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Abstract Biometric personal authentication is an emerging technology in information security. One resulting

problem has been a recent increase in fraud based on falsified biometric data concerning biological information.

Brainwave-based identification is a promising biometric tool to prevent impostor attacks. Many researchers have

reported biometric results using electroencephalogram (EEG) activity. The brainwave features of each indivi-

dual are unique and have the potential for use in biometric authentication. Security can be enhanced by em-

ploying as many EEG features of an individual as possible. Although it takes time to measure brain waves at

present, this authentication method can potentially be used for special security areas in the future. There are

several approaches to brainwave biometrics using cognitive processes. We investigated the motor imagery for

movements of the left hand, right hand, tongue, and both feet for brainwave biometrics. The nature of brain signal

analysis parallels voice signal analysis in some respects. Hence, we applied the cepstral analysis method, which is

commonly used in speech recognition, for feature extraction for brainwave biometrics. In our results, we

identified almost all nine of the subjects correctly. We tested the performance of our biometric system using the

Mahalanobis distance as the threshold and estimated the equal error rate (EER) value to be 0.17.
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1. Introduction

This paper reports on secure electroencephalogram

(EEG)-based personal identification. Recently, a series of

cases of personal information leakage has been reported.

Hence, there is increasing interest in using biometrics to

protect the security of personal and other data. Current

biometric methods include recognition based on finger-

prints, the iris, the face, etc. These methods have been

embedded in some computer devices and placed on many

doors and security gates. Nonetheless, the fraud and

imitation of personal biometric data have become such

serious problems�1�that a new biometric method is re-

quired.

Brainwave biometrics have two advantages over pre-

vailing biometric methods. One is the difficulty in eaves-

dropping on personal brainwave data. Since brainwave

potentials are very weak, brainwave data must be mea-

sured by specialized equipment in contact with the outer

surface of the scalp. Therefore, collecting data for frau-

dulent purposes is more difficult than doing so for tra-

ditional biometric methods based on image pattern

matching. The second advantage is that the brainwaves

can reflect individual mental activities. This property

leads to many possibilities for diverse biometrics. The

traditional biometric methods are based on image pattern

matching to identify people using single fixed templates.

In contrast, brainwave biometrics can identify people on

the basis of templates that reflect different brain activities

such as a cognitive process. We believe that this au-

thentication method will be used for special security areas

in the future, although brainwave biometrics require

considerable time and effort to measure, at present.

The brainwave biometric approach is divided into three

principal methods. The first method assesses resting

brainwaves. Poulos et al. �2� first tried to identify indi-

viduals based on the EEG. They analyzed the α waves of

four subjectsʼ EEG using a neural network classification

method. Paranjape �3� used brainwave data based on α

waves when eyes were open/closed for biometric ana-

lysis. These and other results �4-6� based on the α wave

reported good classification results. In addition, this

method only requires a few electrodes, which is an im-

portant advantage when developing a practical device.

However, subjects were required to sit quietly for a re-

latively long time. The second method utilizes the event-

related potential from a cognitive human brain process.

Palaniappan and Mandic �7� investigated the γ wave

band of the visual evoked potential elicited during a

mental task for personal identification. Thorpe �8� and

Touyama �9� investigated biometric methods of extract-

ing the P300-evoked potentials during image retrieval.

The amplitude, latency, and scalp distribution of the P300

and related components are affected by cognitive

processes, including attention and memory �10, 11� .

Another cognitive process that has been assessed for

brainwave biometrics is motor imagery. Mercel and

Millan �12� studied the personal-authentication-based

motor images of left or right hand movements as well as
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word generation. Bao �13� and Hu �14� investigated a

biometric-method-based analysis of signal properties for

four types of motor imagery. The last method involves the

use of the brainwave biometrics in near infrared spec-

troscopy (NIRS), which is a noninvasive optical method

to observe hemodynamic change in tissue. Pfurtscheller et

al. studied the phase shift measured by NIRS signals for

its suitability to use in brainwave biometrics.

While all of these approaches can yield promising

results, the brainwave-based biometric technology is still

inaccurate. In order to enable the use of an authentication

method by anybody without the use of his or her own

memory or a special practice, we decided to choose the

brain waves of the motor imagery approach for brain

wave authentication. We employed a cepstral analytical

method for EEG feature extraction. The cepstral analysis

is commonly used in speech recognition research �15� .

The phoneme, which is a basic feature of speech, is ex-

tracted in the cepstral analysis. This analysis is effective

in extracting and identifying the phoneme because the

spectrum of the human voice can be compressed effec-

tively by the discrete cosine transform (DCT). We app-

lied this approach to brainwave analysis to extract the

best individual feature. The use of cepstral analysis in

brainwave research has been reported elsewhere for dif-

ferent purposes. Rauner et al. utilized it to remove

artifacts �16�. Abdul and Wong �17� reported that they

extracted the best brainwave feature for identifying

motor actions of the limbs by using the cepstral method

with a Mel filter bank. They reported that the cepstral

method is a good method for feature extraction and

classification of limb motions.

In this study, we investigated brainwave biometrics

using the cepstral analysis method, which has not pre-

viously been applied for this purpose. We attempted to

classify nine healthy subjects by the extracted cepstral

data.

2. Experiment

2･1 Data description

All brainwave data in this paper were obtained from

the dataset supplied by the Graz University of Technolo-

gy at brain computer interface (BCI) Competition IV

�18�. This dataset consists of two EEG data sessions from

nine healthy subjects on two different days ; the two data

sessions are designated as datasets 1 and 2. These EEG

data are composed of four motor imagery tasks : imagining

the movement of the left hand, right hand, both feet, and

tongue. As each dataset has 288 trials with short breaks,

each motor imagery task has 72 trials. Each trial consisted

of four stages : an instruction period lasting 2 s, cue for 1 s,

motor imagery task for 3 s, and a short break for about 1 s.

Twenty-two electrodes were attached to the top of head

corresponding to the International 10-20 system. The

sampling frequency of the brainwave signals was 250 Hz.

2･2 Preprocessing

Since brainwave signals are usually contaminated with

various artifacts, some techniques were applied to im-

prove the signal properties. The brain signals of the

datasets were already filtered from 0.5 to 100 Hz by a

band-pass filter with a 50 Hz notch filter. As these

datasets include a list of trials containing eye movement

artifacts, we removed these trials from our dataset.

Therefore, the number of trials for each movement de-

creased slightly. For each trial, we extracted the first 6 s

of data from instruction to the end of the motor imagery.

As the readiness potential is used for individual qualities,

we collected the EEG data before the motor imagery. To

show that our approach can be applicable to a real-world

system with few electrodes, we selected four electrodes

for feature extraction out of the 22 electrodes in the

dataset. The four electrodes over locations Fz, C3, C4,

and Pz were chosen a priori because they typically

reflect the motor activity �19�. C3 and C4 took measure-

ments over the left and right sensorimotor cortices. Motor

execution imagery produces lateralized amplitude sup-

pression and then enhancement of β and μ waves over the

sensorimotor cortices �20�.

A general scheme is depicted in Fig. 1, with compo-

nents that are explained in the following sections.

2･3 Feature Extraction

After the brainwave signals were preprocessed, impor-

tant features describing the discriminative properties of

the brainwaves were extracted in the feature extraction

process. We applied the new feature extraction method

based on cepstral analysis as follows. First, we applied a

Hamming window and a rectangular window to each trial

data because these windows provide good frequency

resolution. Each window length was 1500 points corres-

ponding to 6 s. Next, the discrete Fourier transform

(DFT) algorithm was applied to each trial data to acquire

the frequency spectrum. The strength of the spectrum

was plotted on a logarithmic power scale up to 40 Hz. This

frequency band included α wave (8-13 Hz), β wave

(14-30 Hz), and μ wave (12-18 Hz) activities. These

waves have distinctive characteristics that reflect motor

imagery �20, 21�.

Next, we prepared a small number of features extracted

from the spectrum power of the brainwave data. With the

reduced data, we calculated the sum of every 2 Hz of the

spectrum power band from 0 Hz to 40 Hz. The reduced

spectrum data were converted to cepstral data by the

DCT. We obtained most features from the lower range of

the cepstral data because the spectrum information was

concentrated in the low-quefrency part of the cepstral
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Fig. 1 Principal scheme for brainwave biometrics. The gray

boxes show the feature extraction process.



data. For the four electrodes, we selected the first to

seventh cepstral values as the feature amounts. All

features at the four electrodes were put into one data set.

Thus, we extracted 4-28 features per trial.

2･4 Classification

The next step is the classification block, which is shown

in Fig. 1. The purpose of this stage is to separate the input

data into multiple classes. In other words, one subject of

the group is identified by the brainwave data of an un-

known subject. The various classification methods have

many different ways of implementation in BCI research.

Here, we selected two fundamental classifiers : linear dis-

criminant analysis (LDA) and quadratic discriminant

analysis based on Mahalanobis distance (MD). The pro-

bability of person identification was called the identifica-

tion rate. We used dataset 1 for training data, as men-

tioned 2.1, and we used dataset 2 for testing purposes only

to create a situation analogous to practical use.

3. Results

Fig. 2 indicates the identification rate based on the

features extracted with the logarithmic power scale data.

The rate is the average of the nine subjects. The LDA

classifier and MD classifier were used with Hamming and

rectangular windows. The LDA classifier with a Ham-

ming window produced a good result. The identification

rate increased above 0.8 around the 20 features, with five

features each from the four electrodes. Feature reduction

using the DCT method was effective for classification. On

the other hand, the MD identification rate was better with

a rectangular window than with a Hamming window.

Hence, we provided the LDA and MD classifiers with

Hamming and rectangular windows, respectively.

Fig. 3 shows the identification rate of four motor im-

agery tasks depending on the number of features. Each

motor imagery task suggested the same trend. Both the

feet and the tongue motor imagery produced slightly

higher identification rates than the others. All motor

imagery plots improved the identification rate to closer to

0.8 at around 24 features and saturated the value. The

classification rate was no different between the four

motor imagery tasks.

Fig. 4 shows the identification rate of individual sub-

jects for 4-24 selected features. The x-axis in this figure

reflects individuals in the subject pool. With fewer fea-

tures, the identification rate varied greatly. The rates

without subject No. 2 reached a constant high rate when

over 20 features were used. However, subject No.2 was

difficult to identify. Hence, people who cannot be

identified by our brainwave biometrics tools may exist

�22�.

Fig. 5 shows the identification rate across different

numbers of selected features that were extracted from the

averages of the four motor tasks with one, two, or four

electrodes. The four electrodes were located at Fz, C3, C4,

and Pz. Using two electrodes, we examined all combina-

tions and calculated the average of all of them. As a result,

the identification rate with two electrodes was about the

same as with four electrodes. In all different combinations
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Fig. 2 Identification rate based on the number of features

extracted from the cepstral data. The LDA classifier

and MD classifier were employed with Hamming (H)

and rectangular (R) windows, respectively.

Fig. 3 Identification rate of four motor imagery tasks

depending on the number of features. We obtained

these rates using the LDA classifier.

Fig. 4 Identification rate of individual subjects depending on

selected features (F) from the LDA classifier. The x-

axis indicates the subject identification number of Nos.

1-9.



with two electrodes, rates were slightly better when the

Pz-electrode site was included.

4. Discussion

This paper describes the brainwave biometric method

that was applied to the feature extraction mechanism

based on the cepstral analysis method. Our study revealed

that this brainwave biometric approach yields good

results based on relatively few features extracted from

the cepstrum. After DCT, the spectrum information con-

centrates the low-quefrency part of the cepstrum; there-

fore, the cepstrum features are suitable for identifying

individuals. We also performed experiments on the iden-

tification rate without this feature extraction. In the

results, the rates were equivalent when more than 24

features were used. However, the rate with this feature

extraction was better than the rate without it when less

than 16 features were used �23� . The cepstral analysis

method was useful for personal authentication from

brainwave data, and these results suggest that brainwave

propagation though the cranial bone is similar to voice

propagation from the vocal-tract model in some respects.

In this work, we did not use a filter bank such as the Mel

filter, which is widely used in speech recognition. As the

specific filter banks in relevant waves such as the α, β, and

μ wave are employed in brainwave biometrics, there is a

possibility that fewer features are necessary for the ide-

ntification of individuals.

The identification rate was greater than 0.8 with 24-

dimension parameters based on six cepstrum features

extracted with four electrodes by the LDA classifier.

Increasing the number of electrodes can potentially im-

prove the identification rate. However, in terms of

practical application, brain waves should be measured by

as few electrodes as possible.

The results of the identification rate suggest the dis-

tinct clustering of each subject in the dimensions studied.

Therefore, the classification must be confined to within a

certain Mahalanobis distance to detect outliers. We cal-

culated the error rate of the false rejection rate (FRR)

and false acceptance rate (FAR) using the Mahalanobis

distance as a threshold. The FRR and FAR are classifica-

tion parameters often used to examine the biometric

system. FRR is defined as the fraction of the number of

rejected trials of a true subject divided by the total

number of trials of the true subject. The FAR is defined as

the fraction of falsely accepted subject trials divided by

the number of all impostor trials. In this case, an impostor

is defined as all subjects who are not a target subject.

Assuming the Mahalanobis distances of the target subject

should always be closer than the distances of impostors,

we could use a certain threshold separating the two

groups of distances to distinguish between the target

subject and the impostors. The Mahalanobis distances

depend on the dimensions of the feature ; therefore, we

used normalized distances divided by the average of the

Mahalanobis distance of the correct data including the

test dataset.

Fig. 6 shows the error rates of FRR and FAR when 4-24

features are used. The error rates are the average of the

error rates across the four motor imagery tasks. The error

rates of FRR and FRA were improved when the number

of features was increased. The Mahalanobis distances

were found to be suitable for person classification using

brainwave biometrics. The intersection point between the

FRR and FAR curves is usually called the equal error rate

(EER), as shown by the open circles in Figure 6. The EER

values gradually converged at 1.4 of the threshold. This

means that if the threshold was set at 1.4 times the aver-

age of the Mahalanobis distances for 24 features, 0.17 of

the true subjects would be rejected and 0.17 of the false

subjects would be accepted by this biometric system.

This EER value is higher than or comparable to that

obtained using biometric methods based on the analysis of

signal properties. The EER of a biometric system can be

used to measure the performance independent of the

threshold. A low EER value generally denotes good per-

formance of the biometric system. The EER in this work

was in the middle range of other reports on brainwave

biometrics, which range from 0.03 to 0.3�6, 4, 14� . For
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Fig. 5 Identification rate across different numbers of selected

features that were extracted from the averages of the

four motor tasks with one, two, or four electrodes.

These rate were estimated by the LDA classifier.

Fig. 6 Error rate depends on the threshold normalized by the

average of the Mahalanobis distance from the correct

dataset. Between 4 and 24 features (F) were used.

EERs are indicated by open circles.



example, the EER values of fingerprint biometrics �24,

25� were about half to one-tenth of the EER values from

brainwave biometrics. However, it is difficult to estimate

the EER value correctly from the low number of subjects

�26� . The more subjects we examine by our brainwave

biometric approaches, the more reliable the EER value

becomes. In addition, the demonstration of the superiority

of the feature extraction methods used in this study for

other event-related potentials, such as evoked potential by

external stimulation, is an important research topic for

brainwave personal identification.

5. Conclusion

We investigated a brainwave biometric approach using

a new feature extraction based on the cepstral analysis

method. The results indicate that brainwave biometrics

are promising tools for personal authentication. The

cepstral analysis method can be useful for extracting

features. This method identified almost all of the nine

healthy subjects accurately. We estimated the EER values

of 0.17 using a Mahalanobis distance classifier to deter-

mine the threshold.
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