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Abstract

There has been a concerted effort by the neuroimaging community to establish standards for computational methods for data
analysis that promote reproducibility and portability. In particular, the Brain Imaging Data Structure (BIDS) specifies a standard
for storing imaging data, and the related BIDS App methodology provides a standard for implementing containerized processing
environments that include all necessary dependencies to process BIDS datasets using image processing workflows. We present the
BrainSuite BIDS App, which encapsulates the core MRI processing functionality of BrainSuite within the BIDS App framework.
Specifically, the BrainSuite BIDS App implements a participant-level workflow comprising three pipelines and a corresponding set
of group-level analysis workflows for processing the participant-level outputs. The BrainSuite Anatomical Pipeline (BAP) extracts
cortical surface models from a T1-weighted (T1w) MRI. It then performs surface-constrained volumetric registration to align the
T1w MRI to a labeled anatomical atlas, which is used to delineate anatomical regions of interest in the MRI brain volume and on the
cortical surface models. The BrainSuite Diffusion Pipeline (BDP) processes diffusion-weighted imaging (DWI) data, with steps that
include coregistering the DWI data to the T1w scan, correcting for geometric image distortion, and fitting diffusion models to the
DWI data. The BrainSuite Functional Pipeline (BFP) performs fMRI processing using a combination of FSL, AFNI, and BrainSuite
tools. BFP coregisters the fMRI data to the T1w image, then transforms the data to the anatomical atlas space and to the Human
Connectome Project’s grayordinate space. Each of these outputs can then be processed during group-level analysis. The outputs of
BAP and BDP are analyzed using the BrainSuite Statistics in R (bssr) toolbox, which provides functionality for hypothesis testing
and statistical modeling. The outputs of BFP can be analyzed using atlas-based or atlas-free statistical methods during group-level
processing. These analyses include the application of BrainSync, which synchronizes the time-series data temporally and enables
comparison of resting-state or task-based fMRI data across scans. We also present the BrainSuite Dashboard quality control system,
which provides a browser-based interface for reviewing the outputs of individual modules of the participant-level pipelines across
a study in real-time as they are generated. BrainSuite Dashboard facilitates rapid review of intermediate results, enabling users to
identify processing errors and make adjustments to processing parameters if necessary. The comprehensive functionality included
in the BrainSuite BIDS App provides a mechanism for rapidly deploying the BrainSuite workflows into new environments to
perform large-scale studies. We demonstrate the capabilities of the BrainSuite BIDS App using structural, diffusion, and functional
MRI data from the Amsterdam Open MRI Collection’s Population Imaging of Psychology dataset.
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1. Introduction

The neuroimaging community has made considerable
progress in recent years to establish new methods and standards
that promote open and reproducible science. These efforts have
included the recommendation of best practices for analyzing
and sharing data (Nichols et al., 2017; Pernet et al., 2020), the
development of the Brain Imaging Data Structure (BIDS) to
standardize data organization for brain imaging studies (Gor-
golewski et al., 2016), and the development of the BIDS App
methodology (Gorgolewski et al., 2017) for improved portabil-
ity and reproducibility. BIDS Apps encapsulate analysis work-
flows within software containers, which can process study data
organized according to the BIDS standard. The BIDS App
framework addresses an important challenge in neuroimaging
analysis, which is to ensure that the processing sequences that
are applied to data are maintained such that they can be eas-
ily shared and reproduced. A BIDS App container includes
all software and reference data necessary to apply a particu-
lar image processing workflow to a new dataset. It ensures that
consistent versions of the operating system, software libraries,
binaries, scripts, and reference data are provided for a specific
analysis sequence.

Conventional distribution of image processing pipelines
presents several potential issues related to reproducibility,
portability, and interoperability. In the context of software, re-
producibility requires that programs can be rerun identically on
a set of data to produce the same result. Reproducibility is es-
sential to ensure that study data are processed consistently to
avoid introducing bias, particularly in the case of multi-site or
longitudinal studies (Kruggel et al., 2010; Jovicich et al., 2009).
In general, reproducibility in neuroimaging is a challenging is-
sue due to the wide variety of advanced and complex image pro-
cessing and analysis methods, which often integrate programs
and data from multiple software packages developed by differ-
ent research groups.

Numerous issues can arise when these workflows are shared,
including: 1) the need for users to install software packages and
their dependencies, possibly in environments where they re-
quire escalated privileges or assistance from system administra-
tors; 2) execution on platforms upon which the workflows were
not tested; 3) execution in environments that have different ver-
sions of the software components than were used during devel-
opment; 4) upgrades in versions of software programs or sup-
port libraries during routine maintenance, which possibly oc-
cur without the user’s knowledge; 5) adjustments to parameter

Abbreviations: ADE: Anisotropic diffusion equation; BAP: BrainSuite
Anatomical Pipeline; BDP: BrainSuite Diffusion Pipeline; BFP: BrainSuite
Functional Pipeline; BIDS: Brain Imaging Data Structure; BSE: Brain Surface
Extractor; bssr: BrainSuite Statistics in R; ERFO: Ensemble Average Propaga-
tor Response Function Optimized ODF estimation; FRACT: Funk-Radon and
Cosine Transform ; FRT: Funk-Radon Transform; GPDF: Global PDF-based
nonlocal means filter; INVERSION: Inverse contrast Normalization for VERy
Simple registratION; P-FIT: Parieto-frontal integration theory; QA: Quality as-
sessment; QC: Quality control; RAPM: Raven’s Advanced Progressive Matri-
ces; RMD: R Markdown; RPI: Right-posterior-inferior; SBA: Surface-based
analysis; SSIM: Structural similarity index; SVReg: Surface-constrained volu-
metric registration; TBM: Tensor-based morphometry; WAIS: Wechsler Adult
Intelligence Scale;

settings in individual software components, which may not be
well-documented; and 6) variations in required input data for-
mat and organization across different software programs. These
issues can lead to difficulties and burdens for end users in terms
of installation and data organization, as well as potentially pro-
ducing statistically significant differences when the same work-
flow is used on the same data in different computational envi-
ronments (Gronenschild et al., 2012; Glatard et al., 2015).

The BIDS App framework was created to address these
issues by providing a mechanism for the development and
archival of portable applications using lightweight container
technologies (Gorgolewski et al., 2017). All BIDS Apps must
meet three basic requirements. The first is that they must
be compatible with datasets that follow the BIDS specifica-
tion, which provides standards for file structures, naming con-
ventions, and data descriptions for neuroimaging data (Gor-
golewski et al., 2016). BIDS requires specific file formats,
including the Neuroimaging Informatics Technology Initiative
(NIfTI), JavaScript Object Notation (JSON), and tab separated
value (TSV) formats. By using standardized data formats,
BIDS improves interoperability and facilitates the use of previ-
ously acquired datasets. Because BIDS Apps require input data
to be organized, named, and formatted in a consistent manner,
users can run different BIDS Apps on the same dataset without
renaming or reorganizing the files. Second, BIDS Apps must
be packaged in a Docker container (Merkel, 2014) that can be
converted into a Singularity instance (Kurtzer et al., 2017). The
availability of a Singularity instance ensures that users have a
version of the BIDS App that is more secure and that is suit-
able for use on multi-user systems with shared resources. Third,
BIDS Apps must implement a command-line interface that uses
a common set of arguments. Each BIDS App is required to ac-
cept three core positional arguments: 1) input dataset directory,
2) output directory, and 3) stage of analysis. The third argument
specifies either participant-level or group-level processing. This
division enables participant-level processing to be executed in
parallel if appropriate compute resources are available. The
containerization of the software simplifies its deployment on
a cluster environment, thus facilitating this parallelization.

In this paper, we present the BrainSuite BIDS App, which en-
capsulates components of BrainSuite into the BIDS App frame-
work. BrainSuite is a collection of open-source software tools
for analyzing brain imaging data, which we have been develop-
ing for the past two decades (e.g., Shattuck et al., 2001; Shat-
tuck & Leahy, 2002; Joshi et al., 2007, 2012; Haldar & Leahy,
2013; Bhushan et al., 2015, 2016; Li et al., 2018; Varadarajan
& Haldar, 2018; Joshi et al., 2018a,b, 2022). The BrainSuite
BIDS App implements a comprehensive workflow comprising
three pipelines to analyze anatomical T1-weighted (T1w) MRI,
diffusion MRI (dMRI), and functional MRI (fMRI) data. We
note that these three pipelines each make use of BrainSuite
command-line programs that can be configured with greater
flexibility in their stand-alone forms. We have selected a sub-
set of the available pipeline options for use in the BrainSuite
BIDS App to integrate their different components into a co-
hesive workflow. The BrainSuite Anatomical Pipeline (BAP)
processes T1w MRI to perform tissue classification and ex-
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tract cortical surface models (Shattuck et al., 2001; Shattuck
& Leahy, 2002), to estimate subject-level measures of corti-
cal thickness (Joshi et al., 2018a), to align cortical surface and
volume data to a labeled brain atlas (Joshi et al., 2022) using
surface-constrained volumetric registration (Joshi et al., 2007,
2012), and to estimate various neuroanatomical measures. The
BrainSuite Diffusion Pipeline (BDP) (Varadarajan et al., 2020)
performs distortion correction and registration of the diffusion
MRI data to the anatomical T1w image (Bhushan et al., 2012,
2015), fits diffusion tensor models to the distortion-corrected
diffusion MRI, and generate maps of diffusion parameters (e.g.,
fractional anisotropy, mean diffusivity). BDP also provides
a selection of methods for estimating orientation distribution
functions for more complicated diffusion sampling schemes
(e.g., Haldar & Leahy, 2013; Varadarajan & Haldar, 2018). The
BrainSuite Functional Pipeline (BFP) provides methods for an-
alyzing resting-state and task-based fMRI data using a combi-
nation of tools from BrainSuite (Bhushan et al., 2016; Li et al.,
2018), FSL (Smith et al., 2004) and AFNI (Cox, 1996). Pro-
cessed fMRI data are transformed into the grayordinate rep-
resentation defined by the 32K Conte-69 surface, a standard
surface-volumetric coordinate system developed for the Human
Connectome Project (Glasser et al., 2013).

Each participant-level pipeline has a corresponding group-
level analysis component. The outputs of BAP (e.g., cortical
thickness or regional volume measures) can be compared across
subjects or time points during the group-level analysis stage us-
ing the BrainSuite Statistics in R (bssr) toolbox (Joshi et al.,
2020). These comparisons are made in the common atlas space.
For group-level analysis of the BDP outputs, diffusion param-
eter maps are resampled from the subject T1w space in which
they were computed to the atlas space, where group-level com-
parisons can be performed using bssr. BFP outputs are com-
pared at the group level after applying BrainSync (Joshi et al.,
2018b), which synchronizes resting-state fMRI data temporally
between the subject dataset and a reference dataset. BFP can
perform either atlas-based analysis using a reference dataset
created from multiple input datasets (Akrami et al., 2019) or
atlas-free statistical testing where pair-wise comparisons of all
pairs of subjects is performed and used as test statistics for re-
gression or group difference studies (Joshi et al., 2021).

The BrainSuite BIDS App facilitates distributed processing
of data, enabling large numbers of subjects to be processed
concurrently in cluster computing environments. As dataset
sizes increase, this also increases the burden on users to evalu-
ate the generated outputs and identify errors in processing that
may require intervention. To address this issue, we developed
BrainSuite Dashboard, a browser-based quality control system
for rapidly evaluating the outputs of the BrainSuite workflows.
This system generates snapshot images for key stages in the
participant-level workflows, which are displayed in an interac-
tive web page that is updated in real time while a set of Brain-
Suite BIDS App instances process a study dataset. This can
assist the user in determining if any of the data need to be re-
processed, if settings need to be modified, or if data need to be
excluded from a study.

The BrainSuite BIDS App is freely available as both a build-

able Docker script and a pre-built Docker image. The BIDS
App mechanism provides users with the ability to apply the pri-
mary BrainSuite image analysis routines with minimal installa-
tion effort, as well as to rapidly evaluate intermediate outputs at
the participant level. In the following sections, we describe the
BrainSuite BIDS App in greater detail and demonstrate its func-
tionality and utility by applying it to the Population Imaging of
Psychology dataset from the Amsterdam Open MRI Collection
(Snoek et al., 2021).

2. Methods

2.1. Architecture

Following the BIDS App methodology, we implemented the
BrainSuite BIDS App with a participant-level workflow and a
group-level analysis workflow, which are integrated as illus-
trated in Fig. 1. Each workflow component can be configured
using a set of JSON files (see Appendix A.1 for details). These
settings can be specified either at the study level for all sub-
jects or at the participant level if individual configuration files
are included. The participant-level workflow, shown in detail
in Fig. 3, encapsulates the BrainSuite Anatomical Pipeline, the
BrainSuite Diffusion Pipeline, and the BrainSuite Functional
Pipeline. By default, each pipeline will be run if the data it re-
quires are present in the BIDS dataset. The user can also config-
ure the BrainSuite BIDS App to omit individual pipelines (see
Appendix A.1). The intermediate outputs of the participant-
level workflows can be readily visualized using our browser-
based BrainSuite Dashboard, which provides live feedback to
the user to assist in the detection of processing errors or other
issues. The group-level workflow uses bssr to analyze the out-
puts of BAP and BDP, and uses a set of Python-based tools to
analyze the outputs of BFP.

BAP, BDP, and BFP are each composed of several executable
programs, most of which are compiled C++ or MATLAB code.
BFP also employs components from AFNI (Cox, 1996) and
FSL (Smith et al., 2004), which are imported via NeuroDe-
bian repositories (Halchenko & Hanke, 2012). These individual
components are connected within the BrainSuite BIDS App us-
ing Nipype (Gorgolewski et al., 2011), a Python-based API that
enables users to execute various programs using a common in-
terface. Nipype provides Python objects that wrap programs
and tools from a heterogeneous collection of APIs. These ob-
jects, termed nodes, can be assembled to create workflows by
connecting their inputs and outputs. The Nipype pipeline can
then be executed, with individual modules triggering subse-
quent processing steps upon their completion. This controls the
workflow by running processes when resources become avail-
able. Processes that are scheduled to run in parallel will begin if
compute resources are available. This job scheduling prevents
processes from contending for resources and enables computa-
tionally efficient processing.

We created a set of Nipype Python objects to provide inter-
faces to the command-line tools included in the BrainSuite 21a
distribution. We then developed a Python script that connects
instances of these objects to create the Nipype pipelines. BDP
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Figure 1: BrainSuite BIDS App Architecture. The BrainSuite BIDS App performs complete analysis sequences for structural, functional, and diffusion MRI data
stored in the BIDS format (see Fig. 2). At the participant level, data for each subject can be processed in a separate BrainSuite BIDS App instance, which can be run
concurrently. These execute the participant-level workflows (see Fig. 3). The specific processing performed by the participant-level workflows can be controlled
by an optional configuration JSON file, which specifies parameters for the different stages of processing (see Appendix A.1). A separate BrainSuite BIDS App
instance can be invoked to run as the Quality Control (QC) System, which monitors the outputs of the individual participant-level instances and generates process
snapshots and status codes. These are read by the BrainSuite Dashboard system (see Fig. 4), which provides a browser-based dynamic view of the participant-level
results as they are generated. The outputs of the participant-level instances are processed by a group-level instance, which performs statistical testing specified
by a statistical model JSON file based on participant demographics stored in a TSV file. Table 1 details the participant-level output measures and corresponding
group-level analyses available in the BrainSuite BIDS App.

and BFP both depend on outputs from BAP. These data depen-
dencies are managed by Nipype, which launches BDP and BFP
when their required inputs have been generated (see Fig. 3).
BDP requires the output of the nonuniformity correction stage
of BAP; upon completion of this stage, Nipype triggers the start
of BDP, which runs in parallel with the remaining steps of BAP.
BAP will wait for the completion of the atlas-registration stage
before performing the resampling of DTI parameter maps to
the atlas space. Similarly, when BAP completes the registration
and labeling of the T1w and cortical surface, Nipype will start
BFP. BFP will run concurrently with BDP if BDP has not yet
finished. If multiple fMRI datasets are included for processing,
BFP will be applied to each dataset serially.

2.2. Integration, Testing, and Deployment

Throughout the development of the BrainSuite BIDS App,
we used CircleCI to perform continuous integration and to con-
duct a series of tests each time code changes were commit-
ted to our Git repository. We designed these tests to ensure
that the BrainSuite BIDS App code will run successfully when
launched and that it will also meet Singularity’s read-only cri-
terion. We submitted the BrainSuite BIDS App to the BIDS
App Repository (https://bids-apps.neuroimaging.io/) hosted by
the Center for Reproducible Neuroscience (CRN) at Stanford

University, where it underwent the standard set of validation
tests applied to all BIDS Apps to ensure that they meet archi-
tectural and security requirements. After successfully passing
these tests, the BrainSuite BIDS App was approved for dis-
tribution and made available at https://github.com/BIDS-Apps/
BrainSuite, along with user documentation written in mark-
down files. Any changes to the release version of the Brain-
Suite BIDS App or the markdown files are archived in the
CRN BIDS Apps GitHub repository. We also released a pre-
built Docker image on DockerHub (https://hub.docker.com/r/
bids/brainsuite).

2.3. BrainSuite BIDS App Inputs

The BrainSuite BIDS App assumes that the input data are
stored according to BIDS conventions. For some users, this
may require conversion of study data into NIfTI (e.g., from
DICOM), generation of JSON files that include descriptive in-
formation regarding the study data, and copying or moving of
data into the BIDS directory hierarchy. There are several freely
available BIDS converters, including BIDScoin (Zwiers et al.,
2022), heudiconv (Halchenko et al., 2022) and Dcm2Bids (Be-
detti et al., 2022). A basic example of a BIDS data directory
is shown in Fig. 2. All data for a study are stored within
one top-level directory, which contains a JSON file describ-
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Figure 2: Example BIDS data directory. Shown is an example of data from
one subject organized in a BIDS-Compliant directory structure following the
BIDS file naming scheme. Only the anatomical T1w MRI is required to run the
BrainSuite BIDS App.

ing the dataset and a set of sub-directories for each subject in
the study. Within each subject directory are sub-directories for
anatomical, diffusion, and functional MRI. Additional modal-
ities are also allowed in BIDS, but the BrainSuite BIDS App
will not process these. In addition to the layout shown in Fig.
2, each subject may have data from multiple sessions, which
would be stored in sub-directories immediately below the sub-
ject directory, with the session directories containing anat, dwi,
and func directories as necessary (see the BIDS specification
(BIDS-Contributors, 2022) for details). An anat directory con-
taining at least one T1-weighted MRI is required for BrainSuite
BIDS App to run. Diffusion and functional data will be pro-
cessed if present in the dwi and func directories, respectively.

2.4. Participant-level Workflow

As detailed in Fig. 3, the participant-level workflow com-
prises three primary BrainSuite pipelines. Each component
can be configured to be run separately. BDP and BFP both
require outputs from BAP to run, though these outputs may
have been computed previously in a separate BrainSuite BIDS
App session or outside of the BrainSuite BIDS App. The im-
plementations of these BrainSuite BIDS App pipelines mirror
the corresponding pipelines included in the BrainSuite 21a dis-
tribution, with a few modifications that facilitate integration
of their functionality into a comprehensive subject-level work-
flow. The workflow was designed with a focus on preparing
the participant-level data for use in the group-level analysis
stage. In the BIDS App versions of the anatomical and dif-
fusion pipelines, we have added stages that perform image- and
surface-based smoothing to the stand-alone versions of these
pipelines. The stand-alone BrainSuite Functional Pipeline dis-
tribution includes participant-level and group-level processing.
For the BrainSuite BIDS App, we refer to the subject-level anal-
ysis components as the BrainSuite Functional pipeline to be
consistent with the nomenclature we have used for the anatom-
ical and diffusion pipelines. The BrainSuite tools for synchro-
nizing and analyzing fMRI data at the group level are included
in the BrainSuite BIDS App Group-level Analysis stage. Im-
portantly, many of the tools and pipelines used in the BrainSuite
BIDS App have greater flexibility when invoked separately on

Figure 3: BrainSuite BIDS App Participant-level Workflow. Shown is the
BrainSuite BIDS App participant-level workflow, including the stages of the
anatomical, diffusion, and functional pipelines. An anatomical T1-weighted
MRI is required. Diffusion MRI and functional MRI data will also be pro-
cessed if present in the BIDS directory hierarchy. The diffusion pipeline
performs registration-based distortion correction using the nonuniformity-
corrected skull-stripped image output by the second stage of the anatomical
pipeline. The anatomical pipeline creates mappings from the subject’s anatom-
ical T1w image to an atlas space. These mappings are used by the diffusion
and functional pipelines to map those data into the atlas space for group-level
studies.

the command line or within the BrainSuite GUI (more details of
each component’s full functionality are provided on the Brain-
Suite website). As described in Appendix A.1, we have im-
plemented the capability to customize several program options
through the use of JSON-formatted configuration files. As the
BrainSuite BIDS App evolves and new use cases emerge, we
anticipate expanding the configuration options to include addi-
tional features and new functionality. We note that additional
preprocessing steps can also be performed prior to running the
BrainSuite BIDS App, provided that the data are placed in the
input directory according to the BIDS specifications. In the fol-
lowing sections, we assume that all necessary input data for
each pipeline are in the BIDS directory and that each pipeline
has been configured to be executed.

2.4.1. BrainSuite Anatomical Pipeline
The BrainSuite Anatomical Pipeline (BAP), shown in green

in Fig. 3, takes a NIfTI file containing a T1-weighted brain MRI
as input. BAP first generates surface models of the inner and
outer boundaries of the cortical surface using a series of steps
that include skull and scalp removal, nonuniformity correction,
tissue classification, cerebrum identification, topology correc-
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tion, and surface generation (Shattuck et al., 2001; Shattuck &
Leahy, 2002). BAP estimates cortical thickness using a method
based on the anisotropic diffusion equation (ADE), which uses
the tissue fraction maps generated during cortical surface ex-
traction Joshi et al. (2018a). The output of this stage is an in-
dividual subject surface mesh that includes cortical thickness
estimates at every vertex of the mesh.

The next stage of BAP registers the subject surface and vol-
ume data to a labeled atlas using surface-constrained volumetric
registration (SVReg; Joshi et al., 2007, 2012). SVReg first per-
forms surface-based registration to match the subject cortical
surface mesh to the atlas mesh. It then performs volumetric reg-
istration to the image volume of same atlas, while constraining
the coregistered cortical surfaces to remain fixed. This produces
consistent surface and volume mappings between the individ-
ual subject and the atlas, which enables data to be mapped be-
tween these spaces. SVReg then uses these mappings to trans-
fer labels, which define anatomical regions of interest (ROIs),
between the atlas and the subject. This results in a labeling
of neuroanatomical structures that is consistent between the
surface and the volume. The BrainSuite BIDS App includes
three labeled brain atlases: BrainSuiteAtlas1, which includes
99 anatomical ROIs defined on the Colin27 atlas (Holmes et al.,
1998); the BCI-DNI Brain Atlas, which includes 95 ROIs de-
fined on a high-resolution single subject atlas; and the USC
Brain Atlas, which includes 159 ROIs defined by functional
subdivisions of the BCI-DNI Brain Atlas (Joshi et al., 2022).
The user can specify the atlas selection as a parameter when
invoking the BIDS App. BAP then uses the subject-to-atlas
surface mapping generated by SVReg to map the cortical thick-
ness estimates from the subject surface space to the atlas sur-
face space. This step prepares the data for group comparison
of surface data. BAP also computes a series of subject-specific
scalar metrics, including measures of surface area, volume, and
average gray matter thickness of each anatomical ROI.

BAP produces multiple outputs that can be analyzed using
bssr during the group-level analysis stage. These include la-
beled cortical surfaces, labeled image volumes, the deformation
fields that map from the atlas to each subject, and the corre-
sponding inverse deformation fields (see Table 1). In prepara-
tion for group-level analysis, BAP performs spatial smoothing
of the surface and volume data to be analyzed. The purpose
of these smoothing operations is to increase the signal-to-noise
ratio and to compensate for mismatch due to anatomical varia-
tion and registration errors. For volumetric tensor-based mor-
phometry (TBM), BAP applies isotropic Gaussian smoothing
to the Jacobian determinants computed from the inverse defor-
mation maps produced by atlas-to-subject registration. By de-
fault, the Gaussian smoothing uses a kernel of size σ = 3mm;
this is configurable by the user. For cortical surface thickness
data, the thickness estimates at each vertex are smoothed using
the Laplace-Beltrami operator (Joshi et al., 2009). The default
smoothing level for surface data is 2mm, but this is also modi-
fiable by the user. We note that these smoothing steps are not
part of the command-line or GUI versions of BAP, but can be
run separately using command-line programs we provide in the
BrainSuite distribution.

2.4.2. BrainSuite Diffusion Pipeline

BDP is executed in parallel to BAP once the nonuni-
formity correction stage has completed. The skull-
stripped, nonuniformity-corrected T1w-image is aligned to
the diffusion-weighted image (DWI) data using INVERSION
(Bhushan et al., 2015, 2012), which is a robust image-
registration technique that exploits the inverted contrasts be-
tween T1- and T2-weighted images. After applying an initial
rigid registration to align the DWI and T1w data, INVERSION
performs a constrained, non-rigid registration to apply distor-
tion correction without a B0 fieldmap. Alternatively, correction
using B0 fieldmaps can be applied if available. We note that we
have not included motion correction or denoising as part of the
diffusion pipeline in the BrainSuite BIDS App, though a num-
ber of programs can be used to preprocess the diffusion data
prior to applying BrainSuite BIDS App, including FSL’s eddy
(Andersson & Sotiropoulos, 2016) and topup (Andersson et al.,
2003), as well as our own IPEDcorrect (Bhushan et al., 2013)
and joint denoising software (Haldar et al., 2012; Varadarajan
& Haldar, 2015).

BDP then performs tensor fitting and estimation of ori-
entation distribution functions (ODFs) on the coregistered,
distortion-corrected data. If the input diffusion MRI data were
acquired using a single shell acquisition, then diffusion tensors
are fitted and volumetric maps of fractional anisotropy (FA), ax-
ial diffusivity (AxD), radial diffusivity (RD), median diffusivity
(MD), and apparent diffusion coefficient (ADC) are computed
from the fitted tensors. BDP includes multiple methods for es-
timating ODFs to accomodate a variety of diffusion sampling
schemes. The Funk-Radon Transform (FRT) (Tuch, 2004) and
the Funk-Radon and Cosine Transform (FRACT) (Haldar &
Leahy, 2013) can both be applied to single-shell data. If FRT
is computed, then a volumetric map of generalized fractional
anisotropy (GFA) is also calculated from the FRT ODFs. BDP
also provides implementations of 3D-SHORE (Özarslan et al.,
2013), generalized q-space imaging (GQI) (Yeh et al., 2010),
and ERFO (Varadarajan & Haldar, 2018, 2017). 3D-SHORE
can estimate ODFs from single-shell and multi-shell data, while
GQI can be applied to grid, single-shell, and multi-shell data.
ERFO can be applied to single-shell, multi-shell, grid, and ar-
bitrary sampling schemes. The tensor and ODF outputs can
be used by several programs, including BrainSuite, to perform
tractography and connectivity analysis. We do not currently
implement these analyses as part of the BrainSuite BIDS App,
though we expect to include them in a future version. The quan-
titative diffusion parameter maps (FA, AxD, RD, MD, ADC,
GFA) can be used in the statistical modeling provided by the
group-level analysis stage. In preparation for this, all computed
diffusion parameter maps are transformed into atlas space using
the mapping produced by the BrainSuite Anatomical Pipeline.
Similar to the final smoothing step of BAP, the transformed data
are smoothed using an isotropic Gaussian kernel with a default
size of σ = 3mm. We note that this step is not part of the
stand-alone BDP command-line program. We also note that
the functionality included in the BrainSuite BIDS App diffusion
pipeline is a subset of features provided by the BDP executable
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included in the BrainSuite 21a distribution.

2.4.3. BrainSuite Functional Pipeline
The BrainSuite BIDS App will launch the BrainSuite Func-

tional Pipeline once SVReg completes. BFP processes raw
resting-state or task-based fMRI data to perform motion cor-
rection and outlier detection, to register the fMRI data to the
corresponding T1w anatomical data, and to generate a repre-
sentation of the fMRI data in grayordinate space in prepara-
tion for group-level analysis. BFP is implemented in MATLAB
(R2019a) and makes system calls to run BrainSuite, AFNI, and
FSL modules to perform these tasks. BFP makes use of a pre-
defined set of surface and volume grayordinates that we have
identified on the BCI-DNI atlas that are consistent with the Hu-
man Connectome Project (HCP) grayordinate system. These
grayordinates were identified by processing the BCI-DNI at-
las data with FreeSurfer and using the spherical maps of sur-
faces shared by the HCP as described in (Joshi et al., 2018b).
With these grayordinates established in our BCI-DNI brain at-
las space, BFP uses the surface and volume mappings produced
by the BrainSuite Anatomical Pipeline to map the subject data
to grayordinate space, facilitating group-level analysis.

BFP processes input fMRI data as follows (see Fig. 3).
The fMRI data are first deobliqued used AFNI’s 3drefit and
reoriented using AFNI’s 3dresample program to be in FSL-
compatible, right-posterior-inferior (RPI) orientation (see https:
//www.fmrib.ox.ac.uk/fsl). A reference image, which is used
for motion correction and registration to the T1w data, is then
created from the fMRI data using one of three user-selectable
methods. The default method, which we have named Sim-
Ref, finds an optimal reference image by calculating the struc-
tural similarity index (SSIM), a measure of alignment between
pairs of images (Wang et al., 2004; Hore & Ziou, 2010), which
we compute between every tenth time point and all other time
points. The timepoint with the highest mean SSIM, i.e., the
highest degree of alignment to the rest of the 4D dataset, is
chosen as the reference image. Alternatively, the average of all
volumes over the time series can be used as the reference image.

Motion correction is performed using AFNI’s 3dvolreg pro-
gram to compute a 5-parameter rigid registration of each time
point volume in the fMRI data to the reference volume. We
perform an initial registration using smoothed images and lin-
ear interpolation, followed by a second registration using the
original images and Fourier interpolation. BFP then performs
motion outlier detection using two methods. The first computes
the SSIM between each fMRI time point and the reference im-
age for the original and motion-corrected fMRI datasets. The
second uses DVARS from FSL’s fsl_motion_outliers program,
which computes the root mean squared difference between time
frames N and N + 1 in the 4D fMRI data (Power et al., 2012).
BFP outputs plots of the SSIM and DVARS values, which the
user can review to determine if the amount of motion in the scan
is acceptable for the specific study. The outlier volume num-
bers are provided in a text file that can then be used in GLM
or other statistical analysis. The motion-corrected data are then
registered to the subject’s T1-weighted image. An initial rigid
registration is performed using INVERSION (as described in

section 2.4.2). Other cost functions, as well as FSL’s rigid reg-
istration tool, are available for optimizing this registration step.

The brain mask produced by BAP is transformed from the
subject T1w space to the fMRI space. The resampled mask is
used to perform skull and scalp removal on the fMRI data. This
is followed by spatial smoothing using a Gaussian kernel with
a default full-width-half-maximum (FWHM) of 6mm (this can
be configured by the user; see Appendix A.1). This is fol-
lowed by grand-mean scaling, temporal bandpass filtering, and
detrending. Next, nuisance signal regression, which regresses
signals from cerebrospinal fluid, white matter, and motion out
of the data, is applied using the FEAT model in FSL (Smith
et al., 2004).

The processed fMRI data are then resampled to 3mm
isotropic voxels in the subject’s native T1w space using the
registration transform computed between the T1w and the ref-
erence image. The data are then transformed to the HCP gray-
ordinate system using the surface-constrained volumetric reg-
istration results from BAP. Specifically, we use the registration
transform inverse to map grayordinate points from the BCI-DNI
atlas to the subject T1w space and then resample the fMRI data
at those coordinates using linear interpolation. The surface and
volume grayordinates are combined to form a vector of size
96,000 (32,000 for each hemisphere + 32,000 for sub-cortex)
(Glasser et al., 2013; Joshi et al., 2018b). The final output of
the individual workflow is a 2D matrix of dimension 96,000 x
time, where 96,000 is the number of spatial points in grayordi-
nates and time is the number of time points in the time series.

Once the fMRI data are transferred into the grayordinate
system, we apply a global PDF-based nonlocal means filter
(GPDF). GPDF is a data-driven approach for filtering fMRI sig-
nals based on the probability density functions (PDFs) of the
correlations between time series across spatial points through-
out the brain (Li et al., 2020). It enables users to perform a
global filtering with improved noise reduction effects but with-
out blurring the boundaries between adjacent but distinct func-
tional regions. This enables GPDF to preserve distal and inter-
hemispherical correlations.

2.5. BrainSuite Dashboard and Quality Control System

We developed a process monitoring and quality control sys-
tem, termed BrainSuite Dashboard, that integrates with the
BrainSuite BIDS App (see Fig. 4). BrainSuite Dashboard is
a browser-based system that provides interactive visualization
of the intermediate participant-level workflow outputs as they
are generated, enabling users to track the state of processing
and identify errors as they occur.

The BrainSuite Dashboard system interfaces with a quality
control (QC) component that generates process status updates
and output snapshots, which is implemented within the Brain-
Suite BIDS App. The QC component is invoked as a sepa-
rate instance that runs concurrently with a set of participant-
level workflow instances. Upon initialization, the QC compo-
nent creates a separate additional output directory, specifiable
by the user, that will store files pertaining to the QC system. It
then copies to this directory: 1) the BrainSuite Dashboard code,
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Figure 4: BrainSuite Dashboard The BrainSuite Dashboard interface provides an interactive view of the participant-level study data as they are processed. Snapshot
images of the outputs of key stages are generated by the workflow. The browser view updates as each stage completes, enabling the user to identify processing
issues as they occur. The user can select different views that highlight individual pipelines or monitor the overall progress of the data processing for the study. The
image row for each participant can be independently expanded and scrolled to facilitate detailed review.

composed of HTML, JavaScript, and CSS files, for interact-
ing with the QC outputs; 2) a JSON file specifying the outputs
that are generated and their associated stages in the BrainSuite
pipelines; 3) a JSON file specifying the dataset description; and
4) a JSON file specifying the subject IDs for the study. The
first two components are part of the BrainSuite BIDS App dis-
tribution; the second two are generated automatically when the
QC system is launched. The QC instance monitors the output
directories of the participant-level instances while they are run-
ning. The QC instance will periodically (every one second by
default) generate a JSON file that represents the current state of
processing for all subjects for the entire study. This file captures
the current time, the status of the overall processing and the sta-
tus of processing for each workflow stage for each subject. The
status for each subject is encoded as a string of character codes,
with each character indicating a stage of processing (e.g., Q for
Queued, C for Completed). The QC instance also produces im-
age snapshots of the outputs of workflow stages that we have
identified as useful for assessing the quality of BrainSuite out-
puts. These snapshots are stored in the QC output directory. In
most cases, these will be either 2D slices of a 3D image vol-
ume or renderings of a surface model. When processing of all
subjects has completed, the QC instance terminates.

The outputs of the QC instance can be viewed using Brain-
Suite Dashboard during and after processing. BrainSuite Dash-

board uses JavaScript to provide dynamic content that updates
during the participant-level processing. This page must be ac-
cessed through a web server due to file system security stan-
dards that prevent JavaScript from directly accessing files on
the user’s file system, which would prevent BrainSuite Dash-
board from reading the JSON files that provide the necessary
study, subject, and status information. Many research institu-
tions have web servers attached to a centralized file system that
could be used for this purpose. Users can also launch their own
web server through various means. The HTTP server built into
Python is sufficient for serving the content of BrainSuite Dash-
board, and can be invoked by the user with a single command-
line call. This could be launched on a separate computer or
from the BrainSuite BIDS App QC instance. Importantly, the
web server instance must be run on a system with read access
to the output directory and with the ability to serve content
through any firewalls between itself and the user. There are
a variety of ways to configure such a setup that will be specific
to individual users’ compute environments.

BrainSuite Dashboard loads the study JSON files and, if the
processing is ongoing, will read the BrainSuite state JSON file
periodically (by default, every second) to update its content.
The user is presented with the overall information about the
launched study, including the dataset name, the time started,
time of latest update, and information showing how many in-
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stances are currently running, queued, completed, or have er-
rors. The user is also presented with a view of the progress for
each participant, shown as a progress bar with a node for each
stage, and text descriptors of the current state. Each participant
row can also be expanded to provide a row of snapshot images
depicting the intermediate states of processing. The specific
snapshots shown can be selected through dropdown menus that
provide selection at the pipeline level (e.g., show all cortical
surface extraction outputs) or the individual snapshot level. As
new output images are generated by the active participant-level
instances, BrainSuite Dashboard updates the image row to in-
clude the new snapshots. Users are also provided with an in-
terface for annotating each subject and marking if any subjects
should be excluded. The annotation data can be exported as a
TSV file, which can be read directly by bssr during group-level
analysis. The BrainSuite Dashboard web interface is extensible
and can be configured through a JSON file to use different snap-
shot images and stages, thus enabling additional QC outputs to
be added to the system in the future or to apply the BrainSuite
Dashboard to different processing pipelines.

2.6. Group-level Analysis

Once the participant-level workflow has been completed for
all subjects in a study, the user can run the group-level analy-
sis stage of the BrainSuite BIDS App. This requires two addi-
tional files: (1) a TSV file containing subject demographic in-
formation, such as age and sex, and (2) a JSON file describing
the model specification (see Appendix Fig. A.11 for an exam-
ple). The demographics TSV file must have a column named
“participants_id" that contains the unique subject identifier for
each row. The other columns are study-specific and provide
data for variables collected by the study. Additionally, users can
include optional columns that specify whether to exclude indi-
vidual subjects from the group-level analysis. The model spec-
ification file contains user-defined specifications for the type
of statistical test, imaging measure, and analysis method used.
The types of available tests and metrics are outlined in the fol-
lowing sections.

2.6.1. Group-level Analysis of Anatomical and Diffusion Data
During the group-level analysis stage, outputs from the

anatomical and diffusion pipelines are processed using bssr
(Joshi et al., 2020) to calculate population statistics. Bssr is
invoked from a Python script using the rpy2 package. For
anatomical data, bssr can perform several analyses, including
tensor-based morphometry (TBM) analysis of volumetric and
surface data, surface-based cortical thickness analysis, and ROI
analysis. For diffusion data, bssr can perform voxel-wise anal-
ysis on parameter maps (e.g., FA maps), that have been trans-
formed to the volumetric atlas space. Tensor-based morphome-
try measures the local magnitudes of deformation fields to mea-
sure the shrinking and expansions of regions of the brain as it is
warped to match another brain. For volumetric TBM, this rep-
resents the volume change that each voxel in the atlas undergoes
when it is deformed to the corresponding region in the subject
image. Similarly, for surface TBM, the magnitude deformation

represents the area change each surface element, i.e., each tri-
angle in the cortical mesh, undergoes when it is deformed to
match the subject surface. Comparing these measures across
subjects yields the relative size differences of each voxel in the
brain or each triangle in the brain mesh. Cortical thickness com-
parisons map the thickness measures from the subject cortical
mesh to the vertices of the atlas cortical mesh, enabling vertex-
wise comparison across the study population. ROI analysis can
be performed on structural data. It compares regional statistics
of mean grey matter (GM) or white matter (WM) volume or
of mean GM thickness within anatomical ROIs defined by the
labeling produced by the BrainSuite Anatomical Pipeline.

The statistical tests provided by bssr include Pearson corre-
lation, general linear model, ANOVA, t-test, and permutation
tests. The population statistic tests are performed at each voxel
for volumetric TBM and diffusion parameter map comparisons,
at each vertex for surface TBM, and over averaged ROI mea-
sures for diffusion or anatomical data. The available group-
level analysis outputs and available statistical tests are summa-
rized in Table 1.

For surface-based analyses, the outputs generated by bssr in-
clude separate right and left mid-cortical surface maps in the
atlas space that store unadjusted and adjusted t-values and log
p-values thresholded by level of significance (p < 0.05) at each
vertex. For volumetric-based analyses, adjusted and unadjusted
t-value and log p-value volumetric overlays and the correspond-
ing lookup table (LUT) files are produced. The LUT files, when
loaded into the BrainSuite GUI, follow the same color scheme
as the surface files. Annotated bi-directional colorbars are also
rendered as PDF files, which can be integrated directly into pub-
lications.

For volumetric and ROI analyses, bssr also provides auto-
mated report generation to visualize statistical results using R-
shiny and R Markdown. Examples of bssr reports are shown in
Figures 5, 6, 7, and 9. The volumetric analysis report displays a
table that lists peak coordinates of clusters (contiguous signifi-
cant voxels). It also displays renderings of the clusters for both
the unadjusted and the adjusted versions of the p-values and the
t-statistics, which are overlaid on corresponding slices from the
T1-w MRI of the atlas to provide neuroanatomical context. The
report provides an interface to sort these results by the size of
the cluster or the peak values of the t-statistics. The ROI anal-
ysis report shows the demographic spreadsheet, automatic bar
plots for ANOVA and regressions, and scatter plots for correla-
tion analyses. Additionally, bssr exports an R Markdown report
that contains reproducible R commands in both the RMD file
and the HTML document (Xie, 2015). This enables complete
reproducibility of statistical results and only requires that the R
Markdown file is packaged along with the BIDS formatted data
needed for bssr.

2.6.2. Running group-level analysis on outputs from BFP
BFP provides novel statistical methods to perform group-

level analysis using BrainSync, an orthogonal transform that
performs temporal alignment of time-series at homologous lo-
cations across subjects allowing direct comparison of scans
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Table 1: BrainSuite BIDS App Outputs. Output measures generated at the participant levels, and the corresponding group-level analyses available for each type
of data.

Participant-level Measures Group-level Analyses*

cortical surface meshes (inner, pial, mid) thickness maps in atlas surface space

GM, WM, CSF tissue fractions (per voxel) analysis of gross GM, WM, CSF volume measures

thickness and surface area for cortical ROIs ROI-based analysis of surface area and mean thickness cortical measures

GM and WM volume within each ROI ROI-based analysis of GM and WM volume measures

surface Jacobian determinants relative area differences from Jacobian maps

volume Jacobian determinants relative volume differences from Jacobian maps

Diffusion diffusion parameter maps (FA, MD, AxD, RD, GFA) voxel-wise analysis of FA, MD, AxD, RD, GFA

Functional task or resting fMRI data in grayordinate space after 
filtering and motion correction

statistic maps in grayordinate space in surface and volume space

Anatomical

*Available statistical tests for anatomical and diffusion analysis include ANOVA, correlation, t-test, and paired t-test. Available statistical tests for functional MRI analysis include 
atlas-based similarity test and atlas-free pairwise tests.

(Joshi et al., 2018b). Correlations between time-series on spa-
tially homologous points are measured across subjects or be-
tween a subject and atlas. FMRI atlases are created within the
group-analysis workflow using BrainSync Alignment (BSA),
a method we developed that jointly synchronizes fMRI data
across the time-series data of multiple subjects (Akrami et al.,
2019). BFP’s group-level analysis is called from a Python script
and reads grayordinate BFP outputs, a demographic spread-
sheet in TSV format, and a configuration file in JSON format.
Results are generated in grayordinate space, as well as labeled
cortical representations generated on BrainSuite surface files
and noncortical results written out as 3D NIfTI files.

The fMRI statistical analysis pipelines include novel pair-
wise regression and group differences tools (see Tab. 1). These
include tools for group-wise BrainSync that synchronize fMRI
signal from multiple subjects (Akrami et al., 2019) to generate
group fMRI atlas, pair-wise regression, and group differences
Joshi et al. (2021). These pipelines facilitate population studies
of fMRI for resting-state and task-based paradigms. In group
studies, especially in the case of spectrum disorders, distances
to a single atlas do not fully reflect the differences between sub-
jects that may lie on a multi-dimensional spectrum. Our pair-
wise approach measures the distances between pairs of subjects
and uses these distances as the test statistics rather than com-
paring subjects to the group mean or to a single reference point
or template. This approach has been shown to be more sensitive
in localizing the group effects (Joshi et al., 2021).

BrainSync. BrainSync is an orthogonal transformation that
enables comparison of resting fMRI (rfMRI) time series across
subjects. This method exploits similarity in correlation struc-
ture across subjects to perform an orthogonal rotation of time-
series data between two or more subjects to induce a high corre-
lation between time series at homologous locations. The fMRI
data at each vertex are normalized to zero mean and unit norm.
After normalization of the time series at each vertex, each time
series can be represented as a point on a hypersphere. Under the

assumption of similar spatial correlation patterns across sub-
jects, it was previously shown (Joshi et al., 2018b) that between
every pair of subjects, there exists an orthogonal transform that
approximately synchronizes their time-series data. Because
similar connectivity patterns are observed across subjects, a sin-
gle orthogonal transformation can be performed to minimize
the geodesic distance between homologous points across sub-
jects. The geodesic distance between homologous points is ob-
served to compute a measure of similarity between subjects.
The orthogonal transformation that performs the synchroniza-
tion is unique, invertible, efficient to compute, and preserves the
connectivity structure of the original data for all subjects. Sim-
ilar to image registration, where we spatially align the anatom-
ical brain images, this synchronization of brain signals across
a population or within subject across sessions facilitates con-
nectivity studies of rfMRI data. In contrast with existing fMRI
analysis methods, this transform does not involve dimension-
ality reduction and preserves the rich functional connectivity
information in rfMRI scans.

Atlas-Based Statistical Analysis. For each subject, the
atlas-based BFP statistical analysis synchronizes fMRI data of
the atlas and the subject, then computes measures of similar-
ity between the atlas and the subject’s time-series data, at each
point in the grayordinate system. BrainSync Alignment (BSA),
which jointly synchronizes fMRI data across time-series data of
a pool of representative subjects Akrami et al. (2019), is used to
create a custom fMRI atlas. The reference atlas can be created
from the entire study population or from a subset of it, such
as subjects within the control group. Alternatively, a represen-
tative individual dataset can be identified that has the lowest
pair-wise distances between all pairs of subjects, and those data
can be used as the reference. The atlas-based statistical anal-
ysis performs Pearson correlations and controls for covariates
using linear regression. The correlation coefficient and unad-
justed and adjusted p-values (FDR) are reported.

Pair-wise Statistical Analysis. The pair-wise BFP statisti-
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cal analysis performs statistical tests for associations and group
differences using pair-wise distances between random pairs of
subjects’ fMRI data as well as the pairwise differences between
the corresponding test variable or group indicators. The pair-
wise method for statistical analysis may be particularly useful
in studies where it is hard to determine which subjects or group
should be assigned as the representative data. Pearson corre-
lation is performed to test for associations, and t-tests are per-
formed to test for group differences. P-values are corrected for
multiple comparisons using FDR or max-T permutations. Both
unadjusted and adjusted p-values are reported for pair-wise sta-
tistical testing. The outputs generated by these analyses include
surface and volumetric files in the grayordinate space contain-
ing R-values and unadjusted and adjusted p-values (FDR and
max-T (Nichols & Holmes, 2002)).

2.7. Data and Code Availability Statement

The full set of data used in this manuscript are
available for download from OpenNeuro (AOMIC-PIOP1
v2.0.0 [https://openneuro.org/datasets/ds002785/versions/2.0.
0] and AOMIC-PIOP2 v2.0.0 [https://openneuro.org/datasets/
ds002790/versions/2.0.0]). All additional files necessary to
reproduce the analyses performed in this manuscript (de-
mographic files formatted for use with BrainSuite BIDS
App, JSON specification files, and intensity rescaling
software) are available from https://github.com/BrainSuite/
BrainSuiteBIDSAppPaperData. A detailed description of how
to rerun the analyses is available on our website https://
brainsuite.org/BIDS/paper. For demonstration purposes, we
have also packaged a subset of data from 4 participants
and made it available from https://github.com/BrainSuite/
BrainSuiteBIDSAppSampleData. These data were used to pro-
duce Fig. 4. An interactive demo of the BrainSuite Dashboard
interface using this dataset is also provided on our GitHub site
(https://brainsuite.github.io/DashboardDemo/).

The BrainSuite BIDS App code is open source and freely
available from https://github.com/BIDS-Apps/BrainSuite. De-
tailed documentation is provided at https://brainsuite.org/
BIDS/. A pre-built docker image containing the BrainSuite
BIDS App is freely available from https://hub.docker.com/r/
bids/brainsuite. The BrainSuite BIDS App makes use of mul-
tiple free and open-source packages, which are detailed in the
BrainSuite BIDS App GitHub repository.

2.8. Ethics Statement

All data used in this study were open-access data retrieved
from the OpenNeuro archive (Markiewicz et al., 2021) and
used under a CC0 - Creative Commons public domain li-
cense. Specifically, we made use of the AOMIC-PIOP1 (Snoek
et al., 2020a) and AOMIC-PIOP2 (Snoek et al., 2020b) datasets,
which were deidentified and made publically available by
Snoek et al. (2021). As described in the reference paper for
these data (Snoek et al., 2021), the acquiring study was ap-
proved by the local ethics committee at the University of Am-
sterdam (EC number: 2010-BC-1345) and conducted with the
informed consent of all participants.

3. Results

We applied the BrainSuite BIDS App to data from the Am-
sterdam Open MRI Collection’s (AOMIC) Population Imaging
of Psychology (PIOP) cohort (Snoek et al., 2021) to demon-
strate its functionality and capabilities. The AOMIC PIOP
datasets include imaging and behavioral subject data collected
from healthy participants, all of whom were university stu-
dents. As detailed below, we first processed these data using
the participant-level workflows. We then evaluated the outputs
using the BrainSuite Dashboard system, tuned program set-
tings based on this evaluation, and reprocessed the participant-
level data with the new settings. We then performed five types
of group-level analysis on the outputs of the participant-level
processing: a) surface-based thickness analysis; b) volumetric
tensor-based morphometry; c) ROI analysis; d) functional con-
nectivity analysis; and e) fractional anisotropy analysis. For the
anatomical analyses (a-c), we examined the effects of Raven’s
Advanced Progressive Matrices (RAPM) scores (Spielberger
et al., 1968; Van der Ploeg, 1982; Raven & Court, 1938), a
proxy measure for intelligence, on brain structure. For the fMRI
analysis (d), we examined the effects of RAPM scores on func-
tional connectivity. For the diffusion MRI analysis (e), we per-
formed a comparison of sex differences in fractional anisotropy
values. We selected these particular analyses because these top-
ics are well-studied and the outputs of our software would be
expected to be concordant with the published literature. Fur-
thermore, to differentiate between the statistical effects of the
RAPM scores according to sex, all analyses (except the analy-
sis of sex differences in FA) were performed within males and
females separately.

3.1. Data

Data were pooled from the two AOMIC PIOP (Snoek et al.,
2021) datasets: PIOP1 (N = 216 ; age 22.18±1.80 years, 18.25
to 26.25; 120 F / 89 M / 7 unspecified), which was collected
in 2016, and PIOP2, which was collected in 2017 (N = 226;
age 21.96 ± 1.79 years, 18.25 to 25.75; 129 F / 96 M / 1 un-
specified). All images in PIOP1 and PIOP2 were acquired on
the same Philips 3T scanner. However, there was a system up-
grade between these projects, with the PIOP1 dataset being ac-
quired using the “Achieva" version and the PIOP2 being ac-
quired using the “Achieva dStream" version. We retrieved the
AOMIC PIOP datasets from the OpenNeuro database (Snoek
et al., 2020a,b). We excluded 23 subjects that were missing de-
mographic data (N=10) or imaging data (N=13), resulting in
a total number of 419 subjects for our analyses (N=419, age
22.05 ± 1.79 years; 240 F / 179 M). We used the subject demo-
graphic variables for age, sex, and Raven’s Advanced Progres-
sive Matrices (RAPM) scores collected for the AOMIC study.
RAPM scores are designed to measure general and fluid in-
telligence using nonverbal abstract reasoning problems (Spiel-
berger et al., 1968; Van der Ploeg, 1982; Raven & Court, 1938).
A higher RAPM test score indicates higher accuracy in the par-
ticipants’ Raven’s matrices responses, indicating greater fluid
intelligence.
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3.2. Participant-level Processing

Prior to participant-level processing, intensity values for all
T1w data were normalized to the range [0, 32000] using the for-
mula Inorm = max(0, (32000 × I)/max(I)), where I is the set of
image intensity values. All subjects were then processed using
BrainSuite BIDS App’s participant-level processing pipeline
using the default parameters and options. For all image process-
ing, the default atlas (BCI-DNI Brain Atlas) was used. We eval-
uated the quality of the initial participant-level outputs using
the BrainSuite BIDS App Dashboard QC system. The Dash-
board showed poor cerebrum labeling in most cases, leading
to poor cortical boundary extraction. Based on this, we mod-
ified two parameter settings for cerebrum labeling (initializing
with centroids and linear convergence value) and repeated the
image processing and QC evaluation for all subjects. Inspec-
tion of the QC results indicated that the processing was suit-
able for 406 of the 419 subjects. We identified 13 subjects
whose data were were not processed successfully. Three of
these cases were corrected by selecting subject-specific skull-
stripping parameters (anisotropic diffusion constant and edge
detection constant). Five cases required adjustments to the cere-
brum labeling parameters (initializing with centroids and cost
function type). For the remaining five subjects, we changed the
cost functions used for rigid registration during BFP. We then
reran the BrainSuite BIDS App on these 13 subjects, resulting
in complete participant-level outputs for all N = 419 subjects.

3.3. Group-level Analysis

We performed an ANOVA examining the main effects of
Raven’s score on anatomical structures and functional connec-
tivity on the AOMIC-PIOP dataset. We also investigated dif-
ferences in fractional anisotropy (FA) values between the two
sexes. In all tests, handedness was not considered as a covariate
because it did not significantly differ across sex. All tests were
corrected for multiple comparisons using FDR, with the excep-
tion of ROI analysis, which considered only one ROI under the
family of ROI-wise statistical tests.

3.3.1. Surface-Based Analysis
We performed an initial surface-based analysis (SBA) of cor-

tical thickness, which was then used to determine the appro-
priate tests to be performed for the ROI, TBM, and FC anal-
yses, described in the following sections. We first performed
an ANOVA on the pooled dataset (N = 419; age 22.05 ± 1.79
years; 240 F / 179 M) that investigated the effect of RAPM
scores (24.47±4.853) on cortical thickness measures while con-
trolling for age, sex, and scanner type. The results showed a
larger effect size and greater surviving effects on both hemi-
spheres in the female group (N = 240; age 22.07 ± 1.74 years,
18.25 to 26.25) when compared to the male group (N = 178;
age 22.04 ± 1.86 years, 18.25 to 26.25).

Two new ANOVA analyses examining the effect of RAPM
scores on cortical thickness measures while controlling for age
and scanner type were next performed separately on the female
and male groups. In the female group, we observed significant
decreased cortical thickness proportional to increasing Raven’s

Figure 5: Surface-based analysis of the effects of RAPM scores on cortical
thickness in females in the AOMIC-PIOP dataset. Shown are the outputs
of a surface-based analysis performed using bssr, which examined the effects
of RAPM scores on cortical thickness in females in the AOMIC-PIOP dataset.
The color bar on the right indicates the adjusted log transformed p-values after
FDR correction: blue hues in the color bar denote significant decreased cortical
thickness proportional to increasing RAPM scores, whereas pink hues indicate
the opposite. The colors shown on the cortex in these views indicate regions
where female participants had lower cortical thickness proportional to higher
RAPM scores.

score; these effects were seen diffusely throughout the brain
(see Fig. 5). The largest and most significant clusters were
observed in the right superior frontal gyrus, left pars opercu-
laris, left inferior temporal gyrus, left transverse gyrus, bilateral
middle frontal gyri, orbitofrontal cortices, cingulate gyri, para-
central lobule, and superior, middle and inferior occipital gyri
which correlated with Raven’s score after vertex-wise FDR cor-
rection. The male cohort did not exhibit any significant clusters
after FDR correction.

3.3.2. Tensor-Based Morphometry Analysis
Based on the results of the surface-based analysis, we fo-

cused our subsequent analyses, with the exception of the FA
analysis, on the female cohort. Using bssr, we performed a
post-hoc ANOVA investigating the main effect of RAPM scores
on TBM in females. The results revealed no statistical signif-
icance after FDR correction. We show the uncorrected results
in Fig. 6, which includes a truncated version of the bssr report,
to illustrate the functionality of the BrainSuite BIDS App and
its components. The largest cluster comprised 216, 505 voxels
with an average t-value of 3.893 and was located on the left
temporal pole, indicating a possible volumetric expansion in
this region with increasing RAPM scores. The second largest
cluster (48, 004 voxels; average t-value = 3.507) was located
in the near the left inferior prefrontal cortex, again suggesting
an expansion in this area, with increasing RAPM scores. None
of these clusters survived significance testing after FDR correc-
tion.

3.3.3. ROI Analysis
Surface-based analysis results (Fig. 5) showed significant de-

creases in cortical thickness in multiple areas. We selected one
of these areas, the left pars opercularis, for ROI analysis. Using
bssr, we conducted an ANOVA to study the effects of RAPM
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Figure 6: Tensor-based morphometry analysis of the effects of RAPM score
on local volume in females in the AOMIC-PIOP dataset. Shown is a bssr
report detailing the results of a TBM analysis of the effects of the RAPM score
on local volume in the female cohort. The first ten largest clusters are listed
in a table at the top of the report. The blue hues indicate reduction in volume
with increasing RAPM scores and pink hues indicate expansion in volume with
increasing RAPM scores. The test produced no surviving significant clusters
after FDR correction, thus, we show the unadjusted log-transformed p-value
maps. The largest cluster of 216, 505 voxels with an average t-value of 3.893 is
located on the left temporal pole.

Figure 7: ROI analysis of the association of grey matter thickness in the left
pars operularis with RAPM score in females in the AOMIC-PIOP dataset.
Shown is the entire bssr report, which begins with a table of the demographic
data and the exact commands used in the statistical test. This is followed by
a table of the summary statistics and a scatter plot that shows a significant de-
crease in the GM thickness with increasing RAPM score.

13

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.14.532686doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.14.532686
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 8: Functional connectivity analysis of the effect of RAPM score on
cortical functional connectivity in the female group. Shown are unadjusted
R-values from an ANOVA analysis. The color bar on the right indicates a sym-
metric range of +0.5 (red) to −0.5 (blue) R-values. Positive R-values indicate
that a higher RAPM score was associated with lower similarity to the atlas,
while negative R-values indicate that a higher RAPM score was associated with
higher similarity to the atlas. The atlas was created using FC data from the 13
subjects with the highest RAPM scores. Areas associated with Raven’s scores
included the bilateral medial frontal gyri, right dorsolateral prefrontal cortex,
right anterior cingulate, right temporal pole, left middle temporal gyri, bilateral
inferior temporal gyri, right precuneus, and occipital areas.

scores on the average grey matter thickness values for this ROI.
Figure 7 shows the results of the ANOVA and a scatter plot for
this study, captured directly from the report generated by bssr.
Coinciding with our finding in SBA, these results indicate that
grey matter thickness values decreased with increasing RAPM
score values (F-statistic = 9.345; p-value = 0.0025).

3.3.4. Functional Connectivity Analysis
Using BFP’s group analysis tools, we performed an atlas-

based linear regression test on the effects of RAPM score on
functional connectivity. The atlas was generated using data
from the 13 subjects with the highest scores (range: 32-35)
on the RAPM test. We hypothesized greater functional dif-
ferences in brain connectivity patterns in relation to increas-
ing differences in RAPM scores. We therefore used FC data
from subjects with high RAPM scores as the reference for the
linear relationship. Thus for the specific test used here, posi-
tive R-values, which correspond to a higher geodesic distance
to the atlas, indicate that a higher RAPM score was associated
with lower similarity to the atlas. Similarly, negative R-values,
which correspond to a lower geodesic distance to the atlas, in-
dicate that a higher RAPM score was associated with higher
similarity to the atlas.

The cortical functional connectivity results are shown in Fig.
8. No significant clusters survived after FDR correction. In
the uncorrected R-value results, we see that a relationship be-
tween functional connectivity and RAPM score was found dif-
fusely throughout the brain, especially along the bilateral me-
dial frontal gyri, right dorsolateral prefrontal cortex, right an-
terior cingulate, right temporal pole, left middle temporal gyri,
bilateral inferior temporal gyri, right precuneus, and occipital
areas. The blue areas indicate regions where a higher RAPM
score was associated with higher similarity to the atlas.

3.3.5. Fractional Anisotropy Analysis
We next analyzed voxel-wise differences in FA values be-

tween males and females (N = 419; age 22.05±1.79 years; 240
F / 179 M) using a t-test. The bssr analysis report for this study
is shown in Fig. 9. The largest cluster observed was 83, 853
voxels and was located in the right thalamus extending into the
right external capsule, globus pallidus, putamen, and left tha-
lamus (average t-value= −8.382). In this cluster, males were
observed to have higher FA values relative to females. Females
were observed to have higher FA values in the next largest clus-
ter located in the left postcentral gyrus, with 21, 152 voxels and
an average t-value of 5.266.

3.4. Computer Resource Allocation and Benchmarks

The data processing described in the preceding sections was
performed on a multi-user high performance computing (HPC)
cluster operated by the UCLA Brain Mapping Center. The
participant-level workflows were distributed on the cluster and
executed in parallel using SLURM (Yoo et al., 2003) to perform
job scheduling and maintenance. Each singularity instance was
allocated 31 GB of memory and 5 processing cores, which were
assigned by SLURM from a pool of compute nodes with ei-
ther dual 12-core 2.6GHz Intel Xeon Gold 6126 or dual 18-
core 2.3GHz Intel Xeon Gold 6140 CPUs. Execution of the
full workflow, including BAP, BDP, BFP, and the QC compo-
nent, required approximately 140 minutes total time for each
subject. Approximately 150 workflows were run concurrently,
enabling all participant-level workflows to be completed in ap-
proximately 7 hours of real time. Processing of the data from
four participants used to generate Fig. 4 was performed in par-
allel on a single Intel i9-13900K Debian 11 workstation with
128GB of RAM and required less than 100 minutes. When run
serially, processing required less than 85 minutes per partici-
pant dataset on the same computer.

All group analyses were also performed on the UCLA Brain
Mapping Center cluster, with resource allocation that varied de-
pending on the type of analysis. For SBA, 60 GB of mem-
ory and 10 cores were allocated, allowing the entire analysis to
complete in less than 4 minutes. For TBM and FA analyses,
150 GB of memory and 10 cores were allocated, and approxi-
mately 9 minutes were required for each analysis. For ROI and
FC analyses, 10 GB of memory and 6 cores were allocated. The
ROI analysis and bssr report generation required approximately
1 minute and FC analysis required approximately 24 minutes.

4. Interpretation of AOMIC Results

The series of studies we conducted during the evaluation of
our BrainSuite BIDS App on the AOMIC dataset on cortical
thickness, ROI, TBM, and FC focused on the effects of RAPM
scores in females. These studies yielded findings similar to
those in the existing literature. The statistical tests for these
models were performed separately within the male and female
groups to disassociate effects due to sex. The statistical analy-
ses in the female group showed bigger effect sizes and survived
multiple testing on both hemispheres. Although our TBM and
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Figure 9: Fractional anisotropy analysis examining sex differences in FA
values using a t-test on the AOMIC-PIOP dataset. Shown is the bssr report
presenting the analysis of sex differences in fractional anisotropy conducted us-
ing a using a t-test on the AOMIC-PIOP dataset. The first column includes a
table of ten significant clusters. Images of the adjusted log p-value maps over-
laid on the BCI-DNI brain atlas follow the table. Blue hues indicate lower FA
values and pink hues indicate higher FA values in females when compared to
males. The images display the center of the identified cluster, indicated by the
black cross-hair, in all three cardinal planes. The largest cluster, comprising
83, 853 voxels with an average t-value of −8.382, was located in the right tha-
lamus extending into the right external capsule, globus pallidus, putamen, and
the left thalamus.

FC analyses did not produce statistically significant results, we
included the uncorrected findings to demonstrate the function-
ality of our software and to show the reporting functionality of
bssr. We also performed a separate study that included the en-
tire dataset and examined sex differences on FA measures.

4.1. Surface-based and ROI analysis

The results of our cerebral cortical thickness analysis and our
ROI analysis of the pars opercularis both corroborate the find-
ings reported by Schnack et al. (2015) and Selemon (2013). In
those studies, grey matter thickness measures were shown to
decrease with RAPM scores, a phenomenon the authors sug-
gested could be caused by cortical pruning. Moreover, a study
by Shaw et al. (2006) showed a delayed increase in cortical
thickness in children with higher intelligence scores when com-
pared to other youth with varying levels of intelligence, possi-
bly indicating a longer period of cognitive circuit development.

4.2. Tensor-based morphometry (not significant)

Our TBM analysis studying the relationship between grey
matter volume and RAPM scores in the female cohort showed
small, statistically insignificant changes in the cortical regions.
There are some regions for which the results are in line with the
findings from the surface-based analysis (e.g., left pars opercu-
laris and bilateral orbitofrontal cortices), but the largest cluster
(left temporal pole) found in the TBM analysis is not observed
in SBA. It appears that some of the effects seen in this TBM
analysis are within the white matter regions. This is reason-
able, because white matter volume has been associated with
fluid intelligence (Turken et al., 2008). Additionally, our re-
sults showed increased volume in the regions of the salience
network, including the medial frontal lobe, regions of the tem-
poral lobes, and the sensorimotor cortex, which aligns with the
results presented by Yuan et al. (2012). That study used a sim-
ilar number of subjects as our study and did obtain a surviving
significance; in contrast to our method, they investigated only
grey matter and used Monte Carlo simulation for multiple com-
parisons correction. Lastly, we note that the number of voxels
compared in the TBM study was far greater than the number
of vertices compared in the surface based analysis leading to a
large number of statistical tests.

4.3. Functional Connectivity (not significant)

Although the evidence seen in the FC analysis was not statis-
tically robust, the directionality of the R-values corresponds to
the findings in previous studies. In a review paper by Dizaji
et al. (2021) that investigated the associations between hu-
man intelligence and neuroimaging markers, various areas were
found to be significantly correlated. The most commonly found
areas of significant functional connectivity were in the fron-
toparietal network, prefrontal, frontal, anterior cingulate cor-
tices (Cole et al., 2015; Ebisch et al., 2012; Finn et al., 2015;
Santarnecchi et al., 2017; Li et al., 2018). Connections within
these regions, especially areas involved in the dorsal attention
network, were found to be significantly associated with general
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fluid intelligence using RAPM scores. In other studies (Mal-
pas et al., 2016; Graham et al., 2010) using the Wechsler Adult
Intelligence Scale (WAIS), significant correlations in functional
connectivity were also found in the temporal and occipital lobe,
supporting the parieto-frontal integration theory (P-FIT) (Jung
& Haier, 2007), which postulates the integration of multiple
distant regions (prefrontal: BA 6, 9–10, 45–47; parietal: BA 7,
39–40; occipital: BA 18–19; and temporal association cortex:
BA 21, 37) for behaviors of general intelligence.

4.4. Fractional Anisotropy

Previous studies investigating sex differences in FA measures
have reported significant effects in multiple anatomical regions.
Several studies have reported mixed findings for differences in
FA in terms of the direction (increase or decrease) and the speci-
ficity of the regions (Menzler et al., 2011; Inano et al., 2011;
Chou et al., 2011). Our findings showed increased FA in males
in the thalamus, hypothalamus, globus pallidus, and putamen
in agreement with Menzler et al. (2011) and den Braber et al.
(2013), and a reduced FA in the anterior cingulate cortex, the
fronto-occipital fasciculus and white matter under the parahip-
pocampal gyrus similar to Abe et al. (2010) and Chou et al.
(2011). The differences in FA measures may be related to vari-
ations in the proportion of grey and white matter across the
sexes (Allen et al., 2003; Goldstein et al., 2001). Additionally,
myelination rate has been found to be enhanced by estrogen
hormones in young rat brains (Prayer et al., 1997). Thus, it is
possible that a similar mechanism could be present in human
brains and modulate the FA measures.

5. Discussion

BrainSuite is one of many freely available tools for analyz-
ing neuroimaging data. Several existing packages have also
been integrated into BIDS Apps, in some cases by their own
development teams and in some cases by interested third par-
ties. We briefly describe a few major packages that share sim-
ilarities in features and functions. The FreeSurfer recon-all
BIDS App (Fischl, 2012; Gorgolewski et al., 2018) is a con-
tainerized form of the FreeSurfer cortical surface reconstruction
pipeline, which takes T1-weighted images as input and gen-
erates registered cortical surfaces, cortical and subcortical re-
gional parcellations, and measures including cortical thickness.
If multi-session data are provided, it will run the FreeSurfer
longitudinal pipeline. The FreeSurfer BIDS App provides two
group-level workflows, which (1) create subject-specific tem-
plates; and (2) generate data tables of all cortical and subcortical
segmentation statistics and image quality statistics. While the
FreeSurfer BIDS App does not include FreeSurfer’s group-level
statistical analysis tools, modeling can be performed outside of
the BIDS App using mri_glmfit or its corresponding front-end
GUI QDEC (Query, Design, Estimate, Contrast) application. A
separately developed BIDS App (Liem & Gorgolewski, 2017)
implements an interface to FreeSurfer’s TRACULA (Yendiki
et al., 2011), which provides tools for extracting white matter
pathways by processing dMRI data from cross-sectional and

longitudinal datasets. TRACULA can perform FreeSurfer’s
cortical surface reconstruction pipeline, but has limited flexi-
bility compared to the FreeSurfer BIDS App. For its group-
level analysis, TRACULA BIDS App outputs motion and tract
statistics for all subjects for users to run statistical modeling and
inference externally.

The MRtrix3 Connectome BIDS App (Smith & Connelly,
2019; Smith, 2018), based on MRtrix3 (Tournier et al., 2019),
provides a fully automated pipeline that estimates structural
connectomes and prepares them for group comparison. It re-
quires one or more series of DWI images and one T1w-MRI.
DWI data are processed using a series of operations, including
anatomically constrained tractography (Smith et al., 2012) and
application of SIFT2 (Smith et al., 2015) to produce stream-
lines. Streamlines are assigned to grey matter parcellations
created from the T1w-MRI using either FreeSurfer or atlas-
based registration. MRtrix3 Connectome BIDS App’s group-
level analysis normalizes connection densities across subjects
so that connectome edges can be compared. It also produces an
FA-based population template and a group mean connectome.

The Statistical Parametric Mapping (SPM) BIDS App
(Flandin et al., 2018) provides an instance of SPM12 (Ash-
burner, 2012), which provides a broad range of functional-
ity for analyzing many types of data, including T1w-MRI,
fMRI, positron emission tomography (PET), single photon
emission computed tomography (SPECT), electroencephalog-
raphy (EEG), and magnetoencephalography (MEG) data. It
also offers the ability to coregister these datasets with T1-
weighted images for anatomical interpretation. SPM BIDS App
is structured to take and execute a user-written MATLAB script
for the group-level analysis and an optional MATLAB script for
preprocessing. These scripts might typically make use of the
spm_jobman functionality, which enables the specification of a
series of SPM processes to be linked together into a pipeline.
This offers a great deal of flexibility for performing different
types of analysis, but also requires substantial scripting. This
is in contrast to the FreeSurfer, MRTrix3, and BrainSuite BIDS
Apps, which each contain pre-programmed pipelines that can
be invoked with a single command-line call.

The MRIQC BIDS App (Esteban et al., 2017, 2022) pro-
vides a series of tools for assessing image quality at the indi-
vidual and group level. MRIQC produces image quality met-
rics (IQMs) using a combination of FSL, ANTs, and AFNI. It
generates a report for each subject at the participant-level, as
well as a group report including all subjects. The group report
presents boxplots and stripplots of the IQMs, enabling the iden-
tification of subject data that may be of poor quality. Though
not part of the BIDS App framework, the FreeSurfer toolset
also provides tools for analyzing image and segmentation qual-
ity, including the FreeSurfer 5.3 Quality Assessment (QA)
Tools (https://surfer.nmr.mgh.harvard.edu/fswiki/QATools) and
their replacement qatools-python (https://github.com/Deep-MI/
qatools-python). These tools are compatible with FreeSurfer
outputs and provide a range of functions, which include the
generation of a limited set of thumbnail images of processed
images at specific stages and computation of quality assessment
metrics (QAMs), e.g., signal-to-noise ratio (SNR), segmenta-
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tion outliers, and topological holes or errors.
We developed the BrainSuite BIDS App to provide access

to the comprehensive functionality of the major processing ca-
pabilities available in BrainSuite. Specifically, the integration
of the three BrainSuite pipelines into a single BIDS App pro-
vides a greatly simplified process for applying these methods to
study data maintained in BIDS format. While these pipelines
are available through sets of scripts, command-line programs,
and, in the case of BAP, an interactive GUI, the BrainSuite
BIDS App enables rapid deployment for large scale analysis
and ensures consistent versioning of the software and the envi-
ronment in which it resides. Furthermore, we have designed the
BrainSuite BIDS App to interoperate with the command-line
and GUI versions of BrainSuite, enabling users to perform cus-
tomized processing or perform manual actions, such as mask
editing, if necessary. We have also introduced new functional-
ity in the BrainSuite BIDS App that is not currently included in
the main BrainSuite distribution.

One of the improvements we made in developing the Brain-
Suite BIDS App was the direct integration of the BrainSuite
Statistics in R toolbox into our BIDS analysis workflow. This
creates fully automated analysis streams for structural and dif-
fusion data, from processing of individual datasets to complete
statistical analysis reports. We note that most of the BIDS Apps
described above, with the exception of SPM, prepare data for
analysis during the group-level stage, but the final statistical
modeling is performed in separate tools outside of the BIDS
App. Importantly, our BrainSuite framework captures the full
set of parameters used across an entire study in a set of JSON
files. The statistical analysis performed is also recorded in the
files output by bssr. These archival mechanisms enhance in-
terpretation and reproducibility by ensuring that the processing
and analysis are well-documented. In addition, the integration
of the BrainSuite Functional Pipeline and the BrainSync group
analysis tools provides a novel mechanism for synchronizing
functional signals across individuals in a study.

The BrainSuite BIDS App also introduces the BrainSuite
Dashboard quality control system, which provides an inter-
active interface to monitor and review intermediate stages of
subject-level data processing as they are completed. This is
in contrast to the methods of MRIQC, which runs a series of
steps to produce a quality report prior to analysis, or FreeSurfer,
which provides tools outside of the BIDS or BIDS App frame-
works that generate post hoc reports after the recon-all process
has completed. An advantage of the MRIQC and FreeSurfer
approaches is that they compute quantitative metrics of qual-
ity. While our current approach relies upon visual inspection,
we note that we have previously explored computing quality
assurance measures for use in an earlier version of our QC sys-
tem (Wong & Shattuck, 2018). We plan to continue that work
to develop quality assurance modules for BrainSuite that will
identify potential processing errors and abnormalities. These
would then be flagged for review in the BrainSuite Dashboard.
We also note that the BrainSuite Dashboard is designed to be
easily modified. The pipelines, stages, and images shown to the
user are all configurable through JSON files. This enables new
processing modules to be added to the system with minimal ef-

fort. In a separate project, for example, we are reconfiguring
this system to work in a preclinical imaging pipeline we are de-
veloping. This framework could also be adapted to work with
the outputs of other BIDS Apps.

As we demonstrated through the processing of the open-
access AOMIC-PIOP data, the integration of our BrainSuite
pipelines and functions into a single container in the form of
a BIDS App provides a convenient and powerful tool for re-
searchers to process and analyze large-scale neuroimaging stud-
ies. By following the BIDS App model, the BrainSuite BIDS
App is designed to promote reproducibility and interoperability.
It maintains a consistent virtual environment on any supported
platform, requiring users to install only the Docker or Singu-
larity software and the BrainSuite BIDS App image. Addition-
ally, by using Nipype as the underlying workflow framework,
BrainSuite BIDS App benefits from Nipype’s built-in com-
mand archiving, logging, and error detection protocols. The
Nipype logs supplement BrainSuite’s own logs and command
archival, thereby enhancing data provenance and error assess-
ment. These features improve usability by alleviating the need
for configuring computer environments and by providing the
user with additional information regarding the status of process-
ing. As our BrainSuite software continues to evolve, we plan to
integrate and distribute these updates into the BrainSuite BIDS
App to further facilitate reproducible neuroimaging processing
and analyses.
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Appendix A. Customization

Appendix A.1. Participant-level Workflow
Users can run the participant-level workflow with custom pa-

rameters by including a preprocessing configuration file (pre-
proc_config.json; see Fig. A.10). This optional JSON file
defines objects named Anatomical, Diffusion, PostProc, and
Functional that can be used to specify parameters for each of
those components. For parameters whose options are Boolean
values, 1 (True) and 0 (False) are used, e.g., 1 enables an option
and 0 disables it.

Appendix A.1.1. Global Settings
◦ cacheFolder: Specifies the location of the cache directory for

Nipype. The default location for the cache directory is the
output directory.

Appendix A.1.2. Anatomical Pipeline Settings
Parameters for the BrainSuite Anatomical Pipeline are set in

the Anatomical object of the JSON config file. There are no
required user-defined settings for BAP.

Skull-stripping (bse)

◦ skipBSE: If enabled (1), skull stripping (BSE) is skipped
and a custom mask is used (e.g., if manual edits to a brain
mask were necessary). The custom mask must be copied to
the output directory prior to running BAP. Options: {0,1}.
Default: 0 (disabled).
◦ autoParameters: Enables automated selection of opti-

mal parameters for skull-stripping/Brain Surface Extractor
(BSE). Options: 0, 1. Default: 1 (enabled).
◦ diffusionIterations: Specifies the number of times the

anisotropic diffusion filter is applied to the image during
BSE. This field will be ignored if autoParameters is 1. Typ-
ical range: [0 . . . 6]. Default: 3.
◦ diffusionConstant: Specifies the anisotropic diffusion

constant, which controls the height of the edges that are re-
tained during anisotropic diffusion filtering. This field will
be ignored if autoParameters is 1. Typical range: [5 . . . 35].
Default: 25.
◦ edgeDetectionConstant: specifies the edge detection

constant, σ. During the edge detection step in BSE, σ in-
fluences how wide an edge must be to be identified. Typical
range: (0.5 − 1.0). Default: 0.64

Bias Field Correction (bfc)

◦ iterativeMode: If iterative mode is enabled, the bias field
correction (BFC) program will run multiple passes using a
range of settings to correct for severe artifacts. Options:
{0,1}. Default: 0.

Tissue Classification (pvc)

◦ spatialPrior: Controls the weighting of the spatial prior
used during tissue classification stage. Reducing this value
can be useful if an image has low signal-to-noise. Default:
0.1.

{

"BrainSuite": {

"Global Settings": {

"cacheFolder":
"/output/"

},

"Anatomical": {

"autoParameters": 1,
"diffusionIterations": 3,
"diffusionConstant": 25,
"edgeDetectionConstant": 0.64,
"skipBSE": 0,
"iterativeMode": 0,
"spatialPrior": 0.1,
"costFunction": 0,
"useCentroids": 1,
"linearConvergence": 0.01,
"warpConvergence": 100,
"warpLevel": 3,
"tissueFractionThreshold": 50.0,
"atlas": "BCI",

"singleThread": 1
},

"Diffusion": {

"skipDistortionCorr": 0,
"phaseEncodingDirection": "y",

"echoSpacing": "",

"fieldmapCorrection": "",

"estimateODF_3DShore": 0,
"diffusion_time_ms": "",

"estimateODF_GQI": 0,
"sigma_GQI": "",

"estimateODF_ERFO": 0,
"ERFO_SNR": ""

},

"PostProc": {

"smoothSurf": 2.0,
"smoothVol": 3.0

},

"Functional": {

"task-name": ["restingstate"],

"TR": 2,
"EnabletNLMPdfFiltering": 1,
"fpr": 0.001,
"FSLOUTPUTTYPE": "NIFTI_GZ",

"FWHM": 6,
"HIGHPASS":0.005,
"LOWPASS": 0.1,
"MultiThreading": 1,
"memory": 16,
"FSLRigid": 0,
"SimRef": 1,
"RunDetrend": 1,
"RunNSR": 1,
"uscrigid_similarity": "inversion",

"scbPath": "/output/SCB.mat",

"T1mask": 1,
"BPoption":1

}
}

}

Figure A.10: Preprocessing Configuration. Example JSON file defining the
preprocessing specification for BrainSuite BIDS App.
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Cerebrum Labeling (cerebro)

◦ costFunction: The cost function used by AIR’s alignlin-
ear during the initial linear registration to the atlas for cere-
brum labeling. Possible choices are: standard deviation of
the ratio image (0), least squares (1), and least squares with
intensity rescaling (2). Options: {0,1,2}. Default: 2.

◦ useCentroids: If enabled, the cerebrum labeling program
will initialize the registration process using the centroids of
the subject image and the atlas image. Options: {0,1}. De-
fault: 0.

◦ linearConvergence: Sets the threshold used by AIR’s
alignlinear during cerebrum labeling to determine if the lin-
ear registration has converged. Default: 0.1.

◦ warpConvergence: Sets the threshold used by AIR’s
align_warp during cerebrum labeling to determine if the
nonlinear registration has converged. Default: 100.

◦ warpLevel: Sets the degree of the polynomial model used
for the transformation used by AIR’s align_warp during
cerebrum labeling. Typical Range: (2 − 8). Default: 5

White Matter Mask Generation (cortex)

◦ tissueFractionThreshold: Minimum percentage of
white matter in a voxel needed for it to be included in the
mask, in decimal form (e.g., 50% white matter) during ini-
tial cortical mask generation. Range: (0 − 100). Default:
50.0

Registration and Labeling (svreg)

◦ atlas: Specifies the atlas used for registration and labeling
(see 2.4.1 for details on the atlases). Options: BSA, BCI-
DNI, USCBrain. 1 Default: BCI-DNI.

◦ singleThread: If enabled, SVReg runs in single-threaded
mode by disabling multithreading in MATLAB’s parpool.
This can be helpful if errors related to MATLAB parpool
occur on compute nodes. Options: {0,1}. Default: 0

Appendix A.1.3. User-Defined Configurations for BDP
Parameters for the BrainSuite Diffusion Pipeline are set in the

Diffusion object of the JSON config file. There are no required
user-defined inputs for BDP.

◦ skipDistortionCorr: If enabled, BDP skips distortion
correction completely and performs only a rigid registration
of the diffusion and T1-weighted images. This can be useful
when the input diffusion images do not have any distortion
or they have already been corrected for distortion. Options:
{0,1}. Default: 0.

◦ phaseEncodingDirection: Sets the phase encoding direc-
tion of the DWI data, which is the dominant direction of dis-
tortion in the images. This information is used to constrain

1additional details about the BrainSuite atlases are available at https://
brainsuite.org/atlases/.

the distortion correction along the specified direction. Di-
rections are represented by any one of x, x-, y, y-, z or z-. x
direction increases towards the right side of the subject, while
x- increases towards the left side of the subject. Similarly, y
and y- are along the anterior-posterior direction of the sub-
ject, and z and z- are along the inferior-superior direction.
When this field is not specified, BDP uses y as the default
phase-encoding direction. Options: {x,x-,y,y-,z,z-}. Default:
y.

◦ echoSpacing: Sets the echo spacing in units of sec-
onds, which is used during fieldmap-based distortion cor-
rection. (Example: For an echo spacing of 0.36ms, use
echo-spacing=0.00036). This value is required when using
fieldmapCorrection.

◦ fieldmapCorrection: Use an acquired fieldmap for dis-
tortion correction. The parameter specifies the path to the
field map file to use.

◦ diffusion_time_ms: Sets the diffusion time parameter
(in milliseconds). This parameter is required for estimating
ERFO, 3D-SHORE and GQI ODFs.

◦ estimateODF_3DShore: If enabled, estimates ODFs using
the 3D-SHORE (Özarslan et al., 2013) basis representation.
Options: {0,1}. Default: 0.

◦ estimateODF_GQI: Estimates ODFs using the GQI method
(Yeh et al., 2010). Options: {0,1}. Default: 0.

◦ sigma_GQI: Sets the GQI adjustable factor, required for cal-
culating diffusion sampling length. Typical range: [1 . . . 1.3].
Default: 1.25.

◦ estimateODF_ERFO: If enabled, estimates ODFs using the
ERFO method. (Varadarajan & Haldar, 2018). Options:
{0,1}. Default: 0.

◦ ERFO_SNR: Sets the SNR of the acquired data, required for
estimating ERFO ODFs. Default: 35.

Appendix A.1.4. Smoothing Parameters
Parameters for smoothing of surface and volume are set in

the PostProc object of the JSON config file.

◦ smoothSurf: Specifies the kernel size (in mm) used for
smoothing the surface output data from BAP. Typical range:
(2 − 5). Default: 2.

◦ smoothVol: Specifies the kernel size (in mm) used for
smoothing the volumetric output data from BAP and BDP.
Typical range: (2 − 6). Default: 3.

Appendix A.1.5. User-Defined Configurations for BFP
Parameters for the BrainSuite Functional Pipeline are set in

the Functional object of the JSON config file. BFP requires one
field, TR, to be specified by the user. This can be set as an
argument on the command line when the BrainSuite BIDS App
instance is started or set in the preproc-config JSON file. If TR
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is specified on the command line, then the Functional section
of the JSON file is optional. If TR is not defined when BFP
is called, then the default (2) will be used. Additional optional
fields can be used to control different aspects of the processing.

◦ task-name: The names of the tasks to be processed in list
form using square brackets, e.g., [restingstate, emomatch-
ing]. The task names should correspond to the task names
specified in the input fMRI filenames after the task- de-
limiter. For example, in the fMRI file sub-0001_task-

restingstate_bold.nii.gz, the task name would be
‘restingstate’.

◦ TR: Repetition time (in seconds) of the fMRI data.

◦ EnabletNLMPdfFiltering: If enabled, BFP will apply
tNLMPdf (GPDF) filtering (Li et al., 2020). This step can
take up to 30 minutes per scan. Options: {0,1}. Default: 1.

◦ fpr: False positive rate (significance level). This parameter
is used for global non-local means filtering (GPDF) for fMRI
denoising. Default: 0.001

◦ FSLOUTPUTTYPE: Specifies the format that FSL uses to save
its outputs.2 Default: NIFTI_GZ

◦ FWHM: Full-width-half-maximum value, in mm, used for spa-
tial smoothing. Default: 6

◦ HIGHPASS: Value for the high-pass cutoff frequency, in Hz,
used for bandpass filtering. Default: 0.005

◦ LOWPASS: Value for the low-pass cutoff frequency, in Hz,
used for bandpass filtering. Default: 0.1

◦ MultiThreading: If enabled, uses parallel processing for
transforming fMRI data onto the grayordinate system and
GPDF non local means filtering. If disabled, parallel pro-
cessing is not used. {0,1}. Default: 1

◦ memory: Specifies the amount of RAM (in gigabytes) avail-
able for running for transforming fMRI data onto grayordi-
nate system and GPDF non local means filtering. Default:
16

◦ FSLRigid: If enabled, BFP uses FSL’s rigid registration
(FLIRT) during processing. If not enabled, BFP uses Brain-
Suite’s BDP affine registration. FLIRT is run with 6 degrees
of freedom, trilinear interpolation, and the correlation ratio
cost function (Jenkinson et al., 2002). BrainSuite’s affine reg-
istration tool is set to run with 6 degrees of freedom, linear
interpolation, and the INVERSION cost function, which is
optimized to align the inverted contrasts of T1W and fMRI
images (Bhushan et al., 2015). Options: {0,1}. Default: 0

◦ SimRef: Specifies the type of reference volume used for
coregistration and motion correction. If enabled, SimRef will

2details on the available FSL output types can be found here: https://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/FslEnvironmentVariables.

be used, which calculates the pair-wise structural similarity
index (SSIM) between every tenth time point and all other
time points (Wang et al., 2004; Hore & Ziou, 2010). The time
point with the highest mean SSIM is chosen as the reference
image. If not enabled, all volumes are averaged together to
create a mean image. {0,1}. Default: 1

◦ RunDetrend: Enables detrending. Options: {0,1}. Default:
1

◦ RunNSR: Enables nuisance signal regression. Options: {0,1}.
Default: 1

◦ uscrigid_similarity: Specifies the cost function(s) used
by BFP during USC rigid registration. Available methods are
INVERSION (inversion), INVERSION followed by normal-
ized mutual-information based refinement (Bhushan et al.,
2015) (bdp), mutual information (mi), correlation ratio (cr),
and squared difference (sd). Options: {bdp, inversion, mi, cr,
sd}. Default: inversion

◦ T1mask: If enabled, BFP uses the T1w mask to threshold
fMRI data, which may be useful for data with high signal
dropout. Options: {0,1}. Default: 1

◦ BPoption: If enabled, BFP applies 3dBandpass (updated
function with quadratic detrending). If not enabled, BFP ap-
plies 3dFourier and linear detrending. Details are found in
the AFNI documentation3. Options: {0,1}. Default: 1

Appendix A.2. Group-level Analysis

A JSON file specifying a model is required for group level-
statistical tests. Example JSON files for configuring group-level
analysis /models are shown in Fig. A.11. For parameters whose
options are Boolean values, 1 (True) and 0 (False) are used.

Appendix A.2.1. Group level analysis for anatomical and dif-
fusion data

◦ tsv_fname: Specifies the TSV file containing demographic
data and/or clinical variables that will be used for group anal-
ysis

◦ measure: Specifies the imaging measure of interest. Avail-
able options are: cortical thickness measures from surface
files (cbm); tensor-based morphometry using the Jacobian
determinant of the deformation map from subject to atlas
(tbm); ROI-based analysis using scalar summary statistics
(roi); DTI parametric maps (dbm). Options: {cbm, tbm, roi,
dbm}

◦ test: Specifies the model. Available options are: ANOVA
(anova); correlations test (corr); t-test (ttest). Options:
{anova, corr, ttest}

3https://afni.nimh.nih.gov/pub/dist/doc/program_help/
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{

"BrainSuite": {

"Structural":{
"tsv_fname":

"/data/AOMIC_PIOP/aomic-piop_10192021.tsv",

"measure": "cbm",

"test": "anova",

"main_effect": "ravenscore",

"covariates": [
"age","scanner"
],

"corr_var": "age",

"group_var": "sex",

"paired": 0,
"smooth": 2.0,
"mult_comp": "fdr",

"pvalue":"parametric",
"niter":2000,
"roiid": [102],
"hemi": "both",

"maskfile": "",

"atlas": "",

"roimeas": "",

"dbmmeas": "" ,

"exclude_col": "Fonly",

"out_dir":

"/data/AOMIC-PIOP2_output/stats/cbm_anova_F/"
},

"Functional":{
"tsv_fname": "/data/participants.tsv",

"file_ext": "-rest_bold.32k.GOrd.filt.mat",

"lentime": 240,
"matchT": 0,
"stat_test": "atlas-linear" ,

"pw_pairs": 2000,
"pw_fdr": 0,
"pw_perm": 2000,
"outname": "BFPtest",

"sig_alpha" : 0.05,
"smooth_iter": 100,
"save_surfaces": 1,
"save_figures": 0,
"atlas_groupsync": 1,
"atlas_fname": "/data/atlas.mat",

"test_all": 1,
"colvar_main": "LogAge",

"colvar_reg1": "Age",

"colvar_reg2": "Sex",

"colvar_exclude": "Exclude",

"colvar_atlas": "Atlas",

"out_dir": "/output/stats"
}

}
}

Figure A.11: Statistical analysis model specifications

◦ main_effect: Specifies the main predictor variable for
ANOVA. Used only if test=anova. This value must match
a corresponding column header in the TSV file that is speci-
fied in the tsv_fname field.

◦ covariates: Specifies the covariates for ANOVA. Used
only if test=anova. Values must match column headers from
the TSV file in the tsv_fname field. Must be in list form and
can contain multiple elements.

◦ corr_var: Specifies the variable for correlation test. Used
only if test=corr.

◦ paired: Specifies the t-test type. If enabled (1), then paired
t-test will be performed. If disabled (0), then unpaired t-test
will be performed. Used only if test=ttest.

◦ group_var: Specifies the group variable for paired t-test.
Used only if test=ttest and paired=1.

◦ smooth: Specifies the smoothing level used for cbm, tbm,
and dbm. The smoothing levels must match the levels used
during preprocessing. For example, if surface smoothing lev-
els were set to 2.0mm for participant-level processing, then
cbm’s smoothing level should be set to 2.

◦ mult_comp: Specifies the method for multiple comparison
correction. Used only if measure is cbm, tbm, or dbm. Avail-
able options are: FDR (fdr); max-T permutation test (perm).
Options: {fdr, perm}

◦ niter: Specifies the number of iterations for the permutation
method. Only used if mult_comp=perm.

◦ pvalue: Specifies the method for computing p-values. Op-
tions: parametric, perm. Available options are: parametric
method, which is the classical p-value method (parametric);
permutation method, which is the Freedman-Lane method
(Freedman & Lane, 1983) (perm). Options: {parametric,
perm}

◦ roiid: BrainSuite ROI ID number for ROI analysis. Only
used if measure= roi. Must be in list format. Multiple IDs
can be listed. For example, to study the left (641) and right
thalamus (640): [640,641].

◦ hemi: (For measure: cbm) Hemisphere selection. Options:
{left, right, both}

◦ maskfile: (For measure: tbm, dbm) If mask file is speci-
fied, then only the regions within the mask will be consid-
ered for statistical analysis. The mask file must be in the
same space as the atlas that was used to register the subjects
during SVReg.

◦ atlas: Atlas file. Default is the atlas that was used to run
SVReg.

◦ roimeas: (For measure: roi) ROI measure of interest. Avail-
able options are: average GM thickness in cortical regions
(gmthickness); average GM volume (gmvolume); average
wm volume (wmvolume). Options: {gmthickness, gmvol-
ume, wmvolume}

◦ dbmmeas: (For measure: dbm) Diffusion measure of interest.
Options: {FA, MD, axial, radial, mADC, FRT_GFA}

◦ exclude_col: User can specify column header name in the
TSV file (the same TSV file in the tsv_fname field). This
column must exist in the TSV file for each subject/row, in
which 0 indicates no exclusion and 1 indicates exclusion

◦ out_dir: Output directory location where statistical analy-
sis results will be stored. This directory will be created if it
does not exist.
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Appendix A.2.2. Group-level analysis for functional data
◦ tsv_fname: Name of the TSV file containing demographic

data and/or clinical variables that will be used for group-level
analysis.

◦ file_ext: Input file suffix, which is the BFP output in gray-
ordinate space, e.g., ’-rest_bold.32k.GOrd.filt.mat’.

◦ lentime: Number of timepoints in the fMRI data.

◦ matchT: If some subjects have less than timepoints
(’lentime’), enabling this field will add zero values to match
number of timepoints. Options: {0, 1}

◦ stat_test: Model to be run. Options:{atlas-linear, atlas-
group, pairwise-linear}

◦ pw_pairs: (For stat_test: pairwise-linear) Number of ran-
dom pairs to measure.

◦ pw_fdr: (For stat_test: pairwise-linear) Multiple compar-
isons correction method. If enabled (1), FDR correction will
be used. If disabled (0), max-T permutations will be used.

◦ pw_perm: (For stat_test: pairwise-linear and pw_fdr:
False) Number of permutations used for max-T permutation
method.

◦ outname: File prefixes for statistical output files.

◦ sig_alpha: P-value significance level (alpha).

◦ smooth_iter: Level of smoothing applied on brain surface
outputs

◦ save_surfaces: If enabled (1), save surface files. If dis-
abled (0), do not save surface files. Options: {0, 1}

◦ save_figures: If enabled (1), to save PNG snapshots of
the surface files. If disabled (0), does not save. Options: {0,
1}

◦ atlas_groupsync: If enabled, an atlas is generated by first
performing group alignment of fMRI data and then averaging
over the entire group. If disabled, a reference atlas is created
by identifying one representative subject. Options: {0, 1}

◦ atlas_fname: File name of user-defined atlas. Variable
should be called atlas_data. Leave empty if no user-defined
atlas should be used

◦ test_all: If enabled (1), subjects used for atlas generation
are included during hypothesis testing. If disabled (0), sub-
jects used for atlas creation are excluded from testing your
hypothesis. Options: {0, 1}

◦ colvar_main: For linear regression or group testing, the
main effect of study.

◦ colvar_reg1: For group comparisons. assign all rows with
zero values if running linear regression. Control up to 2 vari-
ables by linearly regressing out the effect. If you only have
less than 2 variable you would like to regression out, you can
create and assign a dummy column(s) with zero values for all
rows.

◦ colvar_reg2: Same as colvar_reg1.

◦ colvar_exclude: User can specify column header name in
the TSV file (the same TSV file in the tsv_fname field). This
column must exist in the TSV file for each subject/row, in
which 0 indicates no exclusion and 1 indicates exclusion.

◦ colvar_atlas: User can specify column header name in
the TSV file (the same TSV file in the tsv_fname field). This
column must exist in the TSV file for each subject/row, 1 sub-
jects that would be used to create a representative functional
atlas, and 0 otherwise.

◦ out_dir: Output directory location where statistical analy-
sis results will be stored. This directory will be created if it
does not exist.
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