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Abstract 

Full automation of gene prediction has become an important bioinformatics task since the 

advent of next generation sequencing. The eukaryotic genome annotation pipeline BRAKER1 

had combined self-training GeneMark-ET with AUGUSTUS to generate genes’ coordinates 

with support of transcriptomic data. Here, we introduce BRAKER2, a pipeline with 

GeneMark-EP+ and AUGUSTUS externally supported by cross-species protein sequences 

aligned to the genome. Among the challenges addressed in the development of the new 

pipeline was generation of reliable hints to the locations of protein-coding exon boundaries 

from likely homologous but evolutionarily distant proteins. Under equal conditions, the gene 

prediction accuracy of BRAKER2 was shown to be higher than the one of MAKER2, yet 

another genome annotation pipeline. Also, in comparison with BRAKER1 supported by a large 

volume of transcript data, BRAKER2 could produce a better gene prediction accuracy if the 

evolutionary distances to the reference species in the protein database were rather small. All 

over, our tests demonstrated that fully automatic BRAKER2 is a fast and accurate method for 

structural annotation of novel eukaryotic genomes. 

 

Introduction 

Constantly improving next generation sequencing (NGS) technology enables production of a 

nearly complete eukaryotic genome within weeks or even days.  Therefore, accurate 

automatic methods of genome annotation have been in high demand since the dawn of the 
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NGS era. A self-training algorithm for ab initio gene prediction in eukaryotic genomes, 

GeneMark-ES [1], has accelerated the process of structural annotation for many genome 

projects [2-7]. Application of NGS to transcript sequencing (RNA-Seq) motivated active 

development of methods integrating genomic and transcriptomic information. A new 

automatic algorithm, GeneMark-ET [8], integrated data on spliced aligned RNA-Seq reads 

into GeneMark-ES.  

On a parallel avenue, yet another algorithm, AUGUSTUS [9-14], was demonstrated to be 

one of the most accurate gene prediction tools [15-17]. AUGUSTUS carried a flexible 

mechanism for integration of external evidence generated by spliced-aligned RNA-Seq reads 

or homologous proteins into gene prediction. AUGUSTUS also used this evidence to predict 

alternative isoforms. Still, for model parameter estimation, AUGUSTUS required an expert 

curated training set of genes. 

      It was apparent that a useful automatic tool could be created by combining strong features 

of GeneMark-ET and AUGUSTUS. A pipeline BRAKER1 was developed and released in 2015 

[18] to become a frequently used tool in genome annotation projects [19-24].  BRAKER1 

requires availability of RNA-Seq data, however, not all novel genomes are sequenced along 

with  transcriptomes, e.g. within the Earth BioGenome Project [25], or transcriptome coverage 

may be insufficient. 

    Here, we introduce BRAKER2 that uses cross-species protein sequence data, readily 

available for any genome project. Processing of mapped to genome protein sequences has 

presented a well-known challenge, due to the protein divergence and uneven speed of 

evolution among protein families. Nonetheless, leveraging of large volumes of proteins, 

particularly proteins from remotely related species, for improving genome annotation appears 

to be an important theoretical and practical task. Recently developed GeneMark-EP+ [26] was 

able to direct self-training by hints created by processing spliced alignments of large numbers 

of cross-species proteins. It was logical to integrate GeneMark-EP+ and AUGUSTUS in a 

pipeline relying on already known protein sequences as external evidence.     

Several tools were created with a goal to identify a eukaryotic gene structures via spliced 

alignment of a homologous protein to the genomic locus – PROCRUSTES [27], 

GenomeThreader [28], ProSplign [29], Scipio [30], Spaln [31], etc. However, it turned out that 

the accuracy of the spliced alignment deteriorated quickly with increase of the evolutionary 

distance between two species. GeneMark-EP+ [26] has addressed this problem by the use 

of spliced alignments of multiple proteins originating from either closely or remotely related 

species. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.08.10.245134doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.245134
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

The hints to exon borders of a gene are made by the ProtHint pipeline (integral part of 

GeneMark-EP+) that runs fast homolog detection and protein spliced alignments to the 

genomic region. ProtHint is using the alignment’s data to score and classify the hints. 

Homologous proteins, even those from remotely related species, contribute by providing 

information for hints to the borders of exons encoding evolutionarily conserved protein 

domains.  

Salient features of BRAKER2 are i/ it is fully automatic ii/ it runs massive database search 

for proteins that are homologous to proteins encoded in the new genome (yet unknown ones) 

iii/ it processes millions of protein spliced alignments to the genome to generate hints to exon-

intron structures, iv/ it integrates sequence composition based and protein alignment based 

information at all iterative steps of training and gene prediction.  

We assessed prediction accuracy of BRAKER2 on well-studied and, arguably, well-

annotated genomes of Arabidopsis thaliana, Caenorhabditis elegans, and Drosophila 

melanogaster.  For tests on additional nine genomes, we selected subsets of annotated genes 

corroborated by RNA-Seq evidence. We compared performance and accuracy of BRAKER2 

to performance and accuracy of MAKER2 [27] with two distinct execution protocols as well as 

to BRAKER1 [18].  

 

Materials and Methods 

Materials 

For testing BRAKER2, we used genomic sequences and gene annotations of twelve species 

(Table 1). Among them were the early sequenced model organisms: A. thaliana, C. elegans, 

and D. melanogaster. The other nine species were: the plants Populus trichocarpa, Medicago 

truncatula, Solanum lycopersicum, the arthropods Bombus terrestris, Rhodnius prolixus, 

Parasteatoda tepidariorum, and the vertebrates Tetraodon nigroviridis, Danio rerio and 

Xenopus tropicalis (Table 1). We used the OrthoDB database [32] as a source of protein data.  

RNA-Seq data used in runs of BRAKER1 was sampled from the Sequence Read Archive [33] 

by VARUS [34]. 

To determine to which degree both predicted and annotated genes covered the sets of 

universal single copy genes identified by BUSCO protein families, we used the BUSCO 

database v4 [35]. 
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Table 1: Genomes used in the tests; asterisks indicate model organisms. An average number of 

introns per gene was determined with respect to the number of all the annotated genes in the genome. 

For a gene to be considered complete and canonical, at least one of the gene’s transcripts had to be 

fully annotated, with the initial coding exon starting with a ‘canonical’ ATG and the terminal coding 

exon ending with TAA, TAG or TGA. 

 

 

 
 

  

Species Annotation version
Genome 

size (Mb)

# Genes in 

annotation

# Introns 

per gene

% Non-canonical 

or incomplete 

genes

A. thaliana* Tair Araport 11 (Jun 2016) 119 27,445 4.9 0.3

C. elegans* WormBase WS271 (May 2019) 100 20,172 5.7 0.2

D. melanogaster* FlyBase R6.18 (Jun 2019) 138 13,929 4.3 0.3

Other species

Plantae

P. trichocarpa* JGI  Ptrichocarpa_533_v4.1 (Nov 2019) 389 34,488 4.9 0.3

M. truncatula* MtrunA17r5.0-ANR-EGN-r1.6 (Feb 2019) 430 44,464 2.9 0.0

S. lycopersicum Consortium ITAG4.0 (May 2019) 773 33,562 3.5 14.5

Arthropoda

B. terrestris NCBI Annotation Release 102 (Apr 2017) 249 10,581 7.1 4.7

R. prolixus VectorBase RproC3.3 (Oct 2017) 707 15,061 4.8 34.7

P. tepidariorum NCBI Annotation Release 101 (May 2017) 1,445 18,602 7.3 18.2

Vertebrata

T. nigroviridis TETRAODON8.99 (Nov 2019) 359 19,589 10.4 63.8

D. rerio* Ensembl GRCz11.96 (May 2019) 1,345 25,254 8.2 11.8

X. tropicalis* NCBI Annotation Release 104 (Apr 2019) 1,449 21,821 12.1 2.4

Species with early sequenced genomes
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Table 2: Numbers of species in the clades of OrthoDB v10. Bold font numbers mark the largest 

OrthoDB clade used to support gene predictions for a given species. The numbers shown in blue give 

the numbers of species in the smaller clades removed from the largest OrthoDB segment in the tests 

described below. Species whose proteins are not present in the current OrthoDB version are marked 

with asterisks. 

 

 

Methods 

Description of BRAKER2 

First, the ab initio gene finder GeneMark-ES [1] completes self-training on a given genome 

and delivers predicted genes, the initial set of seed genes. This step is a part of the internal 

pipeline ProtHint (described earlier [26]) that executes GeneMark-ES, DIAMOND [36] and 

Spaln [31] (Fig. 1). The connection between translated seed genes (seed proteins) and the 

genomic loci where the seed genes are residing (seed regions) is used in the subsequent 

steps. The seed proteins make queries for the DIAMOND database search that identifies 

potentially homologous (target) proteins in a protein database [26]. Next, the newly found 

target proteins are spliced aligned by Spaln to the genomic seed regions where the queries 

were encoded. The alignments are scored and converted into hints to introns and translation 

initiation (start codon) and termination sites (stop codon) with scores characterizing the hints’ 

reliability. A subset of high confidence hints is selected (see Supplementary Materials and 

[26]). The hints to those exon borders that are also identified by the ab initio algorithm 

(GeneMark-ES) are of special interest. They define anchored sites and regions for iterative 

model training of GeneMark-EP [26].  Moreover, the high confidence hints to exon borders 

are enforced in GeneMark-EP+ predictions [26]. 

Family Order Class Phylum Kingdom

A. thaliana 8 10 - 100 117 Plantae 3,510,742

C. elegans 3 5 6 7 448 Metazoa 8,266,016

D. melanogaster 20 56 148 170 - Arthropoda 2,601,995

P. trichocarpa* 5 5 - 100 117 Plantae 3,510,742

M. truncatula 10 10 - 100 117 Plantae 3,510,742

S. lycopersicum 10 11 - 100 117 Plantae 3,510,742

B. terrestris* 7 40 148 170 - Arthropoda 2,601,995

R. prolixus 1 16 148 170 - Arthropoda 2,601,995

P. tepidariorum 1 2 10 170 - Arthropoda 2,601,995

T. nigroviridis* 1 1 50 246 - Chordata 5,003,104

D. rerio 5 5 50 246 - Chordata 5,003,104

X. tropicalis 2 3 3 246 - Chordata 5,003,104

# of species in the OrthoDB clade Name of the largest 

OrthoDB segment 

# of proteins in the 

OrthoDB segment
Species
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Figure 1: Flowchart of the BRAKER2 pipeline. Input files are shown as yellow ovals, the final output 

file is shown as green oval. Tools, processes and content types within the ProtHint pipeline are shown 

in orange, while other components of BRAKER2 are shown in blue. 

  

In BRAKER2, in addition to the hint scheme implemented in GeneMark-EP+, ProtHint 

makes hints called CDSpart chains. This type of hints helps to combine exons predicted by 

AUGUSTUS into a single transcript. The CDSpart chain is defined by a spliced alignment of 

the highest scoring target protein to the seed region.   

From the whole complement of genes predicted by GeneMark-EP+, we select a set of 

anchored genes – the single-exon genes with hints matching start- and stop-codons as well 

as the multi-exon genes with all introns supported by hints. These genes make a training set 

for AUGUSTUS that, in turn, enforces the high confidence hints in gene predictions. The 

CDSpart chain hints and non-high-confidence hints are processed for integration into 

AUGUSTUS gene prediction as well (Supplementary Materials, Sections 1.2 and 1.3). Note 

that in the regions lacking extrinsic evidence, GeneMark-EP+ and AUGUSTUS predict genes 

in an ab initio mode, only. 
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Figure 2: Evidence integration in BRAKER2.  A. Target proteins; B. Introns, gene start and stop sites 

defined by spliced alignments of target proteins to genome; C. CDSpart chains; D. Genome sequence; 

E. Genes predicted by GeneMark-EP+ at a given iteration. The high confidence hints are enforced 

(red arrows); F. Anchored sites, the splice sites and gene ends predicted ab initio and corroborated 

by protein hints; G. Anchored introns and intergenic sequences bounded by anchored gene ends are 

selected into training of non-coding sequence model for GeneMark-EP+; H. Anchored multi-exon and 

single exon genes predicted by GeneMark-EP+ and selected for training AUGUSTUS; I. Transcripts 

predicted by AUGUSTUS with support of an external evidence. 

 

    BRAKER2 runs in two major iterations (Fig. 1). The first one starts with the seed genes 

predicted by GeneMark-ES [1]. Seeds for some true genes might be missed at this stage; 

however, they could be recovered in the second BRAKER2 iteration that uses the genes 

predicted in the first iteration as seed genes. In the second iteration, ProtHint runs the 

database search only for the newly added seed genes and merges the newly defined hints 

with the hints from the first iteration. Then, AUGUSTUS uses the models trained in the first 

iteration along with the updated protein hints to predict the final set of genes. The second 

BRAKER2 iteration has fewer steps and runs faster than the first iteration.  
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Accuracy assessment  

Selection of protein data sets and test sets of annotated genes. A test of BRAKER2 on 

a well-studied genome should utilize a set of cross-species proteins that imitates a protein set 

available for running BRAKER2 on a newly sequenced genome. Proteins that originate from 

the most evolutionarily close species are expected to be most informative for the BRAKER2 

algorithm. Therefore, a meaningful characteristic of a selected set of reference proteins is the 

least evolutionary distance from the reference genomes to the genome in the test.  

To make these selections for A. thaliana, C. elegans, and D. melanogaster, we have started 

from large clades (Plantae, Metazoa, Arthropoda, respectively) and have created three sets 

of proteins for each species by excluding either (i) proteins from the given species per se, (ii) 

proteins from all species of the same family, (iii) proteins from all species of the same order. 

For the other nine species, we also have defined large clades and then have only used 

partitions of type (iii) (Table 2). 

In the tests done with 12 eukaryotic genomes (Table 1), we used as ‘gold standards’ either 

whole genome annotation (A. thaliana, C. elegans, and D. melanogaster) or annotation of 

sets of complete multi-exon genes with all introns fully supported by mapped RNA-seq reads. 

Protein-coding gene prediction accuracy was defined at exon and gene levels by values 

of sensitivity (Sn), specificity (Sp) as well as their harmonic mean (F1), with the definitions 

given in the Supplementary Materials. At the gene level, in presence of alternative splicing, a 

gene was considered to be predicted correctly if the predicted CDS matches precisely a CDS 

of one of the annotated transcript isoforms. 

 

Use of universal single copy genes from BUSCO families. The BUSCO metrics is 

supposed to evaluate the completeness of a genome assembly and annotation; it is based on 

collections of single copy genes expected to be present in a particular lineage [35]. The 

‘BUSCO genes’ may constitute less than 5% of genes in the genome, nonetheless, this 

approach is practical for novel genomes given its relatively easy application. We used the 

BUSCO metrics to characterize gene or protein sets predicted by BRAKER2 in several 

genomes.  

    While, the BUSCO metrics give an idea on the gene prediction algorithm’s Sn value, it does 

not quantify the algorithm’s tendency to predict false positives (the Sp value). Moreover, since 

the BUSCO based method relies on HMMER3 [37] search for detecting homologs of the 

BUSCO proteins, it does not discriminate between precisely and approximately predicted 

exon-intron structures. Therefore, the BUSCO metrics are less precise in assessment of 
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accuracy of gene prediction than the methods comparing coordinates of predicted and 

annotated genes and computing Sn, Sp and F1 values.    

 

Testing MAKER2. The MAKER2 genome annotation pipeline can combine information from 

several sources, such as ab initio gene predictions, mapped RNA-Seq reads as well as 

alignments of proteins to the genome [38-40].   

For our tests, we have chosen genomes of A. thaliana, C. elegans, and D. melanogaster, 

arguably the best annotated genomes among the genomes that we have considered.  Also, 

for each species, we have used the relevant segment of the OrthoDB database described 

above, with exclusion of species of the same taxonomic order.  

All the components of the MAKER2 pipeline, e.g. repeat annotation or training of gene 

finders, have been executed in de novo mode, i.e. each of the three genomes was considered 

to be a “novel” one. 

By design, the protein mapping in MAKER2 is much slower than protein mapping done by 

ProtHint in BRAKER2, therefore, we have further limited each of the three OrthoDB partitions 

to randomly selected ten species (Table S3).  We have used two MAKER2 execution 

protocols (described in detail in Supplementary Materials). In the first protocol recommended 

by the authors [40], the protein spliced alignments have been used to create training sets for 

AUGUSTUS and SNAP. The final gene predictions have been made by combining predictions 

of self-training GeneMark-ES with ones from AUGUSTUS and SNAP both using the protein 

derived hints (Fig. S5A). We have introduced the second training protocol, somewhat similar 

to the one of BRAKER2, in which protein spliced alignments and GeneMark-ES predictions 

have been used to create a training set for AUGUSTUS. The final gene predictions have been 

made by only two gene finders, GeneMark-ES, and AUGUSTUS with hints (Fig. S5B).   

MAKER2 offers two modes of gene prediction: to only get predictions supported by 

external evidence or to add predictions generated without support. Given that the set of 

proteins has provided support for a limited number of genes (Table S7), we have executed 

MAKER2 in the second mode, the one producing higher Sn values.  

The repeat masking for both BRAKER2 and MAKER2 has been done with the same 

genome specific repeat library (generated by RepeatModeler). Training and predictions have 

been done on a repeat-masked sequence. However, BRAKER2 and MAKER2 have different 

methods for processing repeat-masked sequences (see Supplementary Materials). 
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Testing BRAKER1. BRAKER1 is a genome annotation pipeline that combines self-training 

GeneMark-ET with AUGUSTUS. External evidence in a form of short RNA-Seq reads to 

genome alignments is used to generate hints to intron borders [12]. BRAKER1 and BRAKER2 

use conceptually similar features, such as anchored elements of exon-intron structure.  

     BRAKER1 has been run on the genomes of A. thaliana, C. elegans, and D. melanogaster 

with hints originating from RNA-Seq reads sampled by VARUS [34] from the NCBI Sequence 

Read Archive [33]. VARUS used HISAT2 [41] for mapping RNA-Seq reads to genomic 

sequences (Supplementary Materials, section 1.10).    

 

RESULTS 

Assessment of BRAKER2 accuracy on genomes of A. thaliana, C. elegans, and D. 

melanogaster and comparison with BRAKER1. The accuracy of BRAKER2 was 

determined at exon and gene level (Figs. 3-4). The exon level Sn and Sp showed the following 

patterns (Fig. 3). In comparison with accuracy reached by the ab initio GeneMark-ES, 

BRAKER1 clearly improved both Sn and Sp values. On the other hand, BRAKER2 delivered 

better results than BRAKER1 when the set of reference proteins was the largest for each 

genome (excluding only proteins from the same species). For the two smaller protein sets for 

each species: excluding the same family or the same order, the results of comparison were 

mixed. BRAKER2 was better both times for A. thaliana, but not for D. melanogaster, and 

especially not for C. elegans (Fig.3).  

 

 

Figure 3: Exon level Sn and Sp are shown for each species for the three test runs of BRAKER2, the 

runs of GeneMark-ES and BRAKER1 with RNA-Seq support. BRAKER2 for each species was run 

with a relevant set of OrthoDB that did not include proteins i/ of the same species, ii/ of all species of 

the same family, iii/ of all species of the same order. 
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Figure 4: Gene level Sn and Sp observed in the same tests as described in the legend for Fig. 3.  

 

The pattern of accuracy change at exon level was mainly translated into the accuracy at gene 

level (Fig. 4, Tables S4, S5, S6). The order of the tested annotation tools from the lower to 

higher accuracy became less ambiguous, since the vectors (Sp, Sn) were lined up along a 

diagonal. One of the differences in comparison with the patterns at exon level was that 

BRAKER2 outperformed BRAKER1 on the genome of D. melanogaster when the reference 

proteins were comprised from the phylum Arthropoda excluding the species of the same 

family. The F1 values corresponding to Fig. 4 are listed in Tables S4, S5, S6.  

 

Assessment of the BRAKER2 accuracy on the nine more genomes Given that A. 

thaliana, C. elegans, and D. melanogaster were subjects of the pilot genome sequencing 

projects, we used longtime curated annotations of these three genomes as large test sets.  

 Our approach to conducting tests on genomes of the other nine species (Table 3, the 

species names shown in blue color) was a bit different. We did not have confidence that 

comparison with the whole genome annotation would give a fair assessment of the method 

accuracy. To clarify this issue, we compared BRAKER2 gene predictions for the R. prolixus 

genome with the current genome annotation (Table 1).  The Sn value at gene level was 13.2% 

(Table 3). However, we saw an increase of the Sn value to 44.5% when the comparison used 

a set of complete multi-exon genes with all introns supported by at least one mapped RNA-

Seq read (a 26.4% subset of all multi-exon genes). A relatively large difference between gene 

level Sn measured on the whole genome and the one computed on ‘curated’ gene sets was 

characteristic for these nine genomes except for P. trichocarpa and X. tropicalis.   
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As expected, the Sn values for A. thaliana, C. elegans, and D. melanogaster, determined 

for the whole complements of genes and for RNA-Seq supported complete multi-exon genes, 

differed by smaller margins in comparison with the other nine genomes (Table 3). 

Therefore, we assume that the test sets supported by RNA-Seq provide more objective 

values for the algorithm accuracy. Particularly, we observed that for the three arthropods the 

exon Sn values were near 80%, for the three vertebrates they were in the range from 80 to 

87%, and for the three plants they were around 90%, the highest (Table 3).  

Among the genes predicted by BRAKER2 in the nine genomes, we identified genes 

encoding proteins that belonged to the BUSCO protein families. Next, we determined the 

percentages of such genes with respect to the complete species-specific set of the BUSCO 

protein families expected to reside in a particular genome. The same computation was done 

for the genes present in the reference genome annotation (Fig. S2). 

 

Table 3: BRAKER2 gene prediction sensitivity (Sn) at gene and exon level.  The test sets were made 

from (a) all annotated multi-exon genes and (b) reliable genes: annotated complete multi-exon genes 

with all introns supported by RNA-Seq reads sampled by VARUS [30].  

 

 

 

In the plant and arthropods genomes, BRAKER2 missed ~3% or less of the BUSCO 

families. Also, fewer BUSCO families were missed among BRAKER2 genes than in the 

current annotation of genomes of M. truncatula, S. lycopersicum, P. tepidariorum and R. 

prolixus 

All Reliable All Reliable

A. thaliana 70.2 78.8 81.5 87.9 83.5

C. elegans 49.8 57.8 75.7 81.0 81.1

D. melanogaster 59.5 61.6 71.9 74.4 93.2

P. trichocarpa 69.3 76.4 86.2 90.4 84.6

M. truncatula 48.3 63.2 82.7 90.0 69.6

S. lycopersicum 40.7 68.0 78.5 92.1 54.4

B. terrestris 45.7 56.7 74.6 79.5 75.1

R. prolixus 13.2 45.5 61.4 80.2 26.4

P. tepidariorum 24.6 40.2 67.9 79.9 50.6

T. nigroviridis 10.4 67.7 60.6 89.5 11.2

D. rerio 39.1 50.3 75.6 86.3 70.8

X. tropicalis 38.9 46.3 75.3 80.0 74.8

Species
% Reliable 

Genes 

Gene Sn Exon Sn
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In the vertebrate genomes the percentage of BUSCO families missed by BRAKER2 was: 

~12% in T. nigroviridis, 5% in D. rerio, 9% in X. tropicalis while the annotations missed ~12%, 

3% and 3%, respectively, of representatives of the BUSCO families.  

 

Dynamics of the accuracy change in internal steps of BRAKER2. We observed a steady 

increase from one to another step of the BRAKER2 pipeline for D. melanogaster, A. thaliana 

and C. elegans (Table S12). For instance, at gene level the F1 value for D. melanogaster 

increased from GeneMark-ES to GeneMark-EP+ by 17.1 percentage points. Runs of 

AUGUSTUS with hints added 8.2 percentage points in the first iteration, and 1.1 percentage 

points in the second iteration.  

For the F1 value at the exon level, the numbers of increase were 8.8, 4.6 and 0.4 

percentage points, respectively. 

 

Selection of training genes. In BRAKER2, we optimized selection of genes for training 

AUGUSTUS. Instead of a complete set of genes predicted by GeneMark-EP+, we used only 

fully anchored genes. In A. thaliana, C. elegans, and D. melanogaster the use of these 

narrower sets improved the gene level F1 values of the ab initio gene prediction by 

AUGUSTUS by two to five percentage points (Table S8). The ab initio gene prediction 

accuracy of AUGUSTUS was chosen as a criterion here instead of accuracy of the full 

BRAKER2 because accurate hints could overshadow the effects of training. 

The use of anchored genes for the AUGUSTUS training had a stronger effect for large 

genomes where the difference in F1 value at exon level for D. rerio reached ~10 percentage 

points (Table S8). 

 

Repeat masking. Repetitive sequences (interspersed repeats and low complexity 

sequences) were identified by RepeatModeler [42] and RepeatMasker [43]. A run of 

RepeatModeler on a whole genome produced a repeat library. Next, the locations of repeats 

were identified and soft-masked by RepeatMasker.  

Repeat masking by RepeatModeler/RepeatMasker with default settings was sufficient to 

achieve high prediction accuracy in all the tested genomes except for X. tropicalis. Its genome 

contained a large number of long tandem repeats (~60Mb in total) identified by a run of 

Tandem Repeats Finder (TRF) with maximum repeat period size = 500  [44]. The presence 

of the tandem repeats with elevated GC content (Figure S4), when left unmasked, caused 

GeneMark-ES, running in the first step of BRAKER2, to converge to an incorrect model. This 
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model made GeneMark-ES predict a majority of coding exons (93%) in the GC-rich regions 

of long tandem repeats and to poorly predict the true genes. 

When we applied the non-standard mode of masking by TRF to other genomes, no 

significant change in the BRAKER2 prediction accuracy was observed (data not shown). This 

was not surprising because the additional repeats found by TRF in genomes other than X. 

tropicalis were short in size and similar in GC content to the rest of each genome. 

 

Assessment of accuracy of MAKER2 and comparison with BRAKER2. The sets of 

genes predicted by MAKER2 were compared to the reference annotations of the three 

genomes, A. thaliana, C. elegans, and D. melanogaster (Table 4). 

When we used the recommended MAKER2 protocol (Fig. S5a), the accuracy was 

significantly lower than the one of BRAKER2 ran with support of the same reference proteins. 

Particularly, the exon F1 measure was lower for A. thaliana, C. elegans and D. melanogaster 

by 10.1, 15.7 and 16.1 percentage points, respectively (Table 4). The F1 gap between 

MAKER2 and BRAKER2 was reduced by running the second protocol (Fig. S5b) to 4.5, 8.0 

and 7.5 percentage points, respectively (Table 4). The large improvement in the observed Sp 

value could be explained by the exclusion of SNAP that generated an elevated number of 

false positive predictions (Tables S9, S10).  

 

Table 4: Prediction accuracy of MAKER2 and BRAKER2 

 

 

 

The runtimes of BRAKER2 and MAKER2 in our experiments were difficult to compare directly. 

We executed MAKER2 in the MPI mode on a computational cluster with 96 CPUs. The 

runtime of MAKER2 (~10h) using proteins from 10 species was comparable to a time needed 

for a run of BRAKER2 with proteins from 443 species executed on a single node with 8 CPUs. 

 

Gene Sn 49.3 53.9 70.6 25.5 30.4 43.7 42.6 48.0 60.0

Gene Sp 42.1 55.6 65.8 22.1 38.9 51.3 31.1 50.3 59.5

Gene F1 45.4 54.7 68.1 23.7 34.1 47.2 35.9 49.2 59.7

Exon Sn 73.5 74.7 80.6 61.7 62.6 71.9 62.9 63.7 71.3

Exon Sp 72.6 83.0 85.8 64.5 81.4 87.1 58.7 76.0 83.2

Exon F1 73.0 78.6 83.1 63.1 70.8 78.8 60.7 69.3 76.8

D. melanogaster

BRAKER2 BRAKER2

MAKER2 with 

recommended 

protocol

MAKER2 with 

BRAKER2-like

protocol

MAKER2 with 

recommended 

protocol

MAKER2 with 

BRAKER2-like

protocol

C. elegans

MAKER2 with 

recommended 

protocol

MAKER2 with 

BRAKER2-like

protocol

BRAKER2

A. thaliana
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DISCUSSION  

Genome size. We evaluated accuracy of BRAKER2 on genomes that varied in size from 100 

Mb (C. elegans) to 1.4 Gb (X. tropicalis). Interestingly, the observed exon level Sn value 

remained at about the same level of 80-90% for both shorter and longer genomes, when 

computed on test sets of ‘reliable genes’ (Table 3). However, the gene level Sn values showed 

noticeable negative correlation with genome size as determined on the same test sets.   

     All the genomes used in this study had relatively homogeneous nucleotide compositions. 

Current versions of the algorithms used in BRAKER2 employed a single set of species-

specific models. Accuracy of BRAKER2 would drop down on genomes with heterogeneous 

composition, such has human (mammalian) or rice (grasses) where several models reflecting 

heterogeneous genome composition are necessary.  

Size of the protein database and distribution of evolutionary distances to the reference 

proteins. The accuracy of a gene finding algorithm, which utilizes cross-species proteins 

mapping, depends strongly on the evolutionary distance between the species [10, 26, 45]. 

This distance can play a more significant role than the overall number of proteins. For 

example, the largest set of proteins was available for C. elegans (Table 2), still the accuracy 

of BRAKER2 at the gene level was lower than for A. thaliana and D. melanogaster (Fig. 4). 

The main pattern observed for each species at the gene level was that the increase of 

evolutionary distance to the closest relative led to a decrease of the BRAKER2 accuracy. The 

highest accuracy was observed when the species of the same family were present (species 

excluded), next down was when the species of the order were present (family excluded) and 

the next when the species of the same taxonomic class were present (order excluded). 

Notably, for all three species, when the largest number of reference proteins was available, 

only exempting proteins that originated from the tested genome, BRAKER2 was more 

accurate than BRAKER1 with the largest possible RNA-Seq support (Fig. 4).  

    Of course, there could be a situation that a species with sequenced genome exists at a 

very close distance, e.g. when the two genomes’ average nucleotide identity (ANI) is at the 

level of ~99%. In this case, methods that merely focus on annotation transfer from one 

genome to another could be more efficient than BRAKER2 assuming that the reference 

annotation is of high quality. Otherwise, use of BRAKER2 will be a reasonable choice since 

BRAKER2 is robust to a presence of errors in proteins of the species taken as a reference.  
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General issues with compiling training gene sets Ab initio self-training algorithms were 

shown to deliver high annotation accuracy, but, arguably, training on a sufficiently large set of 

manually selected gene structures (a supervised training) could outperform, albeit slightly, a 

self-training algorithm. For instance, AUGUSTUS trained on a randomly selected set of genes 

annotated in a well-studied genome slightly outperforms AUGUSTUS trained by BRAKER2 

in ab initio mode. It is important to emphasize, that such an idealistic condition (random 

sampling from a 100% correct annotation) would be almost never encountered in practice.  

The attempts to create a large enough training set were made by approaches centered 

around mapping of highly conserved cross-species proteins.  Nonetheless, the difficulty of 

getting unbiased parameter sets presented a challenge that was not met until now [46]. 

As yet another attempt, in the course of this project, we have used the BUSCO protein 

families to generate training sets of genes for A. thaliana, C. elegans, and D. melanogaster. 

Still, with parameters trained on the ‘BUSCO genes’, gene prediction accuracy was lower than 

the accuracy achieved by BRAKER2 (Table S11). 

     The new approach used in BRAKER2 has led to a significant increase in the size of the 

gene set supported by protein evidence. For almost all the species selected for our tests, 

more than four thousand gene structures were selected into training sets.  

Improvement in the method for generation of external evidence. BRAKER2 is using a 

new procedure for creating protein hints. The protein mapping pipeline, ProtHint, makes sets 

of hints with higher and lower confidence. All hints contribute to generation of anchored genes 

used in training. GeneMark-EP+ is enforcing high confidence hints in the prediction step. In 

turn, AUGUSTUS utilizes low and high confidence hints at the prediction step along with 

information about the hints’ connections within a putative transcript (CDSpart chain). The 

flexible use of hints leads to an increase in accuracy of BRAKER2 (Table S13). Particularly, 

BRAKER2 appears to be a useful tool for annotation of genomes of deep branching species, 

since BRAKER2 is tuned up to generate accurate hints by use of proteins from remotely 

related species. 

BRAKER2 iterations. The number of hints generated by the ProtHint pipeline depends on 

the number of genes predicted by GeneMark-ES. A solid performance of GeneMark-ES was 

demonstrated [8, 26], but any ab initio gene finder may miss genes. Missed genes would 

translate in BRAKER2 into missed protein hints to the corresponding genomic loci. The 

second iteration of BRAKER2 finds hundreds of missed genes and leads to an increase of 
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gene prediction accuracy (Table S12). Still, the effect of the second iteration on the overall 

accuracy of BRAKER2 is relatively small. Another though computationally expensive way to 

recover some missed genes is to align proteins from a protein database to the 6-frame 

translated genomic DNA [39]. Our experiments with such an approach (data not shown) did 

not lead to a better Sn value than the iterative procedure of BRAKER2. 

Completeness of BRAKER2 gene predictions. In assessments of completeness of the 

BRAKER2 predicted gene sets from BUSCO families we used a standard method offered by 

the BUSCO tools [35]. With exception of X. tropicalis, the predicted sets of genes were 

comparable to, or, even more complete than the sets of ‘BUSCO genes’ present in the 

reference genome annotations. Notably, some BUSCO families were built from species within 

the same taxonomic order (e.g. Hemiptera order of R. prolixus or Solanales order for S. 

lycopersicum). At the same time, the only protein input to BRAKER2 were proteins of the 

species outside of the corresponding taxonomic order. 

A lower level of accuracy of BRAKER2 for X. tropicalis could be explained by the 

insufficient number of homologous proteins. After the exclusion of proteins from the Anura 

taxonomic order from the OrthoDB partition, no proteins from the Amphibia taxonomic class 

were left among input proteins (Table 2). Also, a general cause for missing the ‘BUSCO 

genes’ could be inaccuracy of the de novo repeat masking. For example, we observed that 

among annotated genes missed by BRAKER2 in the P. trichocarpa genome, more than half 

were genes partially masked due to overlaps with long repeats (> 1,000 nt). 

Comparison with MAKER2 The difference in performance and accuracy  of MAKER2 and 

BRAKER2 observed in our experiments was quite large despite the attempt to find a way to 

improve the MAKER2 protocol (Table 4). The difference in outcomes could be caused by the 

differences in training, processing repeats, ways of generating and selecting external 

evidence as well as combining predictions into the final annotation. Many of these differences 

were presented in sufficient details in descriptions of the protocols used for running MAKER2 

(Supplementary Materials). 

While MAKER2 uses the ab initio self-training algorithm GeneMark-ES, BRAKER2 uses 

the recent self-training GeneMark-EP+ algorithm that integrates protein hints in training and 

prediction [26]. Comparison of protein hints generated by the two pipelines would not be 

straightforward since BRAKER2 uses hints to introns and start/stop codons while MAKER2 

uses hints to exon parts. More accurate training of AUGUSTUS was supposed to be one of 
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the important factors for elevated accuracy of BRAKER2. A simple and effective way to 

improve MAKER2 accuracy was to reduce the number of gene finders from three to two (Fig. 

S5, Tables 4, S9, S10). 

The difference in accuracy of MAKER2 and BRAKER2 could be even larger for eukaryotic 

genomes with longer length, however, such a comparison is more difficult to make due to less 

accurate annotations. Therefore, since a comprehensive comparison of the two methods is 

not a goal of this paper, the presented results are limited to the three well studied genomes. 

Last but not least, the training of gene finders is not fully automated in MAKER2. Even 

though there are recommended training protocols, users still have to execute the training 

steps manually. On the other hand, BRAKER2 can be executed with a single command, from 

start to finish. 

 

Comparison with BRAKER1. We saw that gene prediction accuracy of BRAKER2 depended 

on the volume of reference proteins. Similarly, the accuracy of BRAKER1 depends on the 

volume of the RNA-Seq data. For running BRAKER1 on genomes of A. thaliana, C. elegans 

and D. melanogaster, we sampled collections of RNA-Seq from SRA that covered the three 

genomes very well. We observed that the accuracy of BRAKER2 was consistently 

comparable or better than the one of BRAKER1 when we used the largest set of the proteins 

for each species, the relevant OrthoDB partition exempting proteins of the same species.   

     Both BRAKER1 and BRAKER2 predicted a rather low percentage of annotated alternative 

isoforms in genomes of A. thaliana, C. elegans and D. melanogaster (Table S14). This result 

is explained by the parameter setting in AUGUSTUS that ignored an RNA-Seq or protein hint 

if there was a contradicting hint supported 10 times more frequently. The reference genome 

annotations of the three species are rather inclusive in a sense of collecting lowly expressed 

isoforms. 

EuGene and other gene finders. A gene finder for eukaryotic genomes, EuGene, provides 

a mechanism for the integration of several sources of information into the gene prediction 

process. This modular tool can integrate data derived from protein spliced alignment to 

genomic DNA [47]. Unfortunately, EuGene does not provide recommendations on model 

training for the case when protein sequences are the only source of the external evidence 

[47]. For this reason, we have not used this tool in this comparative study. 

Several tools attempt accurate identification of gene structures in a novel genome by 

mapping homologous proteins (e.g. GenomeThreader [28], Scipio [30]). This approach limits 
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the gene discovery to genes of homologs present in the input protein set; the accuracy of this 

method drops significantly with increase of evolutionary distance between the two species 

[10, 45]. Another significant challenge for a number of earlier developed tools is the 

processing of large volumes of proteins. This challenge is much smaller if a tool, like GeMoMa 

[48, 49], is oriented on getting the protein information from closely related species. In addition, 

GeMoMa requires gene coordinates in reference genomes. We did not make comparisons of 

BRAKER2 to the above mentioned tools since these tools were not designed for the situation 

when the reference protein data does not contain proteins from closely related species. 

Conclusions  

BRAKER2 is a fully automated tool for gene prediction in a novel eukaryotic genome. It allows 

to leverage information accumulated in protein databases. BRAKER2 generates hints from 

millions of proteins in the course of several hours (for instance, in case of D. melanogaster, 

~2.6 millions of proteins were processed in ~3 hours). In the tests on genomes of plants, 

insects and other animals, we observed that BRAKER2 delivered state-of-the-art annotation 

accuracy and was favorably compared to already existing tools. 

 

AVAILABILITY 

BRAKER2 is available at https://github.com/Gaius-Augustus/BRAKER. All additional scripts 

and data used to generate figures and tables in this manuscript are available at 

https://github.com/gatech-genemark/BRAKER2-exp.  
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