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Abstract: Deep learning has surged in popularity in recent years, notably in the domains of medical
image processing, medical image analysis, and bioinformatics. In this study, we offer a completely
autonomous brain tumour segmentation approach based on deep neural networks (DNNs). We
describe a unique CNN architecture which varies from those usually used in computer vision. The
classification of tumour cells is very difficult due to their heterogeneous nature. From a visual
learning and brain tumour recognition point of view, a convolutional neural network (CNN) is the
most extensively used machine learning algorithm. This paper presents a CNN model along with
parametric optimization approaches for analysing brain tumour magnetic resonance images. The
accuracy percentage in the simulation of the above-mentioned model is exactly 100% throughout the
nine runs, i.e., Taguchi’s L9 design of experiment. This comparative analysis of all three algorithms
will pique the interest of readers who are interested in applying these techniques to a variety of
technical and medical challenges. In this work, the authors have tuned the parameters of the
convolutional neural network approach, which is applied to the dataset of Brain MRIs to detect any
portion of a tumour, through new advanced optimization techniques, i.e., SFOA, FBIA and MGA.

Keywords: deep learning; parametric optimization; metaheuristic approaches; brain tumour

1. Introduction

A brain tumour is an abnormal cell development in the human brain. Many distinct
forms of brain tumours occur in diverse areas of the globe. Some brain tumours are of
a benign type (non-cancerous) and some brain tumours are of a malignant (cancerous)
type. Tumours can start in the brain or in cancers elsewhere in other parts of human body
and can spread to the brain. The major symptoms of brain tumours are strong headaches,
blurred visibility, and loss of balance, mental confusion and seizures [1]. The treatments for
human brain tumours include surgery, radiation therapy and chemotherapy. The human
brain contains billions of active cells and is very complex to analyse. Today, one of the
key reasons for increased mortality among children and adults is brain tumours. Primary
brain tumours occur in roughly 250,000 individuals a year worldwide, and account for
up to less than 2 percent of malignancies. This anomaly is usually indicative of a brain
tumour. The position of such tumours is determined using MRI [2]. Some significant
concern in the division of the pictures is the grouping of highlighted vectors that are
comparable. Subsequently, the mining of adequate highlights is an essential prerequisite
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for effectively sectioning the pictures. The valuable component extraction of pictures is
a troublesome errand because of the complexities in the designs of the different tissues
in the cerebrum [3,4]. The human brain is shown in Figure 1, with the different main
parts annotated.

Figure 1. Diagram of the human brain [5].

Nowadays, deep learning-based approaches are widely utilized for segmenting, classi-
fying and optimizing medical images. The process of the segmentation of images involves
classification on the basis of pixel-to-pixel techniques. The primary purpose may be fulfilled
using a typical non-end-to-end convolutional neural network (CNN)-based classifier to
predict the centre pixel of each patch of medical pictures. An important tool for image
detection and prediction is the convolutional neural network (CNN). However, CNNs are
mostly used for segmenting, classifying, and predicting patient recovery times for brain
tumours [6–9]. Havaei et al. [10] developed a programmed technique for brain tumour
segmentation based on flexible, high-capacity deep neural networks (DNNs). The chal-
lenges regarding the irregularity of the names of the tumour are disposed of by utilizing
a preparation strategy that includes two stages. The division of the tumour district is a
significant assignment for disease analysis, treatment and the assessment of treatment
results. For tumour segmentation, a variety of semi-automatic and automatic methods
and techniques are used [11]. Zhao et al. [6] established a strategy for integrating fully
conventional neural networks (FCNNs) and conditional random fields (CRFs) for detecting
the segmentation of brain tumours by utilising 2D image patches and slices. They utilized
picture data from BRATS 2013, 2015 and 2016 for their experiments. They suggested that
with this above-mentioned approach, the segmentation robustness parameters, i.e., the
image pitch size and the number of training images, can be improved. They also achieved
significant performance with a tumour segmentation model which is based upon flair,
T1CE, T1 and T2 scans. Figure 2 shows the different categories of brain tumours with
MRI images.
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Figure 2. Different types of brain tumour [12].

Picture textures [13], local histograms [14] and structural tensor eigenvalues [15] are
all features of MRIs that are exploited in brain tumour segmentation research. Sarham [16]
studied specifically the three types of brain tumour, i.e., meningioma, glioma and pituitary
tumours, by using wavelet decomposition and convolutional neural networks (CNNs),
and found an accuracy rate of 99.3% in his experimentation. He suggested that the higher
success rate was obtained by applying the proposed wavelet-based CNN (WCNN) ap-
proach instead of the conventional support vector method (SVM) technique. Siar and
Teshnehlab [17] applied the combination of a feature extraction algorithm and the convolu-
tional neural network (CNN) for the detection of brain tumours and found an accuracy
rate of 99.12% in their experimentation of 153 patient brain MRI images. The division of the
pictures in the applications, as with the identification of irregularity, careful arranging and
post-medical procedure evaluation in the clinical field, is a critical errand. Consequently,
numerous strategies have been proposed whereby the adequacy of division is judged
according to the comparison of two unmistakable surfaces where differences can be high-
lighted, alongside the use of the multimodal MRI pictures, for sectioning and grouping the
paediatric cerebrum tumours [2]. For inferring the fractal spotlight of one of the surfaces,
the piecewise triangular prism surface area (PTPSA) algorithm is used, while the fractional
Brownian motion algorithm is used to obtain the texture of the other. Using a symmetric
study, Roy and Bandyopadhyay observed and identified the tumour from a brain MRI [18].

An assortment of picture-preparing procedures and strategies have been utilized for
the determination and cure of a cerebrum tumour. Division is the major advance in picture
handling methods and is utilized to separate the contaminated area of cerebrum tissue from
MRIs [19]. Raja and Rani [20] studied brain tumour classifications by applying a hybrid
deep learning encoder with a Bayesian fuzzy clustering-based segmentation technique to
the BRATS 2015 database in a MATLAB environment and found a classification accuracy of
98.5%. They also employed the technique of Bayesian fuzzy clustering (BFC) for magnetic
resonance imaging categorization and, to classify the images, applied the hybrid approach
of utilising a deep auto-encoder (DAE)-based Jaya optimization algorithm (JOA) with the
softmax regression method. Mustaqeem et al. [21] devised and published a useful algorithm
for identifying brain tumours. Thresholding and watershed approaches were included
in the established division strategy. The pictures of the human brains acquired from the
MRI exam were utilized for the division interaction, yet this calculation cannot be utilized
in the division of 3D pictures. Stacked de-noising auto-encoders [22] and convolutional
restricted Boltzman machines [23] are two more deep learning-based methods for tumour
segmentation, detection and prediction.

Jia and Chen [24] presented a fully automatic heterogeneous segmentation using sup-
port vector machine (FAHS-SVM) technique for the identification and segmentation of MRI
images of human brains and obtained a 98.51 percent accuracy in the detection of aberrant
and normal tissue in their studies. Mahalakshmi and Velmurugan [25] built up a calculation
to recognize cerebrum tumours utilizing molecule swarm advancement. CNNs outperform
all other deep learning approaches and techniques in image segmentation, detection and
prediction. Brain tumour segmentation, grouping and prediction methods were built using
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two-dimensional CNNs (2D-CNNs) [26–29] and three-dimensional CNNs [30,31]. The pic-
ture patch is divided into various groups by the segmentation processes, such as necrosis,
stable tissues, edema, enhancing heart and non-enhancing core. Different characterization
and division strategies that the PC helps with finding are the significant issues faced today
in the MRI analysis of the human cerebrum, and this was studied by El-Dahshan et al. [32].
Dong et al. [33] established a completely automated system for segmenting brain tumours
using deep convolutional networks based on U-Net. A technique was built by Padole and
Chaudhari [34] for identifying the brain tumours in MRI pictures through part examination
where normalized cut (Ncut) and mean shift algorithms were combined to identify the
cerebrum tumour surface zone naturally.

For the above state-of-the-art methods, we conclude that most of the researchers used
the optimization method to improve the accuracy, not to minimize the training loss. In this
paper, we explain three sophisticated optimization algorithms to minimize training loss,
after nine sets of simulations. Initially we computed the loss values after obtaining 100%
accuracy using the predictions of CNN. Here, the loss value is considered to be the output
response for the noble metaheuristic optimization approaches. For that, we used three
metaheuristic optimization approaches: the sunflower optimization algorithm (SFOA),
the forensic-based investigation algorithm (FBIA) and the material generation algorithm
(MGA). The SFOA is mainly used for providing robustness with static measurements. The
FBIA has high efficiency and high robustness for real and high-dimensional problems.
It has faster convergence with shorter computational time. The MGA is used to design
the optimized engineering problem. The sunflower optimization algorithm and material
generation algorithm approaches have produced the best outcomes of the three offered
strategies. This paper is split into several sections: the next part deals with the proposed
CNN, Section 3 explains the different optimization approaches for training loss, Section 4
compares the result of the optimization approaches with the learning rate and, finally,
Section 5 provides the conclusion derived from the study output and outlines the scope of
its potential development.

2. Proposed CNN Model in Brain Tumour Dataset

In this analysis, the python code is simulated on the Kaggle platform using TensorFlow,
and the optimized “Adam” is chosen for classifying the brain tumours in the whole
simulation. Similarly, other python libraries were utilized, such as “numpy”, “pandas”,
“time”, “glob”, “matplotlib”, “os”, “cv2” and “shutil” libraries for building the python
code and for classifying the considered dataset of brain tumours, where both the healthy
and tumour-affected brain magnetic resonance images were presented. The dataset that is
considered in this analysis has already undergone a pre-processing phase, with a total of
253 brain MRIs. Out of the 253 brain medical images, 98 images are in the form of a healthy
condition and the rest of the 155 images are tumour-affected images [35]. The authors used
20% of the total dataset for testing purposes and the remaining 80% for training the model.

Firstly, the data frame was created with all the images, with the proper directory
location in the computer system. The next step was to visualize the images in the Kaggle
platform to check the visibility, with figures the size of 16 × 12. Furthermore, the splitting
of the data frame was carried out by varying the parameter of the train size over three
levels, i.e., 0.85, 0.90 and 0.95. Then, the image data generator operation was performed
with a target size of 299 and a batch size of 64, which was kept constant throughout the
whole simulation. In the next step, the ResNetV2 model was fitted to the above-mentioned
dataset with a zero value for the weights. Furthermore, with the same ResNetV2 model
architecture and loading weights, the activation of the “Relu” type function was introduced,
with 128 weights in the layers’ dense input. Similarly, for the layers’ dropout input case, a
0.2 constant value was taken, and for the last layers dense input, the “sigmoid” type function
was used. In the further step, the above-mentioned CNN model was compiled with the loss
and the metrics with varying learning rates, i.e., 0.0001, 0.0002 and 0.0003. Then, the call-
back step was carried out with a constant value of the patient as 1, stopping the patient’s
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value at 3, and with the factor value as 0.5. The training of the prescribed CNN model was
carried out with varying epoch numbers, such as 10, 20 and 30. Finally, the predictions
of the CNN model were performed where the accuracy value was found to be 1, which
meant that the model had 100% accuracy. Lastly, the loss value was computed. Here, the
loss value is considered to be the output response for the noble metaheuristic optimization
approach. The training loss value should be minimized for the correct classification of the
tumour-affected brain MRIs and the healthy ones. Figure 3 shows the simulation images of
brain tumours in the Kaggle platform at the optimum setting.

Figure 3. Simulation images of brain tumours in the Kaggle platform [36].

3. Optimization Approaches
3.1. Sunflower Optimization Algorithm (SFOA)

The life cycle of a sunflower is predictable: as with the needles of a clock, they emerge
and accompany the Sun each day. They become the opposite way at night, awaiting the
arrival of the Sun the following day’s morning. Another key nature-based optimization is
the inverse square law for radiation. Thus, the quantity of heat Qi absorbed by each plant
is computed as follows [37,38]:

Qi =
P

4πr2
i

(1)

where P indicates the power of the source and ri denotes the distance between the current
supreme and the plant i. The sunflowers’ route to the Sun is defined as follows:

⇀
Si =

X∗ − Xi
‖ X∗ − Xi ‖

, i = 1, 2, . . . , np (2)

The stride of the sunflowers in the direction “s” is determined as follows:

di = λ× Pi(‖ Xi − Xi−1 ‖)× ‖ Xi − Xi−1 ‖ (3)

where λ is the perpetual value that denotes a plant’s “inertial” displacement, and Pi(Xi − Xi−1)
is the probability of pollination [39].

The maximum step is defined in the following manner:

dmax =
‖ Xmax − Xmin ‖

2× Npop
(4)

where Xmax and Xmin denote the maximum and minimum values, respectively, and Npop
denotes the total number of plants.
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Within the plant population, the most recent planting would be:

→
Xi+1 =

→
Xi + di ×

→
s i (5)

The method begins by generating an even or random population of individuals. The
appraisal of each individual permits us to pick which one will be converted into the Sun.
Though it is intended to include the potential to function with multiple suns in a future
edition, this research is presently constrained to one. After that, similar to sunflowers,
all new species will align themselves with the Sun and migrate in a random controlled
fashion. Around the Sun, highland plants will pollinate [40]. The SFOA is used find the best
solutions to the problem to minimize the fitness function. Sasank and Venkateswarlu [41]
used the SFOA to obtain better accuracy when applying the BRATs dataset. They are used
the model to increase the accuracy value, not to minimize the training loss.

3.2. Forensic-Based Investigation Algorithm (FBIA)

In the year 2020, Chou and Nguyen published the forensic-based investigation algo-
rithm (FBIA), which they developed. It is a metaheuristic optimizer in the traditional sense.
Criminals are caught because of the tactics of inquiry, location and stalking that police
officers use to apprehend them. This is the primary goal of the FBIA. The following five
processes are taken into consideration in a large-scale forensic investigation: case opening,
interpretation of results, investigation direction, actions and prosecution [42].

The first phase is for police officers to gather information regarding the crime; this
data is then used to direct the investigative team’s efforts. They conduct an investigation
into the crime scene, the victim, potential suspects and their prior knowledge of the crime.
Additional tasks include locating witnesses and directing their questions to them, as well as
conducting the investigation. During the interpretation of results phase, the team examines
the information that has been received and attempts to match it with the impressions that
have been obtained in order to identify potential suspects. Following that, the investigating
team conjures up a criminal situation, reasons for the crime and lines of investigation
to go along with the findings. The fourth phase is when the investigation team comes
to a conclusion about its findings. In this manner, the truth is accepted through legal
accountability [43]. The FBI algorithm is divided into four steps, which are as follows:

Step A1:
This phase is referred to as the “interpretation of findings”, and it is at this stage that

the team analyses the data and identifies the first potential suspect’s location. XAi is used
in this phase to determine a new suspected location based on information from previous
suspected locations. Equation (6) identifies each individual direction:

XA1ij = XA1ij + ((rand1 − 0.5) ∗ 2) ∗

XAij −

(
XAkj + XAhj

)
2

 (6)

where j = 1, 2, ..., D, D is the number of dimensions, ((rand1 − 0.5) × 2) represents a random
number in the range [−1,1], rand1 is a random number in the range [0,1], k, h, and i are
three suspected locations: {k, h, i} ∈ {1, 2, ..., NP}, NP is the number of the population and; k
and h are chosen randomly.

Step A2:
This is referred to as the “direction of inquiry”. To determine the most probable

suspected location, investigators evaluate the probability of each suspected place to that of
other possible sites. Pworst has the lowest probability (the worst objective function value),
Pbest has the greatest probability (the best objective function value) and Xbest is the best
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location based on the minimization problem. The following Equation (7) has demonstrated
probabilities for each location, i.e., Prob(XAi):

Prob(XA1i) =

(
Pworst − PAi

)
(Pworst − Pbest)

(7)

The best person and other people guide the path of XAi. As with Step A1, Equation (8)
updates the new probable location XA2ij. Then, the value of the objective function (possi-
bility) is determined to determine which one should be updated:

XA2ij = Xbest + XAdj + rand5 ∗
(

XAej + XA f j

)
(8)

where Xbest is the updated best position from Step A1, rand5 is a random number between
0 and 1, d, e, f and i are four possible places: {d, e, f, i} ∈ {1, 2,..., NP} and d, e and f are
chosen randomly.

Step B1:
This is the “actions” phase and here, each agent Bi strives to locate the ideal position

that has the greatest objective function value (the best option) in regard to Equation (9). If it
obtains a more favourable objective function value than the previous site’s (pBi), the newly
suggested location is updated:

XB1ij = rand6∗XBij + rand7 ∗
(

Xbest + XBij

)
(9)

Where Xbest is the location that investigators found, rand6 and rand7 are two random
numbers in the range between 0 and 1 and j = 1, 2, . . . , D.

Step B2:
This is an expanded version of the “actions” phase. In Step B2, each agent Bi is bound

to all other agents in order to establish a new search direction. Agent Bi travels to the
finest site and is swayed by the other team members. If pBr (the probability of agent Br) is
greater than pBi, Equation (10) is used to determine the new position of agent Bi; otherwise,
Equation (11) is used:

XB2ij = XBrj + rand8 ∗ (XBrj − XBij) + rand9 ∗
(

Xbest − XBrj

)
(10)

XB2ij = XBrj + rand10 ∗ (XBij − XBrj) + rand11 ∗
(

Xbest − XBij

)
(11)

where Xbest is the best location found in Step B2, rand8, rand9, rand10 and rand11 are the
random number in the range [0,1], r and i are two police locations: {r, i} ∈ {1, 2,..., NP}, r is
chosen randomly and j = 1, 2, . . . , D [44,45].

3.3. Material Generation Algorithm (MGA)

The material generation algorithm (MGA) is a revolutionary approach that was de-
veloped and is used to assist engineers in generating the best solutions to engineering
problems [46]. Some complex and essential aspects of material chemistry, such as the
arrangement of chemical molecules and the chemical processes involved in the production
of new materials, are thought to be ideas inspired by the MGA.

Inspiration:
Materials are composed of a number of different substances and are made up of the

stuff of the cosmos that have both volume and mass. The process of creating new materials
entails the possibility for various substances to mix with one another in order to generate
new materials with improved functionality and higher energy levels than those that have
previously existed. Materials are composed of elements, which are the essential building
units that cannot be separated or changed into other elements. Materials are generated
at several scales, including the atomic, nano, micro and macro scales, in order to govern
their specific properties and improve their performance. A uniquely generated substance is
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characterized based on its general characteristics and particular characteristics, as well as
the physical and chemical changes that have an influence on its behaviour, among other
things. When it comes to the material research area, material chemistry ranks as one of
the most important subjects to study. Material engineers investigate the configuration
of materials in order to increase the unique characteristics of materials, resulting in the
development of new materials that are more sustainable and superior to the materials
that have previously been developed. Chemical changes in materials are achieved by the
reaction of distinct substances with one another and by combining them. In general, the
transferring or sharing of electrons between the atoms of different materials has an effect
on the chemical properties of the materials. The chemical bonds formed between materials,
in particular, are responsible for such transformations. As part of this research, the three
essential parts of material chemistry (compounds, reactions and stability) were investigated
in order to develop a metaheuristic optimization approach. Figure 4 shows the flowchart
of MGA approach which was adopted from its classical theory of the algorithm.

Figure 4. Flowchart of the material generation algorithm [46].
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4. Results and Discussion

After obtaining the results of the proposed CNN model, the final outputs, including
the accuracy percentage and the training loss, were computed from the nine simulations.
The Taguchi L9 orthogonal design of the experiment, with the training loss output values,
is tabulated in Table 1. Furthermore, the above-mentioned nature-inspired algorithms have
been applied to optimize the input parameters of the CNN model. The corresponding
optimal parametric settings values are tabulated in Table 2, where the input parameters
of the learning rate and the number of epochs were the same value in all three proposed
optimization techniques. From this table, it is shown that the maximum value of the train
size and the number of epochs and the lowest value of the learning rate gave the minimum
value of the output response, i.e., the training loss in the proposed CNN model. The
regression model was calculated from the L9 Taguchi array using MINITAB V20 software
and the regression equation with its constraints is given as follows:

Table 1. Results for training loss using Taguchi’s L9 orthogonal array.

Sl. No. Training Size Learning Rate No. of Epochs Training Loss

1 0.85 0.0001 10 0.037515

2 0.85 0.0002 20 0.16

3 0.85 0.0003 30 0.041045

4 0.9 0.0001 20 0.099357

5 0.9 0.0002 30 0.077585

6 0.9 0.0003 10 0.05669

7 0.95 0.0001 30 0.017702

8 0.95 0.0002 10 0.066966

9 0.95 0.0003 20 0.07958

Table 2. Results for training loss using Taguchi’s L9 orthogonal array.

Sl. No. Proposed Optimization Approaches
Optimal Parametric Setting Response

Training Size Learning Rate No. of Epochs Training Loss

1 Sunflower Optimization Algorithm 0.95 0.0001 30 0.017556

2 Forensic-Based Investigation Algorithm 0.85 0.0001 29.99 −0.002174

3 Material Generation Algorithm 0.95 0.0001 30 0.010996

Minimize:

TrainingLoss = (−3.730) + 7.656 ∗ x(1) + (4494) ∗ x(2) + (0.01072) ∗ x(3)
+(−4.297) ∗ x(1)̂2 + (−5070623) ∗ x(2)̂2 + (−0.0007)
∗x(3)̂2 + (−2647) ∗ x(1) ∗ x(2) + 0.01802 ∗ x(1) ∗ x(3)

(12)

Subject to:
0.85 ≤ x(1) ≤ 0.95

0.0001 ≤ x(2) ≤ 0.0003

10 ≤ x(3) ≤ 30

A set of three sophisticated optimization algorithms are utilized to minimize the out-
put response, i.e., training loss, after nine sets of simulations, and are performed according
to the input variables of the CNN model. Three essential input variables with three levels
in each are taken into consideration. In this paper, we provide three metaheuristic optimiza-
tion approaches that were inspired by natural phenomena: the sunflower optimization
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algorithm, the forensic-based investigation algorithm and the material generation algo-
rithm. When compared to the forensic-based investigation algorithm, only the sunflower
optimization algorithm and material generation algorithm approaches have produced
the best outcomes out of the three offered strategies. Using both the SFOA and MGA
techniques, the optimal values are determined to be 0.95, 0.0001 and 30 for the training size,
learning rate and number of epochs, respectively, for the three parameters. However, in
the instance of the FBIA method, the optimal setting is found to be 0.85, 0.0001 and 29.99
for all the input variables, and the output response value becomes negative, indicating
that the output response is not achievable in this scenario. According to Table 1, it can be
seen that the lowest value for the training loss occurs during the seventh run. Furthermore,
the comparative study of the three suggested algorithms with the optimal parameters and
output response value is shown in Table 2.

Figure 5 depicts the convergence plot of the sunflower optimization algorithm, which
demonstrates the best fitness function value for the training loss output based on the best
fitness function value, and which also represents the obtained best optimum fitness value.
For the same reason, Figure 6 illustrates the findings of the forensic-based investigation
algorithm approach and, lastly, Figure 7 depicts the results of the material generation
algorithm approach for the CNN model of brain tumours, which yielded an accuracy value
of 100%.

Figure 5. Result of the sunflower optimization approach.
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Figure 6. Result of the forensic-based investigation algorithm approach.

Figure 7. Result of the material generation algorithm approach.

Tumour cell categorization is challenging due to their diverse nature. Convolutional
neural networks (CNN) are the most widely used machine learning method for visual
learning and brain tumour recognition. This study proposes a CNN model for brain
tumour magnetic resonance imaging, as well as parametric optimization methodologies.
Throughout the nine runs, i.e., Taguchi’s L9 design of experiment, the accuracy percentage
in the simulation of the above-described model is exactly 100 percent. Readers interested
in applying these strategies to a range of technological and medical difficulties will be
interested in this comparative examination of all three algorithms. We have used new
sophisticated optimization techniques, such as SFOA, FBIA and MGA, to optimize the
parameters of a convolutional neural network approach that is applied to a dataset of brain
MRIs to detect any area affected by tumours. Each algorithm comes with its own set of
benefits and drawbacks. We compared all three proposed algorithms for our study in



Computers 2022, 11, 10 12 of 14

order to find the most optimal solution possible because the results of the optimum fitness
value change slightly throughout the analysis when determining the most appropriate
parameters of the prescribed CNN model for the classification of brain MRIs. Out of the
three optimization techniques, the forensic-based investigation algorithm gave negative
values for the output response, so this method does not fit the considered dataset. In the
case of the other techniques, i.e., the sunflower optimization algorithm and the material
generation algorithm, they functioned well for the entirety of the simulations using the
brain tumour MRIs dataset with the proposed CNN model.

5. Conclusions

In this study, a novel 3D deep learning supervised ResNetV2 model is employed
to identify brain tumours in multi-modal magnetic resonance pictures. With the aim of
minimizing the training loss during the output response of the model when applied to the
brain tumour dataset, the sunflower optimization algorithm (SFOA), the forensic-based
investigation algorithm (FBIA) and the material generation algorithm (MGA) have been
introduced to classify the tumours in the whole dataset. The output results are compared
with proposed optimization techniques along with the previously reported state-of-the-art
of CNNs in the field of brain tumour classification. In clinical trials for the exact diagnosis
and improved treatment management of brain tumours, and similar medical conditions
where magnetic resonance images are used, the implementation of the specified framework
will be a major contribution, with its high classification accuracy and little training loss,
which is the main research problem nowadays. Lastly, the sunflower optimization and
material generation algorithms have shown better results than the forensic-based investiga-
tion algorithm in this CNN model of brain tumour classification. There is scope in other
types of work for advanced bio-inspired optimization, as in this CNN model for classifying
tumours in the brain MRIs dataset. Moreover, there will be a scope to implement and use
advanced deep learning techniques to improve the identification of tumours in the brain,
as well as other medical fields where image processing has been carried out.
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