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Brain Machine Interface and Visual Compressive

Sensing based Teleoperation Control of an

Exokeleton Robot
Shiyuan Qiu, Zhijun Li, Senior Member, IEEE, Wei He, Member, IEEE, Longbin Zhang,

Chenguang Yang, Senior Member, IEEE, and Chun-Yi Su, Senior Member, IEEE

Abstract—This paper presents a teleoperation control for an
exoskeleton robotic system based on the brain-machine interface
(BMI) and vision feedback. Vision compressive sensing, brain-
machine reference commands, and adaptive fuzzy controllers
in joint-space have been effectively integrated to enable robot
performing manipulation tasks guided by human operator’s
mind. First, a visual-feedback link is implemented by video
captured by a camera, allowing him/her to visualize the manip-
ulator’s workspace and the movements being executed. Then,
compressed images are used as feedback errors in a non-
vector space for producing SSVEP (Steady-State Visual Evoked
Potentials) electroencephalography (EEG) signals, and it requires
no prior information on features in contrast to the traditional
visual servoing. The proposed EEG decoding algorithm generates
control signals for the exoskeleton robot using features extracted
from neural activity. Considering coupled dynamics and actuator
input constraints during the robot manipulation, a local adaptive
fuzzy controller has been designed following Lyapunov synthesis
to drive the exoskeleton tracking the intended trajectories in
human operator’s mind and to provide a convenient way of
dynamics compensation with minimal knowledge of the dynam-
ics parameters of the exoskeleton robot. Extensive experiment
studies employing three subjects have been performed to verify
the validity of the proposed method.

Keywords: Fuzzy logic system, EEG tele-operation, Visual

compress sense, Brain-machine interface, Exoskeleton

I. INTRODUCTION

Recently, exoskeleton robotics has attracted much attention

in the human-robot interaction [1]-[8]. In order to enable

patients of neurological injuries and diseases to use their

mind to control a device performing certain task, brain-

machine interface (BMI) techniques have been developed. The
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function of the established BMI is usually to detect user’s

intention of motion [9]. Recent studies on BMI based control

have achieved considerable progress, e.g., EEG-based control

prosthetic devices [10], [11], [12], [13].

The core of a BMI system is a direct connection paths in the

human or animal brain (or brain cell culture) and established

between the external device instead of using the normal output

approaches of peripheral nerves and muscles. It transforms

EEG signals, which can be acquired from the surface of the

scalp, into commands that implement the requirements of user.

In most BMI systems, a variety of EEG signals can be used

to extract control signals, , e.g., steady-state visual evoked

potentials (SSVEPs), P300 evoked potentials, sensorimotor

rhythms, motion-onset visual evoked potential and slow corti-

cal potentials. SSVEPs is a kind of periodic evoked potentials

induced by rapidly repetitive visual stimulation, especially at

frequencies higher than 6 Hz. The strongest response to the

visual stimuli includes stimulation frequencies in the range

5 to 20 Hz. The SSVEPs usually occur in the occipital and

parietal lobes and its frequency is aligned with the fundamental

frequency and harmonics of the frequency-coded stimuli. In an

SSVEP-BCI system, user’s intended command, e.g., moving

a cursor on a computer screen or controlling a robot arm,

can be detected by extracting the frequency information in

the SSVEPs signal. In [29], a motor imagery-based switching

to open or close an SSVEP-based BCI was presented. In

[30], motor imagery and SSVEP signals had been used for

continuous control of the direction and speed for a wheelchair,

respectively.

In the visual servoing, images are used for locating a feature

or landmark associated with coordinates transformation, allow-

ing the visual servoing system to get the position or velocity

feedback for the closed-loop system. The system does not need

sensors to monitor the movement. However, the performance

of conventional visual servoing heavily depends on feature

extractions. However, perfect features may not be easy to be

extracted and may change during manipulation [22]. Some

researchers also studied visual servoing without the feature

extraction process. In [23], the similarity of two images was

used to define the mutual information which was used to

design a controller. In [24], the completed image intensities

was utilized as a feature vector to perform feedback control.

Although these methods work well, the approach developed

in this paper is fundamentally different from them. In this

proposed approach, the image is considered as a set in non-
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vector space (there is no order to each element in the set),

which is the advantage through which the random compressive

data can be used as the sense feedback.

In this paper, a novel SSVEP-based BMI strategy is de-

veloped by utilizing the compressive sense produced by im-

ages/compressive data. Because the image or compressive

sense is a set, not a vector, the terminology non-vector

space sense is used. Additionally, the sense errors can be a

complete local image or partial image that can be considered

as compressive data, which is the terminology compressive

sense. Inside this control system, the sense errors are described

in the non-vector space for SSVEP EEG signal. Three crucial

steps are essential for the strategy: i) design sense errors in

a non-vector space where the local image is used directly as

the feedback; ii) use compressive scanning to compress the

sample and reconstruct a local image; and iii) replace the

complete feedback (local image) with compressed data directly

to generate a compressive feedback.

The closed-loop adaptive control designed is used to es-

timate the system dynamics parameters online to make the

exoskeleton’s output more precisely reflecting the subject’s

intentions. However, one challenge of exoskeleton robot to

be considered is the complex dynamics uncertainty and input

saturation. Learning control can be applied to improve the

system performance, either repeatedly over a fixed finite time

interval, or repetitively (cyclically) over an infinite time inter-

val [40]. Recently, there have been some works [38]–[39], and

[41]–[44] in combining adaptive fuzzy and learning control

techniques to solve time-varying uncertainties in the robotic

mode. Adaptive fuzzy controller is capable of incorporating

fuzzy if-then control rules directly into the controllers, and

guarantees the global stability of the resulting closed-loop

system in the sense that all signals involved are uniformly

bounded is developed. Since adaptive fuzzy controller is

simple in both designing and applying, we utilize the adaptive

fuzzy to approximate the exoskeleton dynamics to achieve

stable performance criteria.

It is well known that saturation belongs to one of the most

important nonlinearities in various robotic and mechanical

systems, and can severely degrade system performance [26],

[43]. One of the challenges faced by robotic exoskeleton is the

situation when it fails to provide sufficient power due to its

saturation limit, which leads to problems like tracking errors.

For robotic systems, neglecting the saturation effect makes the

system unreliable and puts users into a dangerous condition. It

is, therefore, crucial to design a controller which can minimize

the saturation effect of the robot motors and maintain stability

of the robot. Various methodologies have been presented to

solve the problem related to the saturation. In [27], a saturated

adaptive robust control strategy was proposed in response to

uncertainties in vehicle active suspension systems. In [28], by

approximating the un-differentiable saturation model to a tanh
function and adding the approximation error to disturbance, the

problem of input saturation with both satisfactory transient and

steady state responses was solved.

On the other hand, BMI control is quite different from

manual control in which little feedback information is often

limited as visual signals, and the dynamics of the external

device to be controlled differ dramatically from the properties

of natural motor control. Great interest has been attracted in

the behavior of the proposed BMI system during online closed-

loop BMI application. In many situations, adaptive control

capable of rapid performance acquisition are advantageous.

If the initial BMI performance is poor, then subjects may

lose interest of the task if performance improves not fast.

While adaptive control is able to provide subject with higher

BMI performance quickly at initial training session, such that

subjects would get more motivated in the task. The adaptive

algorithm has a advantage to improve performance to a high

level after initial training. When a subject uses a periodic

decoder adjustment to account for phenomena that disrupt

BMI operation, e.g., electrodes shifts and channel loss, the

adaptive algorithm could cut down the required recalibration

time such that performance recover more rapidly.

Considering the problems above mentioned, this paper

develops a teleoperation control for an exoskeleton robot

system based on BMI and vision feedback. Vision compres-

sive sensing, brain-machine reference commands, adaptive

fuzzy control have been effectively combined to enable robot

performing manipulation tasks guided by human operator’s

mind [45]. First, a visual-feedback link is implemented by

video captured by a camera, allowing him/her to visualize the

manipulator’s workspace and the movements being executed.

Then, compressed images are used as feedback errors in a

non-vector space for producing SSVEP EEG signals, and it

requires no prior information on features which are widely

used in traditional visual servoing. The proposed EEG de-

coding algorithm generates control signals for the exoskeleton

robot using features extracted from neural activities. Consider

coupled dynamics and actuator input constraints during the

robot manipulation, local adaptive fuzzy controller has been

designed following Lyapunov synthesis to drive the exoskele-

ton tracking the intended trajectories in human operator’s mind

and to provide a convenient way of dynamics compensation

with minimal knowledge of the dynamics parameters of the

exoskeleton robot. Extensive experiment studies employing

a number of subjects have been carried out to verify the

effectiveness of the proposed method.

II. SYSTEM ARCHITECTURE

The experimental setup and closed-loop BCI-based teleop-

eration control diagram is illustrated in Fig. 1. The system

consists of the manipulation task, bilateral tele-operation based

on BMI, and the visual compressive sensing mechanism based

on live images, as well as the EEG decoding algorithm based

on multivariate synchronization index (MSI).

A robotic exoskeleton has been developed for the exper-

iments in our lab. As shown in Fig. 1, the arm consists

of a 5-DOF exoskeleton developed in our lab, which is

almost anthropomorphic. The kinematical chain is similar

to the upper limb of a human being, but the exoskeleton

with purely rotary joints does not include every degrees of

freedom (DOF) in human upper limb. There are five revolute

joints in the developed exoskeleton, motors 1, 2, 3, 4 and

5 are the motors for shoulder abduction-adduction, shoulder
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Fig. 1. The developed teleoperation framework based EEG control

flexion-extension, elbow flexion-extension, forearm pronation

supination, and wrist radial-ulnar deviation, respectively. In

the developed exoskeleton robot, each joint contains a high

resolution encoders (2048 pulse/cycle) and Hall effect sensor

used for position sensing. The robotic exoskeleton is developed

using DC motors for actuation, and Maxon DC flat brushless

motor EC45 is chosen as driver unit. In order to enhance

the impedance capability, harmonic transmission drivers are

embedded (model SHD-17-100-2SH for the joint Nos. 1 and

2, model SHD-14-100-2SH for the joint Nos. 3 and 4, and

CSF-32-50-2A-GR for the joint No. 5). In particular, the motor

drivers selected for our exoskeleton are Elmo. The exoskeleton

consisting of flat DC motors and harmonic transmissions is

roughly 2.0 kg and able to provide a maximum torque of 8Nm.

The brain acquisition equipment employed is the

NeuroScan-NuAmps 40 channel digital EEG recording

system, which collects and transforms the brain activity data.

The EEG data is sampled at 500Hz. Inside the equipment, a

bandpass filter between 0.5 and 40 Hz, and a Notch filter of

50 Hz are taken to decrease the effect of network noise.

It is assumed that subjects wear the EEG equipment and

the robotic exoskeleton is capable of reaching positions com-

manded in its moving area. Rather than the motors in the

arm being controlled straightly, the subject simply needed

to given motion commands of the end of the exoskeleton

through EEG commands. Originally, the arm is in a initial

position, with the subject sitting before the visual stimuli on

master computer. When the subjects eyes fixate on one of the

blinking blocks on the screen, a moving command would be

generated. Once an command had been given, the end-effector

of the exoskeleton would move according to the command.

Simultaneously, visual feedback is used in this system for user

to visualize the real position of the end of the exoskeleton.

And the position error of the end-effector of the exoskeleton

would then showed in the screen. When the error converge to

zero, which denotes the end-effector of manipulator reach the

desired position, the user should stop fixating on the stimuli

screen.

error: 0.00

Move left Move right

Move up

Move down

Fig. 2. SSVEP stimuli and visual feedback interfaces

III. BRAIN MACHINE INTERFACE

The system interface of the local server, as shown in Fig. 2,

includes SSVEP stimuli and video captured by camera placed

on the remote client. The live video of the manipulator station

environment is send to the local server via TCP/IP. The system

interface is among the BMI stimuli interface with frequency-

coded stimuli located at the left, right, top, and bottom sides of

the system interface. The size of the visual feedback interface

is of 360-pixel width and 270-pixel height. In our experiment,

the subjects need to employ EEG signals as control signals to

move the end-effector of manipulator to the desired position

via Wireless LAN.

All stimuli flash simultaneously on the BCI interface,

however, a subject only need to focus attention on the one

corresponded to the desired command. For example, when the

subject intends to make the end-effector of manipulator move

upwards, they need to focus their attention on the top stimuli

labeled upwards. When the BMI system detects the frequency

of EEG signals is relevant with the top stimuli, it would send

a new reference point to the remote manipulator through a

TCP/IP channel. The BMI system generate the control signals

which present the intention of user and sends it to slave

computer. In the similar way, when the subject want to make

the end-effector of manipulator move left, he/she need to focus

their attention on the top stimuli labeled left. Then the ”move

left” command will be generated and sent to remote computer

for moving the manipulator.

A. Visual stimuli

In our system, the SSVEP visual stimuli are presented

in four rectangle with different frequency: top (12HZ), left

(10HZ), bottom (8.57HZ), right (15HZ) flashing on a 1020-

pixel wide and 580-pixel height screen. The top of the screen

is labelled as “Upwards” and represent the upwards command;

the bottom of the screen is marked as “Downwards” and

indicate the downwards command; the left of the screen is

labelled as “Left” and represent the move left command; and

the right of the screen is marked as “Right” and indicate the

move right command.
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B. Signal acquisition

In the experiments, the electrical component of brain activ-

ity was acquired by the NeuroScan-NuAmps 40 channel digital

EEG recording system, which collected and transformed data.

EEG data were acquired online at a 500 Hz sampling rate with

a band-pass filter in the range 0.5 to 40 Hz and a 50 Hz notch

filter for network noise interference. Impedance of electrodes

were kept below 5Ω. Cz is adopted as reference, only the main

four electrodes located on the motor area (Pz, O1, O2, Oz,) are

taken as the input EEG signals of recognition algorithm. The

EEG signals were recorded and processed online using the

self-developed software.

C. Frequency Recognition Algorithm Based On MSI

Recently, many methods have been developed using

multiple-channel EEG signals. These algorithms can use data

from the plurality of electrodes to improve noise immunity

of algorithm and the frequency recognition accuracy. Among

them, there are three typical ones. The first is based on a

combination of minimum energy (Minimum Energy Combi-

nation, MEC) [20]. The MEC utilizes a plurality of electrode

signal to reduce number of channels for eliminating noise

as far as possible; Because it has the advantage of high

detection accuracy, high SNR and no calibration data for noise

estimation, the MEC method is a suitable choice in SSVEP

system. The second is based on canonical correlation analysis

(CCA) [18], [19]. The method makes use of multivariate sta-

tistical methods to calculate the correlation coefficient between

the EEG signal and reference signal and the frequency of

reference signal with the maximum correlation coefficient is

served as the output of the algorithm. Compared with the

traditional PSD algorithm, the CCA-based method has a better

performance. The third one is multivariate synchronization

index method [21] based on the S-estimator, which is used as a

measure for the synchronization index between the reference

signals and the multichannel EEG signals. In the following

sections, the frequency detection method based multivariate

synchronization index is presented in detail.

The MSI algorithm is the calculation of synchronization

index of multi-channel EEG signal and reference signal, which

is acquired by the S-estimator algorithm. The frequency recog-

nition process is completed by seeking the maximum synchro-

nization index. The S-estimator is rooted in the entropy of the

normalized eigenvalues of the correlation matrix constructed

by multichannel signals. In this method, the calculated syn-

chronization index is inversely proportional to the embedding

dimension. In other words, the embedding dimension of the

signal is maximum for totally uncorrelated data but minimal

for perfectly synchronized time series. Due to the variance of

an eigen spectrum is associated with the dimensionality, the

data embedding dimension is a suitable metrics of synchro-

nization. As above mentioned, the S-estimator can be used to

compute the synchronization index for frequency recognition.

Like the CCA-based and MEC-based frequency recognition

algorithm, the MSI also need to construct a reference signal

according to the stimulus frequency.

In the paper, the EEG signals are a matrix X of size N×M
and the reference signals are a matrix Y of size 2Nh × M ,

where N is the number of channels, M is the number of

samples, and Nh is harmonics of the reference signals for

the sine and cosine components. The reference signals Y is

designed as

Y =





















sin(2πfkt)
cos(2πfkt)

.

.
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sin(2πNhfkt)
cos(2πNhfkt)





















, t =
1

Fs
,
2

Fs
, ...,

M

Fs
(1)

where fk is the stimulus frequency, Nh is the number of

harmonics, M is the number of sampling points, and Fs is

sampling rate. Then, a correlation matrix C is calculated as

C =

[

C11 C12

C21 C22

]

(2)

where

C11 =
1

M
XXT (3)

C22 =
1

M
Y Y T (4)

C12 =
1

M
XY T (5)

C21 =
1

M
YXT (6)

In order to reduce the influence of autocorrelation of X and

Y to the the synchronization calculation, the following linear

transformation U is employed as

U =

[

C
−(1/2)
11 0

0 C
−(1/2)
22

]

(7)

then, the transformed correlation matrix is:

R = UCUT (8)

Let λ1, λ2, . . . , λP be the eigenvalues of matrix R. Then we

can calculate the normalized eigenvalues λ
′

i as follows:

λ
′

i =
λi

∑P
i=1 λi

=
λi

tr(R)
(9)

Where P = N +2Nh . Then, we can obtain the synchroniza-

tion index S between two sets of signals as follows:

S = 1 +

∑P
i=1 λ

′

i log(λ
′

i)

log(P )
(10)

Next, the synchronization index between the signals from the

multiple EEG electrodes and each reference signal Y can

be calculated and then we obtain k indices S1, S2, . . . , Sk.

Finally, the class was obtained through a criterion of maxima.

IV. CONTROL STRATEGY BASED ON VISUAL FEEDBACK

In traditional visual servoing, features are first extracted

from the image, and then a controller is designed to reduce

the position error between the desired and current vectors
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Fig. 3. The MSI algorithm

of features to zero [36]. Traditional visual servoing relies on

feature extraction. In most visual servoing literatures, several

fiducial markers are used for features so that the tracking of

them can be easily achieved [37].

Different from the aforementioned traditional servoing

methods, we have developed a method that directly uses the

image intensity information. First, the image is considered as

a set in this method. Second, we define the difference between

sets as the error between the desired and current image sets.

Finally, a decoding algorithm for EEG is designed to generates

control signals which converge the difference to zero.

The basic control strategy is shown in Fig. 4. First, a desired

image is obtained offline. Then, we move the manipulator from

the starting position and obtains the initial image. According

to the two sets corresponding to the desired image and cur-

rent image, the human-operator generates moving command

to steer the manipulator. Through updating current images,

eventually the desired image matches the current image. Then,

the user should stop generating the motion command. In this

way, the manipulator can be steered to the desired position.

A. Video Feedback

In this application, Xtion PRO LIVE camera is used to

capture video on slave computer and the captured video data

is send to master computer for display. Firstly, the slave

PC should create a capture window. Then, the window is

connected with Xtion PRO LIVE camera, video stream can

be captured from camera, and each frame is stored in an

array pointer. These data are sent to the master via TCP/IP

for display on visual stimuli screen.

B. Hausdorff distance and Compressive Sensing for Error

Feedback

A fundamental issues in the visual feedback is how to

define a difference (distance) between two sets or images. To

feedback the difference between desired image and current

image, namely the distance between two sets, we should define

a suitable metric to measure it. The Hausdorff distance is used

here. The distance from a point p ∈ R
n to a set Q ⊂ R

n is

dQ(p) = infq∈Q∥q − p∥, where ∥.∥ indicates the Euclidean

norm. The distance from a set P ⊂ R
n to another set Q ⊂ R

n

is d(P,Q) = supp∈P dQ(p), and the distance from Q to P

is d(Q,P ) = supq∈QdP (q). Finally, the Hausdorff distance

between P and Q can be calculated as follow:

dh(P,Q) = max{d(P,Q), d(Q,P )} (11)

where the difference between two image can be calculated and

showed on the stimuli interface for user make a decision to

move the manipulator.

Compressive sensing, which has been successfully utilized

to pattern recognition [32] and control [33], [34], is a overall

framework for acquiring sparse or approximately sparse sig-

nals. One of the major results in compressive sensing is that a

high dimensional signal signal can be recovered from certain

low dimensional linear measurements if it is sparse or sparse

in some domain, Therefore, the Hausdorff distance in (11) can

still be used, if the original set K(t) can be recovered from the

compressed set Kc(t). For an unknown sparse signal x ∈ R
n,

we can describe the general compressive sensing problem as:

y = Ax (12)

where y ∈ R
m is the available linear observations and x

is the original high dimension signal and mapped to a low

dimensional measurement y by a sensing matrix A ∈ R
m×n .

With m < n, (12) is under determined and there exist

infinite many solutions. In compressive sensing, the problem

is formulated as an optimization problem to minimize the

number of nonzero elements in original signal x. In this

situation, if the sensing matrix A satisfies specific property

that ensure the necessary information in x is retained in y, it

can be successfully recovered from y. That is the restricted

isometry property.

Definition 1: [14] A matrix A ∈ R
m×n satisfies the re-

stricted isometry property (RIP) of order S provided that there

exists a constant δS ∈ (0, 1) such that:

(1− δS)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δS)∥x∥22 (13)

for all the S-sparse vectors x ∈ R
n , an S-sparse vector means

it has at most S nonzero elements.

To verify a matrix satisfying RIP is computationally compli-

cated, Gaussian matrix, or randomly sampled Fourier matrix

have been proved that they satisfy the RIP with very high

probability[14]. Therefore, a small set of random Fourier

coefficients can be used to reconstruct a time domain sparse

signal [35]. Equally, a small set of random samples in the time

domain can be employed to reconstruct a sparse signal in the

frequency domain.

For our problem, the sensing matrix that can be constructed

to satisfy the RIP, is used as image compression. Take the

image set for example, we can stack the intensity values of

image row by row to obtain the signal x ∈ R
n. Moreover,

assume it is sparse in the frequency domain, i.e., the coefficient

vector x′ after the discrete cosine transform (DCT) is sparse.

Let the DCT matrix be Ψ ∈ R
n×n, then x′ = Ψx. Moreover,

let Φ ∈ R
m×n be a matrix formed by Gaussian matrix with

m rows and n columns. Then if y = Φx = ΦΨ−1x
′

where y
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is the compressed set, this corresponds to uniformly sample

the pixel intensities at random. The original signal x can be

recovered from y if the m satisfies the following lemma:

Lemma 1: [17] As Φ and Ψ be defined before, the matrix

A = ΦΨ−1 has a very high probability to satisfy the RIP of

order S if

m ≥ C · S · (logn)4 (14)

where C is a constant independent of m and n.

In the above lemma, we can take the matrix A as the sensing

matrix for sparse vector x′. In this case, x′ can be recovered

from y if it is S-sparse and the original signal can be obtained

from x = Ψ−1x′.

Once the original signal can be obtained, the distance from

current position to goal position can be calculated through

current binary image reconstructed on master computer and

desired binary image.

V. LOCAL ADAPTIVE FUZZY CONTROL

A. Dynamic Modeling

The dynamics of an n-link rigid robotics system with

saturation can be described as:

M(q)q̈ + C(q, q̇)q̇ +G(q) + fdis = S(τ) (15)

where q ∈ R
n is the coordinates, τ ∈ R

n is the desired control

input (joint torque applied) and S(τ) is a saturation limiter to

the desired control input τ due to motor’s limitation. M(q) ∈
R

n×n is a symmetric positive definite inertia matrix, C(q, q̇) ∈
R

n×n represents the centripetal and Coriolis torques, G(q) ∈
R

n is the gravitational force and fdis ∈ R
n represents the

external disturbance to the manipulator.

Property 1: [15] The matrix Ṁ(q) − 2C(q, q̇) is skew-

symmetric.

Property 2: [15] For the matrix M , M = MT > 0 and

it is bounded below and above, such that, λmin(M)In×n ≤
M ≤ λmax(M)In×n, where λmin and λmax are minimum and

maximum eigenvalues of M , In×n is the identity matrix.

Assumption 1: For the continuous disturbance fdisi, (i =
1, 2...n), there are always smooth, positive semi-definite func-

tion ρi(t) and positive constant ci that

|fdisi(t)| ≤ ρi(t) + ci (16)

Assumption 2: The input saturation model can be expressed

as:

S(τ) =

{

Smaxsign(τ), |τ | ≥ Smax

τ, |τ | < Smax.
(17)

with X ∈ R
1×n, we have S(X) =

[

S(x1), S(x2), ....S(xn)
]

.

Assumption 3: The desired trajectory for the robotic ma-

nipulator is bounded, smooth and continuous.

Notations: Given vector A,A ∈ R
1×n and matrix B,B ∈

R
n×n, ∥A∥2 = ATA and ∥B∥2 = tr(BTB). λmax and λmin

represent the maximum and minimum eigenvalue of matrices.

B. Fuzzy Logical Systems

Consider an n-inputs, single-output fuzzy logic sys-

tem with the product-inference rule, singleton fuzzi-

fier, center average defuzzifier, and Gaussian member-

ship function given by m fuzzy IF–THEN rules R
(j) :

IF x1 is Aj
1 and . . . and xn is Aj

n THEN y is W j , j =
1, . . . ,m, where R

j denotes the jth rule, 1 ≤ j ≤ m,

(x1, x2, . . . , xn)
T ∈ U ⊂ R

n and y ∈ R are the linguistic

variables associated with the inputs and output of the fuzzy

logic system,Aj
i denote the fuzzy sets in U and W j signify

the fuzzy sets in R. The fuzzy logic system implements a

nonlinear mapping from U to R. In this paper, the fuzzy logic

system can be describe as follow:

y(x) =

∑m
j=1 yj(

∏n
i=1 µAj

i
(xi))

∑m
j=1(

∏n
i=1 µAj

i
(xi))

(18)

where x = [x1, x2, ..., xn]
T , µAj

i
(xi) is the membership func-

tion of linguistic variable xi with µAj

i
(xi) = exp[− (xi−cij)

2

σ2

ij

].

For clarity, the weight vector can be defined as W =
[y1, y2, ..., ym]T and the fuzzy basis function vector can

be defined as S(x, c, σ) = [s1, s2, ..., sm]T in which sl =
∏n

i=1 µAl
i
(xi)/[

∑m
k=1

∏n
i=1 µAk

i
(xi)], c = [cT1 , c

T
2 , ..., c

T
n ]

T

and σ = [σT
1 , σ

T
2 , ..., σ

T
n ]

T . Then, equation (18) equivalent

to

y = WTS(x, c, σ) (19)

The fuzzy logic system (19) can uniformly approximate

any given real continuous function over a compact set with

any degree of accuracy. Therefore, for the unknown nonlinear

functions fi(xi), i = 1, . . . , n, the approximation over the

compact sets Ξi can be given as

fi(xi) = W ∗T
i S(xi) + ϵi(xi), ∀xi ∈ Ξi ⊂ R

i (20)

where S(xi) is the fuzzy basis vector, ϵi(xi) is the approxima-

tion error and W ∗
i is an unknown constant parameter vector.

Theorem 1: For any given real continuous function g(x) on

the compact set U ∈ R
n and arbitrary ϵ > 0 , there exists a

function f(x) in the form of (19) such that supx∈U ∥g(x) −
f(x)∥ ≤ ϵ .
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Remark 1: The optimal weight vector W ∗
i in (20) is an

artificial quantity for analytical purposes only. Typically, W ∗
i

is chosen as the value of Wi that minimizes ϵi(xi) for all

xi ∈ Ξi where Ξi ⊂ R
i is a compact set, i.e., W ∗

i :=
argminc∈Rn{supx∈Ξi

|fi(xi)−WT
i S(xi)|}

Assumption 4: : On a compact region Ξi ∈ Ri, |ϵi(xi)| ≤
ϵ∗i , where ϵ∗i > 0 is unknown bound.

According to the above analysis, the uncertainties of the

system are transformed into the estimation of unknown pa-

rameters W ∗
i and unknown bounds ϵ∗i .

C. Local Adaptive Fuzzy Control

If we let x1 = [q1, q2, q3, . . . , qn]
T , x2 =

[q̇1, q̇2, q̇3...., q̇n]
T , the robotics dynamics can therefore

be expressed as:

ẋ1 = x2, (21)

ẋ2 = M(x1)
−1[S(τ)− fdis −G(x1)− C(x1, x2)x2] (22)

where xr denotes to the desired trajectory and the error

variables z1 and z2 are defined as follow:

z1 = x1 − xr, (23)

z2 = x2 − α1. (24)

where α1 is the virtual control to z1. And for the case of n-

DOF robot manipulator, α1 ∈ R
n, z1 ∈ R

n and z2 ∈ R
n.

From definition of z1, we have

ż1 = z2 + α1 − ẋr, (25)

Consider Lyapunov function candidate V1 = 1
2z

T
1 z1. Time

derivative of V1 is

V̇1 = zT1 (z2 + α1 − ẋr). (26)

If we let α1 = ẋr − K1z1, the above Lyapunov function

candidate will then become

V̇1 = −zT1 K1z1 + zT1 z2 (27)

Differentiating z2, we have

ż2 = M(x1)
−1[S(τ)− fdis −G(x1)− C(x1, x2)x2]− α̇1

where

α̇1 = −K1ż1 + ẍr (28)

The following auxiliary design system is used to examine

the saturation effects

ζ̇ =

{

−Kζζ − |zT
2
∆τ |+0.5∆τT∆τ

∥ζ∥2 ζ +∆τ, ∥ζ∥ ≥ µ

0, ∥ζ∥ < µ.
(29)

where ∆τ = S(τ) − τ , Kζ = KT
ζ > 0, µ is a small positive

value and ζ ∈ R
n is the state of auxiliary design system.

The proposed model based controller can be presented as

τ = −z1 −K2(z2 + ζ) + fdis + C(x1, x2)α1 +G(x1)

+M(x1)α̇1 (30)

where the gain matrix satisfies K2 = KT
2 > 0. Since ζT∆τ ≤

1
2ζ

T ζ+ 1
2∆τT∆τ , we then have ζT ζ̇ = −ζTKζζ−|zT2 ∆τ |−

0.5∆τT∆τ + ζT∆τ ≤ −ζTKζζ − |zT2 ∆τ | + 1
2ζ

T ζ. Time

derivative of V̇2 will then be

V̇2 ≤ −zT1 K1z1 + zT1 z2 − ζT (Kζ − 0.5In×n)ζ − |zT2 ∆τ |
+zT2

[

S(τ)− fdis − C(x1, x2)α1(t)−G(x1)

−M(x1)α̇1(t)
]

(31)

Since τ = S(τ) − ∆τ , it is clear that zT2 S(τ) − zT2 ∆τ ≥
zT2 S(τ)− |zT2 ∆τ |. Substituting it into inequality (31)

V̇2 ≤ −zT1 K1z1 + zT1 z2 − ζT (Kζ − 0.5In×n)ζ

+zT2

[

τ − fdis − C(x1, x2)α1(t)−G(x1)

−M(x1)α̇1(t)
]

(32)

Substituting (30) into (32), we have

V̇2 ≤ −zT1 K1z1 − zT2

(

K2 −
1

2
In×n

)

z2

−ζT
(

Kζ −
1

2
In×n − 1

2
KT

2 K2

)

ζ (33)

To ensure the closed loop stability, controller parameters K1,

K2 and Kζ must fulfill the following criteria: K1 = KT
1 > 0,

K2 = KT
2 > 0 and K2 − 1

2In×n > 0, Kζ = KT
ζ > 0 and

Kζ − 1
2In×n − 1

2K
T
2 K2 > 0. So V̇2 will be negative definite.

However, the controller proposed in (30) may not be real-

izable since it is difficult to obtain perfect and complete infor-

mation of the robotic system. In this case, we may not know

M(x1), C(x1, x2), G(x1) and fdis exactly. The model based

controller we proposed can hardly be implemented without

knowing exact values of M(x1), C(x1, x2) and G(x1). To

overcome the practical issue faced by this controller, the FLSs

are used to estimate the parameters related to the model, e.g.

M(x1), C(x1, x2), G(x1) and fdis. We propose

τ = −z1 −K2(z2 + ζ) + ŴTR(Z) (34)

where Ŵ = blockdiag[ŴT
i ], i = 1, 2, . . . , n, contains the

approximation parameters; R(Z) = [R1(Z), . . . , RT
n (Z)]T are

the fuzzy membership functions. The FLS updating law is

defined as
˙̂
Wi = −Γi

(

Ri(Z)z2,i + θiŴi

)

(35)

where z2,i ∈ R, for i = 1, 2, . . . , n, are the elements of z2.

The fuzzy system ŴTR(Z) approximates W ∗TR(Z) defined

by

W ∗TR(Z) = C(x1, x2)α1+G(x1)+M(x1)α̇1− ϵ(Z) (36)

where ϵ(Z) ∈ Rn is the approximation error, which is defined

in (20), satisfying |ϵ(Z)| ≤ ε̄. For simplification, in the paper,

we assume that ε̄ is known by estimation beforehand. We

choose K3 ≥ ε̄ and Z = [qT , q̇T , αT
1 ]

T are the input variables

to the feed-forward approximators.

With the new controller as stated in (34) and substitute it
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into (32)

V̇2 ≤ −zT1 K1z1 − zT2

(

K2 − In×n

)

z2 +
1

2
ϵT ϵ

+zT2 W̃
TR(Z)− ζT

(

Kζ −
1

2
In×n − 1

2
KT

2 K2

)

ζ

+
1

2
||f∗

dis||2 (37)

Considering the effect of W̃ into the system’s stability: V ∗
2 =

V2+
1
2

∑n
i=1

W̃T
i Γ−1

i W̃i where W̃ = Ŵ−W ∗ and Γ = ΓT >
0 is a gain matrix. Time derivative of V ∗

2 will then be

V̇ ∗
2 ≤ −zT1 K1z1 +

1
2 ||ϵ∗||2

−ζT
(

Kζ − 1
2In×n − 1

2K
T
2 K2

)

ζ

−zT2

(

K2 − In×n

)

z2 +
1
2 ||f∗

dis||2

+
∑n

i=1

(

z2,iW̃
T
i Ri(Z) + W̃T

i Γ−1
i

˙̃Wi

)

Since −W̃T
i Ŵi = −W̃T

i (W ∗
i + W̃i) = −W̃T

i W̃i − W̃T
i W ∗

i

and −W̃T
i W ∗

i ≤ 1
2 (W̃

T
i W̃i+W ∗T

i W ∗
i ), we have −W̃T

i Ŵi ≤
− 1

2W̃
T
i W̃i+

1
2W

∗
i W

∗
i . Substituting the updating law (35) into

(38), we have

V̇ ∗
2 ≤ −zT1 K1z1 − zT2

(

K2 − In×n

)

z2 +
∑n

i=1
θi
2 W

∗T
i W ∗

i

−∑n
i=1

θi
2 W̃

T
i W̃i − ζT

(

Kζ − 1
2In×n − 1

2K
T
2 K2

)

ζ

+ 1
2 ||ϵ∗||2 + 1

2 ||f∗
dis||2 ≤ −κV ∗

2 + C

where

κ := min
{

2λmin

(

K1

)

,
2λmin

(

K2−In×n

)

λmax(M) ,

2λmin

(

Kζ − 0.5In×n − 1
2K

T
2 K2

)

,

2mini=1,2(
θi

2λmax(M)Γ−1

i

)
}

(38)

C := 1
2 ||ϵ∗||2 + 1

2 ||f∗
dis||2 +

∑n
i=1

θi
2 W

∗T
i W ∗

i (39)

To ensure the closed loop stability, controller parameters K1,

K2, Kζ and θ must fulfill the following criteria: K1 = KT
1 >

0, K2 = KT
2 > 0 and K2 − In×n > 0, Kζ = KT

ζ > 0 and

Kζ − 1
2In×n − 1

2K
T
2 K2 > 0, and θi > 0, i = 1, 2. So κ will

be positive definite. Under these conditions, system boundness

is ensured with Lemma.To summarize, we have the following

theorem .

Theorem 2: Considering the robotic manipulator system

(15) which fulfills Assumption 1 and Assumption 2, with the

adaptive fuzzy control law (34), weight updating law (35)

and auxiliary system (29). For bounded initial conditions, the

closed-loop system signals, z1 z2, W̃ and ζ are semiglobally

bounded. Furthermore, tracking error z1 converges asymptot-

ically to the compact set Ωz1 :=
{

z1 ∈ R
2| ∥z1 ≤

√
D∥

}

where D = 2
(

V ∗
2 (0) +

C
κ

)

with κ and C given in (38) and

(39).

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

To validate the effectiveness of the proposed teleoperation

system, three subjects take part in the experiments to control

the exoskeleton robot with two joints(shoulder joint and elbow

joint). The overall system consist three parts: EEG recognition,

visual compressive sensing, and adaptive fuzzy motion control.

The EEG recognition is the fundamental part of the whole

system which used MSI to recognize the task space command

the subject expected to send and the adaptive fuzzy control

fulfil the joint space task within our expectations.

The robotic device is based on a real-time low-level con-

troller, which connects to a Windows XP PC, to achieve the

nonreal time task by CAN bus. The CAN bus can transmit the

force signal to interface between the Win XP environment and

the exoskeleton, which is implemented in the XP environment.

And the sensors in the robot are used to obtain the position and

velocity signals which are needed for control. The maximum

baud rate of CANbus is 1 MBit/s, and the maximum sampling

rate of sensors used to obtain the position and velocity signal

is 5 MHz. Such speed is enough in our system. Meanwhile, to

provide communication between all control components, we

need to create a software in visual C++ language to execute.

Three participants, all 22-26 years old, participated in the

experiments, with two veterans and one green hand. At the

beginning of the experiment, the subject is instructed to keep

relax and stay motionless. And electrodes used to collect brain

signals are put on the surface of the subject’s head. The

subjects are requested to control the robotic manipulator by

fixating eyes on the flickering diamonds correspond to differ-

ent task command. The parameters of recognition algorithm in

equation 1, are Nh = 2, Fs = 500, M = 800, N = 4. Among

them, Nh = 2 represents the number of harmonics for the sine

and cosine components of the reference signals. Fs = 500
represents the sample rate of reference signals is 500Hz.

M = 800 represents the length of data chosen and N = 4
represents four channel (Pz, O1, O2 and Oz) data chosen. In

our experiments, the synchronization index in equation 10 is

S = [S1, S2, S3, S4], where S1, S2, S3 and S4 are synchro-

nization indexes between the potential signal evoked by stimuli

frequency and the reference signals Y respectively designed

by stimuli frequencies of 8.6Hz, 10Hz, 12Hz and 15Hz. For

subject1, the average value of synchronization index S is

S1 = [0.0042, 0.0463, 0.0038, 0.033], while the value of syn-

chronization index is S2 = [0.0032, 0.0041, 0.0045, 0.0215]
in subject2’s experiment and the subject3’s S-index is S3 =
[0.0028, 0.0039, 0.0327, 0.0019].

In this paper, adaptive fuzzy controller can be implemented

to approximate the exoskeleton robot whose dynamics are not

completely known. In the experiments, for each variable of

Z, define six fuzzy sets with labels A1
1, A2

1, A3
1, A4

1, A5
1, and

A6
1, which are characterized by µAj

i
(qji) = exp[− (qji−cji)

2

σ2

ji

]

with σji = 2.0, and the centers cji spaced evenly to span the

input space [−1, 1]. The gain Γi is defined as Γ1 = 1.6, and

Γ2 = 1.2. σ is given as σ = 15.7 The controller gains K1 =
diag[22, 3.5], K2 = diag[22, 81], For the auxiliary design sys-

tem, initial ζ0 = [0.1, 0.1]T , µ = 0.001,Kζ = diag[200, 200].
Saturation limits for the two motors are ϕmax,1ϕmax,2 =
8.0A. It should be noted that for the chosen motor, the current

is measurable, therefore, the control torque τ is replaced by

control current through the motor constant. Therefore, the
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Fig. 5. The trajectory tracking of two joints of exoskeleton by the three
subjects.

current is controlled as an input signal.

B. Experimental Results and Analysis

Three participants took part in the experiments. The exper-

imental results of them are presented in Figs. 6-15 (Figs. 6-8

for the first subject, Figs. 9-11 for the second one and Figs.

12-14 for the third one). The position tracking, position error

and input torque of the experiment of the first subject are

presented in Figs. 5-7, respectively. From Fig. 5 and Fig. 6,

we can observe that the real trajectories are nearly coincide

with the expected trajectories, an optimization program to fit

a smooth trajectory based on the EEG signals of the subject,

with small error. Fig. 8 is the actual trajectory of end-effector

in task space, the black broken line in the figure indicates the

initial position of the manipulator while the red broken line

indicates the final position of the manipulator. In this case, the

blue line in the Fig. 8 is behalf of the actual trajectory of the

end of the manipulator in the task space. Interested readers

can refer to Figs. 9-11 and Figs. 12-14 to get detailed results

of the experiments of the other two subjects.

Fig. 16 shows that the average recognition accuracy is about

80%. Note that subject 1 is fresh hand without any experience

about visual stimuli in BCI while subject 2 and subject 3 have

taken part in such experiment in several times. Therefore, the

average recognition accuracy of subject 1, which is nearly

about 72%, is less than 86% of subject 2 and 82% of subject 3.

However, the recognition accuracy is enough for the subjects

to control the manipulator. As illustrated in these figures, even

if we don’t know the dynamics of the exoskeleton and external

disturbances, we can still achieve desired performance by the

BCI control system taken here.

VII. CONCLUSIONS

In the paper, a teleoperation system based EEG control

framework is developed for robotic exoskeleton performing

manipulation tasks. First, a visual-feedback link is imple-

mented by video captured by a camera, allowing him/her
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Fig. 6. The trajectory tracking errors of two joints of exoskeleton by the
subject No. 1.
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Fig. 7. The input torques of two joints of exoskeleton by the subject No. 1.

to visualize the manipulator’s workspace and the movements

being executed. Then, compressed images are used as feedback

errors in a non-vector space for producing SSVEP (Steady-

State Visual Evoked Potentials) EEG signals, and it requires

no prior information on features which are widely used in

traditional visual servoing. The proposed EEG decoding al-

gorithm generates control signals for the exoskeleton robot

using features extracted from neural activity. Consider coupled

dynamics and actuator input constraints during the robot
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Fig. 8. The actual trajectory of two joints of exoskeleton by the subject No.
1.
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manipulation, local adaptive fuzzy controller has been de-

signed following Lyapunov synthesis to drive the exoskeleton

tracking the intended trajectories in human operator’s mind

and to provide a convenient way of dynamics compensation

with minimal knowledge of the dynamics parameters of the

exoskeleton robot. Extensive experiment studies employing

three subjects have been executed out to confirm the validity

of the proposed method.In our future work, we will seek to

enhance the control strategy to achieve faster, more convenient
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Fig. 11. The actual trajectory of two joints of exoskeleton by the subject
No. 2.
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Fig. 12. The trajectory tracking errors of two joints of exoskeleton by the
subject No. 3.
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use with the exoskeleton. In addition, in order to apply the

proposed method to more conditions, experiments will be

extended with more individuals and improved in future work.
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