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Accurate segmentation of different sub-regions of gliomas such as peritumoral edema,

necrotic core, enhancing, and non-enhancing tumor core from multimodal MRI scans

has important clinical relevance in diagnosis, prognosis and treatment of brain tumors.

However, due to the highly heterogeneous appearance and shape of these tumors,

segmentation of the sub-regions is challenging. Recent developments using deep

learning models has proved its effectiveness in various semantic and medical image

segmentation tasks, many of which are based on the U-Net network structure with

symmetric encoding and decoding paths for end-to-end segmentation due to its high

efficiency and good performance. In brain tumor segmentation, the 3D nature of

multimodal MRI poses challenges such asmemory and computation limitations and class

imbalance when directly adopting the U-Net structure. In this study we aim to develop

a deep learning model using a 3D U-Net with adaptations in the training and testing

strategies, network structures, and model parameters for brain tumor segmentation.

Furthermore, instead of picking one best model, an ensemble of multiple models trained

with different hyper-parameters are used to reduce random errors from each model

and yield improved performance. Preliminary results demonstrate the effectiveness of

this method and achieved the 9th place in the very competitive 2018 Multimodal Brain

Tumor Segmentation (BraTS) challenge. In addition, to emphasize the clinical value of

the developed segmentation method, a linear model based on the radiomics features

extracted from segmentation and other clinical features are developed to predict patient

overall survival. Evaluation of these innovations shows high prediction accuracy in both

low-grade glioma and glioblastoma patients, which achieved the 1st place in the 2018

BraTS challenge.
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INTRODUCTION

Gliomas are the most common primary brain malignancies, with different degrees of
aggressiveness, variable prognosis and various heterogeneous histological sub-regions, i.e.,
peritumoral edema, necrotic core, enhancing, and non-enhancing tumor core (Wrensch et al., 2002;
Louis et al., 2016). This intrinsic heterogeneity of gliomas is also portrayed in their radiographic
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phenotypes, as their sub-regions are depicted by different
intensity profiles disseminated across multimodal MRI (mMRI)
scans, reflecting differences in tumor biology (Cha, 2006;
Upadhyay andWaldman, 2011). Quantitative analysis of imaging
features such as volumetric measures after manual/semi-
automatic segmentation of the tumor region has shown
advantages in image-based tumor phenotyping over traditionally
used clinical measures such as largest anterior-posterior,
transverse, and inferior-superior tumor dimensions on a
subjectively-chosen slice (Kumar et al., 2012; Gillies et al., 2016).
Such phenotyping may enable assessment of reflected biological
processes and assist in surgical and treatment planning. For
brain tumors, including sub-regions, segmentation is challenging
due to their highly heterogeneous appearance and shape, which
may be further complicated by imaging artifacts such as motion
and/or field inhomogeneity.

In recent years, deep convolutional neural networks (DCNN)
have demonstrated effectiveness in natural and medical image
segmentation tasks, including those associated with brain tumor
segmentation (Akkus et al., 2017; Havaei et al., 2017; Iqbal et al.,
2018; Naceur et al., 2018). However, one main issue in DCNN
methods is the reliance on a large number of training data with
expert annotations, which are often difficult to obtain, especially
from multiple institutions. To provide such a dataset to the
scientific community and a platform to compare and evaluate
different automatic segmentation algorithms for brain tumors,
the Multimodal Brain Tumor Segmentation Challenge (BraTS)
was organized using multi-institutional pre-operative MRI scans
for the segmentation of intrinsically heterogeneous brain tumor
sub-regions (Menze et al., 2015; Bakas et al., 2017a,b,b), with the
dataset growing every year. In the 2018 challenge, 285 training
cases, 66 validation cases, and 191 testing cases were provided.
Not surprisingly, DCNN-based models have quickly become the
mainstream in BraTS challenges (Bakas et al., 2018). Similar
to classification networks, one common DCNN method for
segmentation is to use the extracted small patches to predict
the class for the center voxel and slide these patches to cover
the entire volume; to improve the classification accuracy of the
center voxel, multi-scale patches with different receptive field
sizes can be extracted simultaneously as in Kamnisas et al.
(2017). In contrast, U-Net is a widely used network structure
that consists of a contracting path to capture context and a
symmetric expanding path that enables precise localization and
segmentation for the entire input image (Ronneberger et al.,
2015). If the input images and the corresponding output label
maps are 3-dimensional (3D), the original U-Net construction
can be extended by replacing 2D operations with their 3D
counterparts (Cicek et al., 2016). However, in such cases the
requirement for memory and computation speed is greatly
increased so that it may not be possible to use the entire 3D
volume as the input and output. To address this issue, one
method is to extract smaller 3D patches as the network input
and generate the label maps corresponding to these patches
(Li et al., 2018). To achieve a good segmentation performance,
data augmentation and optimization of patch extraction strategy
and network hyper-parameters are often performed. However,
in practice, it is very challenging to achieve a single “optimized”

model and it is possible that any model can suffer from random
errors. Using a similar concept as in traditional machine learning
tasks, an ensemble of multiple models can generally improve the
classification/segmentation accuracy as individual models may
make different errors and by averaging or majority voting, the
final number of errors can be reduced (Tan and Gilber, 2003).
In this study we propose the use of an ensemble of 3D U-Nets
with different hyper-parameters for brain tumor segmentation.
For each 3D U-Net, the smaller 3D patches will be extracted
to minimize memory overhead. To avoid extracting too many
background patches and not learning sufficient information to
segment tumors, a customized probability function is used to
guide the patch extraction process. Furthermore, during testing,
a sliding window approach is used to predict class labels with
overlap between patches as a testing augmentation method to
improve accuracy. On the network structure, althoughmany new
methods have been proposed that show superior performance
than the U-Net in segmentation tasks, such as the densely
connected network (Dense-Net) (Jegou et al., 2016; Stawiaski,
2019), a recent paper claimed that optimization on various
training and testing details based on vanilla U-Net can yield
robust and superior performance (Isensee et al., 2018). In our
study we will compare the U-Net with Dense-Net for this task
when other strategies are kept the same.

Survival prediction has a very high clinical value in prognosis
and patient management. In the BraTS challenge, to demonstrate
one potential clinical application of the segmentation results,
the task to predict patient overall survival measured in days
was also included. Additional data including patient age and
resection status was provided. For training cases, the overall
survival was also available for part of the dataset. Although
complicated models such as DCNN or random forests (Tustison
et al., 2015) can be used to capture sophisticated relationships
between the input features and the output of overall survival, one
main issue with these methods is overfitting, especially in this
task as the training data is very small compared with the huge
number of possible input features. Furthermore, the radiomics
features are often difficult to explain as they lack direct clinical
correspondence. Using the segmentation method proposed in
this study, the sub-regions of brain tumor are expected to be
accurately segmented so that various quantitative features can be
calculated. To reduce overfitting, we will utilize the quantitative
results and a robust linear model while limiting the number of
extracted features. The correlations of these features with overall
survival will also be analyzed.

METHODS

For the brain tumor segmentation task, the steps in our proposed
method include pre-processing of the images, patch extraction,
trainingmultiple models using a generic 3DU-Net structure with
different hyper-parameters, deployment of eachmodel for the full
volume prediction and the final ensemble step. For the survival
prediction task, the steps include feature extraction,model fitting,
and deployment. Data description andmethodological details are
provided in the following sections.

Frontiers in Computational Neuroscience | www.frontiersin.org 2 April 2020 | Volume 14 | Article 25

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Feng et al. Brain Tumor Segmentation and Survival

Dataset and Image Pre-processing
The datasets used in this study are provided by the BraTS
challenge organizers and contains multiple-institutional
clinically-acquired pre-operative multimodal MRI scans of
glioblastoma (GBM/HGG) and low-grade glioma (LGG)
containing (a) native (T1) and (b) post-contrast T1-weighted
(T1Gd), (c) T2-weighted (T2), and (d) Fluid Attenuated
Inversion Recovery (FLAIR) volumes. They were acquired
with different clinical protocols and various scanners. All the
imaging datasets have been segmented manually, by one to
four raters, following the same annotation protocol, and their
annotations were approved by experienced neuro-radiologists.
Annotations comprise the GD-enhancing tumor (ET—label
4), the peritumoral edema (ED—label 2), and the necrotic
and non-enhancing tumor core (NCR/NET—label 1). During
training, 285 imaging cases with annotations were provided
to all challenge participants. An additional 66 cases were used
as validation data which did not include ground truth labels.
Additionally, participants were able to upload their predictions
multiple times and get the corresponding evaluation results.
During the testing phase, 191 cases were provided and the teams
could only upload their results once in a 48-h period and receive
the final score.

To accommodate for the differences in imaging protocols,
pre-processing was performed by the challenge organizers. The
images from different MR sequences of the same subject were
first co-registered to the same anatomical template, the SRI24
multichannel atlas of normal adult human brain (Rohlfing et al.,
2010), followed by interpolation and zero-padding to the same
resolution (1 mm3) and same matrix size (240x240x155). The
field-of-view (FOV) was then unified accordingly (240mm along
the left-right and anterior-posterior directions and 155mm
along the superior-inferior direction). Brain extraction was also
performed using the method described in Bauer et al. (2012).
To improve the homogeneity and suppress noise, N4 bias-
correction (Tustison et al., 2010) and denoising using non-local
means (Manjon et al., 2010) are often used in various studies.
However, although these pre-processing steps can yield visually
improved image quality, as shown in our previous study (Feng
et al., 2018), we did not achieve an improved segmentation result
on the validation data set. Considering the bias-correction and
denoising algorithms are computationally intensive and time-
consuming, we did not perform these two steps. To unify the
intensity range, eachMR sequence is scaled to be between 0 and 1.

To achieve the second task to predict patient overall survival,
during training, 163 cases out of the total 285 had age, resection
status and survival information available. However, the cases
from The Cancer Imaging Archive (TCIA) and a few other
cases did not have the resection status available so they were
labeled as “NA.” For all other cases, the status was either
Gross Total Resection (GTR) or Subtotal Resection (STR). The
survival time was given in days. During validation, 53 cases
with age and resection status were provided. Similar with the
segmentation task, the participants could upload the prediction
multiple times. However, only 28 cases with resection status GTR
were evaluated. During testing, 130 cases were provided and 77
were evaluated.

Non-uniform Patch Extraction
For simplicity, we will use foreground to denote all tumor pixels
and background to denote the rest. There are several challenges
in directly using the whole image as the input to a 3D U-
Net: (1) the memory of a moderate GPU is often 12 Gb so
that in order to fit the model into the GPU, the network needs
to greatly reduce the number of features and/or the layers,
which often leads to a significant drop in performance as the
expressiveness of the network is much reduced; (2) the training
time will be greatly prolonged since more voxels contribute to
calculation of the gradients at each step and the number of
steps cannot be proportionally reduced during optimization; (3)
as the background voxels dominate the whole image, the class
imbalance will cause the model to focus on background if trained
with uniform loss, or prone to false positives if trained with
weighted loss that favors the foreground voxels. Therefore, to
more effectively utilize the training data, smaller patches were
extracted from each subject. As the foreground labels contain
much more variability and are the main targets to segment, more
patches from the foreground voxels should be extracted.

In implementation, during each epoch of the training process,
a random patch was extracted from each subject using non-
uniform probabilities. In extraction, the voxel was first chosen
as the center of the patch and the corresponding patch was
extracted based on the desired size. To make sure that each
extracted patch is within the whole image so that no padding is
required, the voxels close to the edge of the image were excluded
when determining the patch center. From all voxels valid to
be the patch center, the sampling was performed based on the
probability function pi,j,k calculated using the following equation:

pi,j,k =
si,j,k

∑

i,j,k si,j,k
(1)

in which si,j,k = 1 for all voxels with maximal intensity lower
than the 1st percentile, si,j,k = 6 for all foreground voxels and
si,j,k = 3 for the rest. These values were picked to greatly favor
the tumor regions and slightly favor the regions with normal
brain tissue compared with the background voxels. However, the
exact ratio was determined empirically without rigorous tuning.
For each training iteration, one patch was extracted using this
method. Since normal brain images are symmetric along the left-
right direction, a random flip along this direction was made after
patch extraction. No other augmentation was applied.

Before training, the per-input-channel mean and standard
deviation of extracted patches were calculated by running the
extraction process 400 times, with each time using a randomly
selected training subject. The extracted patches were then
normalized by subtracting the mean and dividing by the standard
deviation along each input channel.

Network Structure and Training
A 3D U-Net based network was used as the general structure,
as shown in Figure 1. Zero padding was used to make sure
the spatial dimension of the output is the same with the input.
For each encoding block, a VGG like network (Simonyan and
Zisserman, 2014) with two consecutive 3D convolutional layers
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of kernel size 3 followed by the activation function and batch
norm layers were used. The parametric rectilinear function
(PReLU) (Xu et al., 2015), given as:

f (x) = max (0, x) − αmax (0,−x) (2)

was used as the activation function (with trainable parameter α).
The number of features was doubled while the spatial dimension
was halved with every encoding block, as in the conventional U-
Net structure. A dropout layer with ratio 0.5 was added after the
last encoding block. Symmetric decoding blocks were used with
skip-connections from corresponding encoding blocks. Features
were concatenated to the de-convolution outputs. The extracted
segmentation map of the input patch was expanded to the multi-
class the ground truth labels (3 foreground classes and the
background). Cross entropy was used as the loss function. In
addition to a uniform loss among all classification labels, the
weighted loss, in which different labels can be assigned with
different weights, was also used.

It is shown that a wider network with large number of features
and a deeper network can increase the expressiveness and thus
performance of the network (Wu et al., 2016); furthermore, the
larger the patch size, the more spatial information to be used
in one patch; however, as mentioned before, the memory of the
GPU is often a limiting factor with 3D inputs. In our study, we
balanced the three parameters (number of encoding/decoding
blocks, input features at the first layer and patch size) to make
sure that the GPU memory is sufficient while favoring one
in one model. Specifically, if the patch size is increased, to
keep the same rule of doubling the number of filters every
block, the number of blocks cannot be more than 3 without
exceeding GPU memory. The exact choice of these parameters
was made empirically with the general principle to be as different
as possible to reduce the correlations of random errors by a
single parameter set. In addition, the weighted loss function,
which favors the foreground voxels, can often improve the
sensitivity but sacrifice specificity as it punishes more for missed
foreground segmentations. Therefore, for each combination of
these parameters, we used both the weighted and uniform loss
functions. Although the increase of the number of models may
further benefit the final results, in a way that is similar with
more averages, the time for training and testing will also increase
proportionally. Therefore, a total of six model was selected, with
detailed parameters shown in Table 1. N denotes the input patch
size, M denotes the number of encoding/decoding blocks and f

TABLE 1 | Detailed parameters for all 6 3D U-Net models.

Model# M N f Loss Type

1 3 64 96 Uniform

2 3 64 96 Weighted

3 4 64 96 Uniform

4 4 64 96 Weighted

5 3 80 64 Uniform

6 3 80 64 Weighted

denotes the input features at the first layer. For the weighted loss
function, 1.0 was used for background and 2.0 was used for each
of the foreground classes.

Training was performed on a Nvidia Titan Xp GPU with 12
Gb memory. Six hundred forty epochs were used. As mentioned
earlier, during each epoch, only one patch was extracted
from every subject. Subject orders were randomly permuted
every epoch. Implementation was based on the TensorFlow
framework. Batch size was set to 1 during training. During
testing, due to the sensitivity associated with smaller batch sizes,
all batch norm layers did not use the running statistics but
the statistics of the batch itself. This is the same as instance
normalization (Ulyanov et al., 2016) when the batch size is 1 as
it normalizes each feature map with its own mean and standard
deviation. The Adam optimizer was used with an initial learning
rate of 0.0005 without further adjustments during training as it
can self-adjust the rate of gradient update so that no manual
reduction of learning rate is necessary (Kingma and Ba, 2014).
The total training time was about 60 h.

Deployment of Each Segmentation Model
and Ensemble
Although the fully convolutional segmentation network can be
applied to the input images of any size, due to the fact that
the whole network with the entire image as the input cannot fit
into the memory during deployment, a sliding window approach
needs to be used to get the output for each subject. However, as
significant padding was made to generate the output label map
at the same size as the input, boundary voxels of a patch were
expected to yield unstable predictions when sliding the window
across the whole image without overlaps. To alleviate this
problem, a stride size at a fraction of the window size was used
and the output probability was averaged. In implementation,
the deployment window size was chosen to be the same as the
training window size, and the stride was chosen as ½ of the
window size. For each window, the original image and left-right
flipped image were both predicted, and the average probability
after flipping back the output of the flipped input was used as
the output. Therefore, each voxel, except for a few on the edge,
will be predicted 16 times when sliding across all directions.
Although smaller stride sizes can be used to further improve
the accuracy with more averages, the deployment time will be
increased 8 times for every ½ reduction of the window size and
thus quickly becomes unmanageable. Using the parameters as
mentioned on the same GPU, it took about 1min to generate the
output for the entire volume per subject. Instead of performing
a thresholding on the probability output to get the final labels,
the direct probability output after the last convolutional layer
was saved for each model as a measure of “confidence” for
each model.

The ensemble modeling process was rather straightforward.
The probability output of all classes from each model was
averaged to get the final probability output. The class with the
highest probability was selected as the final segmentation label
for each voxel.
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FIGURE 1 | An example 3D U-Net structure with 3 encoding and 3 decoding blocks.

Comparison of U-Net and Dense-Net
The Dense-Net was implemented following the standard
structure as in Jegou et al. (2016). Specifically, the block number
was 4, layers per block was 12 and the growth rate was 12. In
terms of architecture, the Dense-Net-BC (further compression)
was used. The uniform cross entropy function was used as the
loss function. As a fair comparison, only the U-Net with 4
encoding/decoding blocks and uniform loss function (model 3 in
Table 1) was compared. The patch extraction and augmentation
were kept the same for the two models. As the evaluation using
the BraTS validation and testing datasets requires submission
to the server of the BraTS organizers, which has a limit on the
number of allowed submissions, we only used the BraTS training
dataset and randomly split it with a 3:2 ratio for training and
validation in this comparison experiment.

Survival Prediction
To predict the post-surgery survival time measured in days,
extracted imaging features and non-imaging features were used
to construct a linear regression model. As MR images often
exhibit variations in imaging intensity and contrast, the intensity
values of the images were not directly used in our survival
modeling. Instead, six simple volumetric features were calculated
from the segmented labels of the three tumor sub-regions:
the enhancing tumor core, non-enhancing and necrotic region
and edema, with two features per region. During training, the

ground truth label maps were used; during validation and testing,
the automatically segmented label maps were used. For each
foreground class, the volume (V) was determined by summing
up the voxels whereas the surface area (S) was calculated
by summing up the magnitude of the gradients along three
directions, as described in the following equations

VROI =

∑

i,j,k

si,j,k (3)

SROI =

∑

i,j,k

si,j,k

√

(
∂s

∂i
)
2

+ (
∂s

∂ j
)
2

+ (
∂s

∂k
)
2

(4)

in which ROI denotes a specific foreground class and si,j,k = 1
for voxels that are classified to belong to this ROI and si,j,k = 0
otherwise. The volume represents the size of each sub-region and
thus may reflect the severity of the tumor. It is expected that the
larger the volume, the poorer the prognosis. The surface area is
another measure of the size; however, together with volume, it
can also serve as a measure for the shape. Given a fixed volume,
themore irregular the shape, the larger the surface area; therefore,
a larger surface area may indicate the aggressiveness of the tumor
and the increased difficulty in surgery.

Age and resection status were used as non-imaging clinical
features. As there were two classes of resection status and many
missing values of this status, a two-dimensional feature vector
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was used to represent the status, given as GTR: (1, 0), STR: (0,
1), and NA: (0, 0). A linear regression model was employed after
normalizing each input feature to zero mean and unit standard
deviation. As the input feature size is 9, the risk for overfitting is
greatly reduced.

For evaluation, in addition to mean and median square error
of survival time predictions, the classification of subjects as
long-survivors (e.g., >15 months), short-survivors (e.g., <10
months), and mid-survivors (e.g., between 10 and 15 months)
was performed. For the challenge, ranking of the participating
teams was based on accuracy (i.e., the number of correctly
classified patients) with respect to this grouping.

RESULTS

Comparison of U-Net and Dense-Net
Among the 285 training subjects, 171 were used for training
the two models and 114 were used for testing. The dice indexes
of the enhanced tumor (ET), whole tumor (WT) and tumor
core (TC) were calculated and compared, as shown in Figure 2.
The blue bars show the results from U-Net and the green
bars show those from Dense-Net. The two methods yield very
similar performances with the Dense-Net having slightly better
performance in tumor core. However, the paired Student’s t-
test was performed between the two methods and showed no
statistically significant differences when the threshold of p-value
was set at 0.05.

Brain Tumor Segmentation
All 285 training subjects were used in the training process.
66 subjects were provided as validation. The dice indexes,
sensitivities and specificities, 95% Hausdorff distances of ET, WT,

FIGURE 2 | Comparison of dice indexes using U-Net and Dense-Net. Green

bars show the results using U-Net; blue bars show the results using

Dense-Net. The two models have very similar performances without any

statistically significant differences.

and TC were automatically calculated after submitting to the
CBICA’s Image Processing Portal. ET corresponds to label 4 in the
direct output label maps; WT is the union of all non-background
label maps including label 1, 2, and 4; TC is the union of ET and
NCR/NET, or label 1 and 4. With multiple submissions, we were
able to compare the performances of each individual model and
the final ensemble.

Table 2 shows themeanDice scores (Dice) and 95%Hausdorff
distances (Dist) of ET, WT and TC in mm for the 6 individual
models and the ensemble of them. The model with the best
performance of each metric is highlighted. For the evaluation,
sensitivity and specificity were also calculated to determine
over- or under-segmentations of tumor sub-regions. Detailed
descriptions of the evaluation metrics were provided in Menze
et al. (2015). As we found that sensitivity and specificity were
highly correlated with the Dice indexes, they are not included
in the table. The best performance of each evaluation metric is
highlighted. For WT, all 3D U-Net models perform similarly,
except for a slightly worse performance with model 4. However,
model 4 has the highest Dice for ET. The rankings based on
Dice scores are also not consistent with the rankings based on
the distance measures. This shows that no single parameter
set has clear advantage over others. However, the ensemble
of them has the best overall Dice scores as compared with
each individual model. Paired student’s t-tests were performed
between each model and the ensemble on Dice scores with the
red scores showing statistically inferior performances of one
model compared with the ensemble (p < 0.05). For WT, model
1–5 all showed significant inferior performances. For model
6, although no statistical significance was found, the p-values
were close to 0.05. The distance metrics show a wider range and
the ensemble does not achieve the smallest values. However,
as the Haudorff distance is largely determined by the “worst”
pixels, it may be less reliable in obtaining an overall performance
evaluation as compared with Dice scores. Despite this, the
metrics in the ensemble method for all three sub-regions are
all on the lower end, showing increased robustness. It is also
noticed that weighted cross-entropy loss has high sensitivity but
lower specificity compared with the uniform counterpart, which
is likely due to the fact that by assigning more weights to the
foreground, the network tends to be more aggressive in assigning
foreground labels.

Figures 3, 4 show two slices (axial slice 76 and 81)
of the automatically segmented labels overlaid on the

TABLE 2 | Performances of each individual model and the ensemble.

Model # Dice_ET Dice_WT Dice_TC Dist_ET Dist_WT Dist_TC

1 0.7839 0.9061 0.8233 4.0496 4.0401 6.5389

2 0.7681 0.9070 0.8126 4.2215 6.1359 6.0561

3 0.7538 0.9072 0.8236 4.7615 5.7021 9.0000

4 0.7874 0.9001 0.8088 3.9195 6.3093 6.9586

5 0.7704 0.9061 0.8227 4.0314 4.7068 6.5905

6 0.7819 0.9097 0.8217 3.9368 3.6666 6.3705

Ensemble 0.7946 0.9114 0.8304 3.9679 3.7842 6.5234

Bold values show the model with the best performance of each metric.
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T1Gd and T2 images, respectively. The showed case was
“Brats18_CBICA_BHF_1” and was randomly selected from
the validation dataset for demonstration. A single model may
suffer from under- or over-segmentation while the average of
multiple models achieves a more stable performance, which is
also closer to the ground-truth, as shown with the improved Dice
scores. Furthermore, the ensemble of all 6 models yields a much
smoother boundary for different sub-regions and eliminates a
few isolated regions, which are likely false positives.

In 191 testing cases, as only one submission was allowed, we
submitted the final ensemble results for evaluation. The mean
Dice scores for ET, WT and TC were 0.754, 0.878, and 0.799
and the 95%Hausdorff distances were 20.29, 7.41, and 22.06mm,
respectively. It is also noted that 2 of the testing cases failed to
predict any tumor voxels, resulting in Dice scores of 0. Compared
with validation cases, the average performance for testing cases
was much worse.

The paper published by the challenge organizers (Bakas et al.,
2018) summarized the performance by all 63 participating teams,
including ours. The ranking was based on the testing cases
as only one submission is allowed to avoid learning from the
submissions. Our team (xfeng) achieved the 9th place in the
segmentation task [Figure 7 in Bakas et al. (2018)]. However, the
differences among the top teams were relatively small.

Overall Survival Prediction
Figure 5 plots the extracted features against the overall survival
in the training data. The correlation coefficients between the
six radiomic features from images and the overall survival
were also calculated as well as between age and the survival.
Negative correlations between imaging features and the survival
are observed, indicating that the larger the specific tumor sub-
regions, the shorter the survival will be. To better illustrate
this trend, we binned the overall survival into the short-term
(<10 months), medium-term (10–15 months) and long-term
(>15 months) and drawn the box plots for survivals, as shown
in Figure 6. The general trend is consistent with the previous
results, showing that the larger the volume and surface, the worse
the prognosis. The correlation between age and survival is also
expected. Furthermore, the correlation between age and survival
is the strongest among all selected features. For resection status,
patients who underwent GTR have longer survival rates than
the STR patients. However, no statistical differences were found
using a Student’s t-test.

A multivariate linear regression model was trained with all
the features from 163 training subjects. For the 28 validation
cases, the accuracy was 0.321. The mean and median errors
were 314.8 and 278.85 days, respectively. For the 77 testing
cases, accuracy was 0.61 corresponding to mean and median
errors of 481.4 and 185.22 days, respectively. It should be
noted that the accuracy for the testing cases was much higher
than for the validation cases. We did not use the validation
cases to tune any parameters in training the model due to
potential overfitting. Our testing performance ranked 1st among
all participants, indicating the robustness of the linear model.
Compared with other participating teams, who used radiomics
and/or machine learning based modeling, this simple strategy

yielded the best accuracy. It is noted that one team used the age
as the only predictor and used a linear regression model similar
to our method and achieved the 3rd place in survival task, as
summarized in Bakas et al. (2018).

DISCUSSION AND CONCLUSIONS

In this paper we developed a brain tumor segmentation method
using an ensemble of 3D U-Nets. Six networks with different
numbers of encoding/decoding blocks, input patch sizes and
different weights for loss were trained and ensembled together
by averaging the final prediction probabilities. The results
showed improvements with the ensemble model compared with
any of the single models. For the survival prediction task,
we extracted six simple features from the segmentation labels
and used a multivariate linear regression by combining them
with non-imaging clinical features such as age and resection
status. The survival prediction achieved 1st place among all
challenge participants.

In terms of network structure, we found it very difficult to
pick the “best” model and/or hyper-parameter set since most
models perform very similarly. The comparison between U-Net
and Dense-Net showed that it is hard to pick a clear winner
for network structure. It is indeed one disadvantage of DCNN
as the “black-box” nature of the network makes it challenging
to analyze the effect of network structure and parameter except
from the final performance. Furthermore, the extremely long
computation times and randomness in training the model
and selected validation datasets makes comparison of different
models difficult. In this paper, we empirically determined a few
design options such as the usage of 3D U-Net and non-uniform
patch extraction. Multiple models with architectural variation
can form an ensemble to overcome random errors made by any
individual model. Similar to using averages in measurements to
improve signal-to-noise ratio, in which the marginal increase of
performance can reduce as the number of averages increases,
we aim to strike a balance between training and validation
time and the expected performance. The ensemble yielded an
improved performance in both quantitative measures and visual
examination; however, one limitation of our approach is the
lack of objective measures to achieve optimal combination of
models. Instead, we empirically determined number of models
to be 6 and chose the corresponding hyperparameters. An
interesting alternative is to use grid search to gain an optimal
set of hyperparameters, which is currently a popular research
topic; however, one possible concern is that this may lead to
overfitting as the validation set is much smaller (66 cases)
compared with the training and testing dataset; to mitigate this
concern, N-fold cross validation can be used in combination
with the grid search method, which will be performed in
future studies.

Compared with the patch-based model that only predicts
the center pixel, the 3D U-Net predicts the segmentation
label map for the full input. As it is limited by the GPU
memory to use the full image as the input, smaller patches
are extracted. However, this can lead to reduced receptive field,
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FIGURE 3 | Automatically segmented sub-regions from models 1–6 and the ensemble model. The underlying image is the corresponding T1Gd from the validation

case “Brats18_CBICA_BHF_1.” Red, yellow and blue delineate the predicted boundaries of the total tumor, enhanced tumor core, and peritumoral edema,

respectively.

FIGURE 4 | Automatically segmented sub-regions from model 1–6 and the ensembled model. The underlying image is the corresponding T2 from the validation case

“Brats18_CBICA_BHF_1.” Red, yellow and blue delineate the predicted boundaries of the total tumor, enhanced tumor core, and peritumoral edema, respectively.

which is even worse for the pixels on the edge as only half
of the receptive field contains information. We hypothesize
that with a much larger patch size such as 128x128x128,
the performance can be improved, however, the majority of
GPUs only have 12 Gb memory, which cannot deal with
such an input without significantly sacrificing the network
complexity. To overcome the reduced receptive field of the

edge pixels, we used significant overlap during deployment in a
sliding windows fashion and average the output, which shows
performance improvement.

For pre-processing, although in many studies the bias
correction was commonly used, as in our previous experiment,
we did not find any significant benefit in the proposed
method. Although bias correction can greatly improve the
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FIGURE 5 | Relationships between each extracted feature and the overall survival. The correlation coefficients are shown as well. Age shows the strongest negative

correlation with survival and all imaging features show moderate to very weak negative correlations.

quality of the image by removing inhomogeneity artifacts and
thus segmentation performance for any intensity-based method,
DCNN may be able to learn and overcome any bias in the
image so that it may not be necessary to pre-compensate for it.
As it is time-consuming to run the bias correction, we did not
perform this step in our final experiments. However, additional
experiments on other datasets are required to continue the
investigation on this topic.

For the segmentation results, as we can get the evaluation for
each individual case, it is noted that the median metrics were
significantly higher than the mean metrics. For example, the
median Dice scores were 0.870, 0.926, and 0.911 for ET, WT,
and TC in the final ensemble model. It makes sense in that the
theoretical maximum Dice score is 1 and minimum Dice score is
0. However, we noted that in several cases, the Dice scores were
as low as 0 for ET and TC, meaning that the model completely
missed the corresponding regions. Figure 7 shows an example
(“Brats18_TCIA10_195_1”) with 0 Dice score for ET with post-
contrast T1. Red and blue show the contours for WT and edema,
respectively. No ET is detected in this case. However, it is indeed
very difficult to identify the enhanced regions as the contrast
enhancement is weak. Most of the subjects had the WT Dice
score larger than 0.9, indicating very high segmentation quality.
However, one case had a much lower Dice of 0.63. A careful
examination showed that this case predicted a very small tumor
region and the contrast was visually weak. It shows that although
in most cases the automatic segmentation yields very accurate
result, in difficult cases with reduced contrast and/or small tumor
region, the automatic result may be sub-optimal and manual
expert examination and correction is still required.

Comparing the testing with validation cases, we noticed
a significant gap in performance. Due to the design of the
challenge, the participants can submit multiple times for the
validation cases to gain any performance improvements so that
the model may overfit on the validation cases; however, in
our study we did not use the validation cases to perform any
hyper-parameter tuning to select an optimal model. Therefore,
the performance differences are likely due to more difficult
cases in the testing dataset, including the two that the model
completely failed. One possible reason is that the testing data
covers a wide range of MR imaging protocols and field strength,
some even with moderate to severe artifacts due to motion
and/or inhomogeneity in one or multiple sequences, causing
difficulty in achieving a consistent segmentation performance.
Further investigation to continue to improve the performance
and robustness of the model, especially for these difficulty cases,
will be performed.

Our segmentationmethod ranked 9th in the challenge. The 1st
place winner used a patch size of 128x128x128 with autoencoder
regularization (Myronenko, 2019) and the 2nd place used an
optimized U-Net (Isensee et al., 2019). As all the top teams had
very similar performances and there were many different detailed
strategies in implementation, it is unclear which ones are the
dominating factor for the superior performance. One possible
strategy is to apply post-processing to our method as the removal
of vessels may have a significant impact on the final score. We
also participated in the 2017 BraTS challenge using a singlemodel
(model 1) and ranked 6th in it [Figure 5 in Myronenko (2019)],
showing that the U-Net can be competitive in this challenge with
optimization. Further study will be performed on this topic.
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FIGURE 6 | Relationships between the volume and surface features and the binned overall survival (short-, medium-, and long-term survival). The general trend

shows that the smaller the volume and surface, the longer the survival.

FIGURE 7 | One case (“Brats18_TCIA10_195_1”) from the validation dataset showing failed segmentation for ET region on post-contrast T1. Red and blue show the

boundaries for whole tumor and edema, respectively. No enhanced region is detected. It is indeed very difficult to determine the exact enhanced areas in the images,

even for human experts.
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For the survival prediction task, since the model is very likely
to overfit with the given small dataset and since patient overall
survival is affected by many aspects which are not captured in
this dataset, we used a multivariate linear regression model as the
safest option to minimize overfitting, although at the cost of its
expressiveness. As volumetric features are assumed to be most
relevant to overall survival, we only included the volumes and
surface areas of different sub-regions and ignored other high-
order features to reduce overfitting. In addition, these features
are easy to interpret as they have direct clinical correspondences;
therefore, their clinical adoption can be potentially much easier.
This proved to be effective in the challenge; although exploration
of additional features and more expressive models with a
larger dataset could possibly improve the accuracy of survival
prediction. Furthermore, adding other clinical features such
as molecular and genetic types may continue to improve the
accuracy of prognosis.

In conclusion, we developed an automatic brain tumor
segmentation method using an ensemble of 3D U-Nets and
showed the superiority over a single model. Based on the
segmentation results, we extracted a few simple features
and examined their correlations with the overall survival. A
multivariate linear regression model was trained to predict the
survival and showed high accuracy.
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