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Abstract. Automated segmentation of cortical and noncortical human brain structures has been hitherto
approached using nonrigid registration followed by label fusion. We propose an alternative approach for this
using a convolutional neural network (CNN) which classifies a voxel into one of many structures. Four different
kinds of two-dimensional and three-dimensional intensity patches are extracted for each voxel, providing local
and global (context) information to the CNN. The proposed approach is evaluated on five different publicly
available datasets which differ in the number of labels per volume. The obtained mean Dice coefficient varied
according to the number of labels, for example, it is 0.844� 0.031 and 0.743� 0.019 for datasets with the least
(32) and the most (134) number of labels, respectively. These figures are marginally better or on par with those
obtained with the current state-of-the-art methods on nearly all datasets, at a reduced computational time. The
consistently good performance of the proposed method across datasets and no requirement for registration
make it attractive for many applications where reduced computational time is necessary. © 2017 Society of Photo-

Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.4.2.024003]
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1 Introduction

Quantitative analysis of the neuroimaging data requires cortical

and noncortical structural segmentation. Such analysis is critical

in many tasks, such as the assessment of several neurodegener-

ative disorders, development of neonatal brain, etc. Manual

labeling of these structures is unsuitable for studies involving

large datasets since it is a slow process and prone to human

errors. Automatic segmentation addresses these problems.

Though there are different methods for automatic segmentation,

a popular one is based on the use of multiple atlases, known as

multiatlas segmentation (MAS).

The most widely used approach for MAS is based on non-

rigid registration and label fusion. A typical nonrigid registra-

tion-based method for MAS follows these steps: (i) selection

of the relevant source atlases (with labeled voxels) from a train-

ing set1 and their nonrigid registration to the target volume,

(ii) label propagation from the source to the target space,2

and (iii) finally, label fusion3 to combine the propagated labels

into a segmentation estimate for the target volume. The nonrigid

registration and the label fusion technique determine the accu-

racy of these methods. This approach for MAS is known as

multiatlas label propagation (MALP). A good survey of differ-

ent methods for MAS task can be found in Ref. 4.

A key drawback of the MALP methods is the computational

cost. The nonrigid registration step can require as long as 2 to

20 h,5 while the label fusion6 and atlas selection7 typically

require 2 to 3 h. Furthermore, since the total computational

time is linearly proportional to the number of training atlases,

it linearly increases with an increase in the number of training

atlases.

Alternatively, patch-based techniques8,9 have also been

investigated as a solution for MAS. Here, the labeling of each

voxel is done by comparing its surrounding patch with patches

in training data in which the labels of the central voxels are

known. These patch-based techniques also typically require 2

to 3 h for labeling of new volume.10

A reduction in the computational cost is possible with offline

learning,11–16 where the structure segmentation is proposed as a

voxel classification problem. Here, a model is learned on the

training data using different machine learning algorithms and

is used to classify the voxels in an unseen volume in a short

time. An example of this is the use of a set of atlas forests

(AFs).11 Here, each AF encodes a single atlas and a probabilistic

atlas is constructed by iterative nonrigid groupwise registration

of training samples to their mean. During testing, a new volume

is first affine registered to the probabilistic atlas followed by a

coarse, nonrigid registration, thus leading to computational

efficiency.

Spurred by the success of deep learning in computer

vision,17,18 convolutional neural network (CNN)-based tech-

niques have been explored for the segmentation of various ana-

tomical structures, from the pancreas in CT images19 to neuronal

structures in electron microscopic stacks.20

In neuroimages, segmentation of images into three basic tis-

sue types, such as gray matter (GM), white matter (WM), and

cerebrospinal fluide, in different age groups has been attempted

using CNN,21,22 while segmenting eight different tissue types

has been reported in Ref. 23.
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The task of segmenting cortical and subcortical structures is

similar to the tissue-labeling task, albeit more challenging as the

number of structures of interest is generally large, typically 32 to

134, with the intensity information being inadequate as many

structures belong to both GM and WM tissues. Hence, the con-

textual information for this task is essential to distinguish

between structures and correctly identify their location in left

and right hemispheres of the brain as shown in Ref. 13.

Nonrigid registration (of a labeled atlas) has been a natural

choice for solving this task as it has embedded contextual infor-

mation. This contextual information is obtained with the help of

propagated atlas priors2,24 or alternately the spatial information

is provided explicitly as prior probability of structure in patch-

based approaches.8–10,25

Some recent works take the CNN-based approach for structure

segmentation.13–16 Every voxel is represented in Ref. 13 by a set

of features which includes local appearance information and posi-

tion relative to the centroids of different substructures/segments

of the brain as contextual information. Segmenting a new volume

involves an iterative two-step solution: one to generate a rough

labeling (for centroid information) and the other to refine it.

These two steps are repeated until convergence.

A fully convolutional network (FCN)-based CNN approach

has also been proposed14 to segment deep brain structures (typ-

ically 10 to 12 structures). Since contextual or three-dimensional

(3-D) information is not a part of the input in this method, it is

necessary to use a separate Markov random field (MRF) as post-

processing for label consistency. Alternately, Hough voting has

also been used as the postprocessing step.15 Training a separate

CNN for each structure of interest has also been proposed for

deep brain structure segmentation in Ref. 16. Dynamic random

walker with decayed region of interest is then used to enforce

label consistency. The use of separate CNNs for each structure

makes it impractical for scenarios where it is necessary to seg-

ment up to 134 structures. Thus, existing CNN-based solutions

for structure segmentation have the following drawbacks:

they are iterative in nature, require postprocessing, do not

permit end-to-end training, and often require a registration step.

Furthermore, most of the existing CNN based methods have

addressed largely labeling of the subcortical structures and

not the whole brain segmentation.

We propose a noniterative as well as end-to-end trainable

CNN-based solution for this task. The salient features of our

solution are:

• Innovative patches: The CNN is trained on two-dimen-

sional (2-D) and 3-D patches to capture four types of

voxel appearance information which encode local inten-

sity profile as well as global context.

• No requirement for registration: Unlike the existing meth-

ods, no registration is required to segment a new volume.

• Comprehensive labeling: A structure segmentation task

has been demonstrated for segmentation of both cortical

and subcortical structures.

• Good performance: A reduction in computational time by

a factor of 70 is achieved relative to nonrigid registration-

based approaches; this is independent of the training set

size. The proposed solution also gives comparable or mar-

ginally better performance than the current state-of-the-art

techniques on four out of five public datasets in terms of

accuracy.

2 Methodology

CNN is a deep learning architecture inspired by biological net-

works akin to the multilayer perceptron. Basic blocks of a CNN

are: (i) a convolutional layer (2-D/3-D) to detect local features at

different positions in an image through a set of learnable filters

(or kernels), (ii) a maxpooling layer (2-D/3-D), which down-

samples the output of a layer thus progressively reducing the

number of parameters and computation, (iii) a fully connected

(FC) layer, which is an extension of the original multilayer

perceptron, (iv) a dropout layer26 to effectively regularize

the network and reduce overfitting to the training data, and

(v) activation functions, such as rectified linear unit, tanh, and

softmax.17 The architecture we propose is shown in Fig. 1.

In the structure segmentation task, three types of information

are useful for segmentation. (i) Local intensity profile to

distinguish between structures belonging to different tissues,

(ii) context, necessary to encode the spatial configuration of

structures, and (iii) 3-D information for attaining label consis-

tency across slices.

The proposed CNN architecture, henceforth referred to as

“BrainSegNet,” has this information provided via 2-D/3-D

patches of various sizes. Around every voxel, the following

patches are extracted: (i) three 2-D orthogonal patches of size

31 × 31 voxel, extracted from the sagittal, coronal, and axial

(“sca”) planes to provide local 2-D intensity profile

(31 × 31 × 3), (ii) a 3-D patch of size 21 × 21 × 21, to provide

local 3-D intensity profile (21 × 21 × 21 × 1), (iii) three 2-D

orthogonal patches of size 93 × 93, downsampled by a factor

of 3, to provide global information regarding input voxel,

from the sca planes, (31 × 31 × 3), (iv) a 3-D patch of size

63 × 63 × 63, downsampled by a factor of 3, to provide global

3-D information (21 × 21 × 21 × 1). Sample patches for seven

different voxels are shown in Fig. 2.

Inspired by the VGGnet,27 small-sized kernels were chosen

for the convolutional layers in our architecture, as shown in

Fig. 1. Each of the four type of patches mentioned above is con-

sidered as an input in our network and has a separate processing

pipeline for them. Each branch has a cascade of two convolu-

tional layers followed by one maxpooling layer. Each convolu-

tional layer has 3 × 3ð2 − DÞ∕3 × 3 × 3ð3 − DÞ kernel size,

while the numbers of filters are 8, 16, 24, and 32, respectively.

The maxpooling uses 2 × 2ð2 − DÞ∕2 × 2 × 2ð3 − DÞ filters

with a stride equal to 2, thus reducing the patch size by half.

The output of all the four branches is flattened and concat-

enated to form a single one-dimensional array. This is passed

through two FC layers with 2000 and 300 neurons, respectively,

and softmax layers (N neurons,N = total number of desired labels

including background) in a sequential manner. A dropout layer

(with probability 0.5) is applied between the two FC layers as

well as between the last FC layer and the softmax layer (in blue).

A weighted categorical cross entropy function (with respect

to classes) is used to handle the class-imbalance problem. This

loss function and the weights are defined such that the weight

increases whenever there are fewer voxels in a particular class

EQ-TARGET;temp:intralink-;sec2;326;154Li ¼ −
X

n

X

l

wl � t
i
n;l log pi

n;l where; wl ¼

P
k¼N
k¼0 mk

ml

;

where Li is the loss for volume i, tin;l is 1 if the true label of voxel

n of volume i is l otherwise it is 0, pi
n;l is the probability that the

CNN will predict label l for voxel n of volume i, wl denotes the
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weight for the l’th class, and ml is the number of voxels of

l’th class in the training dataset.

2.1 Different Variants of the Proposed Convolutional
Neural Network

As mentioned above, the BrainSegNet has four types of inputs

(2-D/3-D local/global) which contribute to the CNN architec-

ture. Analysis of their relative contribution is possible by con-

sidering various architectures.

In general, it can be observed that the variation in interstruc-

ture intensity of noncortical regions is greater than their spatial

positions. This is contrary to the cortical structures, where

spatial position (contextual information) varies more than

their local intensity information. Thus, the segmentation accu-

racy should vary with the type of input that is available in

the CNN. These observations were verified by considering

CNN variants with only one type of input. CNN1: a simple

architecture which has only 2-D local information as input.

Specifically, an input of size 31 × 31 × 3 is derived from a 31 ×

31 voxels patch from the three sca planes. CNN2a: a network

with only 2-D “global” information as input. The input is now

a patch of size 21 × 21 × 3 derived from 63 × 63 patches from

three sca planes after downsampling by 3. CNN2b: here, the

Fig. 2 Sample input patches: (a) 2.5-D representation of the brain MRI volume. For seven different
voxels, (b) the branch 1 (31 × 31 × 3), (c) branch 2 (93∕3 × 93∕3 × 3), (d) branch 3 (21 × 21 × 21),
and (e) branch 4 (63∕3 × 63∕3 × 63∕3) patches/cubes are also shown. The ordering for (b) and
(c) are: coronal (top row), sagittal (middle row), and axial (bottom row) slices. For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.

Fig. 1 Schematic overview of the proposed CNN architecture. The number of neurons N is same as
the number of manually marked structures in a dataset (including background).
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size of global context considered is wider. In place of the 63 ×

63 patch, a 93 × 93 patch is used to derive the 2-D global

information.

One can say that a combination of both local and global

information is beneficial for the accurate segmentation of

both cortical and noncortical structures. To observe the perfor-

mance of this combination of inputs, we considered a variant of

the CNN architecture (CNN3). Here, the inputs are both 2-D and

3-D. Specifically, the input consists of 2-D local information

from sca planes (31 × 31 × 3), 2-D global information from

sca planes (63 × 63 downsampled by factor 3, 21 × 21 × 3),

and 3-D local (15 × 15 × 15) information. The 3-D input

patches can provide segmentation consistency between succes-

sive slices and remove the requirement of postprocessing. The

proposed BrainSegNet has all the necessary 2-D/3-D local/

global information as input.

An alternative to using both 2-D and 3-D patches is to use

only 3-D inputs as in Ref. 28. However, processing 3-D patches

requires greater graphics processing unit (GPU) memory and

increases the computational time (for the same size of input)

as 3-D convolution is computationally more intensive than

2-D. Hence, this variant was not considered. All four variants

and the BrainSegNet were tested on a public dataset and the

results are presented in Sec. 4.1.

3 Dataset

BrainSegNet was evaluated on five different publicly available

datasets, with varying numbers of structures per volume,

as described in Table 1. As indicated in the table, except for

the MICCAI-2012, every dataset is split randomly into two

equal-sized training and testing sets.

3.1 MICCAI-2012 Dataset

This dataset was released as a part of a workshop on multiatlas

labeling in MICCAI-2012 (Ref. 29). It consists of 15 training

images and 20 testing images from the OASIS30 project.

A detailed description of the acquisition parameters can be

found on the OASIS website. All images have 134 manually

segmented structures provided by Neuromorphometrics, Inc.

The large number of marked structures makes it a challenging

dataset for structure segmentation task.

3.2 International Brain Segmentation Repository
Dataset

The International Brain Segmentation Repository (IBSR) data-

set has 18, 3-D T1-weighted MR images of 1.5-mm-thick

cortical slices. Manual segmentation of 32 structures (primarily

noncortical) is provided by the Center for Morphometric

Analysis at Massachusetts General Hospital.

3.3 LONI-LPBA40 Dataset

The LONI-LPBA40 dataset consists of T1-weighted MRI scans

of 40 healthy volunteers. A total of 50 cortical and 4 subcortical

structures along with the brainstem and the cerebellum are delin-

eated by trained raters for each volume. Details of acquisition

parameters can be found in Ref. 31. In our work, the brainstem

and cerebellum were excluded from assessment, as they were

removed by the skull-stripping step (Ref. 32).

3.4 IXI Datasets

Hammers67n20 and Hammers83n30 are two sets, consisting of

20 and 30 T1-weighted MR image data, provided as a part of

the IXI database (Ref. 33). Details of the acquisition parameters

can be found in Ref. 2. Hammers83n30 has much more detailed

segmentation of the gyrus in the frontal and temporal lobs com-

pared to Hammers67n20. This is clearly visible in Figs. 3(d)

and 3(e).

4 Experiments and Results

All the volumes were preprocessed as follows: intensity in-

homogeneity correction was done using N4-bias correction

algorithm34 followed by skull stripping35 [Brain Extraction

Tool (BET)] (Ref. 36) and intensity normalization by sub-

tracting mean intensity of a volume and dividing by the standard

deviation of a volume.

BrainSegNet was trained on NVIDIA K40 GPU, with 12 GB

of RAM for 30 epochs using stochastic gradient descent with

momentum 0.75 and learning rate 0.05. Learning rate was

reduced by half at every 10 epochs. Two million patches were

extracted from each training volume. The training time was

roughly 2 days. The code was written in Python using Keras

library. A new test volume can be segmented in 15 to 20 min,

which is a 60 to 70 fold reduction compared to standard nonrigid

registration-based methods, which require 20 to 25 h for

segmentation.

The segmentation performance was quantitatively assessed

using the mean Dice coefficient (DC), which is defined as

follows. Let A and B denote the binary segmentation labels gen-

erated manually and computationally, respectively. The DC is

defined as

EQ-TARGET;temp:intralink-;sec4;326;241DCðA; BÞ ¼
2jABj

jAj þ jBj
;

where jAj denotes the number of positive elements in the binary

segmentation A and jABj is the number of shared positive

elements by A and B. DC ∈ ½0; 1�. A higher DC value indicates

a better segmentation performance.

Sample axial slices drawn from five datasets, their manual

segmentation and output of the BrainSegNet are shown in

Fig. 3. It should be noted that a “smooth” segmentation of

cortical and subcortical structures is obtained without any

postprocessing. This is due to the fact that the input patches

are rich in information, both local intensity as well as global

context is provided.

Table 1 Dataset description.

Dataset
No. of

structures
No. of
atlases

Train
volumes

Test
volumes

MICCAI-2012 134 35 15 20

IBSR 32 18 9 9

LPBA40 54 40 20 20

Hammers67n20 67 20 10 10

Hammers83n30 83 30 15 15
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A comparison of the performance of the BrainSegNet with

the state-of-the-art standard methods for MALP is given in

Table 2. This table shows that the performance of the

BrainSegNet is comparable or marginally better than other

methods, on all five datasets except one.

Since the methods taken up for comparison are computa-

tionally expensive, the tabulated results for other methods

are drawn from the respective papers without reimplementing

them. Hence, to establish the statistical significance (p value)

of the results, the one sample t-test/z-test has been used.

A detailed evaluation of all the variants listed in Sec. 2.1 was

done on MICCAI-2012 dataset and results are provided in

Sec. 4.1. A detailed evaluation of the proposed method on all

the other datasets is provided in Sec. 4.2.

4.1 Performance of Different Variants of
the Proposed Convolutional Neural
Network on MICCAI-2012

The CNN variants were evaluated on the MICCAI-2012 dataset

as it has the greatest number of labeled structures (134). It

should be noted that all these architectures were trained using

the same number of patches and optimization parameters as

mentioned in Sec. 4.

Table 2 Performance (mean DC) comparison of the BrainSegNet with the various methods (MALP based, patch based, and classification based)
for different datasets.

Various segmentation methods BrainSegNet

MICCAI-2012 0.764
5 0.7585 0.7115 0.7375 0.727511 0.743*

IBSR 0.83510 0.83511 0.844

LONI-LPBA40 0.7838 0.78412 0.7999 0.81424 0.80111 0.824*,†

Hammers67n20 0.8362 0.7542 0.840

Hammers83n30 0.80133 0.75233 0.78533 0.75433 0.78933 0.808†

*Statistically significant difference (p < 0.01) between the proposed and random forest-based method.11
†Statistical significant difference between the proposed and the state-of-the-art method (italics) for respective datasets.
Note: Bold values signify the best performing methods.

Fig. 3 Sample images from the different datasets (top row), their manual segmentation (middle row),
and output of the BrainSegNet (bottom row). (a) MICCAI-2012, (b) IBSR, (c) LONI-LPBA40,
(d) Hammers67n20, and (e) Hammers83n30.
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The mean DC for the cortical and noncortical structures for

different variants is listed in Table 3. The box plots for different

noncortical and cortical structures, for these variants, are shown

in Figs. 4 and 5, respectively.

CNN1 is expected to give a superior performance for

noncortical structures rather than cortical structures and vice

versa for CNN2a, as CNN1 encodes local information necessary

for noncortical structures while CNN2a encodes global context

necessary for cortical structures. This is borne out to be true as

CNN1 has better DC (cortical: 0.6306� 0.023 and noncortical:

0.7701� 0.024) than CNN2a (cortical: 0.6370� 0.011 and

noncortical: 0.7535� 0.024) for noncortical structures and

vice versa for cortical structures.

Similarly, it can also be expected that an increase in the

global context should increase the DC. This is also true as

CNN2b (0.6852� 0.012) has better overall DC than CNN2a

(0.6683� 0.010), underscoring the beneficial effect of context

in cortical structure labeling. However, the improvement

in DC for cortical (CNN2a: 0.6370� 0.011 and CNN2b:

0.6576� 0.011) versus noncortical (CNN2a: 0.7535� 0.024

and CNN2b: 0.7604� 0.028) structures differs with only a

marginal increase for the latter class, which is to be expected.

Since CNN3 has a combination of 2-D local/global and local

3-D information as input, its performance should be better

than the variants with only one type of input. The results in

Table 3 affirm this, as an improved labeling performance is

evident for both cortical (0.6758� 0.013) and noncortical

(0.7793� 0.022) structures relative to CNN1 and CNN2.

Likewise, the performance of the proposed BrainSegNet

should be superior to that of all these variants as it has all four

global/local 2-D/3-D information as input. This also holds, as

the BrainSegNet has the best performance among all variants, with

a mean DC of 0.7432� 0.019 for all structures in the MICCAI-

2012 dataset. This is also better than the AF-based method,11

which reports a mean DC of 0.7275� 0.070 (p < 0.01).

The ranked results of 25 methods, evaluated during the

MICCAI-2012 challenge, are reported in Ref. 5. The obtained

performance of BrainSegNet places it at rank 5, with the differ-

ence in DC value between the best (0.764) and BrainSegNet

(0.7432� 0.019) being 0.02. This is noteworthy as all the meth-

ods in Ref. 5 are based on (linear/nonlinear) registration and

none use a CNN-based solution. It should be noted that this

ranking is from 2012 and continues to be valid as of now,

since most other methods for brain structure segmentation

(including CNN based) in literature have not reported results

on this dataset. This perhaps is due to the large number (134)

of labeled structures in this dataset.

4.2 Evaluation and Comparison of BrainSegNet on
Multiple Datasets

In addition to MICCAI-2012, BrainSegNet is also evaluated on

four other public datasets. We present the performance figures

Fig. 4 Results of labeling of noncortical structures on test volumes of MICCAI-2012 dataset. For interpre-
tation of the references to color in this figure legend, the reader is referred to the web version of this article.

Table 3 Mean DC values for different variants of the proposed CNN
architecture on MICCAI-2012 dataset.

Cortical structures
Noncortical
structures Overall

CNN1 0.6306� 0.023 0.7701� 0.024 0.6685� 0.021

CNN2a 0.6370� 0.011 0.7535� 0.024 0.6683� 0.010

CNN2b 0.6576� 0.011 0.7604� 0.028 0.6852� 0.012

CNN3 0.6758� 0.013 0.7793� 0.022 0.7036� 0.011

BrainSegNet 0.7204� 0.012 0.8053� 0.028 0.7432� 0.019

Note: Bold values signify the best performing methods.
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for the whole brain as well as for the individual structures on

each of these datasets. These individual structures are chosen

according to the reports in the literature on each datasets.

It should be noted that the mean DC values, reported from

respective papers, are based on leave-one-out assessment

whereas ours is based on half-split assessment.

4.2.1 IBSR dataset

This dataset has the fewest labeled structures. The mean DC

obtained for this dataset with BrainSegNet is 0.844� 0.031,

which is marginally higher than those reported for the current

state-of-the-art methods such as in Ref. 10 (0.835) and Ref. 11

(0.835� 0.042, p ¼ 0.1467). Table 4 lists the mean DC

Fig. 5 Results of labeling of cortical structures on test volumes of MICCAI-2012 dataset (left and right
labels shown jointly). For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.

Table 4 Quantitative comparison on IBSR dataset. Mean DC values
are listed for noncortical structures.

Ref. 12 Ref. 10 BrainSegNet

L. lateral ventrical 0.85 0.93 0.93� 0.039*

L. thalamus 0.88 0.89 0.88� 0.050

L. caudate 0.83 0.88 0.86� 0.047

L. putamen 0.84 0.89 0.91� 0.022*,†

L. pallidum 0.74 0.79 0.81� 0.089*

L. hippocampus 0.74 0.83 0.81� 0.065*

L. amygdala 0.68 0.75 0.76� 0.087*

L. ventral DC 0.81 0.82 0.82� 0.033

Third ventrical 0.74 0.80 0.81� 0.079*

Fourth ventrical 0.76 0.84 0.85� 0.094*

R. lateral ventrical 0.85 0.92 0.92� 0.026*

R. thalamus 0.87 0.89 0.90� 0.029*

R. caudate 0.81 0.89 0.88� 0.048*

R. putamen 0.84 0.89 0.91� 0.023*,†

R. pallidum 0.75 0.79 0.83� 0.086*,†

R. hippocampus 0.76 0.83 0.83� 0.071*

R. amygdala 0.66 0.75 0.71� 0.087

R. ventral DC 0.81 0.82 0.82� 0.051

*The statistically significance difference (p < 0.05) between
BrainSegNet and Ref. 12.

†The statistically significance difference (p < 0.05) between
BrainSegNet and Ref. 10.
Note: Bold values signify the best performing methods.

Table 5 Quantitative comparison on IBSR dataset for CNN-based
methods. DC values are shown for subcortical structures used by
Refs. 14 and 16 for evaluation.

Ref. 14 Ref. 16 BrainSegNet

Thalamus 0.87 0.89 0.89� 0.041

Putamen 0.83 0.88 0.91� 0.022*,†

Caudate 0.78 0.87 0.87� 0.047*

Pallidum 0.75 0.79 0.82� 0.083*,†

Hippocampus 0.77 0.81 0.82� 0.066*

Amygdala 0.65 0.67 0.74� 0.089*,†

*The statistically significance difference (p < 0.05) between
BrainSegNet and Ref. 14.

†The statistically significance difference (p < 0.05) between
BrainSegNet and Ref. 16.
Note: Bold values signify the best performing methods.
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values for noncortical structures for three methods: proposed, a

patch-based,10 and a random forest-based method.12 It can be

observed that the proposed method gives equal or marginally

better performance than the patch-based method10 on 13 out

of 18 structures, while it is consistently better than random

forest-based method12 for all structures.

The FCN-based CNN method in Refs. 14 and 16 also

report on this dataset for subcortical structure segmentation.

A comparison of their reported DC values and ours is shown in

Table 5. BrainSegNet appears to obtain a superior performance

compared to both Refs. 14 and 16. It should be noted that these

methods utilize postprocessing steps, such as MRF and random

walker. A reason for the increased performance of our method,

which has no postprocessing, can be attributed to the better

use of contextual information in the proposed architecture.

4.2.2 LONI-LPBA40 dataset

In this dataset,31 largely “cortical” structures are labeled.

BrainSegNet has a mean DC value of 0.824� 0.040 for this

Table 6 Quantitative comparison on LPBA40 dataset. Reference 12 is based on random forest. DC values are listed for 54 structures.

Left brain Right brain

Ref. 12 BrainSegNet Ref. 12 BrainSegNet

Superior frontal gyrus 0.86� 0.024 0.89� 0.023* 0.86� 0.020 0.89� 0.024*

Middle frontal gyrus 0.85� 0.029 0.89� 0.031* 0.85� 0.031 0.88� 0.026*

Inferior frontal gyrus 0.79� 0.046 0.85� 0.025* 0.80� 0.034 0.85� 0.036*

Precentral gyrus 0.81� 0.042 0.86� 0.040* 0.82� 0.039 0.84� 0.047*

Middle orbitofrontal gyrus 0.75� 0.069 0.81� 0.067* 0.75� 0.068 0.80� 0.056*

Lateral orbitofrontal gyrus 0.69� 0.096 0.76� 0.061* 0.70� 0.073 0.72� 0.082

Gyrus rectus 0.76� 0.051 0.79� 0.068* 0.75� 0.051 0.79� 0.082

Postcentral gyrus 0.77� 0.052 0.83� 0.051* 0.78� 0.071 0.84� 0.041*

Superior parietal gyrus 0.80� 0.040 0.85� 0.031* 0.81� 0.029 0.84� 0.029*

Supramarginal gyrus 0.74� 0.066 0.79� 0.054* 0.75� 0.073 0.78� 0.070*

Angular gyrus 0.75� 0.041 0.76� 0.070 0.74� 0.070 0.79� 0.045*

Precuneus 0.77� 0.043 0.79� 0.064 0.77� 0.039 0.82� 0.053*

Superior occipital gyrus 0.69� 0.075 0.73� 0.090* 0.71� 0.073 0.72� 0.081

Middle occipital gyrus 0.77� 0.048 0.79� 0.064 0.78� 0.050 0.80� 0.063

Inferior occipital gyrus 0.75� 0.056 0.81� 0.056* 0.76� 0.057 0.82� 0.054*

Cuneus 0.74� 0.072 0.83� 0.067* 0.75� 0.067 0.78� 0.082

Superior temporal gyrus 0.84� 0.027 0.87� 0.031* 0.84� 0.038 0.88� 0.033*

Middle temporal gyrus 0.78� 0.040 0.81� 0.045* 0.76� 0.046 0.83� 0.037*

Inferior temporal gyrus 0.78� 0.051 0.83� 0.047* 0.76� 0.048 0.83� 0.039*

Parahippocampal gyrus 0.79� 0.039 0.82� 0.053* 0.79� 0.036 0.83� 0.044*

Lingual gyrus 0.80� 0.054 0.86� 0.028* 0.79� 0.057 0.85� 0.041*

Fusiform gyrus 0.80� 0.051 0.85� 0.055* 0.81� 0.044 0.86� 0.044*

Insular cortex 0.84� 0.027 0.88� 0.033* 0.86� 0.020 0.87� 0.038

Cingulate gyrus 0.77� 0.065 0.79� 0.042 0.79� 0.044 0.80� 0.051

Caudate 0.81� 0.046 0.84� 0.060* 0.81� 0.064 0.82� 0.076

Putamen 0.82� 0.028 0.83� 0.039 0.81� 0.028 0.85� 0.043*

Hippocampus 0.81� 0.026 0.83� 0.036* 0.81� 0.048 0.83� 0.038*

Overall 0.78� 0.048 0.82� 0.039* 0.79� 0.048 0.82� 0.041*

*The statistically significance difference (p < 0.05) between BrainSegNet and Ref. 12.
Note: Bold values signify the best performing methods.
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set, which is higher than 0.814� 0.023 (p < 0.01) reported by

the current state-of-the-art patch-based technique.24 The random

forest-based method12 also uses a classification approach, such

as the proposed method. The DC values for 54 structures in

LPBA40 dataset are listed in Table 6 for comparison. Based

on these values, BrainSegNet appears to perform consistently

better.

4.2.3 IXI datasets

IXI database consists of two datasets with 67 and 83 labeled

structures as mentioned in Sec. 3.

Hammers67n20 Dataset:2 BrainSegNet obtains a mean

DC of 0.840� 0.013 on this dataset, which is comparable to

0.836� 0.009 (p ¼ 0.35) reported in Ref. 2 with nonrigid

registration. Reference 2 also reports a lower figure of 0.754�
0.016 (p < 0.01) with affine registration. It should be noted that

though Ref. 2 reports on 30 MRI scans, only 20 scans are

available for public access.

Hammers83n30 Dataset:2 BrainSegNet has a mean DC of

0.808� 0.014 on this dataset, which is better than that obtained

by different nonrigid registration-based methods reported in

Ref. 37, such as demons (0.785, p < 0.01), PCA (0.754,

p < 0.01), HAMMER (0.789, p < 0.01), and ISA (0.801,

p < 0.01).

Table 7 lists the DC values obtained with the proposed

method (BrainSegNet) and those reported in Ref. 24 for subcort-

ical structures common to both of the above two datasets. It is

desirable for a method to perform equally well on the same

structures from both datasets. This is true for our method. It

can also be observed that BrainSegNet has equal or marginally

higher DC than Ref. 24 for four out of seven structures while it is

marginally less for the rest.

Finally, the generalizability of the obtained results with

BrainSegNet was also assessed. Training was done with the

MICCAI-2012 dataset and testing was done on the IXI datasets

(Hammers67n20 and Hammers83n30). As subcortical struc-

tures are common between these three datasets, the performance

is compared for only these structures in Table 8. The tabulated

results indicate only marginal degradation with cross training,

which implies that the proposed method is robust to change in

dataset. This eliminates the need for retraining for a new dataset.

5 Discussion and Conclusion

Traditional approaches, such as MALP, for the brain structure

segmentation rely on nonrigid registration to label a new test

volume. Various machine learning-based algorithms, such as

random forest11 and CNN,13–16 treat structure segmentation

as a classification task. These existing CNN-based methods,

however, have the following drawbacks: multiple passes over

a test image to obtain final labels and dependency on initial

model;13 need for postprocessing (such as MRF,14 Hough

voting,15 or random walker16), which prohibits an end-to-end

trainable CNN-based solution.

We presented an end-to-end trainable CNN-based solution

(BrainSegNet) for brain structure segmentation by employing

2-D/3-D patches of varying size as input. The experimental

results of the variants of the proposed method (see Table 3) dem-

onstrated that both context (branches 2 and 4) and appearance

(branches 1 and 3) are important for labeling, with wider context

boosting the DC values of cortical more than noncortical

structures.

Table 7 Quantitative comparison on two variants (Hammers67n20
and Hammers83n30) of IXI database. DC values are given for sub-
cortical structures that are common for both the datasets.

Ref. 24

BrainSegNet

Hammers67n20 Hammers83n30

Hippocampus 0.85 0.84� 0.038 0.83� 0.035

Amygdala 0.82 0.81� 0.089 0.81� 0.070

Caudate 0.90 0.90� 0.029 0.88� 0.026

Nucleus accumbens 0.71 0.70� 0.112 0.68� 0.105

Putamen 0.89 0.89� 0.031 0.89� 0.039

Thalamus 0.90 0.91� 0.015 0.90� 0.021

Pallidum 0.80 0.81� 0.076 0.80� 0.066

Note: Bold values signify the best performing methods.

Table 8 Quantitative comparison of two variants (self-training and cross-training) on IXI databases. DC values are given for subcortical structures
that are common for both the datasets.

Self-training (same dataset) Cross-training (MICCAI-2012 dataset)

Hammers67n20 Hammers83n30 Hammers67n20 Hammers83n30

Hippocampus 0.84� 0.038 0.83� 0.035 0.82� 0.042 0.82� 0.039

Amygdala 0.81� 0.089 0.81� 0.070 0.80� 0.096 0.80� 0.078

Caudate 0.90� 0.029 0.88� 0.026 0.89� 0.022 0.88� 0.029

Nucleus accumbens 0.70� 0.112 0.68� 0.105 0.69� 0.119 0.69� 0.101

Putamen 0.89� 0.031 0.89� 0.039 0.88� 0.043 0.89� 0.043

Thalamus 0.91� 0.015 0.90� 0.021 0.90� 0.017 0.89� 0.023

Pallidum 0.81� 0.076 0.80� 0.066 0.80� 0.081 0.80� 0.073
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The results on five different publicly available datasets and

especially the IXI datasets (with 67 and 84 labeled structures)

indicate that DC tends to degrade with an increase in the number

of labeled structures in a dataset. This suggests that the source of

degradation could potentially be either a class-imbalance prob-

lem, which arises in an MAS problem with a large number of

classes, or the chosen evaluation metric. Hence, we computed

the “accuracy” of segmentation for the two IXI datasets with

67 and 83 structures. It was found that while the mean accuracy

was 0.868 for both datasets, the mean DC values were different.

This can be attributed to the fact that the loss function optimizes

accuracy and not DC. Thus, the degradation appears to be due to

the evaluation metric (which was chosen based on its popularity

in literature) and not the class imbalance. In the future, it would

be of interest to explore a loss function which optimizes DC to

confirm the above observation.

It was also observed that labeling error was higher in the

brain-skull boundary region. Hence, a brain mask was generated

using the “GroundTruth” mask. With this modification, the

mean DC was found to increase by ∼1% for all the datasets

(new values for MICCAI: 0.7542, IBSR: 0.853, LONI-

LPBA40: 0.834, Hammers67n20: 0.849, and Hammers83n30:

0.815). Hence, skull stripping does play a role in performance.

The proposed BrainSegNet adopts a classification-based

approach for brain structure segmentation. A comparative

analysis done against other classification-based approaches,

patch-based, and registration-based methods on four datasets

showed that BrainSegNet has comparable or marginally better

performance and at a reduced computational time (see

Table 2). Experimental results, in Sec. 4.2.3, showed it to

be robust to changes in datasets obviating the need to retrain

when the structures of interest are common across the datasets.

This coupled with the fact that a nonrigid registration step is

not required should make the proposed solution attractive for

many applications where computational time plays a criti-

cal role.
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