaki H, Kleihues P (2013) The definition of primary and sec-
ondary glioblastoma. Clin Cancer Res 19:764–772

22. Cachia D, Kamiya-Matsuoka C, Mandel JJ, Olar A, Cykowski
MD, Armstrong TS et al (2015) Primary and secondary gliosarco-
mas: clinical,molecular and survival characteristics. JNeurooncol
125:401–410

23. Amin J, SharifM, Gul N, YasminM, Shad SA (2020) Brain tumor
classification based on DWT fusion of MRI sequences using con-
volutional neural network. Pattern Recogn Lett 129:115–122

24. Sharif M, Amin J, Raza M, Yasmin M, Satapathy SC (2020)
An integrated design of particle swarm optimization (PSO) with
fusion of features for detection of brain tumor. Pattern Recogn
Lett 129:150–157

25. Amin J, SharifM,AnjumMA,RazaM,Bukhari SAC (2020)Con-
volutional neural networkwith batchnormalization for gliomaand
stroke lesion detection using MRI. Cogn Syst Res 59:304–311

26. Amin J, Sharif M, Raza M, Saba T, Anjum MA (2019) Brain
tumor detection using statistical and machine learning method.
Comput Methods Progr Biomed 177:69–79

27. Amin J, Sharif M, Gul N, Raza M, Anjum MA, Nisar MW et al
(2020) Brain tumor detection by using stacked autoencoders in
deep learning. J Med Syst 44:32

28. Johnson DR, Guerin JB, Giannini C, Morris JM, Eckel LJ,
Kaufmann TJ (2017) 2016 updates to the WHO brain tumor
classification system: what the radiologist needs to know. Radio-
graphics 37:2164–2180

29. Wright E, Amankwah EK, Winesett SP, Tuite GF, Jallo G, Carey
C et al (2019) Incidentally found brain tumors in the pediatric
population: a case series and proposed treatment algorithm. JNeu-
rooncol 141:355–361

30. Pellegrino MP, Moreira F, Conforto AB (2021) Ischemic stroke.
Neurocritical care for neurosurgeons. Springer, New York, pp
517–534

31. Garrick R, Rotundo E, Chugh SS, Brevik TA (2021) Acute kidney
injury in the elderly surgical patient. Emergency general surgery
in geriatrics. Springer, New York, pp 205–227

32. Lehmann ALCF, Alfieri DF, de Araújo MCM, Trevisani ER,
Nagao MR, Pesente FS, Gelinski JR, de Freitas LB, Flauzino
T, Lehmann MF, Lozovoy MAB (2021) Carotid intima media
thicknessmeasurements coupledwith stroke severity stronglypre-
dict short-term outcome in patients with acute ischemic stroke: a
machine learning study. Metab Brain Dis 36:1747–1761

33. Scott AM (2005) PET imaging in oncology. In: Bailey DL,
Townsend DW, Valk PE, Maisey MN (eds) Positron emission
tomography. Springer, London, pp 311–325

34. Wong TZ, van der Westhuizen GJ, Coleman RE (2002) Positron
emission tomography imaging of brain tumors. Neuroimaging
Clin 12:615–626

35. WongKP,FengD,Meikle SR,FulhamMJ (2002)Segmentation of
dynamic PET images using cluster analysis. IEEE Trans Nuclear
Sci 49:200–207

36. Brenner DJ, Hall EJ (2007) Computed tomography—an increas-
ing source of radiation exposure. N Engl J Med 357:2277–2284

37. Smith-Bindman R, Lipson J, Marcus R, Kim K-P, Mahesh M,
Gould R et al (2009) Radiation dose associated with common
computed tomography examinations and the associated lifetime
attributable risk of cancer. Arch Intern Med 169:2078–2086

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Brain_size


Complex & Intelligent Systems (2022) 8:3161–3183 3177

38. Fink JR,MuziM, PeckM, Krohn KA (2015)Multimodality brain
tumor imaging: MR imaging, PET, and PET/MR imaging. J Nucl
Med 56:1554–1561

39. HessCP, PurcellD (2012)Exploring the brain: IsCTorMRIbetter
for brain imaging. UCSF Dep Radiol Biomed Imaging 11:1–11

40. Saad NM, Bakar SARSA, Muda AS, Mokji MM (2015) Review
of brain lesion detection and classification using neuroimaging
analysis techniques. J Teknol 74:1–13

41. Huang M, Yang W, Wu Y, Jiang J, Chen W, Feng Q (2014) Brain
tumor segmentation based on local independent projection-based
classification. IEEE Trans Biomed Eng 61:2633–2645

42. Khan MA, Arshad H, Nisar W, Javed MY, Sharif M (2021)
An integrated design of Fuzzy C-means and NCA-based multi-
properties feature reduction for brain tumor recognition. Signal
and image processing techniques for the development of intelli-
gent healthcare systems. Springer, New York, pp 1–28

43. Rewari R (2021) Automatic tumor segmentation fromMRI scans.
Stanford University, Stanford

44. Tandel GS, BiswasM,KakdeOG, Tiwari A, Suri HS, TurkM et al
(2019) a review on a deep learning perspective in brain cancer
classification. Cancers 11:1–32

45. El-Dahshan E-SA, Mohsen HM, Revett K, Salem A-BM (2014)
Computer-aided diagnosis of human brain tumor through MRI:
A survey and a new algorithm. Expert Syst Appl 41:5526–5545

46. Gordillo N, Montseny E, Sobrevilla P (2013) State of the art
survey on MRI brain tumor segmentation. Magn Reson Imaging
31:1426–1438

47. Mohan G, Subashini MM (2018) MRI based medical image anal-
ysis: Survey on brain tumor grade classification. Biomed Signal
Process Control 39:139–161

48. Amin J, Sharif M, Yasmin M (2016) Segmentation and classifi-
cation of lung cancer: a review. Immunol Endocr Metab Agents
Med Chem 16:82–99

49. ShahzadA, SharifM, RazaM,HussainK (2008) Enhancedwater-
shed image processing segmentation. J Inf Commun Technol 2:9

50. Joo L, Jung SC, Lee H, Park SY, Kim M, Park JE et al (2021)
Stability of MRI radiomic features according to various imaging
parameters in fast scanned T2-FLAIR for acute ischemic stroke
patients. Sci Rep 11:1–11

51. Chen H, Zou Q, Wang Q (2021) Clinical manifestations of
ultrasonic virtual reality in the diagnosis and treatment of car-
diovascular diseases. J Healthc Eng 2021:1–12

52. Henneghan AM, Van Dyk K, Kaufmann T, Harrison R, Gibbons
C, Heijnen C, Kesler SR (2021) Measuring self-reported cancer-
related cognitive impairment: recommendations from the Cancer
Neuroscience Initiative Working Group. JNCI:1–9

53. Drake-Pérez M, Boto J, Fitsiori A, Lovblad K, Vargas MI (2018)
Clinical applications of diffusion weighted imaging in neuroradi-
ology. Insights Imaging 9:535–547

54. Okorie CK, Ogbole GI, Owolabi MO, Ogun O, Adeyinka A,
Ogunniyi A (2015) Role of diffusion-weighted imaging in acute
stroke management using low-field magnetic resonance imaging
in resource-limited settings. West Afr J Radiol 22:61

55. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani
K, Kirby J et al (2014) The multimodal brain tumor image
segmentation benchmark (BRATS). IEEE Trans Med Imaging
34:1993–2024

56. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS
et al (2017) Advancing the cancer genome atlas glioma MRI col-
lections with expert segmentation labels and radiomic features.
Sci Data 4:170117

57. Kistler M, Bonaretti S, Pfahrer M, Niklaus R, Büchler P (2013)
The virtual skeleton database: an open access repository for
biomedical research and collaboration. J Med Internet Res
15:e245

58. Summers D (2003) Harvard whole brain Atlas: www. med. har-
vard. edu/AANLIB/home. html. J Neurol Neurosurg Psychiatry
74:288–288

59. Armato S, Beichel R, Bidaut L, Clarke L, Croft B, Fenimore
C, Gavrielides M et al (2008) RIDER (Reference Database to
Evaluate Response) Committee Combined Report, 9/25/2008
Sponsored by NIH, NCI, CIP, ITDB Causes of and Methods
for Estimating/Ameliorating variance in the evaluation of tumor
change in response-to therapy. https://wiki.cancerimagingarchive.
net/display/Public/Collections

60. Kistler M, Bonaretti S, Pfahrer M, Niklaus R, Büchler P (2013)
The virtual skeleton database: an open access repository for
biomedical research and collaboration. J Med Internet Res
15:1–14

61. Yasmin M, Mohsin S, Sharif M, Raza M, Masood S (2012) Brain
image analysis: a survey. World Appl Sci J 19:1484–1494

62. Somasundaram K, Kalaiselvi T (2010) Fully automatic brain
extraction algorithm for axial T2-weighted magnetic resonance
images. Comput Biol Med 40:811–822

63. Zhu Y, Young GS, Xue Z, Huang RY, You H, Setayesh K et al
(2012) Semi-automatic segmentation software for quantitative
clinical brain glioblastoma evaluation. Acad Radiol 19:977–985

64. Prabhu LAJ, Jayachandran A (2018) Mixture model segmenta-
tion system for parasagittalmeningiomabrain tumor classification
based on hybrid feature vector. J Med Syst 42:1–6

65. Park CR, KimK, Lee Y (2019) Development of a bias field-based
uniformity correction inmagnetic resonance imagingwith various
standard pulse sequences. Optik 178:161–166

66. Patel P, Bhandari A (2019) A review on image contrast enhance-
ment techniques. Int J Online Sci 5:14–18

67. ZhangZ, Song J (2019)A robust brainMRI segmentation and bias
field correction method integrating local contextual information
into a clustering model. Appl Sci 9:1332

68. Irum I, Sharif M, Yasmin M, Raza M, Azam F (2014) A noise
adaptive approach to impulse noise detection and reduction.Nepal
J Sci Technol 15:67–76

69. Robb RA (2000) 3-dimensional visualization in medicine and
biology. Handb Med Imaging Process Anal:685–712

70. Mehmood I, Ejaz N, Sajjad M, Baik SW (2013) Prioritization of
brain MRI volumes using medical image perception model and
tumor region segmentation. Comput Biol Med 43:1471–1483

71. Lu X, Huang Z, Yuan Y (2015) MR image super-resolution
via manifold regularized sparse learning. Neurocomputing
162:96–104

72. Irum I, Sharif M, Raza M, Mohsin S (2015) A nonlinear hybrid
filter for salt & pepper noise removal from color images. J Appl
Res Technol 13:79–85

73. Stadler A, Schima W, Ba-Ssalamah A, Kettenbach J, Eisenhuber
E (2007) Artifacts in bodyMR imaging: their appearance and how
to eliminate them. Eur Radiol 17:1242–1255

74. Masood S, SharifM,MasoodA,YasminM, RazaM (2015) A sur-
vey on medical image segmentation. Curr Med Imaging 11:3–14

75. Irum I, SharifM, RazaM, YasminM (2014) Salt and pepper noise
removal filter for 8-bit images based on local and global occur-
rences of grey levels as selection indicator. Nepal J Sci Technol
15:123–132

76. Sharif M, Irum I, Yasmin M, Raza M (2017) Salt & pepper noise
removal from digital color images based on mathematical mor-
phology and fuzzy decision. Nepal J Sci Technol 18:1–7

77. Prastawa M, Bullitt E, Moon N, Van Leemput K, Gerig G (2003)
Automatic brain tumor segmentation by subject specific modifi-
cation of atlas priors1. Acad Radiol 10:1341–1348

78. Wu Y, Yang W, Jiang J, Li S, Feng Q, Chen W (2013) Semi-
automatic segmentation of brain tumors using population and
individual information. J Digit Imaging 26:786–796

123

https://wiki.cancerimagingarchive.net/display/Public/Collections


3178 Complex & Intelligent Systems (2022) 8:3161–3183

79. Xie K, Yang J, Zhang Z, Zhu Y (2005) Semi-automated brain
tumor and edema segmentation usingMRI. Eur J Radiol 56:12–19

80. Agn M, Puonti O, af Rosenschöld PM, Law I, Van Leemput K
(2015) Brain tumor segmentation using a generative model with
an RBMprior on tumor shape. In: BrainLes vol 2015, pp 168–180

81. Haeck T, Maes F, Suetens P (2015) ISLES challenge 2015:
Automated model-based segmentation of ischemic stroke in MR
images. BrainLes 2015:246–253

82. Abbasi S, Tajeripour F (2017) Detection of brain tumor in 3D
MRI images using local binary patterns and histogram orientation
gradient. Neurocomputing 219:526–535

83. Sauwen N, Acou M, Sima DM, Veraart J, Maes F, Himmelre-
ich U et al (2017) Semi-automated brain tumor segmentation on
multi-parametric MRI using regularized non-negative matrix fac-
torization. BMC Med Imaging 17:29

84. Ilunga-Mbuyamba E, Avina–Cervantes JG, Garcia-Perez A, de
Jesus Romero–Troncoso R, Aguirre–Ramos H, Cruz–Aceves I
et al (2017) Localized active contour model with background
intensity compensation applied on automaticMRbrain tumor seg-
mentation. Neurocomputing 220:84–97

85. AkbarS,AkramMU,SharifM,TariqA,KhanSA(2018)Decision
support system for detection of hypertensive retinopathy using
arteriovenous ratio. Artif Intell Med 90:15–24

86. Banerjee S, Mitra S, Shankar BU (2018) Automated 3D segmen-
tation of brain tumor using visual saliency. Inf Sci 424:337–353

87. Raja NSM, Fernandes SL, Dey N, Satapathy SC, Rajinikanth V
(2018) Contrast enhanced medical MRI evaluation using Tsal-
lis entropy and region growing segmentation. J Ambient Intell
Human Comput:1–12

88. Subudhi A, DashM, Sabut S (2020) Automated segmentation and
classification of brain stroke using expectation-maximization and
random forest classifier. Biocybern Biomed Eng 40:277–289

89. Gupta N, Bhatele P, Khanna P (2019) Glioma detection on brain
MRIs using texture and morphological features with ensemble
learning. Biomed Signal Process Control 47:115–125

90. Myronenko A, Hatamizadeh A (2020) Robust semantic segmen-
tation of brain tumor regions from 3D MRIs. arXiv:2001.02040

91. Karayegen G, Aksahin MF (2021) Brain tumor prediction on MR
images with semantic segmentation by using deep learning net-
work and 3D imaging of tumor region. Biomed Signal Process
Control 66:102458

92. Prima S, Ayache N, Barrick T, Roberts N (2001)Maximum likeli-
hood estimation of the bias field inMRbrain images: Investigating
different modelings of the imaging process. In: International
conference on medical image computing and computer-assisted
intervention, pp 811–819

93. Haider W, Sharif M, Raza M (2011) Achieving accuracy in early
stage tumor identification systems based on image segmentation
and 3D structure analysis. Comput Eng Intell Syst 2:96–102

94. Irum I, Shahid MA, Sharif M, Raza M (2015) A review of image
denoising methods. J Eng Sci Technol Rev 8:1–11

95. Kumar SS, Dharun VS (2016) A study of MRI segmentation
methods in automatic brain tumor detection. Int J Eng Technol
8:609–614

96. Dhas A, Madheswaran M (2018) An improved classification
system for brain tumours using wavelet transform and neural net-
work. West Indian Med J 67:243–247

97. Krissian K, Aja-Fernández S (2009) Noise-driven anisotropic dif-
fusion filtering ofMRI. IEEE Trans Image Process 18:2265–2274

98. Tahir B, Iqbal S, Usman Ghani Khan M, Saba T, Mehmood
Z, Anjum A et al (2019) Feature enhancement framework for
brain tumor segmentation and classification. Microsc Res Tech
82:803–811

99. Said AB, Hadjidj R, Foufou S (2019) Total variation for image
denoising based on a novel smart edge detector: an application to
medical images. J Math Imaging Vision 61:106–121

100. Bojorquez JAZ, Jodoin P-M, Bricq S, Walker PM, Brunotte F,
Lalande A (2019) Automatic classification of tissues on pelvic
MRI based on relaxation times and support vector machine. PLoS
ONE 14:1–17

101. Sandhya G, Kande GB, Satya ST (2019) An efficient MRI brain
tumor segmentation by the fusion of active contour model and
self-organizing-map. J Biomim Biomater Biomed Eng 40:79–91

102. Yang Y, Huang S (2006) Novel statistical approach for segmen-
tation of brain magnetic resonance imaging using an improved
expectation maximization algorithm. Opt Appl 36:125–136

103. Mittal M, Goyal LM, Kaur S, Kaur I, Verma A, Hemanth
DJ (2019) Deep learning based enhanced tumor segmentation
approach for MR brain images. Appl Soft Comput 78:346–354

104. Roy S, Bandyopadhyay SK (2012) Detection and quantification
of brain tumor fromMRI of brain and it’s symmetric analysis. Int
J Inf Commun Technol Res 2:1–7

105. Gao J, Xie M (2009) Skull-stripping MR brain images using
anisotropic diffusion filtering and morphological processing. In:
2009 IEEE international symposium on computer network and
multimedia technology, pp 1–4

106. Maintz JA, Viergever MA (1998) A survey of medical image reg-
istration. Med Image Anal 2:1–36

107. Sharma P, Diwakar M, Choudhary S (2012) Application of edge
detection for brain tumor detection. Int J Comput Appl 58:1–6

108. Popescu V, Battaglini M, Hoogstrate W, Verfaillie SC, Sluimer I,
van Schijndel RA et al (2012) Optimizing parameter choice for
FSL-brain extraction tool (BET) on 3D T1 images in multiple
sclerosis. Neuroimage 61:1484–1494
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