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Brain white matter tract integrity as a neural foundation for
general intelligence
L Penke1,2,3, S Muñoz Maniega1,3,4, ME Bastin1,3,4,5, MC Valdés Hernández1,3,4, C Murray2, NA Royle1,3,4, JM Starr1,6, JM Wardlaw1,3,4

and IJ Deary1,2,3

General intelligence is a robust predictor of important life outcomes, including educational and occupational attainment,
successfully managing everyday life situations, good health and longevity. Some neuronal correlates of intelligence have been
discovered, mainly indicating that larger cortices in widespread parieto-frontal brain networks and efficient neuronal
information processing support higher intelligence. However, there is a lack of established associations between general
intelligence and any basic structural brain parameters that have a clear functional meaning. Here, we provide evidence that
lower brain-wide white matter tract integrity exerts a substantial negative effect on general intelligence through reduced
information-processing speed. Structural brain magnetic resonance imaging scans were acquired from 420 older adults in their
early 70s. Using quantitative tractography, we measured fractional anisotropy and two white matter integrity biomarkers that
are novel to the study of intelligence: longitudinal relaxation time (T1) and magnetisation transfer ratio. Substantial correlations
among 12 major white matter tracts studied allowed the extraction of three general factors of biomarker-specific brain-wide
white matter tract integrity. Each was independently associated with general intelligence, together explaining 10% of the
variance, and their effect was completely mediated by information-processing speed. Unlike most previously established
neurostructural correlates of intelligence, these findings suggest a functionally plausible model of intelligence, where
structurally intact axonal fibres across the brain provide the neuroanatomical infrastructure for fast information processing
within widespread brain networks, supporting general intelligence.
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INTRODUCTION
Individual differences in cognitive domains are not independent;
individuals who perform well on one type of cognitive test tend to
do well on others. The construct of general intelligence (g)
captures the common variance that is shared among diverse
cognitive ability tests, such as measures of reasoning, memory,
executive functions and spatial ability.1--4 General intelligence is a
robust predictor of important life outcomes, including educational
and occupational attainment, successfully managing everyday life
situations, good health and longevity.1,5,6 Human intelligence is
highly stable through the lifecourse and the origins of individual
differences in intelligence include a substantial genetic compo-
nent.2,7 Some neuronal correlates of intelligence have been
discovered, mainly indicating that larger cortices in widespread
parieto-frontal brain networks and efficient neuronal information
processing support higher intelligence.2,8--11 However, there are
few established associations between general intelligence and any
basic structural brain parameters that have a clear functional
meaning.

Cognitive information-processing speed, a well-replicated
correlate of intelligence, has long been hypothesised as an
intermediate phenotype between the brain and intelligence,12 as

well as being suggested as a leading indicator of age-related
cognitive decline.13 Efficient information processing between
distal brain regions is thought to rely on the integrity of their
interconnecting white matter tracts.2,8,9 Unlike simple associations
between global or regional brain size and intelligence, this
suggests a mechanism by which neuroanatomical differences can
translate to integral processes underlying intelligence. Well-
connected white matter may allow for faster, more efficient
information processing within widespread brain networks respon-
sible for good cognitive functioning.1,14 This functionally mean-
ingful model of the neural underpinnings of intelligence
differences awaits empirical testing.

Diffusion tensor magnetic resonance imaging (DT-MRI) is the
method of choice for assessing brain white matter tract integrity in
vivo. It quantifies the degree to which the diffusion of water
molecules is directionally restricted in the environment of the
highly structured axonal tracts that constitute intact white matter.
Conceptually, the more directionally restricted the water move-
ment, the more tightly aligned and closely related are the
individual axons in the tracts, and hence the more efficient is the
transmission of electrical signals along the tracts. Information-
processing speed correlates with DT-MRI measures of white
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matter tract integrity, such as fractional anisotropy (FA).15 Some
studies have also reported positive associations between FA and
intelligence.16--18 Such associations are especially found in old age,
where it has been hypothesised that cortical disconnection due to
age-related declining white matter underpins cognitive ageing.19

Measuring further neuroimaging indicators of white matter
integrity in vivo is possible,20,21 but their associations with
cognitive abilities, such as information-processing speed and
general intelligence, have not yet been studied.

We have previously shown that individual differences in DT-MRI
measures of white matter tracts are, to a substantial degree,
shared among different major tracts.22 Therefore, white matter
tract integrity, as measured by DT-MRI, is a global property of the
brain, and it is this common variance in integrity that explains the
association with processing speed. It is not known whether other
indicators of white matter integrity also show these characteristics.

We examined the association between general intelligence and
three quantitative biomarkers of brain white matter tract integrity,
FA from DT-MRI alongside two others which are novel to the study
of human intelligence differences; namely, longitudinal relaxation
time (T1), and magnetisation transfer ratio (MTR). T1 is a
fundamental nuclear magnetic resonance decay constant describ-
ing how rapidly the z component of the perturbed nuclear spin
magnetisation returns to its thermal equilibrium value. It is related
to tissue water content, with increased T1 being potentially
associated with increased brain water, generally in the extra-
cellular space.20,21 MTR measures the efficiency of the magnetisa-
tion exchange between any relatively free water protons and
those water protons that are bound to protein macromolecules in
cellular membranes. MTR is reduced when there is pathological
change in axonal structure, for example in areas affected by
demyelination.21

MATERIALS AND METHODS
Participants
The participants were generally healthy, older individuals from the Lothian
Birth Cohort 1936 (LBC1936).23,24 All were Caucasian and living indepen-
dently in the community. For this report, appropriate data was available for
453 individuals. A total of 33 subjects (7.3%) were excluded because they
were not right-handed (29 participants) or had showed signs of dementia
or mild cognitive impairment as indicated by self-reports and Mini-Mental
State Examination scores below 24 (4 participants).25 There is no indication
that this dropout was systematic. The final sample used for all reported
analyses consisted of 420 individuals (228 men, 192 women, age 71--73
years, Mean¼ 72.3, s.d.¼ 0.6 years). Written informed consent was
obtained from all participants under protocols approved by the National
Health Service Ethics Committees (Local Research Ethics Committee and
Multi Centre Research Ethics Committee).

Our earlier report of an association between gFA and gSpeed
22 was based on

132 individuals from the current sample. However, gFA at that time was based
on only 8 instead of 12 white matter tracts. Thus, here we extended the
findings from Penke et al.22 in a more comprehensive sample of tracts and a
larger sample of individuals. The associations of gFA with g and the discovery
of gT1 and gMTR as well as their associations with gSpeed and g are novel.

Image acquisition
As described in detail in the LBC1936 brain imaging protocol paper,24

subjects underwent clinically optimised whole brain diffusion tensor (DT),
magnetisation transfer (MT) and T1-mapping MRI protocols on a GE Signa
HDxt 1.5T. scanner (General Electric, Milwaukee, WI, USA) using a self-
shielding gradient set with maximum gradient strength of 33 mT m�1, and
an eight-channel phased-array head coil. The DT-MRI protocol consisted of
7 T2- (b¼ 0 s mm�2) and 64 diffusion-weighted (b¼ 1000 s mm�2) axial
single-shot spin-echo echo-planar imaging volumes (imaging matrix
128� 128), the latter acquired with diffusion gradients applied in 64
non-collinear directions. Each echo-planar imaging volume comprised 72

contiguous 2-mm-thick slices acquired with 2 mm in-plane resolution. MTR
volumes were generated from two standard spin echo structural
sequences acquired with and without a magnetisation transfer pulse
applied 1 kHz from the water resonance frequency, whereas quantitative
maps of T1 were obtained from two axial T1-weighted fast-spoiled
gradient echo sequences with 2 and 121 flip angles.26 The component
structural volumes acquired in the MT- and T1-mapping MRI protocols
shared the same field of view (256� 256 mm), slice locations and thickness
as the DT-MRI protocol, albeit with an in-plane resolution of 1� 1 mm,
allowing easier co-registration between the biomarker volumes.

Image analysis
For all three of these imaging biomarkers, which give complementary
information on white matter integrity, tract-averaged values were derived
from 12 major fibre pathways segmented using probabilistic neighbour-
hood tractography from DT-MRI data.27 Data sets were preprocessed using
FSL tools (FMRIB; http://www.fmrib.ox.ac.uk/) to extract the brain, remove
bulk subject motion and eddy current-induced artifacts, and estimate
water DT parameters.28 MTR and T1 biomarker volumes were generated as
previously described.24,26 The BEDPOSTX/ProbTrackX tractography algo-
rithm29 with a two-fibre model and 5000 streamlines was used to
reconstruct tracts of interest. An automatic tract selection method with
good reproducibility,30 based on a model of tract topology,31 was used to
generate equivalent tracts of interest in each subject. This technique,
termed probabilistic neighbourhood tractography, optimises the choice of
seed point for tractography by estimating the best matching tract from a
series of candidates placed in a neighbourhood, for example, 7� 7� 7
voxels, surrounding a seed point transferred from standard space against a
reference tract derived from a digital human white matter atlas.32,33 The
topological tract model was also used to reject false-positive connec-
tions.34 A total of 12 major white matter pathways in the brain thought to
be related to cognitive functioning were segmented, namely genu and
splenium of corpus callosum, and bilateral cingulum cingulate gyri,
arcuate, uncinate and inferior longitudinal fasciculi and anterior thalamic
radiations (see Figure 1). After affine registration to the structural scans,
where appropriate, the resulting tractography masks were then applied to
each subject’s FA, MTR and T1 volumes to generate tract-averaged
biomarker values for each fibre pathway.

Cognitive testing
General intelligence was assessed by six subtests from the Wechsler Adult
Intelligence Scale IIIUK Symbol Search, Digit Symbol, Matrix Reasoning,
Letter--Number Sequencing, Digit Span Backwards and Block Design.35

Cognitive information-processing speed was assessed with three well-
established tasks. Reaction times were assessed using a stand-alone
device.36 Simple reaction time (averaged across 20 trials) required pressing
a button as fast as possible when a ‘0’ was displayed on an LCD screen.
Four-choice reaction time (averaged across correct responses in 40 trials)
required pressing the correct button out of the four as fast as possible when
a number from 1 to 4 was displayed on an LCD screen. Inspection time
(correct responses across 150 trials, stimulus exposure time¼ 6--200 ms) is a
two-alternative, forced-choice, backward-masked visual discrimination task
that requires indicating, without response time pressure, which of the two
parallel, vertical lines of markedly different lengths was longer.23 Descriptive
statistics for all cognitive tests can be found in Supplementary Table S1.

Statistical analysis
Simple reaction times were natural log transformed to normality. Structural
equation modelling (SEM) was used to model relationships among latent
white matter tract integrity factors and associations with latent factors of
general intelligence (g) and information-processing speed (gSpeed).37 For
the SEMs, we used standardized residuals from separate regressions of all
variables in the models on sex and age in days at assessment. Sex and age
were thus statistically controlled for in all SEMs. In addition, we tested all
SEMs separately for men and women, but as the results were very similar
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for both sexes, we only present results for the full sample covarying for sex
here (see Supplementary Information for more details).

RESULTS
The tract-averaged FA values for the 12 studied tracts were all
significantly positively correlated (r (range)¼ 0.13--0.60, P
(all)o0.01). This allowed the extraction of a general principal
component, gFA, that was positively loaded by all tracts and
explained 38.35% of the variance shared among all tracts.
Similarly, universally significant and positive correlations were
found among the tract-averaged T1 (r (range)¼ 0.28--0.89, P
(all)o0.001) and MTR (r (range)¼ 0.18--0.87, P (all)o0.001) values
for the 12 tracts of interest. This allowed the extraction of a
general principal component based on T1 (gT1; explained
variance¼ 66.76%) and one based on MTR (gMTR; explained
variance¼ 67.79%). Thus, for all three imaging biomarkers, white
matter integrity is to a substantial degree shared among tracts
across the brain. Individuals with lower integrity, as assessed by
FA, MTR or T1, of one tract tend also to have lower integrity in all
other tracts.

In structural equation models (Figure 2) the three latent
biomarker-specific white matter tract integrity factors showed
weak to moderate correlations with each other. They were all
independently and significantly associated with general intelli-
gence (g), a latent factor defined by the six subtests of the
Wechsler Adult Intelligence Scale IIIUK (Figure 2a).35 Together, they
explained 10.0% of the variance in g. gT1 showed the strongest
association (standardized path coefficient ß¼�0.26), suggesting
that longer T1, potentially indicating increased water content, was
detrimental to general intelligence in our sample.

Next, we tested whether a latent cognitive information-
processing speed factor (gSpeed) explained the link between the
three white matter tract integrity factors and g by acting as a
mediating variable (Figure 2b). It is important to note that gSpeed

was defined using experimental psychology tasks, and not
psychometric (paper and pencil-type) tests. We used simple and
four-choice reaction time tasks, as well as inspection time, which is
a psychophysical test of the early stages of visual information
processing.23 All three white matter tract integrity factors showed
independent significant associations with gSpeed, explaining 14.5%
of its variance. gSpeed in turn was strongly associated with g, as has
often been found.12 With gSpeed in the model, the common white
matter tract integrity factors were no longer significantly
associated with g, and removing these paths slightly increased
the model fit. Thus, we found full mediation of the link between
the three different indicators of white matter tract integrity and g
by gSpeed.

DISCUSSION
In a sample that is large among the studies including multiple
complex imaging parameters, we identified three brain-wide
white matter tract integrity biomarkers derived from quantitative
MRI methods. Two of them (T1 and MTR) are new to the study of
intelligence in non-clinical samples. These biomarkers explained a
substantial proportion of individual differences in cognitive
information-processing speed and general intelligence in this
relatively large sample of generally healthy older people. The
finding that all three indicators are only modestly correlated with
each other and showed independent significant associations with
cognitive ability (information-processing speed and general

Figure 1. (a) Schematic diagram showing the probabilistic neighbourhood tractography processing pipeline for automatic tract segmentation.
Given a pre-defined reference tract, in this case rostral cingulum, seed points are automatically placed in a neighbourhood surrounding a seed
point transferred from standard space (red box). The tract that best matches the reference in terms of both length and shape (red circle) is
chosen from this group of ‘candidate’ tracts. (b) Examples of the tracts segmented in this study for a representative subject. (c) A maximum
intensity projection of a standard space group map of a segmented fasciculi-of-interest, in this case rostral cingulum, overlaid on an MNI white
matter volume. Note the consistent segmentation of the tract across the cohort.
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intelligence) suggests that they reflect complementary functional
aspects of white matter integrity, possibly related to loss of axonal
structural organisation (FA), increased interstitial water content
(T1) and reduced macromolecular (MTR) integrity of axons.15,20,21

Thus, T1 and MTR provide important novel additions to the more
widely used neurostructural and DT-MRI-based biomarkers in
clinical and cognitive neuroscience studies of white matter across
the lifespan.

We replicated and extended our previous finding of substantial,
uniformly positive correlations among tracts for FA,22 and
discovered similar correlation patterns for T1 and MTR. These
correlations are reflected in the strong general factors found for all
three parameters. Although these results do not preclude that
specific tracts can stand out in their association with intelligence,
as has, for example, been hypothesised for the arcuate fasciculus,8

they imply that white matter integrity is to a substantial degree a
brain-wide property, not something that differs markedly between
individual tracts. Thus, if an otherwise healthy individual shows
structural deficits in one tract, all other tracts will usually be
affected to some degree.

Owing to the age-homogeneous and generally healthy nature
of our sample, the results are not confounded by chronological
age-related factors or pathological differences between indivi-
duals, which can exaggerate results from more heterogeneous

samples. On the other hand, the average age of our sample, in
their early 70s, makes it plausible that common accompaniments
of ageing (for example, loss of microvascular integrity and
increased interstitial brain water content) have already affected
white matter integrity and cognitive ability,38,39 possibly partly
explaining the strength of our findings.19 However, the extent to
which age-related changes in brain structure and cognitive ability
are causally linked remains unclear40 and repeating our analyses
while statistically controlling for self-reported medical histories of
hypertension, cardiovascular disease and diabetes did not have
noteworthy effects on the reported results. Additional analyses
controlling for childhood cognitive ability, assessed at 11 years of
age in this cohort,23 give some indication that FA and T1 are more
associated with intelligence later in life, whereas the association
with MTR could have long-standing neurodevelopmental origins
(see Supplementary Information). It will be interesting to explore
how far the results can be generalised to different age groups,
with and without overt white matter damage, and to patients with
clinical conditions like stroke, dementia, neuroinflammatory or
neurodegenerative disorders.

Combined, the three biomarkers of brain-wide white matter
tract integrity explained 10% of the intelligence differences in our
older sample and even more of the differences in information-
processing speed. The large sample size implies that the effect
estimates are likely to be robust. These effect sizes do compare
with that of the best-replicated neuroanatomical correlate of
intelligence, brain size.2,41 However, the present study’s results are
based on a more tractable set of brain biomarkers; it is far from
clear why brain size affects cognitive performance.2,42 By contrast,
white matter tracts constitute the neuroanatomical infrastructure
for any brain network model of cognitive performance,14 and tract
integrity can be directly linked to cognitive information-proces-
sing speed and via this mediating path to general intelligence.
Although there might be several heterogeneous neurostructural
substrates underlying intelligence,43,44 the current study provides
empirical evidence for one mechanistically plausible neurostruc-
tural model of human intelligence differences.
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