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BrainSpace: a toolbox for the analysis of
macroscale gradients in neuroimaging and
connectomics datasets
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Understanding how cognitive functions emerge from brain structure depends on quantifying

how discrete regions are integrated within the broader cortical landscape. Recent work

established that macroscale brain organization and function can be described in a compact

manner with multivariate machine learning approaches that identify manifolds often

described as cortical gradients. By quantifying topographic principles of macroscale organi-

zation, cortical gradients lend an analytical framework to study structural and functional brain

organization across species, throughout development and aging, and its perturbations in

disease. Here, we present BrainSpace, a Python/Matlab toolbox for (i) the identification of

gradients, (ii) their alignment, and (iii) their visualization. Our toolbox furthermore allows for

controlled association studies between gradients with other brain-level features, adjusted

with respect to null models that account for spatial autocorrelation. Validation experiments

demonstrate the usage and consistency of our tools for the analysis of functional and

microstructural gradients across different spatial scales.
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O
ver the last century, neuroanatomical studies in humans
and non-human animals have highlighted two com-
plementary features of neural organization. On the one

hand, studies have demarcated structurally homogeneous areas
with specific connectivity profiles, and ultimately distinct func-
tional roles1–5. In parallel, neuroanatomists have established
spatial trends that span across cortical areas both in terms of their
histological properties, and connectivity patterns6–9. Such char-
acterizations of cortical areas by their placement in the broader
cortical hierarchy has provided a foundation for understanding
functions that emerge through cortical interactions.

Although much of the more recent work linking measures of
neural processing (for example from functional magnetic reso-
nance imaging, MRI) to cognition has focused on identifying
discrete regions and modules and their specific functional roles10,
recent conceptual and methodological developments have pro-
vided the data and methods that allow macroscale brain features
mapped to low dimensional manifold representations, also
described as gradients11. Gradient analyses operating on con-
nectivity data were applied to diffusion MRI tractography data in
specific brain regions12,13 as well as neocortical, hippocampal,
and cerebellar resting-state functional MRI connectivity
maps11,14–20. Similar techniques have also been used to describe
myelin-sensitive tissue measures and other morphological char-
acteristics21–23, as well as approaches based on combined network
information aggregated from multiple features24. Other studies
have used a similar framework to describe task based neural
patterns either using meta-analytical co-activation mapping20 or
large-scale functional MRI task data sets25. Gradients have also
been successfully derived from non-imaging data that were
registered to stereotaxic space, including hippocampal post
mortem gene expression information26 and 3D histology data22,
to explore cellular and molecular signatures of neuroimaging and
connectome measures. Core to these techniques is the compu-
tation of an affinity matrix that captures inter-area similarity of a
given feature followed by the application of dimensionality
reduction techniques to identify a gradual ordering of the input
matrix in a lower dimensional manifold space (Fig. 1).

The ability to describe brain wide organizational principles in
a single manifold offers the possibility to understand how the
integrated nature of neural processing gives rise to function and
dysfunction. Adopting a macroscale perspective on cortical
organization has already provided insights into how cortex-
wide patterns relate to cortical dynamics27 and high level
cognition25,28–30. Furthermore, several studies have leveraged
gradients as an analytical framework to describe atypical
macroscale brain organization across clinical conditions, for
example, by showing perturbations in functional connectome
gradients in autism31 and schizophrenia32. Finally, compar-
isons of gradients across different imaging modalities have
highlighted the extent to which structure directly constrains
functional measures22, while consideration of gradients across

species has highlighted how evolution has shaped more inte-
grative features of the cortical landscape7,33–37.

The growth in our capacity to map whole brain cortical
gradients, coupled with the promise of a better understanding of
how structure gives rise to function, highlights the need for a set
of tools that support the analysis of neural manifolds in a
compact and reproducible manner. The goal of this paper is to
present an open-access set of easy-to-use tools that allow the
identification, visualization, and analysis of macroscale gra-
dients of brain organization. We hope this will provide a
method for calculating cortical manifolds that facilitates their
use in future empirical work, allows comparison between stu-
dies, and allows for result replicability. To offer flexibility in
implementation, we provide our toolbox in both Python and
Matlab, two languages widely used in the neuroimaging and
network neuroscience communities. Associated functions are
freely available for download (http://github.com/MICA-MNI/
BrainSpace) and complemented with an expandable online
documentation (http://brainspace.readthedocs.io). We antici-
pate that our toolbox will assist researchers interested in
studying gradients of cortical organization, and propel further
work that establishes the overarching principles through which
structural and functional organization of human and non-
human brains gives rise to key aspects of cognition.

Results
This section illustrates the usage of BrainSpace for gradient
mapping and null model generation. Examples and evaluations
are based on 217 subjects from the Human Connectome Project
(HCP) dataset38, as in prior work20. Matlab code is presented in
the main version of the paper. Corresponding Python codes are
available in the Supplementary Information.

Generating gradients. To illustrate the basic functionality of the
toolbox, we computed gradients derived from resting-state func-
tional MRI functional connectivity (FC). In short, the input matrix
was made sparse (to 10% sparsity) and a cosine similarity matrix
was computed. Next, three different manifold algorithms (i.e.,
principal component analysis (PCA), Laplacian eigenmaps (LE),
diffusion mapping (DM)) were applied, followed by plotting their
first and second gradients on the cortical surface (Figure 2).
Resulting gradients (Fig. 3) derived from all dimensionality reduc-
tion techniques resemble those published previously11, although for
PCA the somatomotor to visual gradient explains more variance
than the default mode to sensory gradient.

Aligning gradients. Gradient alignment across modalities. Based
on subjects present in both the FC dataset as well as those used in
the validation group of ref. 22 (n= 70), we examined the corre-
spondence between gradients computed from different modalities
and evaluated increases in correspondence through gradient

Fig. 1 A typical gradient identification workflow. Starting from an input matrix (here, functional connectivity), we use a kernel function to build the affinity

matrix (here capturing the connectivity of each seed region). This matrix is decomposed, often via linear rotations or non-linear manifold learning techniques

into a set of principal eigenvectors describing axes of largest variance. The scores of each seed onto the first two axes are shown in the scatter plot, with

colors denoting position in this 2D space. These colors may be projected back to the cortical surface and the scores can be used to sort the input connectome.
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alignment. The modalities evaluated are FC and microstructural
profile covariance (MPC). Here we compared gradients of these
in unaligned form, and after Procrustes alignment and joint
embedding (Fig. 4, Fig. 5). As expected, gradient correspondence
increased slightly following Procrustes alignment compared to
unaligned gradients, and even more markedly following joint
embedding. Beyond maximizing correspondence, the choice of
Procrustes versus joint embedding can depend on the specific
applications. Procrustes alignment preserves the overall shape of
the different gradients and can thus be preferable to compare
different gradients. Joint embedding, on the other hand, identifies
a joint solution that maximizes their similarity, resulting in a
gradient that may be more of a ‘hybrid’ of the input manifolds.
Joint embedding is, thus, a technique to identify correspondence
and to map from one space to another, and conceptually
related to widely used multivariate associative techniques such as
canonical correlation analysis or partial least squares which seek to
maximize the linear associations between two multidimensional
datasets39. Note that the computational cost of joint embedding is

substantially higher, so Procrustes analysis may be the preferred
option when computational resources are a limiting factor.

Gradient alignment across individuals. Researchers may also be
interested in comparing gradient values between individuals31, for
example to assess perturbations in FC gradients as a measure of
brain network hierarchy. One possible approach could be to first
build a group-level gradient template, to which both diagnostic
groups are aligned using Procrustes rotation. After that, the two
groups can be compared statistically and at each vertex, for
example using tools suitable for surface-based linear modeling40.

In the example below, we computed a template gradient from
an out-of-sample dataset of 134 subjects from the HCP dataset
(the validation cohort used by20). Next, we used the Procrustes
analysis to align individual’s gradients of each subject to the
group level template (Fig. 6, Fig. 7).

Gradients across different spatial scales. The gradients
presented so far were all derived at a vertex-wise level, which
requires considerable computational resources. To minimize time
and space requirements and to make results comparable to
parcellation-based studies, some users may be interested in
deriving gradients from parcellated data. To illustrate the effect of
using different parcellations, we repeated the gradient identifica-
tion and analysis across different spatial scales for both a
structural and a functional parcellation. Specifically, we sub-
divided the conte69 surface into 400, 300, 200, and 100 parcels
based on both a clustering of a well-established anatomical
atlas41, as well as a recently published local-global functional
clustering42 and built FC gradients from these representations
(Fig. 8). These parcellations and subsampling schemes are
provided in the shared folder of the BrainSpace toolbox.

Overall, with increasing spatial resolution the FC gradients
became more pronounced and gradients derived from functional
and structural parcellations were more similar. At a scale of 200
nodes or lower, putative functional boundaries may not be as
reliably captured when using anatomically-informed parcellations,

Fig. 3 Gradient construction with different dimensionality reduction techniques. Gradient 1 (G1) and 2 (G2) of FC were computed using a cosine

similarity affinity computation, followed by either PCA, LE, or DM. Gradients were z-scored before plotting.

Fig. 2 Sample code 1. A minimal Matlab example for plotting the first

gradient of an input data matrix on the cortical surface. Equivalent Python

code is provided in Supplementary Sample Code 1.
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resulting in more marked alterations in the overall shape of the
gradients.

For further evaluation, we related the above gradients across
multiple scales relative to Mesulam’s classic scheme of cortical
laminar differentiation and hierarchy22,43. It shows a clear
correspondence between the first gradient and the Mesulam
hierarchy for high resolution data of 300 nodes and more,
regardless of the parcellation scheme. While high correspondence
was still seen for functional parcellations at lower granularity, it was
markedly reduced when using structural parcellations. For

researchers interested in using Mesulam’s parcellation, it has been
provided on Conte69 surfaces in the shared folder of the
BrainSpace toolbox. We also provide the data required to
reproduce the evaluated FC and MPC gradients across these
different spatial scales. Such gradients can be used to stratify other
imaging measures, including functional activation and connectivity
patters28,31,44, meta-analytical syntheses11,29, cortical thickness
measures or Amyloid-beta PET uptake data45.

Null models. Here, we present an example to assess the sig-
nificance of correlations between FC gradients and data from
other modalities (cortical thickness and T1w/T2w image intensity
in this example). We present code (see Fig. 9) to generate pre-
viously proposed spin tests46, which preserve the autocorrelation
of the permuted features by rotating the feature data on the
sphere. In our example (Fig. 10), the correlations between FC
gradients and T1w/T2w stay significant (two-tailed, p < 0.001)
even when comparing the correlation to 1000 null models
whereas correlations between FC gradients and cortical thickness
was non-significant (two-tailed, p= 0.12).

Test-retest stability. The HCP dataset has four rs-fMRI scans,
split over two days. As such, we can leverage this data to assess
test-retest stability of gradients. Here, we assessed the test-retest
stability of gradients at the group level. Specifically, we redid the
analysis of Fig. 2, but split the dataset by day of scanning. Stability
was very high for LE and DM (r > 0.99) and moderate-to-high for
PCA (r ≈ 0.72) (Supplementary Fig. 1).

Fig. 4 Comparison of alignment methods across modalities. Unaligned gradients 1 (top) of MPC and FC were derived using cosine similarity and diffusion

mapping. Alignments using Procrustes analyses (middle) and joint embedding (bottom) are also shown. Smoothed scatter plots show correspondence

between principal gradient values for FC and MPC across cortical nodes, indicating a moderate increase in Spearman correlation after joint embedding.

Gradient values were z-scored before plotting.

Fig. 5 Sample code 2. A minimal Matlab example for creating and plotting

gradients from different modalities, with different alignments. Equivalent

Python code is provided in Supplementary Sample Code 2.
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Discussion
While tools for unsupervised manifold identification and their
alignment are extensively used in data science across multiple
research domains47, and while few prior connectome level studies
made their workflow openly accessible (see refs. 11,15,48), we
currently lack a unified software package that incorporates the
major steps of gradient construction and evaluation for neuroi-
maging and connectome datasets. We filled this gap with Brain-
Space, a compact open-access Matlab/Python toolbox for the
identification and analysis of low-dimensional gradients for any
given regional or connectome-level feature. As such, BrainSpace

provides an entry point for researchers interested in studying
gradients as windows into brain organization and function.
BrainSpace is a simple and modular package accessible to begin-
ners, yet expandable for advanced programmers. At its core is a
simple object-oriented model, allowing for flexible computation of
different (i) affinity matrices, (ii) dimensionality reduction tech-
niques, (iii) alignment functions, and (iv) null models. We also
supplied precomputed gradients, a novel subparcellation of the
Desikan-Killiany atlas, and a literature-based atlas of cortical
laminar differentiation that we used in a recent study22,43.

As our main purpose was to provide an accessible introduction
of the toolbox’s basic functionality, we focused on tutorial
examples and several selected assessments that demonstrate more
general aspects of gradient analyses. First, relatively consistent FC
gradients were produced by different dimensionality reduction
techniques (i.e., PCA, LE, DM), at least when cosine similarity
was chosen for affinity matrix computations. Interactions
between input data, affinity matrix kernels, and dimensionality
reduction techniques may nevertheless occur, a topic worthwhile
to explore in future work. Second, we could show a relative
consistency of FC gradients across spatial scales in the case of
vertex-wise analyses and when parcellations with 300 nodes or
more were used. However, we also observed an interaction
between the type of input data and parcellation at lower spatial
scales. In fact, lower resolution structural parcellations might not
capture fine-grained functional boundaries, specifically in het-
eromodal and paralimbic association cortices which may be less
constrained by underlying structural-morphological features22. It
will be informative for future work to clarify how input modality
(e.g., FC, MPC, or diffusion MRI), the choice of parcellation, and
the spatial scale impact gradient analyses.

There are two broad ways through which the gradient method
and the BrainSpace toolbox may improve our understanding of

Fig. 6 Alignment of subjects to a template. Gradients 1 of single subjects computed with the cosine similarity kernel and diffusion mapping manifold (left)

were aligned to an out-of-sample template (middle) using Procrustes analysis, creating aligned gradients (right). Box-plot shows the Spearman correlations

of each subjects’ gradient 1 values across cortical nodes to the template gradient 1 both before, and after Procrustes alignment. The central line of the box

plot denotes the median, the edges denote the 25th and 75th percentiles, and the whiskers extend to the most extreme datapoints.

Fig. 7 Sample code 3. A minimal Matlab example for aligning the gradients

of two individuals to a template gradient. Equivalent Python code is

provided in Supplementary Sample Code 3.
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neural organization and its associated functions. One avenue is the
identification of similarities and differences in gradients derived
from different brain measures. To address associations between
cortical microstructure and macroscale function, a previous
study22 demonstrated that gradients derived from 3D histology
and myelin-sensitive MRI measures show both similarities and
differences from those derived from resting state-state functional
connectivity analysis11. This raises the possibility that the gradient
method may help quantify common and distinct influences on

functional and structural brain organization and shed light on the
neural basis of more flexible (i.e., less structurally constrained)
aspects of human cognition22. Another way that gradients can
inform our understanding of how functions emerge from the
cortex is through the analysis of how macroscale patterns of
organization change in disease. One recent study31, for example,
demonstrated differences in the principal functional gradient,
identified by11, between individuals with autism spectrum dis-
order and typically developing controls. In this way, manifold-

Fig. 8 Functional gradients across spatial scales. The cortex was subdivided into 100 (first row), 200 (second row), 300 (third row), and 400 (fourth

row) regions of interest based on an anatomical (left) and functional (right) parcellation. Displayed are gradients 1 (G1), and 2 (G2), each for one

hemisphere only. Line plots show the average gradient score within each Mesulam class for the functional (dark gray) and structural (light gray).
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derived gradient analyses hold the possibility to characterize how
macroscale functional organization may become dysfunctional in
atypical neurodevelopment. To achieve both goals, alignment of
different gradients should be considered, and this can be achieved
by a number of methods we supplied, such as Procrustes align-
ment. This allows researchers to both compare gradients from
different modalities and to homogenize measures across subjects,
while minimizing the changes to individual manifolds. Our eva-
luations highlighted an increase in correspondence between
individual subjects and the template manifold when Procrustes
alignment was used compared to unaligned approaches, mainly
driven by trivial changes in the sign of specific gradients in a
subgroup of subjects. As an alternative to Procrustes alignment, it
is also possible to align gradients via joint manifold alignments,
often referred to as joint embedding37. The gradients provided by
this approach can augment both cross-subject49 as well as cross-
species analyses37. Of note, joint embeddings generate a new
manifold, which may result in new solutions that might slightly
differ from the initial gradients computed individually.

When assessing the significance of correlations between gradients
and other features of brain organization, there is an increasing
awareness to ideally also evaluate correlations against null models
with a similar spatial autocorrelation as the original features.
BrainSpace provides two different approaches to build null models,
including an adaptation of a previously released spin permutation
test46 and Moran’s spectral randomization50. Gradients can also
serve as a coordinate system, and stratify cortical features that are
not gradient-based per se. Examples include surface-based geodesic
distance measures from sensory-motor regions to other regions of
cortex11, task-based functional activation patterns and meta-
analytical data11,28,29, as well as MRI-based cortical thickness and
PET-derived amyloid beta uptake measures45. As such, using
manifolds as a new coordinate system34 may complement widely
used parcellation approaches2,42,51 and be can be useful for the
compact representation of findings and aid in the interpretation and
communication of results.

Although, we have only illustrated the use of our toolbox with
neocortical surface data, the gradient-based functionality of
BrainSpace is not restricted to these regions and can also be used
with other datasets (e.g., hippocampal measures, subcortical
measures, and volumetric data). However, as of version 0.1,
visualization is only available for surface meshes. Extending the
visualization functionality of BrainSpace to support other cerebral
structures and volumetric data is a promising line of future work.

Methods
Input data description. Our toolbox requires a real input matrix. Let X ∈ℝn×p be a
matrix aggregating features of several seed regions. In other words, each seed is
represented by a p-dimensional vector, xi, built based on the features of the i-th

seed region, where X i; jð Þ ¼ x
j
i denotes the j-th feature of the i-th seed. In many

neuroimaging applications, X may represent a connectivity metric (e.g., resting-
state functional MRI connectivity or diffusion MRI tractography derived structural
connectivity) between different seed and target brain regions. When seed and target
regions are identical, the input matrix X is square. Furthermore, if the connectivity
measure used to build the matrix is non-directional, X is also symmetric. If seeds
and targets are different, for example when assessing connectivity patterns of a
given region with the rest of the brain15,20, we may have that n ≠ p, resulting in a
non-square matrix. The dimensions and symmetry properties of the input matrix X
may interact with the dimensionality reduction procedures presented in section 4.5.
A simple strategy to make matrices symmetric and square is to use kernel func-
tions, which will be covered in the following section.

Affinities and kernel functions. Since we are interested in studying the relation-
ships between the seed regions in terms of their features (e.g., connectivity with target
regions), our toolbox provides several kernel functions to compute the relationship
between every pair of seed regions and derive a non-negative square symmetric
affinity matrix A ∈

n×n, where A(i, j)=A(j, i) denotes the similarity or ‘affinity’
between seeds I and j. Moreover, a square symmetric matrix is a requirement for the
next step in our framework (i.e., dimensionality reduction). Note that when the input
matrix X is already square and symmetric (e.g., seed and target regions are the same),
there may be no need to derive the affinity matrix and X can be used directly to
perform dimensionality reduction. Accordingly, BrainSpace provides the option of
skipping this step and using the input matrix as the affinity.

There are numerous kernels to compute affinity matrices. As of version 0.1, our
toolbox implements the following: Gaussian, cosine similarity, normalized angle
similarity, Pearson’s correlation coefficient, and Spearman rank order correlations.
For simplicity, let x= xi and y= xj, these kernels can be expressed as follows:

1. Gaussian kernel:

A i; jð Þ ¼ e�ðγ x�yk k2Þ;

where γ is the inverse kernel width and ||■|| denotes the l2-norm.
2. Cosine similarity:

A i; jð Þ ¼ cossim x; yð Þ ¼ xy
T

xk k yk k ;

where cossim (■,■) is the cosine similarity function and T stands for transpose.
3. Normalized angle similarity:

A i; jð Þ ¼ 1� cos�1 cossim x; yð Þð Þ
π

:

Fig. 10 Spin tests of cortical thickness and t1w/t2w intensity. Data were rotated on the sphere 1000 times and Spearman correlations between FC gradient

1 and the rotated data were computed. Distribution of correlation coefficients are shown in the histograms with the dashed lines denoting the true correlation.

Fig. 9 Sample code 4. A minimal Matlab example for building null models

based on spin tests. Equivalent Python code is provided in Supplemental

Sample Code 4.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0794-7 ARTICLE

COMMUNICATIONS BIOLOGY |           (2020) 3:103 | https://doi.org/10.1038/s42003-020-0794-7 | www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


4. Pearson correlation:

A i; jð Þ ¼ ρ x; yð Þ ¼ cossim x � �x; y � �yð Þ;
where ρ is the Pearson correlation coefficient, and �x and �y denote the means of x
and y, respectively.

5. Spearman rank order correlation:

A i; jð Þ ¼ ρ r
x
; r

y

� �

;

where rx and ry denote the ranks of x and y, respectively.
Version 0.1 of BrainSpace thus includes commonly used kernels in the

gradient literature and additional ones for experimentation. To our knowledge,
no gradient paper has used Pearson or Spearman correlation. Note that if X is
already row-wise demeaned, Pearson correlation amounts to cosine similarity.
The Gaussian kernel is widely used in the machine learning community (for
example in the context of Laplacian eigenmaps and support vector machines),
which provides a simple approach to convert Euclidean distances between our
seeds into similarities. Cosine similarity, (example application11:), computes the
angle between our feature vectors to describe their similarity. Notably, cosine
similarity ranges from -1 to 1, with negative correlations to be transformed to
non-negative values. This motivated inclusion of the normalized angle kernel
(example application:20), which circumvents negative similarities by
transforming similarities to [0,1], with 1 denoting identical angles, and 0
opposing angles. Cosine similarity and Pearson and Spearman correlation
coefficients may produce negative values (i.e., [–1,1]) if feature vectors are
negatively correlated. A simple mitigation is to set negative values to zero11.
Additionally, BrainSpace provides an option for row-wise thresholding of the
input matrix11,20,22,31. Each vector of the input matrix is thresholded at a given
sparsity (e.g., by keeping the weights of the top 10\% entries for each region).
This procedure ensures that only strong, potentially less noisy, connections
contribute to the manifold solution.

In addition to the aforementioned kernels, BrainSpace provides the option to
provide a custom kernel or of skipping this step and using the input matrix as an
affinity matrix.

Dimensionality reduction. In the input matrix, each seed xi is defined by a
p-dimensional feature vector, where p may denote hundreds of parcels or thou-
sands of vertices/voxels. The aim of dimensionality reduction techniques is to find
a meaningful underlying low-dimensional representation, G 2 Rn ´m with m � p,
hidden in the high-dimensional ambient space. These methods can be grouped into
linear and non-linear techniques. The former use a linear transformation to
unravel the latent representation, while techniques in the second category use non-
linear transformations. As of version 0.1, BrainSpace provides three of the most
widely used dimensionality reduction techniques for macroscale gradient mapping:
PCA for linear embedding, and LE and DM for non-linear dimensionality
reduction.

1. PCA is a linear approach that transforms the data to a low-dimensional
space represented by a set of orthogonal components that explain maximal
variance. Given a column-wise demeaned version of the input matrix Xd, the
low-dimensional representation is computed as follows:

GPCA ¼ UST ;

where U are the left singular vectors and S a diagonal matrix of singular
values obtained after factorizing the input matrix using singular value
decomposition, Xd= USVT. Although here we present the singular value
decomposition version below, PCA can also be performed via eigende-
composition of the covariance matrix of X.

2. LE is a non-linear dimensionality reduction technique that uses the graph
Laplacian of the affinity matrix A to perform the embedding:

L ¼ D� A;

where the degree matrix D is a diagonal matrix defined as D i; ið Þ ¼
P

j A i; jð Þ and L is the graph Laplacian matrix. Note that we can also work
with its normalized version instead LS ¼ D1=2LD1=252. LE then proceeds to
solve the generalized eigenvalue problem:

Lg ¼ λDg;

where the eigenvectors gk corresponding to the m smallest eigenvalues λk
(excluding the first eigenvalue) are used to build the new low-dimensional
representation:

GLE ¼ g1; g2; ¼ ; gm
� �

:

3. DM also seeks a non-linear mapping of the data based on the diffusion
operator Pα, which is defined as follows:

Pα ¼ D�1
α Wα;

where α ∈ [0,1] is the anisotropic diffusion parameter used by the diffusion

operator, Wα ¼ D�1=αAD�1=α is built by normalizing the affinity matrix according

to the diffusion parameter and Dα is the degree matrix derived from Wα. When
α= 0, the diffusion amounts to normalized graph Laplacian on isotropic weights,
for α= 1, it approximates the Laplace-Beltrami operator and for the case where
α= 0.5 it approximates the Fokker-Planck diffusion53. This parameter controls the
influence of the density of sampling points on the manifold (α= 0, maximal
influence; α= 1, no influence). In the gradient literature, the anisotropic diffusion
hyper-parameter is commonly set to α= 0,511,16,20, a choice that retains global
relations between data points in the embedded space. Similar to LE, DM computes
the eigenvalues and eigenvectors of the diffusion operator. However, in this case,
the new representation is constructed with the scaled eigenvectors corresponding
to the largest eigenvalues, after omitting the eigenvector with the largest eigenvalue:

GDM ¼ λt1g1; λ
t
2g2; ¼ ; λtmgm

� �

;

where t is the time parameter that represent the scale.
All aforementioned dimensionality reduction approaches assume that our high-

dimensional data lies on some low-dimensional manifold embedded in ambient
space, which is typically the case with neuroimaging datasets. These techniques,
therefore, provide a convenient approach to handle the curse of dimensionality
inherent to neuroimaging data. Moreover, they facilitate comparison by recovering
representations with the same number of dimensions even when source data is non-
comparable in ambient space (for example when subjects have different fMRI time
series of different lengths). PCA, in particular, is able to discover the low-dimensional
structure when the data lies in an approximately linear manifold, but performs poorly
when there are non-linear relationships within the data. In such scenarios, LE and
DM are more appropriate to discover the intrinsic geometric structure. From a
technical point of view, the advantage of PCA over the non-linear approaches
included in BrainSpace is that it provides a mapping from the high- to the low-
dimensional space rather than simply producing the new low-dimensional
representations. Hence, the choice between linear and non-linear dimensionality
reduction is problem-dependent and may also be influenced by the nature of the data
under study.

Alignment of gradients. Gradients computed separately for two or more datasets
(e.g., patients vs controls, left vs right hippocampi) may not be directly comparable
due to different eigenvector orderings in case of eigenvalue multiplicity (i.e.,
eigenvalues with the same value) and sign ambiguity of the eigenvectors54. Aligning
gradients improves comparability and correspondence. However, we recommend
visually inspecting the alignment results; if the manifold spaces are substantially
different, then alignments may not provide sensible output. In version 0.1 of the
BrainSpace toolbox, gradients can be aligned using Procrustes analysis55 or
implicitly by joint embedding.

Procrustes analysis. Given a source Gs and a target Gt representation, Procrustes
analysis seeks an orthogonal linear transformation ψ to align the source to the
target, such that ψðGsÞ and Gt are superimposed. Translation and scaling can also
be performed by initially centering and normalizing the data prior to estimation of
the transformation. For multiple datasets, a generalized Procrustes analysis can be
employed. Let Gk; k ¼ 1; 2; ¼ ;N be the low-dimensional representations of N
different datasets (i.e., input matrices XK). The procedure proceeds iteratively by
aligning all representations Gk to a reference and updating the reference GR ¼
1
N

P

k ψðGkÞ by averaging the aligned representations. In the first iteration, the
reference can be chosen from the available representations, or an out-of-sample
template can be provided (e.g., from a hold-out group).

Joint embedding. Joint embedding is a dimensionality reduction technique that
finds a common underlying representation of multiple datasets via simultaneous
embedding37. The main challenge of this technique is to find a meaningful
approach to establish correspondences between original datasets (i.e., X). In version
0.1 of BrainSpace, joint alignment is implemented based on spectral embedding
and available for LE and DM. The only difference with these methods is that the
embedding, rather than using the affinity matrices individually, is based on the
joint affinity matrix J , built as:

J ¼

A1 A12 � � � A1N

AT
12 A2 � � � A2N

.

.

.
.
.

.
.
.

.
.
.

.

AT
1N AT

2N � � � AN

0

B

B

B

B

@

1

C

C

C

C

A

where Ak is the intra-dataset affinity of the input matrix Xk and Aij is the inter-dataset
affinity between Xi and Xj. As of version 0.1, both sets of affinities are built using the
same kernel. It is important to note, therefore, that joint embedding can only be used
if the input matrices have the same features (e.g., identical target regions). After the

embedding, the resulting shared representation GJ ¼ ½G1;G2; ¼ ;GN �T will be com-

posed of N individual low-dimensional representations, such that for the k-th input
matrix Xk ∈ ℝ

nk ×m, the corresponding representation is Gk 2 Rnk ´m , where nk is the
number of seeds (i.e., rows) of Xk.
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Null models. Many researchers have compared gradients to other continuous brain
markers such as cortical thickness measures or estimates of cortical myelination. Given
the spatial autocorrelation present in many modalities, applying linear regression or
similar methods may provide biased test statistics. To circumvent this issue, we
recommend comparing the observed test statistic to those of a set of distributions with
similar spatial autocorrelation. To this end, we provide two methods: spin permuta-
tions46 and Moran spectral randomization (MSR)56,57. In cases where the input data
lies on a surface and most of the sphere is used or if data can be mapped to a sphere,
we recommend spin permutation. Otherwise, we recommend MSR. When performing
a statistical test with multiple gradients as either predictor or response variable, we
recommend randomizing the non-gradient variable as these randomizations need not
maintain statistical independence across different eigenvectors.

Spin permutations. Spin permutation analysis leverages spherical representations
of the cerebral cortex, such as those derived from FreeSurfer58 or CIVET59, to
address the problem of spatial autocorrelation in statistical inference. Spin per-
mutations estimate the null distribution by randomly rotating the spherical pro-
jections of the cortical surface while preserving the spatial relationships within the
data46. Let Vr ∈ ℝ

1×3 be the matrix of vertex coordinates in the sphere, where l is
the number of vertices, and R ∈ ℝ3×3 a matrix representing a rotation along the
three axes uniformly sampled from all possible rotations60. The rotated sphere Vr is
computed as follows:

Vr ¼ VR:

Samples of the null distribution are then created by assigning each vertex on Vr

the data of its nearest neighbor on V.

Moran spectral randomization. Borrowed from the ecology literature, MSR can
also be used to generate random variables with identical or similar spatial auto-
correlation (in terms of Moran’s I correlation coefficient50). This approach requires
building a spatial weight matrix defining the relationships between the different
locations. For our particular case, given a surface mesh with I vertices (i.e., loca-
tions), its topological information is used to build the spatial weight matrix L ∈

Rl×l, such that L(i, j) > 0 if vertices i and j are neighbors, and L(i, j)= 0 otherwise.
In BrainSpace, L is built using the inverse distance between each vertex and the
vertices in its immediate neighborhood, although other neighborhoods and
weighting schemes (e.g., binary or Gaussian weights) can also be incorporated. The
computed L is doubly centered and eigendecomposed into its whole spectrum, with
the resulting eigenvectors M ∈Rl×l–1 being the so-called Moran eigenvector maps.
Note that eigenvectors with 0 eigenvalue are dropped. One advantage of MSR is
that we can work with the original cortical surfaces, and thus skip potential dis-
tortions introduced by spherical mesh parameterization.

To generate null distributions, let u ∈Rl be an input feature vector defined on
each vertex of our surface (e.g., cortical thickness), and r ∈Rl–1 the correlation
coefficients of u with each spatial eigenvector inM. MSR aims to find a randomized
feature vector z that respects the autocorrelation observed in u as follows:

z ¼ �uþ σx
ffiffiffiffiffiffiffiffiffiffi

l � 1
p

MaT ;

where �u and σu stand for mean and standard deviation of u respectively, and a ∈

ℝl–1 is a vector of random coefficients. Three different methods exist for generating
vector a: singleton, pair, and triplet. As of version 0.1, only the singleton and pair
procedures are supported in BrainSpace. Let v=MrT, in the singleton procedure, a
is computed by randomizing the sign of each element in v (i.e., ai ¼ ± vi). In the
pair procedure, the elements of v are randomly changed in pairs. Let (vi, vj) be a
pair of elements randomly chosen, then a is updated such that ai ¼ qij cosðϕÞ and
aj ¼ qij sinðϕÞ, with qij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2i þ v2j

q

and ϕ � Uð0; 2πÞ randomly drawn from a

uniform distribution. If the number of elements of v is odd, the singleton procedure
is used for the remaining element.

As opposed to the singleton procedure, the null data generated by the pair
procedure does not fully preserve the observed spatial autocorrelation. We
therefore recommend the singleton procedure, unless the number of required
randomizations exceeds 2l–1, which is the maximum number of unique
randomizations that can be produced using the singleton procedure.

Participants. All data were derived from the Human Connectome Project dataset38.
For all figures showing results based only on FC, we included subjects processed for a
prior study (n= 217 (122 women), mean ± SD age= 28.5 ± 3.7 y]20. In short, these
were subjects for whom all resting-state fMRI and anatomical scans were fully
completed, and no familial relationships existed between subjects in this group. Data
shown for comparisons between FC and MPC were derived from the subjects
available both in the prior dataset as well as the data used by ref. 22 [n= 70 (41
women), mean ± SD age= 28.7 ± 3.9 y]. As part of the Human Connectome Project
acquisitions, informed consent was obtained from all subjects and all procedures were
approved by the Washington University institutional review board.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data are freely provided by the Human Connectome Project38 and available from
connectomeDB61 (https://db.humanconnectome.org/).

Code availability
Our toolbox is freely available at: http://github.com/MICA-MNI/BrainSpace. The
toolbox contains a parallel Python and Matlab implementation with closely-matched
functionality (The Python implementation of BrainSpace incorporates a wrapper for
VTK, which helps simplify object creation and pipelining). Along with the code, the
toolbox contains several surface models, parcellations across multiple scales, and example
data to reproduce the evaluations presented in this tutorial. Additional documentation of
the proposed toolbox is available for both Python and Matlab implementations via http://
brainspace.readthedocs.io.
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