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Neuroscience modeling experiments often involve multiple complex neural network and cell 
model variants, complex input stimuli and input protocols, followed by complex data analysis. 
Coordinating all this complexity becomes a central diffi culty for the experimenter. The Python 
programming language, along with its extensive library packages, has emerged as a leading 
“glue” tool for managing all sorts of complex programmatic tasks. This paper describes a toolkit 
called Brainlab, written in Python, that leverages Python’s strengths for the task of managing 
the general complexity of neuroscience modeling experiments. Brainlab was also designed to 
overcome the major diffi culties of working with the NCS (NeoCortical Simulator) environment 
in particular. Brainlab is an integrated model-building, experimentation, and data analysis 
environment for the powerful parallel spiking neural network simulator system NCS.
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it might as well be a modern mature programming language with a 
large scientifi c user community, rather than a custom-built, special 
purpose language. In Brainlab we selected the Python language 
for this purpose, and the rationale for our decision is given in the 
Section “Why Python?”.

Brainlab has been in use since 2003, with publications in 2005 
(Drewes, 2005a,b). In the intervening time, validation for the deci-
sions we made in the design of Brainlab seems to have come from 
several areas. Scientifi c support for Python, in the form of librar-
ies and the user community, has continued to grow and mature. 
Other projects have independently started that also use Python 
as a front-end modeling and back-end analysis tool for various 
other neural simulators. The NEST simulator3 system now offers 
a Python interface called PyNEST4. The NEURON5 simulator has 
added Python as an alternative interpreter to Hoc. PyGENESIS 
is now available for the GENESIS6 simulator. The PyNN7 system, 
part of the broader Neuralensemble initiative8, goes a step further 
and offers a common Python interface to NEURON, NEST, and 
PCSIM9 (but not NCS).

The Brian10 project differs from the systems mentioned so far, 
and also NCS, in that Brian is a self-contained Python neural simu-
lation solution, rather than a front-end to a simulation engine writ-
ten in a different programming environment. Brian still achieves 

INTRODUCTION
Spiking neural network simulator software systems continue to 
grow in speed and capacity (see Brette et al., 2007 for a recent sur-
vey). The complexity and size of the models simulated on these 
systems also continue to grow, threatening to overwhelm the ability 
of the experimenter to build the models, conduct parameterized 
experiments, and analyze the huge amounts of resulting data. The 
simulators themselves are generally extremely effi cient but mini-
malist tools written in low-level programming languages that are 
diffi cult to understand and modify by any but a few dedicated 
experts. Tools beyond the simulators themselves are needed to help 
the experimenter cope with the complexity of the experiments.

In our work with one such powerful spiking neural network sim-
ulator called NCS1 (the NeoCortical Simulator, described briefl y in 
the Section “NCS”) we encountered these general complexity bar-
riers. Our work was also hampered by problems specifi c to working 
with NCS, most notably the necessity of preparing network models 
for simulation using NCS’s restrictive neural modeling interface, 
the .in fi le format. We confronted all these problems together by 
creating a unifi ed Python toolkit called Brainlab2, which has greatly 
eased the burden of organizing and conducting our experiments 
in general, and working with NCS in particular.

The fundamental proposition of Brainlab is this: For the tasks 
of complex neuroscience model-building, experimentation, and 
analysis, nothing short of a full-fl edged programming language 
will suffi ce. No neural model fi le format or restricted special pur-
pose programming language for modeling will ultimately suffi ce 
for day to day work. And as long as a real programming language 
will be needed to hold the whole experimental enterprise together, 
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good single-processor simulation performance through the use of 
vectorized processing provided by the NumPy library, and it can 
also manage multiple jobs in parallel on a cluster computer system, 
but splitting a single large simulation onto multiple compute nodes 
is not supported. The Topographica11 project provides standalone 
Python tools intended for exploring higher-level neural abstrac-
tions like sheets and projections from neural area to area. Though 
not primarily intended for investigations that require detailed simu-
lation of individual neurons, Topographica can be interfaced to 
lower-level simulators like NEURON and GENESIS. Topographica 
is one of the older Python neuroscience tool packages, with an 
initial public release in late 2005.

Perhaps because NCS has a fraction of the number of users of 
some other simulators (e.g. NEURON and GENESIS), Brainlab 
has attracted comparatively little attention. Brainlab merited brief 
mention in a recent survey of major spiking neural net simulator 
packages (Brette et al., 2007). Brainlab was unnoticed by another 
recent survey of interoperability of neuroscience software (Cannon 
et al., 2007) though Python interfaces to other spiking neural net-
work simulators (e.g. NEURON’s and NEST’s) were described there 
in some detail.

BRAINLAB MOTIVATION, DESIGN, AND IMPLEMENTATION
In this section, we will fi rst describe enough about NCS so that a 
reader will understand the problems we faced designing a system to 
interface to and control it. Next we will describe the broad features 
we wanted to include in our toolkit, and how we wanted the fi nished 
system to appear to the user for modeling, simulation, and analysis. 
Then we will describe in detail how we actually confronted the 
problems interfacing to NCS, to implement the Brainlab system.

NCS
The development history of NCS is recounted elsewhere (Drewes, 
2005b). In its current evolution, NCS is a parallel (MPI-based) 
spiking neural network simulator written in C/C++ that can per-
form very large discrete-time simulations with a reasonably high 
degree of biological realism. Simulations with a million neurons 
and a billion synapses have been accomplished. NCS allows for 
neuron models that include detailed and customizable ion channel 
and cell membrane voltage dynamics, but for effi ciency the stere-
otypical action potential voltage and postsynaptic conductivity 
waveforms are templated rather than generated dynamically. NCS 
supports multi-compartment cells but often large scale simula-
tions are done using single compartment models. A good recent 
comparison of NCS with other spiking neural network simula-
tors, including some discussion of maximum simulation sizes, is 
Brette et al. (2007).

THE NCS INPUT FILE (THE .in FILE)
NCS reads a description of a neural network model and other simu-
lation parameters from a plain text fi le whose fi lename is supplied 
to NCS as a command line argument. For our purposes here it is 
not necessary to go into great detail about the format of this fi le, 
but we do wish to describe it generally in order to explain some of 
the shortcomings of working with it.

This input fi le, hereafter called a .in fi le after the convention of 
using .in as a fi lename extension for such fi les, contains a variable 
number of subsections. Each subsection starts with a line that con-
tains the name of the subsection (which must be one of a limited 
number of keywords permitted by the system) and ends with a 
line that contains END_ with the section name appended. The fi rst 
subsection in a .in fi le is the BRAIN section. In the BRAIN section 
of the fi le are defi ned global features that affect the entire simula-
tion. For example, a line beginning with JOB defi nes a job name for 
the simulation. Some subsections can be repeated (for example, a 
COLUMN or LAYER), and then each is assigned a unique text identi-
fi er within the fi le. The fi le format allows other portions of the fi le 
to reference these named objects, to create additional instances of 
them, but no structural or other signifi cant variation in a defi ned 
object is permitted. The .in format defi nition permits no looping 
constructs or macro substitutions. Other sections of the .in fi le 
defi ne connections between these objects, with references to the text 
names of the objects being connected. Because of these restrictions, 
NCS .in fi les tend to be quite long even for fairly simple networks, 
and they tend to be prone to syntactical error or internal referential 
inconsistency when edited manually.

Other neural simulator systems acquired programming languages 
(e.g. Hoc for NEURON) to avoid the limitations of a fl at input fi le 
format like NCS’s. NCS never went this far, though there were sev-
eral attempts to elaborate the .in fi le with macros, loops and other 
features. None of these efforts for NCS were widely used or reached 
the generality of a true programming language. Many NCS users 
eventually created custom text processing programs in other pro-
gramming languages (like MATLAB) that would emit .in fi les. But 
writing special-purpose macro processors to create .in fi les is time 
consuming work that generally cannot be reused on later projects, 
and MATLAB is not a particularly good text processing tool. The 
experimentation process was either not automated or automated 
with external custom scripts, making the whole process cumbersome 
and systematic model parameter search diffi cult. Data fi le manage-
ment was typically done manually using ftp type tools.

One other unusual aspect of NCS deserves mention: it imposes 
a notion of the cortical column and the cortical layer as structural 
elements, and this requirement is refl ected in the structure of the 
NCS input fi le. Even if an NCS user wishes to simply simulate two 
connected cells, or a homogeneous collection of cells for a study 
of, say, synfi re chains, he must defi ne those cells within an NCS 
LAYER text block, and that in turn within an NCS COLUMN text 
block. This introduces additional complication for the simplest 
simulations.

NCS USAGE
NCS is optimized for large cluster computer systems (Beowulf 
clusters). A common usage pattern is as follows: A user typically 
fi rst prepares an input fi le in the .in fi le format in a text editor, 
specifying the neuron, synapse, channel, and network model. This 
fi le is copied across a network to the cluster computer and NCS is 
invoked there with the fi le as a command line argument. Reports 
are written to the cluster computer’s disks during the simulation 
run, which can last from a few seconds to days. Data analysis is then 
performed on the cluster computer if the data set is very large, or 
the data is copied back to the user’s workstation for data analysis 11http://topographica.org/Home/index.html

http://topographica.org/Home/index.html
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if that is feasible. The experimenter then makes some adjustments 
to the model and tries again.

BRAINLAB MOTIVATION AND DESIGN GOALS
Faced with the powerful but diffi cult to use NCS simulator, we set 
about to design a toolkit that would offer the following:

 1. An interactive shell for simple experimentation with NCS, 
making NCS a more suitable educational tool for learning the 
behavior of spiking neural networks and also a more conve-
nient platform for experienced users to explore the behavior 
of new cell or network elements.

 2. A convenient platform for parameterized control of sets of 
NCS experiments.

 3. A convenient platform for scripted regression testing of NCS 
itself, with fl exible output validation.

 4. Scripted, algorithmic generation of neural network models 
rather than NCS’s native static fi le specifi cation of networks.

 5. Convenient, integrated, graphical on-line reporting and plot-
ting of spiking, current, and voltage activity of cells, synapses, 
and channels.

 6. Convenient, integrated, on-line three-dimensional plotting 
of neural network architecture for expository and diagnostic 
purposes.

 7. Experimental support for higher-level abstractions than those 
provided natively in NCS (for example support for areas, 
composed of arrays of columns, and a variety of distinct area-
to-area synaptic connection patterns), and a fl exible environ-
ment to add new ones.

 8. Support for lower-level abstractions too unwieldy to reaso-
nably manage in native NCS (for example, columns where all 
cells are enumerated and independently, rather than just sta-
tistically, addressable).

 9. A container for a standard and extensible library of NCS 
network building blocks (for example channels, cell types, 
columns, spike templates), where all components are guaran-
teed to interoperate, utilize consistent naming conventions, 
and may be manipulated programmatically as variable objects 
rather than text chunks.

10. A more convenient, higher-level, object-oriented represen-
tation of neural networks that hides many complexities and 
inconveniences inherent in NCS’s native .in fi le format.

11. A convenient environment in which to convert a neural 
network description into a chromosomal representation sui-
table for use with a genetic algorithm.

12. A convenient environment in which to access NCS’s realtime 
stimulus input capabilities, especially for robotic interface 
applications (see Goodman et al., 2008 for more information 
on using NCS in robotics).

13. The ability to conveniently extend many of these capabilities 
without recourse to coding in NCS’s native compiled pro-
gramming environment (the C/C++ language).

WHY PYTHON?
When we selected Python as the language for Brainlab, Python was 
not yet in wide use in neuroscience, and it was also in the midst of 
a seemingly endless reorganization of its vector processing math 

support libraries. Nevertheless, there were hopeful signs of building 
momentum for Python as a scientifi c platform, and the base lan-
guage was so appealing in several respects that we selected Python 
as the language for our project.

Python is an open source, cross platform programming lan-
guage. The base Python language is constantly being extended and 
made more powerful by hundreds of developers working together 
across the world. In addition to the base language, there are dozens 
of external packages in various states of development, from pol-
ished to prototype. These packages gradually move into the base 
distribution as they mature and if they are of suffi ciently wide 
interest.

Python is ordinarily compiled into bytecode automatically and 
the bytecode is then interpreted in a runtime virtual machine. This 
is essentially the same approach used by Java, though the compi-
lation generally requires an explicit step with Java. Compilation 
to bytecode results in code execution that is generally faster than 
ordinary interpreted code. Python is dynamically typed, making 
programming extremely convenient. Built in datastructures like 
lists, dictionaries (hashes), and arrays help make Python programs 
very concise. The clean syntax makes programs easy to understand. 
Python has a well deserved reputation as an extremely clean and 
easy to read and understand language.

At the time we selected it, Python already had a growing set 
of support library packages for scientifi c computation. These 
have since matured. Some of these packages are used in Brainlab, 
including:

• Matplotlib12, a MATLAB-like plotting package
• PyOpenGL13, OpenGL bindings for Python
• NumPy14, MATLAB-style array processing
• SciPy15, a set of scientifi c tools for Python, including pseudo 

random number generators and transforms

BRAINLAB TO NCS INTERFACE FOR NETWORK MODELING
When we were designing the Python to NCS interface for the 
fi rst version of Brainlab, there were already a number of ways to 
interface Python to a C/C++ application. Of these, one approach 
we considered seriously was to create a Python module out of 
the NCS C/C++ program with fairly simple and standardized 
wrapper code using standard techniques16. The wrapped C code 
could then be included into a Python program with the import 
command. With this approach the Python program would be in 
charge from the beginning, and it could selectively make normal 
looking Python function calls into the wrapped C code to actually 
perform the NCS simulation and other functions. How would 
the network, cell, synapse, and other neural network parameters 
be communicated to NCS? A reasonable approach would be to 
defi ne a new abstract network modeling interface using high-
level Python facilities, perhaps a Python Object class for a Cell, 
a Synapse, and so on, that allows these objects to be created and 

12http://matplotlib.sourceforge.net/
13http://pyopengl.sourceforge.net/
14http://numpy.scipy.org/
15http://www.scipy.org/
16http://docs.python.org/extending/
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interconnected. This Python-based model could then be con-
verted directly to the internal in-memory representation of net-
work models of NCS, called the GCList, through a new function 
provided by the imported NCS python module. This function, 
being in the C/C++ side of things, would have full access to the 
memory structures, memory allocation, and cluster-distribution 
routines that NCS itself uses to convert the .in fi le representation 
into the GCList representation for simulation, merely bypassing 
the fi le parsing NCS normally uses to build its internal network 
representation.

However this tightly integrated approach would have a number 
of disadvantages. Such a Brainlab system would have to be at least 
recompiled with every new release of NCS. But there would be more 
complications than just that. While the NCS .in fi le representation 
is part of the NCS documentation and is fairly stable, the inter-
nal GCList representation does not have a publicly documented 
interface. The GCList interface changes over time, and when it 
changes, corresponding detailed C/C++ changes would then have 
to be made in the NCS/Python module for import. A possibly 
larger documentation burden also would be placed on Brainlab 
to describe the new model-building interface.

We opted instead to try to achieve our design goals with a much 
looser Brainlab-NCS interface for modeling and simulation. We left 
NCS as a completely separate programming project and did not 
even try to integrate more tightly with it than its existing published 
modeling (.in fi le) and invocation (command line) interface. So 

Brainlab would have to provide a convenient and powerful Pythonic 
network modeling interface to the user, since that was a primary 
design goal, but it would also have to emit a properly formatted 
.in fi le for use by NCS on the back-end. The approach we took to 
model-building in Brainlab is depicted in Figure 1.

The BRAIN, CELL, LAYER, and other sections of the NCS .in 
fi le are each implemented in Brainlab as a Python object class. 
The __repr__() method for each object is overridden so that 
printing an object results in text for that object in a format suit-
able for inclusion in the NCS .in fi le. In the case of a lower-level 
object, this method just prints out the object itself, but does not 
print any other objects that are referenced by the object being 
printed. The BRAIN object’s __repr__() method, however, fi rst 
recursively traverses the entire tree of objects referenced from the 
BRAIN object and a list is composed for each type of referenced 
object. Once all referenced objects have been collected together, 
the entire NCS .in fi le is printed, starting with the BRAIN section, 
and proceeding to all of the other sections of the .in fi le in the 
conventional order.

The lower-level classes are implemented as nested classes within 
the BRAIN class. Note that they are not derived subclasses, but 
rather nested classes. Derived subclasses are appropriate where 
the subclass has most of the aspects of the superclass but some 
additional features. In Brainlab the nested classes are not logi-
cally subclasses of the BRAIN since they do not share the same 
characteristics as the super-object but are merely contained by it. 

FIGURE 1 | Brainlab’s approach to building neural network models for NCS. 

A script using the Brainlab brain.py module allocates objects of special 
modeling object classes (BRAIN, CELL, SYNAPSE, etc.) defi ned in brain.py. These 
objects each contain a Python dictionary called parms containing (name, value) 
pairs. Each such name corresponds exactly to an NCS character string parameter 
name for that record type within the .in fi le. Each value contains either the 
literal value desired for that parameter, or a Python object that will later be 
dereferenced and substituted with an appropriate text name for the text section 

representing that object in the resulting NCS .in fi le. The lower-level objects can 
be inserted into the higher-level objects through direct manipulation of the parms 
dict, but generally they are added there implicitly through the brain.py module’s 
helper functions such as BRAIN.AddColumn(). The value of the highest level 
container object, the BRAIN object, is determined by the overridden __repr__() 
function, which converts the in-memory model representation into the text .in 
representation, in the manner described in the text. The result is a Python 
character string which is a suitable input fi le for the NCS program.
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However, the lower-level classes do need access to the component 
type libraries that are stored with the BRAIN class. If the lower-
level objects were entirely separate classes, they would not have 
convenient access to the component type libraries. By making the 
lower-level classes nested within the BRAIN class, they do have 
that access.

We chose to map many of the modeling details of Brainlab 
directly onto the underlying NCS implementation, rather than 
providing a completely new modeling interface. This primarily 
means that we preserve NCS’s text character string names for vari-
ous neural parameters of the cells, synapses, channels, and so on. 
This eases the documentation burden on Brainlab since we can refer 
directly to the NCS’s documentation on many points. Furthermore, 
it makes keeping Brainlab up to date with respect with NCS very 
easy. Whenever NCS adds support for a new parameter within an 
existing modeling object, it is usually a simple matter to add it to 
the permitted parameter list of the appropriate class in brain.py 
and that is the end of it. (When NCS adds entirely new types of 
objects, as is occasionally done, there is a bit more work, but even 
still it is usually just a matter of intelligently cloning an existing 
object to a new name and making a few changes.) The overall 
mechanism of .in fi le emission through recursive application of 
__repr__()’s to discovered objects starting at the top-level BRAIN 
extends quite easily.

The simple strategies of creating a Python object class for each 
.in fi le section, with automatic conversion from object to text 
through the __repr__() method, combined with the ability to 
reference one object from another, achieved all our design goals 
for a Pythonic modeling interface to NCS. The modeling power 
achieved by combining these few concepts in this way should not 
be underestimated.

BRAINLAB TO NCS INTERFACE FOR SIMULATION
Once the internal Pythonic neural network model is constructed 
inside the top-level BRAIN object, it can be simulated by invoking 
the BRAIN’s Run() method. Since we elected to keep an arms-
length interface between Brainlab and NCS, the invocation of NCS 
is done through the use of a popen() call, as follows. First, Brainlab 
determines through invocation options or a standard confi gura-
tion .rc fi le whether the NCS process is to be invoked locally, 
or on a remote compute server (typically a cluster). The .in fi le 
generated from the __repr__() method of the top-level BRAIN 
object is stored in a disk fi le locally, then propagated to the remote 
compute server using ssh17 (secure shell) if necessary. Other sup-
port fi les, such as input stimulus patterns, are likewise generated 
and propagated as needed. Next, the NCS invocation command 
is constructed, again with appropriate references to remote serv-
ers with ssh, and then this command is executed using popen(). 
Brainlab monitors the realtime progress of the command as NCS 
reports the progress of the run through the fi le descriptors of the 
popen(). If an error condition is detected in the output, Brainlab 
either throws a Python exception, or an error code to the caller. 
When Brainlab detects that a run has completed, it constructs 
additional commands to retrieve output fi les from the remote 
compute server, as needed.

We felt it was essential to support all three stages of operation – 
model-building, simulation, and analysis – completely within the 
control of the Python Brainlab environment. This permits self-
contained and reproducible experiments, in the form of Python 
Brainlab scripts. This also opens up the possibility of parameterized 
model search with feedback from model performance affecting 
parameters of the next iteration, or even the use of genetic pro-
gramming techniques for parameter search, all within a Brainlab 
script.

BRAINLAB’S MODULE ORGANIZATION
Brainlab itself is implemented as two main Python modules, 
brainlab.py and brain.py. The brain.py module contains 
the parts of the system concerned with building a neural model 
using Python classes supplied by the module and other normal 
Python facilities, and then automatically converting this model to 
a format understandable to NCS (a .in fi le). The brainlab.py 
module contains support functions for invoking an NCS simula-
tion on a model either locally or remotely on a remote cluster, and 
analyzing and documenting the results using plotting and other 
functions.

In addition to these two main modules, an optional module 
called netplot is available. This module can take a model built 
using the core BRAIN class of brain.py and convert it into a three-
dimensional depiction using the model’s architecture and hints 
provided during model construction. The three-dimensional depic-
tion can be examined and explored interactively on a workstation 
or saved in a number of graphics fi le formats. The PyOpenGL18 
package is used for the actual rendering.

BRAINLAB USAGE
BUILDING MODELS WITH BRAINLAB
In Brainlab, every brain model is an instance of a new Python object 
class called BRAIN. Once the brainlab library itself is brought into 
a Python program with the import command, creating a brain 
object is by the usual Python means:

import brainlab

b = brainlab.BRAIN()

The variable b then refers to the newly created, and initially 
empty, brain model. When a BRAIN object is created, it contains a 
default set of commonly used types of neural network modeling 
components. (There are initially no instances of these types in the 
brain model.) These component types can be directly instantiated 
and then used for construction of network models, or they can 
be modifi ed in place and then used in a model, or they can be 
copied to new types with different names and then the copies can 
be modifi ed and instantiated for use in a model. The component 
types are contained in Python dictionaries (hashes), and the keys 
of the dictionary are simply the text names of the components. 
These building blocks are automatically included within a Python 
dictionary called libs in each BRAIN instance. There can be mul-
tiple libraries of parts within a BRAIN. The library provided with 
the class is given the key name standard, and is itself a diction-
ary. In this dictionary are subdictionaries for the different types of 

18http://pyopengl.sourceforge.net/17http://www.openssh.org/

http://www.openssh.org/
http://www.openssh.org/
http://pyopengl.sourceforge.net/
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neural modeling components, such as channels (accessed with the 
chantypes dictionary key), cell types (accessed with the cell-
types key), synapse facilitation and depression profi les (under the 
sfds key), and more as listed below.

The following interactive Python session shows how to view 
these different library components and shows how one could 
modify the negative Hebbian learning window duration parameter 
within the standard Hebbian learning profi le:

>>> b.libs[’standard’].keys()
[’comptypes’, ’spks’, ’chantypes’, ’spsgs’, ’cols’, 

         ’celltypes’, ’sls’, \ ’syntypes’, ’lays’, ’sfds’]

>>> blib=b.libs[’standard’]
>>> blib[’sls’].keys()
[’0Hebb’, ’-Hebb’, ’BHebb’, ‘+Hebb’]
>>> blib[’sls’][’BHebb’]
SYN_LEARNING

    TYPE                         BHebb

    LEARNING                     BOTH

    NEG_HEB_WINDOW               0.04000 0.00000

    NEG_HEB_PEAK_DELTA_USE       0.01000 0.00000

    NEG_HEB_PEAK_TIME            0.01000 0.00000

    POS_HEB_WINDOW               0.04000 0.00000

    POS_HEB_PEAK_DELTA_USE       0.00500 0.00000

    POS_HEB_PEAK_TIME            0.01000 0.00000

END_SYN_LEARNING

>>> blib[’sls’][’BHebb’].parms[’NEG_HEB_WINDOW’]=(.05,.01)
>>> blib[’sls’][’BHebb’]
SYN_LEARNING

    TYPE                         BHebb

    LEARNING                     BOTH

    NEG_HEB_WINDOW               0.05000 0.01000

    NEG_HEB_PEAK_DELTA_USE       0.01000 0.00000

    NEG_HEB_PEAK_TIME            0.01000 0.00000

    POS_HEB_WINDOW               0.04000 0.00000

    POS_HEB_PEAK_DELTA_USE       0.00500 0.00000

    POS_HEB_PEAK_TIME            0.01000 0.00000

END_SYN_LEARNING

The Section “Usage Example: RAIN Network” contains another 
example of creating components based on the included standard 
library.

An NCS .in fi le contains a number of text blocks, with each 
block consisting of a number of parameter keywords on the left 
and their values to the right. The values can be of several types. 
In the example above, the numbers for the NEG_HEB_WINDOW 
are a mean and standard deviation. During model initialization, 
NCS assigns that parameter to a random value from a normal 
distribution with the mean and standard deviation requested. 
For other parameters, such as the RSE_INIT parameter of the 
synapse object, two numeric values specify a minimum and a 
maximum of a range. In the case of the LEARNING parameter 
in the example above, the value for a parameter is a text label 
that references another block defi ned within the fi le. The NCS 
documentation details each parameter and its expected values. 
In some cases, Brainlab allows commonly used and frequently 
modifi ed parameter values to be changed in Brainlab function 
calls. For example, when specifying a synaptic connection, the 
probability of the connection and the conductance speed val-
ues can be set directly using the prob= and speed= keyword 

arguments to the Brainlab AddConnect() method. In all cases 
however, NCS parameters can be set by modifying a dictionary 
value in the appropriate parms dictionary of the object with 
the key set to the text name of the NCS parameter name. This 
approach gives convenience to the programmer while allowing 
quick access to new NCS parameters as they are added to the 
system, by simply adding a keyword to a list in the Python class 
defi nition for that object.

In NCS, cells cannot exist on their own but rather only as part 
of a higher-level structure called a column. A column is composed 
of one or more layers, which in turn is composed of one or more 
groups of cells. Brainlab has COLUMN, LAYER, and CELL objects 
that correspond to these structures. A Brainlab script can build a 
column up from cell groups and layers, or instead use a conven-
ience function that will add a pre-built column in a single step. The 
following Brainlab function adds to the model an instance of an 
ordinary column populated with a single cell:

newcol = b.Standard1CellColumn()

Additional optional parameters to the function can specify a 
cell type to use (other than the default), spatial coordinates for 
the cell, and more.

At this point the Brainlab script typically makes connec-
tions between the cells or cell groups. Brainlab functions such 
as AddConnect() are used for this. The Python variables for 
the objects are used as the point of contact for connection. An 
example of this is given in the Sections “Usage Example: Hebbian 
Learning” and “Usage Example: RAIN Network”. Report requests 
are also added to the brain at this time.

SIMULATING MODELS WITH BRAINLAB
Once the BRAIN object is created, simply printing it with the Python 
print command causes Brainlab to emit a complete, properly for-
matted .in fi le containing all the information added to the brain 
by the modeler. If desired, this fi le can be examined and manually 
submitted for simulation by NCS. This approach is occasionally 
useful for debugging purposes, but in practice it is seldom neces-
sary to view the generated .in fi le directly. Instead, the modeler 
can simply leave the underlying .in fi le mechanism hidden and 
evoke an NCS simulation directly on the model using the brainlab 
Run() function on the brain:

brainlab.Run(b, nprocs = 32)

In this example the simulation is evoked remotely on 32 proc-
essors. The .in fi le that results from the model is created by 
Brainlab behind the scenes, copied over to the compute cluster 
automatically by Brainlab, and the simulation results are fetched 
on demand as the data analysis portion of the Brainlab program 
requires them.

Brainlab is designed primarily to run on the user’s worksta-
tion, and send jobs across a network to be simulated on a different 
computer (or cluster). There are several reasons for this focus. The 
user has more control over the software installed on a personal 
workstation than on a typical group or departmental compute 
server or Beowulf cluster, where it may be more diffi cult to get 
installed the libraries necessary to run Brainlab. Often data will be 
analyzed repeatedly, displayed and analyzed in a variety of ways, 
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and that is best done on a personal workstation so that specialized 
tools are guaranteed to be available and also so that other users of 
the simulation environment will not be affected. Also typically a 
personal workstation will have high-performance display hardware 
that will work more effi ciently with extensive graphing, perhaps 
in three dimensions.

Brainlab can also be confi gured to run directly on the machine 
where NCS also does the simulation. With modern high-
 performance multi-core CPUs this is a good option for smaller 
exploratory simulations.

The encapsulation of the model construction, simulation, and 
data analysis loop within a single program, a Python Brainlab script, 
makes automatic model parameter search easier. In some of our 
work we have defi ned a mapping from artifi cial chromosome to 
neural network model, and used a standard Python genetic algo-
rithm package to do a fi tness search for the best functioning model 
(Drewes et al., 2004).

DATA ACCESS, ANALYSIS, AND PLOTTING WITH BRAINLAB
Brainlab provides a few convenience functions for loading, process-
ing, and plotting standard NCS reports. In combination with the 
SciPy and Matplotlib packages, modelers can do sophisticated 
mathematical analyses and create complex graphics for view or 
publication. Effi cient access to very large datasets is available 
to the modeler through Python’s hdf5 interface, pytables. With 
the PyOpenGL libraries, Brainlab provides some limited three-
 dimensional plotting tools for viewing network models.

We will mention a few of the more commonly used Brainlab 
data access and plotting routines here. The Brainlab LoadReport() 
function returns a NumPy array containing all the data captured 
from a requested NCS report. The data to be loaded can be limited 
by time range or by range of cells. The returned data can then be 
processed further in the Brainlab program using the wide range of 
Python or NumPy tools. The Brainlab function LoadSpikeData() 
returns a list of just the spike times for a given range of cells for a 
given time. The ReportPlot() function gives a simple visual repre-
sentation of continuous NCS report data (often voltages or currents) 
on screen or into a graphical fi le. Brainlab makes extensive use of 
the Matplotlib library for the actual generation of the plots.

Brainlab handles remotely invoking a simulation on a compute 
cluster, and it also simplifi es accessing the resulting NCS report fi les. 
The same Brainlab LoadReport() function works whether the fi le 
data was captured remotely or on the local workstation. Brainlab 
also tries to use knowledge about the simulation environment to 
be effi cient about management of report fi les. For example, rather 
than copying large report fi les across a network from the compute 
cluster to the workstation for processing, Brainlab can in some cases 
invoke itself remotely on the compute cluster for report processing, 
and then only copy back the much smaller amount of data that is 
the result of the processing. The programmer generally does not 
need to be aware, for either simulation or analysis, that the com-
putation was done remotely.

Figure 2 is a sample compound plot, generated using Brainlab 
convenience functions and the Matplotlib library, from the Hebbian 
learning simulation detailed in the Section “Usage Example: 
Hebbian Learning”. Refer to Drewes (2005b) for further 2D and 
3D Brainlab plot examples.

USAGE EXAMPLE: HEBBIAN LEARNING
Following is a complete, functional example of Brainlab usage. The 
results of this Brainlab example are shown graphically in Figure 2, 
and referring to the plot while reviewing the explanation below 
will help to make the example clear. (Note however that to reduce 
space the code below draws only one of the subgraphs shown in 
Figure 2.) This simple example demonstrates positive Hebbian 
learning: when spikes are initially applied to cell A between time 
0 s and 0.5 s, the target cell T spikes because the synaptic con-
nection from A to T is initialized to a strong value. However the 
initial spikes forced onto B by external stimulus (during time 0.5 s 
to 1.0 s) do not result in the target cell T spiking, because the B to 
T synapse is initially weak. During time 1.5 s to 2.5 s, a series of 
three spikes are forced by external stimulus onto both cell A and 
B. The spike forced on cell A is suffi cient to evoke an output spike 
on T, as we have already seen. The forced spike on B just before 
the evoked spike on T causes the B-to-T synapse to strengthen 
through positive Hebbian learning. In the fi nal phase, from time 
3.0 s to 3.5 s, we see that after the synaptic strengthening, forced 
spikes on B are now alone enough to evoke a spike on T. Here is 
the script:

import brainlab

import pylab

FIGURE 2 | Output of Hebbian learning example from the Section “Usage 

Example: Hebbian Learning”.
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brainname="HebbTest" # output files begin with this name

endsim=3.5 # seconds to simulate

FSV=10000 # simulation timesteps per second

timesteps=FSV*endsim

# set up times (in secs) for two spike inputs, a and b:

eps=.010 # a small epsilon time offset

ain=[.1,.2,.3, 1.5, 1.8, 2.1]

bin=[.6,.7,.8, 1.5-eps, 1.8-eps, 2.1-eps, 3.1, 3.2, 3.3]

# create the brain object container:

newb=brainlab.BRAIN(simsecs=endsim, jobname=brainname, 

                    fsv = FSV)

# create three cells in the brain:

A=newb.Standard1CellColumn("A")

B=newb.Standard1CellColumn("B")

T=newb.Standard1CellColumn("T")

# customize a standard synapse profile:

cs=newb.syntypes["C.strong"]

# BHebb references a standard synapse learning profile with

# both + and - Hebbian. Select that for our synapse, then 
  modify:

cs.parms["LEARN_LABEL"]=newb.sls["BHebb"]

cs.parms["MAX_CONDUCT"]=0.10

cs.parms["ABSOLUTE_USE"]=(0.5, 0.0)   # initial synaptic 

                                        efficacy parameter

# make a copy of this synapse to new name, then reduce 

  initial strength:

cw=newb.Copy(newb.syntypes, "C.strong", "C.weak")

cw.parms["ABSOLUTE_USE"]=(0.1, 0.0)

# modify a Hebbian learning parameter in standard library:

hp=newb.sls["BHebb"]

hp.parms["POS_HEB_PEAK_DELTA_USE"]=(.20, 0)

newb.AddConnect(B, T, cw, prob=1.0, speed=10.0)

newb.AddConnect(A, T, cs, prob=1.0, speed=10.0)

d=(0.0, endsim)

# tell NCS to report on some voltage values:

newb.AddSimpleReport("AReport", A, reptype="v", dur=d)

newb.AddSimpleReport("BReport", B, reptype="v", dur=d)

newb.AddSimpleReport("TReport", T, reptype="v", dur=d)

# tell NCS to report on some absolute USE (synaptic efficacy) 

  values:

newb.AddSimpleReport("BtoTUSE", T, reptype="a", 

                     dur=d, synname=cw)

newb.AddSimpleReport("AtoTUSE", T, reptype="a", 

                     dur=d, synname=cs)

# tell NCS to apply our spike inputs to A and B:

newb.AddSpikeTrainPulseStim("Astim", A, ain)

newb.AddSpikeTrainPulseStim("Bstim", B, bin)

# start the simulation:

brainlab.Run(newb, verbose=True, nprocs=1)

# load resulting NCS reports into Python variables:

adata=brainlab.LoadSpikeData(brainname, "AReport")

bdata=brainlab.LoadSpikeData(brainname, "BReport")

tdata=brainlab.LoadSpikeData(brainname, "TReport")

# create a simple plot using Brainlab’s interface to 

  matplotlib/pylab:

brainlab.ReportPlot(brainname, "BtoTUSE", plottitle="B

                    synapse on T", xlab="Timestep", 

                    ylab="USE", linelab=["B to T"])

pylab.show()        # display the plot

USAGE EXAMPLE: RAIN NETWORK
In this section, we give an example of how Brainlab is used to create a 
type of model that our lab has called RAIN (Recurrent Asynchronous 
Irregular Network). This type of asynchronous, irregularly fi ring 
network with persistent activity is similar to the models investigated 
by Vogels and Abbott (2005) and it is also a benchmark model used 
in the Brette et al. (2007) review of neural simulator systems. Our 
network has 4000 leaky integrate-and-fi re neurons, 80% excitatory 
and 20% inhibitory. Each neuron is defi ned as a single compart-
ment model with a time constant, τ = 20 μσ, g leak = 5 ns, and E

leak
 

= –60 mV. The neuron will generate an action potential and the 
membrane potential will reset to the clamped resting potential for 
5 ms whenever the membrane potential crosses the threshold at 
−50 mV. The excitatory neurons differ from the inhibitory ones 
with a depolarization-activated, noninactivating potassium channel 
(I

m
 current), which is responsible for the adaptation of fi ring rate 

of cortical pyramidal cells (Yamada et al., 1998).
Both excitatory and inhibitory type synapses are simulated as 

conductance changes with instantaneous jump at maximal value 
and exponential decays, i.e., a presynaptic event generates a synaptic 
conductance change of g , which decays according to the following 
equation:

g t g e t( ) /= × − τ

The synaptic time constants are 5 and 10 ms, and quantal con-
ductances are 5 and 50 nS for excitatory and inhibitory synapses, 
respectively. All synapses are created with synaptic delay chosen 
from a normal distribution with a mean of 1 ms and standard 
deviation of 1 ms.

Neurons were randomly connected by a probability of 2% 
by conductance-based synapses (Gupta et al., 2000). For out-
bound inhibitory connections, we incorporate the diversity of 
GABAergic interneurons. The experiment performed by Gupta 
et al. (2000) indicates that GABAergic synapses in neocortical 
layers II to IV have three statistically distinct types of synapses, 
where each type has particular temporal dynamics of synaptic 
transmission. The synapses were modeled according to the con-
cepts of the  refractoriness of the release process (Markram et al., 
1998) as shown in Table 1. The Brainlab code below demonstrates 
the creation of a new synaptic facilitation and depression profi le 
called sfd_1 by copying a standard Brainlab library profi le called 
F1. Once copied, the new profi le is modifi ed according to data 
in Table 1.

# Create SYN_FACIL_DEPRESS based on ’F1’ from sfds library

sfd_1 = b.Copy(b.sfds, ’F1’, ’sfd_1’)

sfd_1.parms[’SFD’] = ’BOTH’

sfd_1.parms[’DEPR_TAU’] = (0.376, 0.253)

sfd_1.parms[’FACIL_TAU’] = (0.045, 0.21)
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Next we create an new inhibitory synapse profi le called InhSyn1 
that is based on the Brainlab standard profi le called I. The facilita-
tion and depression profi le just created is then embedded into the 
new synapse type. Note that some extraneous parameters inherited 
from the default profi le are also deleted at this time, and note that 
the reference to the facilitation and depression profi le is made to 
the newly-created variable, rather than the text string name of the 
profi le (though Brainlab supports either, the former is generally 
easier and less error prone):

# Create SYNAPSE based on ’I’ from syntypes library

InhSyn1 = b.Copy(b.syntypes, ’I’, ’InhSyn1’)

del InhSyn1.parms[’PREV_SPIKE_RANGE’]

del InhSyn1.parms[’RSE_INIT’]

del InhSyn1.parms[’HEBB_END’]

del InhSyn1.parms[’HEBB_START’]

newparms=[(’ABSOLUTE_USE’, (0.250, 0.0)), (’SYN_REVERSAL’, 

          (-80, 0.0)), (’SFD_LABEL’, sfd_1), 

          (’DELAY’, (0.001, 0.001))]

InhSyn1.parms.update(newparms)

InhSyn1.parms[’MAX_CONDUCT’] = ((G_inh/2.0), 0.0)

We omit the section of Brainlab code that creates the cells 
themselves, but the procedure is similar: a basic cell type is copied 
from the Brainlab library and a few parameters are selectively 
modifi ed. The variables returned from the Brainlab function that 
creates the cells groups are stored in a Python list. So e[0] ref-
erences the fi rst group created, e[1] the second group created, 
and so on.

Brainlab provides a single, general AddConnect(from, to) 
method that can make connections at all three connection levels 
supported by NCS (within-layer, between-layer, and between-
 column). The modeler does not need to pay attention to NCS’s 
distinction between these three levels of connection if this is not 
desired, and this encapsulation can hide much complexity from 
the user. Furthermore, connections can conveniently be made in 
Brainlab using the Python variables assigned to the created objects, 
rather than their underlying .in fi le text names (which the mod-
eler can basically ignore). In our example of a 4000 neurons net-
work, we do divide the network into fi ve cell groups, so that it 
could be distributed to fi ve computational nodes. The three types 
of  inhibitory synapses connect to both inhibitory and excitatory 
neurons in the network:

# Connect inh RAIN network

b.AddConnect((col_0, lay_0, i0), (col_0, lay_0, i0), 

                           InhSyn1, prob=0.00584, speed=0)

b.AddConnect((col_0, lay_0, i0), (col_0, lay_0, i0), 

                           InhSyn2, prob=0.01166, speed=0)

b.AddConnect((col_0, lay_0, i0), (col_0, lay_0, i0), 

                           InhSyn3, prob=0.00250, speed=0)

# Connect inh-exc rain network

for j in range(0, 4):

    tgt = e[j]

    b.AddConnect((col_0, lay_0, i0), (col_0, lay_0, tgt),

                           InhSyn1, prob=0.00152, speed=0)

    b.AddConnect((col_0, lay_0, i0), (col_0, lay_0, tgt),

                           InhSyn2, prob=0.01526, speed=0)

    b.AddConnect((col_0, lay_0, i0), (col_0, lay_0, tgt),

                           InhSyn3, prob=0.00320, speed=0)

The short-term dynamics of inhibitory synapses not only maxi-
mize the synaptic diversity, but potentially constrain the functional 
impact of different interneurons on the long-term dynamics which 
exist among the excitatory neurons. To incorporate this idea into 
the model, we also include the spike timing dependent plasticity 
(STDP) within each cell group (Song et al., 2000). The Brainlab 
code for these connections is as follows:

for i in range(0, 4):

    src = e[i]

    # connect exc-inh rain network

    b.AddConnect((col_0, lay_0, src), (col_0, lay_0, i0), 

                              ExcSyn0, prob=0.02, speed=0)

    # connect exc-exc rain network

    for j in range(0, 4):

        tgt = e[j]

        if (i==j):

            b.AddConnect((col_0, lay_0, src), (col_0, lay_0, 

                          tgt), ExcSyn1, prob=0.02, speed=0)

        else:

            b.AddConnect((col_0, lay_0, src), (col_0, lay_0, 

                          tgt), ExcSyn0, prob=0.02, speed=0)

Even the fairly simple RAIN network example shown above 
results in a multi-thousand line .in fi le for NCS. The more con-
cise, programmatic representation of the model in Brainlab makes 
it easier to create and also easier for others to quickly understand 
the true structure of the model.

DISCUSSION
We have shown elements of the design, implementation, and usage 
of Brainlab, a Python toolkit that leverages the strengths of Python 
to provide a more powerful and convenient interface to the NCS 
network simulator. We integrated Brainlab to NCS loosely, in a 
way that required no source code changes to NCS whatsoever. We 
were able to design a Pythonic neural modeling interface that can 
automatically convert an object representation into NCS’s cumber-
some .in representation. For simulation, we also integrate Brainlab 
loosely with NCS, using Python’s sub-process management and 
standard operating system level tools like ssh for remove invoca-
tion as necessary.

Our approach gives us simplicity of implementation and ease of 
long-term maintainability, with no signifi cant performance penal-
ties on simulations, yet still extends to NCS all the considerable 
power and fl exibility of Python and its numerical, graphical, special 
format fi le access, and other support packages.

Table 1| Dynamic parameters of GABAergic synapses (Gupta et al., 2000).

 F1 F2 F3

INH to EXC (%) 7.6 76.3 16

INH to INH (%) 29.2 58.3 12.5

τfacil (ms) 376 21 62

τdepr (ms) 45 706 144
g  (nS) 3.24 7.76 3.44
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