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ABSTRACT

The task of eukaryotic genome annotation remains
challenging. Only a few genomes could serve as
standards of annotation achieved through a tremen-
dous investment of human curation efforts. Still,
the correctness of all alternative isoforms, even in
the best-annotated genomes, could be a good sub-
ject for further investigation. The new BRAKER2
pipeline generates and integrates external protein
support into the iterative process of training and
gene prediction by GeneMark-EP+ and AUGUSTUS.
BRAKER2 continues the line started by BRAKER1
where self-training GeneMark-ET and AUGUSTUS
made gene predictions supported by transcriptomic
data. Among the challenges addressed by the new
pipeline was a generation of reliable hints to protein-
coding exon boundaries from likely homologous but
evolutionarily distant proteins. In comparison with
other pipelines for eukaryotic genome annotation,
BRAKER2 is fully automatic. It is favorably com-
pared under equal conditions with other pipelines,
e.g. MAKER2, in terms of accuracy and performance.
Development of BRAKER2 should facilitate solving
the task of harmonization of annotation of protein-
coding genes in genomes of different eukaryotic
species. However, we fully understand that several
more innovations are needed in transcriptomic and
proteomic technologies as well as in algorithmic de-
velopment to reach the goal of highly accurate anno-
tation of eukaryotic genomes.

INTRODUCTION

Constantly improving next generation sequencing (NGS)
technology makes it now possible to finish sequencing of a
complete eukaryotic genome within several days. Not sur-
prisingly, the computational methods reducing the time of
the genome annotation stage were in high demand since the
dawn of the NGS era. A self-training algorithm for ab initio
gene prediction in eukaryotic genomes, GeneMark-ES (1),
has accelerated the process of structural annotation for a
number of genome projects, e.g. (2–7). Application of NGS
to transcript sequencing (RNA-seq) motivated active devel-
opment of methods integrating genomic and transcriptomic
information. A new self-training algorithm, GeneMark-ET
(8), integrated data on spliced aligned RNA-seq reads into
GeneMark-ES.

On a parallel avenue, yet another algorithm, AUGUS-
TUS (9–14), was demonstrated to be one of the most ac-
curate gene prediction tools (15–17). AUGUSTUS carried
a flexible mechanism for integration of external evidence
generated by spliced-aligned RNA-seq reads or homolo-
gous proteins into gene prediction. AUGUSTUS also used
this evidence to predict alternative isoforms. Still, for model
parameter estimation, AUGUSTUS required an expert cu-
rated training set of genes.

It was apparent that a useful automatic tool could be cre-
ated by combining strong features of GeneMark-ET and
AUGUSTUS. A pipeline BRAKER1 was developed and
released in 2015 (18) to become a frequently used tool in
genome annotation projects, e.g. (19–24). BRAKER1 re-
quires availability of RNA-seq data, however, not all novel
genomes are sequenced along with the species’ transcrip-
tomes, e.g. within the Earth BioGenome Project (25). More-
over, for various reasons, a significant fraction of genes may
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Table 1. Genomes used in the tests; asterisks indicate model organisms

Species Annotation version
Genome size

(Mb)
# Genes in
annotation

# Introns per
gene

% Non-canonical or
incomplete genes

Species with early sequenced genomes
A. thaliana* Tair Araport 11 (Jun 2016) 119 27 445 4.9 0.3
C. elegans* WormBase WS271 (May 2019) 100 20 172 5.7 0.2
D. melanogaster* FlyBase R6.18 (Jun 2019) 138 13 929 4.3 0.3
Other species
Plantae
P. trichocarpa* JGI Ptrichocarpa 533 v4.1 (Nov

2019)
389 34 488 4.9 0.3

M. truncatula* MtrunA17r5.0-ANR-EGN-r1.6
(Feb 2019)

430 44 464 2.9 0.0

S. lycopersicum Consortium ITAG4.0 (May 2019) 773 33 562 3.5 14.5
Arthropoda
B. terrestris NCBI Annotation Release 102

(Apr 2017)
249 10 581 7.1 4.7

R. prolixus VectorBase RproC3.3 (Oct 2017) 707 15 061 4.8 34.7
P. tepidariorum NCBI Annotation Release 101

(May 2017)
1445 18 602 7.3 18.2

Vertebrata
T. nigroviridis TETRAODON8.99 (Nov 2019) 359 19 589 10.4 63.8
D. rerio* Ensembl GRCz11.96 (May 2019) 1345 25 254 8.2 11.8
X. tropicalis* NCBI Annotation Release 104

(Apr 2019)
1449 21 821 12.1 2.4

An average number of introns per gene was determined with respect to the number of all annotated genes in the genome. For a gene to be considered
complete and canonical, at least one of the gene’s transcripts had to be annotated with ATG starting the initial coding exon and the terminal coding exon
ending with TAA, TAG or TGA.

not be covered by transcripts even if the transcriptome data
are generated in the project.

Here, we introduce BRAKER2, for which the sequences
of known proteins, readily available for any genome project,
are used as external evidence. Mapping cross-species pro-
teins to a novel genome presents a challenge, due to the
protein divergence and uneven speed of evolution among
protein families. Nonetheless, information contained in
large numbers of homologous proteins, particularly pro-
teins from remotely related species, has a potential to im-
prove genome annotation. Recently developed GeneMark-
EP+ (26) was able to improve its self-training process by
hints originating from multiple spliced alignments of cross-
species proteins. It was logical to integrate GeneMark-EP+
and AUGUSTUS in a pipeline using already known protein
sequences as external evidence.

Several computational tools created earlier addressed
the task of identification of a eukaryotic gene structure
via spliced alignment of a protein to the genomic lo-
cus encoding homologous protein, e.g. (27–32). However,
it was observed that the accuracy of the spliced align-
ments deteriorated quickly with increase of the evolution-
ary distance between two species. In GeneMark-EP+ this
trend was neutralized by search for consensus in spliced
alignments of multiple proteins including ones from re-
motely related species. Particular role was played by evo-
lutionary conserved protein domains that would sustain
the accuracy of intron mapping on larger evolutionary
distances.

Salient features of BRAKER2 are (i) fully automatic
run (ii) massive database search for proteins homologous
to proteins encoded in the new genome (yet unknown ones)
(iii) processing of millions of protein to genome spliced

alignments to generate hints to exon-intron structures, (iv)
integration of genomic sequence patterns and protein hints
to the gene structure at all iterative steps of model training
and gene prediction.

We assessed gene prediction accuracy of BRAKER2
on well-studied and, arguably, well-annotated as a whole,
genomes of Arabidopsis thaliana, Caenorhabditis ele-
gans and Drosophila melanogaster. For the tests on nine
more genomes we selected sets of genes whose annota-
tion was corroborated by RNA-seq evidence. Besides per-
formance and accuracy of BRAKER2 we determined and
compared the ones of MAKER2 (33), run with two distinct
execution protocols, as well as of BRAKER1 (18).

MATERIALS AND METHODS

Materials

For testing BRAKER2, we used genomic sequences and
gene annotations of 12 species. Among them were the early
sequenced model organisms: A. thaliana, C. elegans and
D. melanogaster. The other nine species were: the plants
Populus trichocarpa, Medicago truncatula, Solanum lycoper-
sicum, the arthropods Bombus terrestris, Rhodnius prolixus,
Parasteatoda tepidariorum and the vertebrates Tetraodon ni-
groviridis, Danio rerio and Xenopus tropicalis (Table 1). We
used the OrthoDB database (34) as a source of protein data.
RNA-seq data used in runs of BRAKER1 was sampled
from the Sequence Read Archive (35) by VARUS (36). To
determine to which degree both predicted and annotated
genes covered the sets of universal single copy genes iden-
tified by the BUSCO protein families, we used the BUSCO
database v4 (37).
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Methods

Description of BRAKER2, step-by-step. At the first step,
the ab initio gene finder GeneMark-ES (1) runs self-training
on a eukaryotic genome of interest and generates a set of
initial gene predictions, the set of seed genes. This first step
is a part of the described earlier protein hint generating
pipeline ProtHint (26) that executes GeneMark-ES, DIA-
MOND (38) and Spaln (31) (Figure 1). The link between
translated seed genes (seed proteins) and the genomic loci
where the seed genes are residing (seed regions) is impor-
tant for the subsequent improvement of the initial gene pre-
dictions. The seed proteins are used as queries in the DI-
AMOND similarity search to identify potentially homolo-
gous cross-species (target) proteins in a database of refer-
ence proteins (26). The selected target proteins are spliced
aligned by Spaln back to the seed regions where the queries
were encoded. From a set of alignments to the same seed re-
gion we infer hints to introns and translation initiation (start
codon) and termination site (stop codon) with the scores
characterizing hints reliability. The protein hints to the exon
borders may coincide with the exon borders predicted ab ini-
tio by GeneMark-ES. These sites predicted by the two inde-
pendent methods, called anchored sites (26) define complete
and incomplete anchored gene structures used for iterative
model training in GeneMark-EP+ (26). We also define a set
of high confidence protein hints (see Supplementary Mate-
rials and (26)). At the gene prediction step, the high confi-
dence hints to exon borders are enforced in GeneMark-EP+
(26).

In BRAKER2, in addition to the hint generation scheme
implemented in GeneMark-EP+, ProtHint makes hints
called CDSpart chains. This type of hints helps to combine
exons predicted by AUGUSTUS into a single transcript.
The CDSpart chain is defined by a spliced alignment of the
highest scoring target protein to the seed region.

From the whole complement of genes predicted by
GeneMark-EP+, we select a set of anchored genes that con-
tain (i) the multi-exon genes that have all GeneMark-EP+
predicted introns either matching protein hints or enforced
by high confidence hints and (ii) the single-exon genes with
protein hints matching predicted ab initio start- and stop-
codons (Figure 2). These anchored genes make a set for AU-
GUSTUS training (13). Note that at the stage of gene pre-
diction, AUGUSTUS, in turn, enforces the high confidence
hints. The CDSpart chain hints and non-high-confidence
hints are integrated into the AUGUSTUS gene prediction
as well (Supplementary Materials, Sections 1.2 and 1.3). In
the genomic regions lacking hints from cross-species pro-
tein alignments, GeneMark-EP+ and AUGUSTUS predict
genes in an ab initio mode.

BRAKER2 runs in two major iterations (Figure 1). The
first one starts with the seed genes predicted by GeneMark-
ES (1). Seeds for some true genes might be missed at
this stage; however, they could be recovered in the second
BRAKER2 iteration that uses the genes predicted in the
first iteration as seed genes. In the second iteration, Pro-
tHint runs the database search only for the newly added
seed genes and merges the newly defined hints with the
hints from the first iteration. Then, AUGUSTUS uses the
models trained in the first iteration along with the updated

protein hints to predict the final set of genes. The second
BRAKER2 iteration has fewer steps and runs faster than
the first iteration.

Accuracy assessment

Selection of protein data sets and test sets of annotated genes.
A test of BRAKER2 on a well-studied genome should uti-
lize a set of cross-species proteins that imitates a protein
set available for running BRAKER2 on a newly sequenced
genome. Proteins that originate from the most evolutionar-
ily close species are expected to be most informative for the
BRAKER2 algorithm. Therefore, a meaningful character-
istic of a selected set of reference proteins is the least evolu-
tionary distance from the reference genomes to the genome
in the test.

To make these selections for A. thaliana, C. elegans and
D. melanogaster, we have started from large clades (Plantae,
Metazoa and Arthropoda, respectively) and have created
three sets of proteins for each species by excluding either
(i) proteins from the given species per se, (ii) proteins from
all species of the same family, (iii) proteins from all species
of the same order. For the other nine species, we also have
defined large clades and then have only used partitions of
type (iii) (Table 2).

In the tests done with 12 eukaryotic genomes (Table 1),
we used as ‘gold standards’ either whole genome annotation
(A. thaliana, C. elegans and D. melanogaster) or annotation
of sets of complete multi-exon genes with all introns fully
supported by mapped RNA-seq reads.

Protein-coding gene prediction accuracy was defined at
exon and gene levels by values of sensitivity (Sn), specificity
(Sp) as well as their harmonic mean (F1), with the defi-
nitions given in the Supplementary Materials. At the gene
level, in presence of alternative splicing, a gene was consid-
ered to be predicted correctly if the predicted CDS matches
precisely a CDS of one of the annotated transcript isoforms.

Use of universal single copy genes from BUSCO families.
The BUSCO metrics is supposed to evaluate the complete-
ness of a genome assembly and annotation; it is based on
collections of single copy genes expected to be present in a
particular lineage (37). The ‘BUSCO genes’ may constitute
<5% of genes in the genome, nonetheless, this approach is
practical for novel genomes given its relatively easy applica-
tion. We used the BUSCO metrics to characterize gene or
protein sets predicted by BRAKER2 in several genomes.

While, the BUSCO metrics give an idea on the gene pre-
diction algorithm’s Sn value, it does not quantify the algo-
rithm’s tendency to predict false positives (the Sp value).
Moreover, since the BUSCO based method relies on HM-
MER3 (39) search for detecting homologs of the BUSCO
proteins, it does not discriminate between precisely and
approximately predicted exon–intron structures. Therefore,
the BUSCO metrics are less precise in assessment of accu-
racy of gene prediction than the methods comparing coor-
dinates of predicted and annotated genes and computing
Sn, Sp and F1 values.

Testing MAKER2. The MAKER2 genome annotation
pipeline can combine information from several sources,
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Figure 1. Flowchart of the BRAKER2 pipeline. Input, intermediate and output data are shown by ovals. The tools and processes of the ProtHint pipeline
are shown in orange; other components of BRAKER2 are shown in blue.

Figure 2. Evidence integration in BRAKER2. (A) Target proteins; (B) Introns, gene start and stop sites defined by spliced alignments of target proteins to
genome; (C) CDSpart chains; (D) Genome sequence; (E) Genes predicted by GeneMark-EP+ at a given iteration. The high confidence hints are enforced
(red arrows); (F) Anchored sites, the splice sites and gene ends predicted ab initio and corroborated by protein hints; (G) Anchored introns and intergenic
sequences bounded by anchored gene ends are selected into training of non-coding sequence model for GeneMark-EP+; (H) Anchored multi-exon and
single exon genes predicted by GeneMark-EP+ and selected for training AUGUSTUS; (I) Transcripts predicted by AUGUSTUS with support of an
external evidence.
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Table 2. Composition of the clades of OrthoDB v10 used by BRAKER2

# of species in the OrthoDB clade

Species Genus Family Order Class Phylum Kingdom
Name of the largest
OrthoDB segment

# of proteins in the
OrthoDB segment

A. thaliana 2 8 10 100 117 Plantae 3 510 742
C. elegans 3 3 5 6 7 448 Metazoa 8 266 016
D. melanogaster 20 20 56 148 170 Arthropoda 2 601 995
P. trichocarpa* 1 5 5 100 117 Plantae 3 510 742
M. truncatula 1 10 10 100 117 Plantae 3 510 742
S. lycopersicum 2 10 11 100 117 Plantae 3 510 742
B. terrestris* 1 7 40 148 170 Arthropoda 2 601 995
R. prolixus 1 1 16 148 170 Arthropoda 2 601 995
P. tepidariorum 1 1 2 10 170 Arthropoda 2 601 995
T. nigroviridis* 0 1 1 50 246 Chordata 5 003 104
D. rerio 1 5 5 50 246 Chordata 5 003 104
X. tropicalis 2 2 3 3 246 Chordata 5 003 104

Numbers in black bold show the largest numbers of species used to support gene predictions for a given species (left column). The numbers of species
removed from the largest OrthoDB segment in the tests described below are shown in blue. Species whose proteins are not present in OrthoDB v10 are
marked with asterisks.

such as ab initio gene predictions, mapped RNA-seq reads
as well as alignments of proteins to the genome (33,40,41).

For our tests, we have chosen genomes of A. thaliana,
C. elegans and D. melanogaster, arguably the best anno-
tated genomes among the genomes that we have considered.
Also, for each species, we have used the relevant segment of
the OrthoDB database described above, with exclusion of
species of the same taxonomic order.

All the components of the MAKER2 pipeline, e.g. repeat
annotation or training of gene finders, have been executed in
de novo mode, i.e. each of the three genomes was considered
to be a ‘novel’ one.

By design, the protein mapping in MAKER2 is
much slower than protein mapping done by ProtHint in
BRAKER2, therefore, we have further limited each of the
three OrthoDB partitions to randomly selected ten species
(Supplementary Table S3). We have used two MAKER2
execution protocols (described in detail in Supplementary
Materials). In the first protocol recommended by the
authors (41), the protein spliced alignments have been used
to create training sets for AUGUSTUS and SNAP (42).
The final gene predictions have been made by combining
predictions of self-training GeneMark-ES with ones from
AUGUSTUS and SNAP both using the protein derived
hints (Supplementary Figure S5A). We have introduced
the second training protocol, somewhat similar to the
one of BRAKER2, in which protein spliced alignments
and GeneMark-ES predictions have been used to create a
training set for AUGUSTUS. The final gene predictions
have been made by only two gene finders, GeneMark-ES,
and AUGUSTUS with hints (Supplementary Figure S5B).

MAKER2 offers two modes of gene prediction: to only
get predictions supported by external evidence or to add
predictions generated without support. Given that the set of
proteins has provided support for a limited number of genes
(Supplementary Table S7), we have executed MAKER2 in
the second mode, the one producing higher Sn values.

The repeat masking for both BRAKER2 and MAKER2
has been done with the same genome specific repeat library
(generated by RepeatModeler). Training and predictions
have been done on a repeat-masked sequence. However,

BRAKER2 and MAKER2 have different methods for pro-
cessing repeat-masked sequences (see Supplementary Ma-
terials).

Testing BRAKER1. BRAKER1 is a genome annotation
pipeline that combines self-training GeneMark-ET with
AUGUSTUS (18). External evidence in a form of short
RNA-seq reads to genome alignments is used to generate
hints to intron borders. BRAKER1 and BRAKER2 use
conceptually similar features, such as anchored elements of
exon-intron structure.

BRAKER1 has been run on the genomes of A. thaliana,
C. elegans and D. melanogaster with hints originating from
RNA-seq reads sampled by VARUS (36) from the NCBI
Sequence Read Archive (35). VARUS used HISAT2 (43)
for mapping RNA-seq reads to genomic sequences (Sup-
plementary Materials section 1.10).

RESULTS

Assessment of gene prediction accuracy of BRAKER2 and
comparison with BRAKER1

Genomes of A. thaliana, C. elegans and D. melanogaster.
The accuracy of BRAKER2 was determined at exon and
gene level (Figures 3 and 4). The exon level Sn and Sp
were determined in comparison with annotated exons of
all genes of A. thaliana, C. elegans and D. melanogaster, in-
cluding exons of alternative isoforms, and showed the fol-
lowing patterns (Figure 3). BRAKER1 clearly improved
both Sn and Sp values of the ab initio GeneMark-ES. In
turn, BRAKER2 performed better than BRAKER1 when
BRAKER2 used the largest for each genome set of refer-
ence proteins (these largest sets excluded proteins known
for the same species). With the smaller protein sets: those
excluding proteins from all species of same family or of the
same order, the results were mixed. BRAKER2 performed
better on A. thaliana, but not on D. melanogaster, and espe-
cially not on C. elegans (Figure 3).

The pattern of accuracy change on exon level was mainly
translated into the pattern observed at the gene level (Fig-
ure 4 and Supplementary Tables S4–6). In this case, vectors
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Figure 3. Exon level Sn and Sp determined for each genome in the three runs of BRAKER2 with protein support, the run of BRAKER1 with RNA-seq
support and the run of GeneMark-ES. BRAKER2 was run with support of proteins from OrthoDB excluding proteins (i) of the same species, (ii) of all
species of the same taxonomic family, (iii) of all species of the same taxonomic order.

Figure 4. Gene level Sn and Sp determined in the tests described in the legend for Figure 3.

(Sp, Sn) were lined up along bisectors (Figure 4) thus mak-
ing the ranking of the gene prediction tools unambiguous.
Contrary to the exon level, at the gene level, BRAKER2
outperformed BRAKER1 on D. melanogaster when the Or-
thoDB reference proteins from the phylum Arthropoda ex-
cluded the proteins from the same taxonomic family. As ex-
pected, the behavior of the F1 values for BRAKER1 and
BRAKER2 did correlate with the patterns shown in Fig-
ures 3 and 4 (Supplementary Tables S4–6).

Additional set of test genomes. Model organisms A.
thaliana, C. elegans and D. melanogaster were subjects of the
pilot genome sequencing projects, therefore, we used their
longtime curated genome annotations as whole genome test
sets.

In conducting tests on genomes of the other nine species
(the blue color names in Table 3) we used a different ap-
proach motivated by the following example. Upon compar-
ison of the gene predictions made by BRAKER2 in the R.
prolixus genome with its current annotation (Table 1) the
gene level Sn value appeared to be 13.2% (Table 3). How-

ever, the Sn value was 45.5% when it was computed against
a set of multi-exon R. prolixus genes with all introns sup-
ported by at least one mapped RNA-seq read (a 26.4% sub-
set of all multi-exon genes). In seven out of nine genomes
(except for P. trichocarpa and X. tropicalis), large improve-
ments of the gene level Sn values were observed when the
base for comparison was changed from a whole set of genes
annotated in genomes to a narrower (verified) set. Such
an effect was not observed for A. thaliana, C. elegans and
D. melanogaster (Table 3).

Therefore, we used the test sets of genes supported by the
mapped RNA-seq reads. We observed exon Sn values near
80% for the three arthropods, between 80 and 87% for the
three vertebrates, and the highest, close to 90%, for the three
plants (Table 3).

Among the genes predicted by BRAKER2 in each of
the nine genomes, we identified genes encoding proteins
from the species-specific BUSCO protein families (44). For
a given genome, a percentage of such recognized ‘BUSCO
members’ among the full species specific BUSCO set pro-
vided an estimate of the sensitivity of gene prediction

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/3/1/lqaa108/6066535 by guest on 21 August 2022



NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 1 7

Table 3. Gene prediction sensitivity of BRAKER2 at the gene and exon levels

Gene Sn Exon Sn

Species All Reliable All Reliable % Reliable genes

A. thaliana 70.2 78.8 81.5 87.9 83.5
C. elegans 49.8 57.8 75.7 81.0 81.1
D. melanogaster 59.5 61.6 71.9 74.4 93.2
P. trichocarpa 69.3 76.4 86.2 90.4 84.6
M. truncatula 48.3 63.2 82.7 90.0 69.6
S. lycopersicum 40.7 68.0 78.5 92.1 54.4
B. terrestris 45.7 56.7 74.6 79.5 75.1
R. prolixus 13.2 45.5 61.4 80.2 26.4
P. tepidariorum 24.6 40.2 67.9 79.9 50.6
T. nigroviridis 10.4 67.7 60.6 89.5 11.2
D. rerio 39.1 50.3 75.6 86.3 70.8
X. tropicalis 38.9 46.3 75.3 80.0 74.8

The test sets were (All) all annotated multi-exon genes and (Reliable) all annotated complete multi-exon genes having all introns supported by mapped
RNA-seq reads, the ones sampled by VARUS (36).

method (assuming no errors in assembly) and could be com-
pared with the similar figures determined for the reference
genome annotation (Supplementary Figure S2).

In the plant and arthropod genomes, BRAKER2 missed
∼3% or less of the BUSCO genes. Moreover, fewer BUSCO
genes were missed by BRAKER2 than by the current an-
notations of genomes of M. truncatula, S. lycopersicum, P.
tepidariorum and R. prolixus

The percentage of BUSCO genes missed by BRAKER2
In the vertebrate genomes were: ∼12% in T. nigroviridis,
∼5% in D. rerio, ∼9% in X. tropicalis while the genome an-
notations missed ∼12, 3 and 3%, respectively.

Prediction accuracy change within the BRAKER2 pipeline.
For D. melanogaster, A. thaliana and C. elegans genomes we
observed a steady increase of the prediction accuracy upon
moving from one to another step of the BRAKER2 pipeline
(Supplementary Table S12). For instance, at gene level the
F1 value for D. melanogaster increased from GeneMark-ES
to GeneMark-EP+ by 17.1 percentage points. Runs of AU-
GUSTUS with hints added 8.2 percentage points in the first
iteration, and 1.1 percentage points in the second iteration.

For the F1 value at the exon level, the numbers of increase
were 8.8, 4.6 and 0.4 percentage points, respectively.

Effect of the selection of training genes on gene prediction
accuracy. As described in ‘Materials and Methods’ sec-
tion, for training AUGUSTUS we use fully anchored genes
predicted by GeneMark-EP+. The use of these narrower
sets improved the gene level F1 values of the ab initio gene
prediction by AUGUSTUS in A. thaliana, C. elegans and
D. melanogaster genomes by two to five percentage points
(Supplementary Table S8). We cite here the accuracy of ab
initio gene prediction since the full BRAKER2 could get
further improvement from the external protein hints that
could overshadow the effects of training.

The use of anchored genes for the AUGUSTUS training
had an even stronger effect for the large genomes where the
difference in F1 value at exon level for D. rerio reached ∼10
percentage points (Supplementary Table S8).

Effects of the repeat masking on gene prediction accuracy.
To identify repetitive sequences (interspersed repeats and

low complexity sequences) we used RepeatModeler along
with RepeatMasker (www.repeatmasker.org). A run of Re-
peatModeler on a whole genome produced a repeat library.
Next, the locations of repeats were identified and soft-
masked by RepeatMasker.

Repeat masking by RepeatModeler and RepeatMasker
with default settings was sufficient to achieve high gene pre-
diction accuracy in all the tested genomes except for X. trop-
icalis. That genome contained a large number of long tan-
dem repeats (∼60 Mb in total) identified by a run of Tan-
dem Repeats Finder (TRF) (45) with maximum repeat pe-
riod size = 500. The presence of the tandem repeats with
elevated GC content (Supplementary Figure S4), when left
unmasked, caused GeneMark-ES, running in the initial step
of the pipeline, to converge to an incorrect statistical model
of a protein-coding region and to make incorrect gene pre-
dictions. Particularly, GeneMark-ES would predict a ma-
jority of coding exons (93%) in the GC-rich regions of long
tandem repeats and would poorly predict the true X. tropi-
calis genes.

When we applied the non-standard mode of masking by
TRF to genomes other than X. tropicalis, no significant
change in the BRAKER2 prediction accuracy was observed
(data not shown). This could be expected, since the addi-
tional repeats found by TRF in genomes other than X. trop-
icalis were short in size and could be caught by RepeatMod-
eler.

On a general note, RepeatModeler and RepeatMasker
may possibly mask over parts of true protein-coding genes,
an effect that may decrease gene prediction sensitivity in
such regions.

Assessment of accuracy of MAKER2; comparison with
BRAKER2. The coordinates of genes predicted by
MAKER2 in genomes of A. thaliana, C. elegans and
D. melanogaster were compared to the annotations of
the three genomes (Table 4). When we used the recom-
mended MAKER2 protocol (Supplementary Figure S5a),
the accuracy was significantly lower than the accuracy
of BRAKER2 that was run with support of the same
reference proteins. Particularly, the exon F1 values were
lower for A. thaliana, C. elegans and D. melanogaster by
10.1, 15.7 and 16.1 percentage points, respectively (Table
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Table 4. Prediction accuracy of MAKER2 and BRAKER2

A. thaliana C. elegans D. melanogaster

MAKER2
with recom-

mended
protocol

MAKER2
with

BRAKER2-
like

protocol BRAKER2

MAKER2
with recom-

mended
protocol

MAKER2
with

BRAKER2-
like

protocol BRAKER2

MAKER2
with recom-

mended
protocol

MAKER2
with

BRAKER2-
like

protocol BRAKER2

Gene Sn 49.3 53.9 70.6 25.5 30.4 43.7 42.6 48.0 60.0
Gene Sp 42.1 55.6 65.8 22.1 38.9 51.3 31.1 50.3 59.5
Gene F1 45.4 54.7 68.1 23.7 34.1 47.2 35.9 49.2 59.7
Exon Sn 73.5 74.7 80.6 61.7 62.6 71.9 62.9 63.7 71.3
Exon Sp 72.6 83.0 85.8 64.5 81.4 87.1 58.7 76.0 83.2
Exon F1 73.0 78.6 83.1 63.1 70.8 78.8 60.7 69.3 76.8

4). Run of MAKER2 with the second, ‘BRAKER2-like’
protocol (Supplementary Figure S5b) helped to reduce
the gap in F1 between MAKER2 and BRAKER2 to
4.5, 8.0 and 7.5 percentage points, respectively (Table 4).
An improvement in the Sp values obtained as a result of
using the second protocol was likely to be related to the
absence of SNAP (42); a separate test did show that SNAP
generated an elevated number of false positive predictions
(Supplementary Tables S9 and 10).

The runtimes of BRAKER2 and MAKER2 in our ex-
periments were difficult to compare directly. We executed
MAKER2 in the MPI mode on a computational cluster
with 96 CPUs. The runtime of MAKER2 (∼10 h) using pro-
teins from 10 species was comparable to a time needed for a
run of BRAKER2 with proteins from 443 species executed
on a single node with 8 CPUs.

DISCUSSION

Genome length and composition

We evaluated accuracy of BRAKER2 on genomes that var-
ied in length from 100 Mbp (C. elegans) to 1.4 Gbp (X. trop-
icalis). Notably, the exon level Sn computed on test sets of
‘reliable genes’ remained at 80–90% for both shorter and
longer genomes (Table 3). However, the gene level Sn, deter-
mined on the same test sets, showed noticeable negative cor-
relation with genome length. All the genomes used in this
study had relatively homogeneous nucleotide compositions.
Current versions of the algorithms used in BRAKER2 em-
ployed a single set of species-specific models. Accuracy
of BRAKER2 would drop down on genomes with het-
erogeneous composition, such as human (mammalian) or
rice (grasses) where several models reflecting heterogeneous
genome composition are necessary.

Role of the evolutionary distances and the total number of
species in the reference set

It has been generally assumed that the accuracy of a gene
finding algorithm using external protein support would be
higher if the evolutionary distance to the closest relative
providing reference proteins would be smaller (10,26,46).
Indeed, for A. thaliana, C. elegans and D. melanogaster we
saw that the accuracy increased step by step when the clos-
est relative in the supporting protein set was outside the or-
der then the family, then the same species (Figure 4). How-
ever, another factor improving the accuracy of BRAKER2

is the number of species whose proteins were used for gen-
erating protein hints. For instance, the gene prediction ac-
curacy observed for A. thaliana and D. melanogaster that
had more species involved in hints generation (Table 2) was
higher than the accuracy for C. elegans that had fewer num-
ber of species in each instance of the protein reference set
(Figure 4, species, family and order excluded).

Demonstration that the increase of the number of species
in the protein reference set is a positive factor for the accu-
racy of predictions was the goal of additional experiments
(Supplementary Figure S6). Moreover, we did show that the
increase of the total number of species in the protein set of
BRAKER2 could compensate the benefit of having closer
relatives. For instance, the use of a number of species outside
of the D. melanogaster order (Supplementary Figure S7) de-
livered better accuracy than the use of several Anopheles
species within the taxonomic order (Supplementary Table
S15).

Of course, it could be that a species with sequenced
genome exists at a very close distance, e.g., when the aver-
age nucleotide identity (ANI) computed for two genomes
is close to 100%. In this case, gene annotation transfer from
one genome to another could be the most efficient approach
assuming that the reference annotation is of high quality.
Otherwise, if the reference annotation is not trusted, use
of BRAKER2 would be a reasonable choice; BRAKER2
mechanism of hints generation is insensitive to presence of
random errors in the reference protein annotations.

General issues with making gene sets for model training

Ab initio self-training algorithms were shown to deliver
high gene annotation accuracy. Still, arguably, training on
a sufficiently large set of manually curated gene structures
(a supervised training) could outperform, albeit slightly, a
self-training algorithm. For instance, AUGUSTUS trained
on a randomly selected set of genes annotated in a well-
studied genome slightly outperforms AUGUSTUS trained
by BRAKER2 in an ab initio mode. Nonetheless, such an
idealistic condition (a random sampling from a 100% cor-
rect annotation) is an unlikely case when working with a
novel genome.

Attempts to create a large enough training set were made
by approaches centered around mapping of highly con-
served cross-species proteins. Nonetheless, attempts to get
an unbiased set of parameters by this approach have not
been successful (47). To make one more attempt of this
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kind, we mapped the BUSCO protein families to genomes
of A. thaliana, C. elegans and D. melanogaster to generate
training sets of genes. We observed still, that the ‘BUSCO
genes’ based models produced lower prediction accuracy
than BRAKER2 (Supplementary Table S11).

The new approach used in BRAKER2 is using cross-
species protein conservation to predict introns and ab ini-
tio gene prediction to connect introns and exons into gene
structures. This new method has led to a significant increase
in the size of the gene set supported by protein evidence. For
almost all the genomes selected for our tests, more than four
thousand gene structures were selected into training sets.

Improvement in the method for generation of external evi-
dence

BRAKER2 is using a new approach for creating protein
hints. The protein mapping pipeline, ProtHint, makes sets
of hints with higher and lower confidence. All hints con-
tribute to generation of anchored genes used in training.
GeneMark-EP+ is enforcing high confidence hints in the
prediction step. In turn, AUGUSTUS utilizes low and high
confidence hints at the prediction step along with informa-
tion about the hints’ connections within a putative tran-
script (CDSpart chain). The flexible use of hints leads to an
increase in accuracy of BRAKER2 (Supplementary Table
S13). Particularly, BRAKER2 appears to be a useful tool
for annotation of genomes of deep branching species, since
BRAKER2 is tuned up to generate accurate hints upon the
use of proteins from remotely related species.

BRAKER2 iterations

The number of hints generated by the ProtHint pipeline de-
pends on the number of genes predicted by GeneMark-ES.
A solid performance of GeneMark-ES was demonstrated
(8,26), but any ab initio gene finder may miss genes. Missed
genes would translate in BRAKER2 into missed protein
hints to the corresponding genomic loci. The second it-
eration of BRAKER2 recovers hundreds of missed genes
and leads to an increase of gene prediction accuracy (Sup-
plementary Table S12). Still, the effect of the second iter-
ation on the overall accuracy of BRAKER2 is relatively
small. Another albeit computationally expensive way to re-
cover some missed genes is to align proteins from a pro-
tein database to the 6-frame translations of the genomic
DNA (33). Use of this approach did not produce a better
Sn value than the iterative procedure of BRAKER2 (data
not shown).

The ‘BUSCO genes’ in BRAKER2 predictions

As a part of the accuracy assessment we selected a set of the
BRAKER2 predicted genes identified by the search with the
BUSCO tools (37) as ones that belong to the species-specific
BUSCO family (Supplementary Figure S2). The complete-
ness of such set was determined as percentage of the whole
BUSCO set. In all cases, but X. tropicalis, the selected sets of
genes were comparable to, or, even more complete than the
sets of ‘BUSCO genes’ identified in the reference genome
annotations. We should note that some BUSCO families

included species within the same taxonomic order as the
species of interest (e.g. Hemiptera order of R. prolixus or
Solanales order for S. lycopersicum). On the other hand, the
input to BRAKER2 were proteins of the species outside of
the corresponding taxonomic order.

A lower level of accuracy of BRAKER2 for X. tropicalis
could be related to the insufficient number of external pro-
teins. Removing the Anura taxonomic order from the Or-
thoDB partition left no proteins from the Amphibia tax-
onomic class among input proteins (Table 2). Also, a rea-
son for missing some ‘BUSCO genes’ could be inaccurate
de novo repeat masking. For example, among annotated
genes missed by BRAKER2 in the P. trichocarpa genome,
more than half were genes partially masked by long repeats
(>1000 nt).

Comparison with MAKER2

Differences in accuracy of MAKER2 and BRAKER2 ob-
served in our experiments were quite large despite the at-
tempts to find a way to improve the MAKER2 protocol
(Table 4). The differences in the outcomes could be caused
by the differences in the methods of data preparation, pro-
cessing repeats, ways of generating and selecting external
evidence, connecting main elements of the pipelines as well
as combining the gene predictions into the final annotation.
Therefore, we presented detailed descriptions of the proto-
cols used for running MAKER2 (Supplementary Materi-
als).

MAKER2 uses the ab initio self-training algorithm
GeneMark-ES, while BRAKER2 uses the more recent self-
training GeneMark-EP+ algorithm that integrates protein
hints into training and prediction (26). Comparison of pro-
tein hints is difficult since BRAKER2 uses hints to splice
sites and start/stop codons while MAKER2 uses hints to
parts of exons. More efficient training of AUGUSTUS
is one of the important factors for elevated accuracy of
BRAKER2. In our experiments, an effective way to im-
prove MAKER2 accuracy was a reduction of the number of
gene finders from three to two (Supplementary Figure S5,
Table 4 and Supplementary Tables S9-10). The difference in
accuracy of BRAKER2 and MAKER2 is likely to be even
larger for eukaryotic genomes with longer length, however,
such a comparison is harder to make due to less accurate
reference annotations. Since a comprehensive comparison
of the two methods is not a goal of this paper, the compar-
isons are limited to the three well studied genomes.

Last but not least, the training of gene finders is not fully
automated in MAKER2. Users have to execute the training
steps manually, even though recommendations are given on
the training protocols. On the other hand, BRAKER2 can
be executed from start to finish by a single command.

Comparison with BRAKER1

As we have demonstrated, the accuracy of BRAKER2 de-
pends on the number of reference proteins and on distri-
bution of evolutionary distance to the reference species.
The accuracy of BRAKER1 depends on the volume of the
RNA-seq data. Experiments with BRAKER1 on genomes
of A. thaliana, C. elegans and D. melanogaster used RNA-
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seq reads from SRA retrieved by VARUS, e.g. the non-
redundant volumes of RNA-Seq reads from the maximum
number of libraries available for each species. When we used
the largest number of the proteins for each species (the
species-specific OrthoDB partition excluding proteins of
the same species) we observed the accuracy of BRAKER2
comparable or better than the one of BRAKER1.

In genomes of A. thaliana, C. elegans and D.
melanogaster, both BRAKER1 and BRAKER2 made
correct predictions of a rather low number of annotated
alternative isoforms (Supplementary Table S14). This is a
result of a deliberate parameter setting in AUGUSTUS to
reduce the number of false positives. Particularly, AUGUS-
TUS ignored an RNA-seq or a protein hint contradicting
another hint with 10 times larger support. On the other
hand, the reference genome annotations of the three species
are rather inclusive in a sense of presenting isoforms that
have low support (potentially lowly expressed ones).

EuGene and other gene finders

A gene finder for eukaryotic genomes, EuGene, provides a
mechanism for integration of several sources of informa-
tion into the gene prediction process (48). This modular tool
can integrate data derived from protein spliced alignment
to genomic DNA. Unfortunately, EuGene does not provide
recommendations on model training for the case when pro-
tein sequences are the only source of the external evidence;
therefore, we could not immediately use this tool in the com-
parative study.

Several tools attempt accurate identification of gene
structures in a novel genome by mapping homologous pro-
teins (e.g. GenomeThreader (28), Scipio (30)). This ap-
proach limits the gene discovery to genes of homologs
present in the input protein set; the accuracy of this method
drops significantly with increase of evolutionary distance
between the two species (10,46). Another significant chal-
lenge for a number of earlier developed tools is the pro-
cessing of large volumes of proteins. This challenge is much
smaller if a tool, like GeMoMa (49,50), is oriented on get-
ting the protein information from closely related species. In
addition, GeMoMa requires gene coordinates in reference
genomes. We did not make comparisons of BRAKER2 to
the above mentioned tools since these tools were not de-
signed for the situation when the reference protein data does
not contain proteins from closely related species.

CONCLUSION

BRAKER2, a fully automated pipeline for gene prediction
in novel eukaryotic genomes allows to produce hints to gene
structures from protein databases. BRAKER2 runs pro-
cessing of millions of proteins in the course of several hours
(for instance, in case of D. melanogaster, ∼2.6 millions of
proteins were processed in ∼3 h on a single node with eight
CPU). In the tests on genomes of plants, and animals, we
observed that BRAKER2 delivered state-of-the-art anno-
tation accuracy and was favorably compared to already ex-
isting tools.

DATA AVAILABILITY

BRAKER2 is available at https://github.com/Gaius-
Augustus/BRAKER. All additional scripts and data used
to generate figures and tables in this manuscript are avail-
able at https://github.com/gatech-genemark/BRAKER2-
exp.
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