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Abstract

We consider linear systems with unspeci�ed parameters that lie between given upper

and lower bounds. Except for a few special cases, the computation of many quantities

of interest for such systems can be performed only through an exhaustive search in

parameter space. We present a general branch and bound algorithm that implements

this search in a systematic manner and apply it to computing the minimum stability

degree.

1 Introduction

1.1 Notation

R (C) denotes the set of real (complex) numbers. For c 2 C, Re c is the real part of c. The

set of n�n matrices with real (complex) entries is denoted Rn�n (Cn�n). P T stands for the

transpose of P , and P �, the complex conjugate transpose. I denotes the identity matrix,

with size determined from context. For a matrix P 2 Rn�n (or Cn�n), �i(P ); 1 � i � n

denotes the ith eigenvalue of P (with no particular ordering). �max(P ) denotes the maximum

singular value (or spectral norm) of P , de�ned as

�max(P ) = max
1�i�n

q
�i(P �P ):
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SD(P ) denotes the stability degree of P 2 Rn�n, de�ned as

SD(P ) = � max
1�i�n

Re �i(P ):

P is stable if SD(P ) > 0, unstable otherwise.

The stability degree determines the slowest decay rate of any solution of _x = Px:

SD(P ) = inf
x02Rn

(
lim inf
t!1

� log kx(t)k

t

����� _x = Px; x(0) = x0

)
:

Thus, P is stable if and only if all solutions of _x = Px decay to zero as t!1.

1.2 A Standard Form for a Parameter-Dependent Linear System

We consider the family of linear time-invariant systems described by

_x = Ax+Bu; x(0) = x0;

y = Cx+Du;

u = �y;

(1)

where x(t) 2 Rn, u(t); y(t) 2 Rp, and A, B, C and D are real matrices of appropriate sizes.

� is a diagonal perturbation matrix. In the sequel, we will assume that � is parametrized

by a vector of parameters q = [q1; q2; : : : ; qm], and is given by

� = diag(q1I1; q2I2; : : : ; qmIm); (2)

where Ii is an identity matrix of size pi. Of course,
Pm

i pi = p. We will also assume that

q lies in a rectangle Qinit = [l1; u1] � [l2; u2]� � � � � [lm; um]. A block diagram of the above

family of linear systems is given in �gure 1.

For future reference, we de�ne

H(s) = C(sI �A)�1B +D;

which is the transfer matrix of the system from u to y. We will assume in the sequel that

the realization fA;B;C;Dg is minimal.

We may now write down a state-space realization for the closed-loop system in �gure 1:

_x = (A+B�(I �D�)�1C)x;

for all � such that (I�D�) is invertible. We will use A(q) to denote the closed-loop system

matrix, that is

A(q) = (A+B�(I �D�)�1C): (3)

Note that the entries of A(q) are rational functions of the components of the parameter

vector q. Conversely, given any Rn�n-valued function A(q) that has no singularities at

q = 0, we can �nd A, B, C, D and � such that equation (3) holds, i.e., we can cast the

system _x = A(q)x in the standard form.
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Figure 1: The standard form.

1.3 Some Important Questions

1.3.1 Well-posedness

Does the feedback system (1) make sense for all q 2 Qinit, that is, do we have

det(I �D�) 6= 0 for all q 2 Qinit; (4)

or equivalently, does the rational function A(q) have no singularities in the rectangle Qinit?

If (4) holds we say that the system is well-posed.

1.3.2 Robust stability

If the feedback system (1) is well-posed, we can ask whether it is robustly stable, that is,

whether we have

A(q) is stable for all q 2 Qinit: (5)

The robust stability question can be adapted in several ways to form a quantitative

measure of stability robustness. We now describe two of these measures.

1.3.3 Stability robustness margin

The stability margin SM of the system (1) is the largest factor by which the rectangle Qinit

can be scaled about its center, while still guaranteeing well-posedness and robust stability.

That is,

SM(A;Qinit) = supf : A((q � q0) + q0) is well-posed and stable for all q 2 Qinitg;
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where q0 is the center of the rectangle Qinit. If the stability margin is much larger than

one, we conclude that the uncertain system is not only robustly stable, but is \far away"

from instability, in the sense that much larger parameter variations are needed to destabilize

the system. Conversely if the stability margin is much smaller than one, we conclude that

the system is not robustly stable, and indeed there are parameters near the center of the

rectangle that result in an unstable system.

1.3.4 Minimum stability degree

If the parameter-dependent system (1) is well-posed, we de�ne its minimum stability degree

(MSD) as

MSD(A;Qinit) = inf
q2Qinit

SDA(q):

Of course, the parameter-dependent system (1) is robustly stable if and only if its mini-

mum stability degree is positive. Moreover, the MSD gives a guaranteed rate of decay of the

solutions x(t) of the state equations: for every value of the parameter vector q, the solutions

x(t) decay no slower than e�(MSD(A;Qinit))t. In fact,

MSD(A;Qinit) = sup

�
� : lim

t!1
x(t)e�t = 0 whenever _x = A(q)x; q 2 Qinit

�
:

Equivalently,

MSD(A;Qinit) = inf
x02Rn; q2Qinit

(
lim inf
t!1

� log kx(t)k

t

����� _x = A(q)x; x(0) = x0

)
:

1.4 Remarks

We note that the stability margin and minimum stability degree are not equivalent measures

of stability robustness. Consider for example

_x =

"
�� q

�q ��

#
x;

where � is positive and small. No matter what interval the parameter q lies in, the stability

margin is +1, and the minimum stability degree is �. Thus, for � small, this system has a

large (indeed, in�nite) SM but a small MSD.

Conversely consider

_x = �(1 + �� q)�1x;

where � is small and positive and 0 � q � 1. For this system, the SM is 1 + 2�, indicating

that the parameter dependent system is \just barely" robustly stable. On the other hand,

the MSD is 1=(1 + �). For small �, therefore, all solutions decay not much slower than e�t,

which suggests the system is quite robust.

We also note that the MSD is a continuous function of the input data (A, B, C, D, li,

ui), whereas the SM is not [BKST89, BKST90].
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1.5 Some Approaches

The questions described above have been extensively studied, and for some special cases,

e�cient methods are known. For systems with a single uncertain parameter, for example,

the Evan's root locus can be used to ascertain robust stability or determine the stability

margin or minimum stability degree [FPE86]. Less trivially, Kharitonov's theorem [Kha78,

Bar84] gives a very e�cient method for determining robust stability for the special case when

the coe�cients of the characteristic polynomial of A(q) are just the uncertain parameters

qi. Kharitonov's theorem has been extended to cover the case in which the characteristic

polynomial is an a�ne function of q [BHL89, FB89].

In [ABJ75], Anderson et al observed that the robust stability question is decidable, which

means that by evaluating a �nite number of polynomial functions of the input data (the

entries of A, B, C, D, and the li, ui), we can determine whether the system is robustly

stable. We can think of these decision procedures as generalizations of Routh's procedure for

determining stability of the characteristic polynomial of a �xed matrix. It turns out, however,

that these decision procedures involve an extraordinarily large number of polynomials, even

for small systems with few parameters. Moreover the number of polynomials that need to

be checked grows very rapidly (more than exponentially) with system size and number of

parameters.

Many methods for assessing robust stability of parameter-dependent linear systems fall

into two categories|those that underestimate robustness and those that overestimate ro-

bustness.

1.5.1 Pessimistic Methods

Pessimistic or conservative methods for robustness analysis underestimate robustness. These

methods are usually based on some analytical result that describes su�cient (but not nec-

essary) conditions for robust stability, for example, a small gain theorem, circle theorem, or

Lyapunov theorem.

When a pessimistic method is applied to the robust stability problem, it can yield the

answer \yes" (and indeed, in this case it supplies a proof or \certi�cate" supporting its

answer) or \maybe", which means that the su�cient conditions were not met. Pessimistic

methods can be used to give lower bounds on the SM or the MSD.

1.5.2 Optimistic Methods

Optimistic methods, on the other hand, overestimate robustness, often by restricting atten-

tion to a large but �nite subset of Qinit. One example is Monte Carlo methods: the minimum

stability degree of a system is approximated by the smallest stability degree of A(q) over

many values of q drawn from some distribution, often uniform, on Qinit. Another class of

optimistic methods uses (local) optimization to search for the \worst" parameter, that is,

we �nd a local minimum of the function SD(A(q)) over the rectangle Qinit.
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When an optimistic method is applied to the robust stability problem, it can yield the

answer \no" or \maybe"; in the former case, it also provides a proof that robust stability

does not hold, i.e., a parameter value that results in an unstable system. Optimistic methods

can be used to give upper bounds on the SM or the MSD.

1.5.3 Our Approach

We describe an approach that uses a pessimistic method to establish the robust stability of

the shifted system _x = (A(q)+�I)x for some �; this value of � then serves as a lower bound

for MSD(A;Qinit). An upper bound for MSD(A;Qinit) is obtained by one of the optimistic

methods above. However, these bounds may be unsatisfactory, in which case, a branch and

bound technique [LW66, Bal68] is used to systematically improve the bounds. At each stage

of the algorithm, guaranteed upper and lower bounds are available for MSD(A;Qinit).

The use of branch and bound algorithms for robustness analysis is not new. De Gaston

and Safonov [GS88] use a branch and bound algorithm for computing the SM for systems

with scalar uncertainties, i.e. , pi = 1 in our notation (though they do not explicitly mention

the term \branch and bound"). In [Sd86], this algorithm is extended to the case when the

parameters may be interrelated (see also [SP89]). In [CEYB91], Chang et al. describe a

similar branch and bound algorithm for computing the real structured singular value and

the real multivariable stability margin. Vicino et al. [VTM90] use a branch and bound

algorithm with geometric programming ideas to compute the SM. Demarco et al. [DBB90]

use a branch and bound algorithm to study stability problems arising in power systems. Our

algorithm is closer to those described in [DBB90], [GS88] and [SP89].

Before we describe the branch and bound algorithm, we make an important remark

on the complexity of MSD computation. It is now known that the fundamental question

of well-posedness (cf. equation (4)) is NP-hard in general [Roh89, Roh90, RP92, Dem92].

Roughly speaking, this means that for all known algorithms, the number of computations

required to establish well-posedness, in the worst case, increases more than polynomially

with the problem size m (which is the size of D and �). This makes it likely that any

algorithm that computes the MSD to within some �xed accuracy also performs, in the worst

case, computations that increase more than polynomially with the problem size. This is

especially interesting in light of the fact that the number of branch and bound algorithm

iterations, in the worst case, increases exponentially with m for a given accuracy (see the

appendix). Thus it is likely that no algorithm would perform substantially better than a

branch and bound algorithm on MSD computation.

In the following section, we describe the basic branch and bound algorithm in detail; we

then use it to compute the MSD in subsequent sections.

2 The branch and bound algorithm

The branch and bound algorithm [LW66, Bal68] �nds the (global) minimum of a function

f : Rm ! R over an m-dimensional rectangle Qinit.
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For a rectangle Q � Qinit we de�ne

�min(Q) = min
q2Q

f(q):

Then, the algorithm computes �min(Qinit) to within an absolute accuracy of � > 0, using two

functions �lb(Q) and �ub(Q) de�ned over the set of rectangles contained in Qinit, fQ : Q �

Qinitg (which, presumably, are easier to compute than �min(Q)). These two functions must

satisfy the following conditions.

(R1) �lb(Q) � �min(Q) � �ub(Q):

Thus, the functions �lb and �ub compute a lower and upper bound on �min(Q), re-

spectively.

(R2) As the maximum half-length of the sides of Q, denoted by size(Q), goes to zero, the

di�erence between upper and lower bounds uniformly converges to zero, i.e.,

8 � > 0 9 � > 0 8 Q � Qinit size(Q) � � =) �ub(Q)� �lb(Q) � �:

Roughly speaking, then, the bounds �lb and �ub become sharper as the rectangle

shrinks to a point.

We now describe the algorithm. We start by computing �lb(Qinit) and �ub(Qinit). If

�ub(Qinit) � �lb(Qinit) � �, the algorithm terminates. Otherwise we partition Qinit as a

union of sub-rectangles as Qinit = Q1 [ Q2 [ : : : [ QN , and compute �lb(Qi) and �ub(Qi),

i = 1; 2; :::; N . Then

min
1�i�N

�lb(Qi) � �min(Qinit) � min
1�i�N

�ub(Qi);

so we have new bounds on �min(Qinit). If the di�erence between the new bounds is less than

or equal to �, the algorithm terminates. Otherwise, the partition of Qinit is further re�ned

and the bounds updated.

If a partition Qinit = [N
i=1Qi satis�es size(Qi) � �; i = 1; 2; :::; N , then by condition (R2)

above,

min
1�i�N

�ub(Qi)� min
1�i�N

�lb(Qi) � �;

thus a \�-grid" ensures that �min(Qinit) is determined to within an absolute accuracy of �.

However, for the \�-grid", the number of rectangles forming the partition (and therefore the

number of upper and lower bound calculations) grows exponentially with 1=�. The branch

and bound algorithm applies a heuristic rule for partitioning Qinit, which in most cases leads

to a reduction of the number of calculations compared to the �-grid. The heuristic is this:

Given any partitionQinit = [N
i=1Qi that is to be re�ned, pick a rectangleQ from the partition

such that �lb(Q) = min1�i�N �lb(Qi), and split it into two halves. The rationale behind this

rule is that since we are trying to �nd the minimum of a function, we should concentrate on

the \most promising" rectangle.
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The general branch and bound algorithm

In the following description, k stands for the iteration index. Lk denotes the list of rectangles,

Lk the lower bound and Uk the upper bound for �min(Qinit), at the end of k iterations.

2.0.4 The Algorithm

k = 0;

L0 = fQinitg;

L0 = �lb(Qinit);

U0 = �ub(Qinit);

while Uk � Lk > �, f

pick Q 2 Lk such that �lb(Q) = Lk;

split Q along one of its longest edges into QI and QII ;

Lk+1 := (Lk � fQg) [ fQI ;QIIg;

Lk+1 := minQ2Lk+1
�lb(Q);

Uk+1 := minQ2Lk+1
�ub(Q);

k = k + 1;

g

The requirement that we split the chosen rectangle along a longest edge may seem mys-

terious at this point. This splitting rule controls the condition number of the rectangles in

the partition; see the appendix.

At the end of k iterations, Uk and Lk are upper and lower bounds respectively for

�min(Qinit). We prove in the appendix that since the bounds �lb(Q) and �ub(Q) satisfy

condition (R2), Uk � Lk is guaranteed to converge to zero, and therefore the branch and

bound algorithm always terminates in �nite number of steps.

It is clear that in the branching process described above, the number of rectangles grows

with the number of iterations N . Thus, as iterations proceed, the number of rectangles might

grow to be unmanageably large. However, under certain conditions, we may eliminate some

rectangles from consideration; they may be pruned since �min(Qinit) cannot be achieved in

them. This is done as follows.

Eliminate from list Lk, the rectangles Q 2 Lk that satisfy

�lb(Q) > Uk:

If a rectangle Q 2 Lk satis�es this condition, then q 2 Q ) f(q) > Uk; however the

minimum of f(q) over Qinit is guaranteed to be less then Uk, and therefore cannot be found

in Q.

Though pruning is not necessary for the algorithm to work, it does reduce storage re-

quirements. We will see in the examples we present that the algorithm often quickly prunes

a large portion Qinit, and works with only a small remaining subset.
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3 Computation of the MSD

3.1 Computation of Upper and Lower Bounds for the MSD

With the system in the standard form, we now consider the problem of computing upper and

lower bounds for the MSD. Following the notation used to describe the branch and bound

algorithm, we have f(q) = SD(A(q)) and �min(Q) = MSD(A;Q). We now need to compute

a lower bound �lb(Q) and an upper bound �ub(Q) for MSD(A;Q).

For simplicity, we �rst consider the case where Q is the cube U = [�1; 1]m. We then

demonstrate how the problem of computation of the bounds for a general rectangle Q can

be transformed into the simpler problem where Q = U .

3.1.1 Bounds for an m-dimensional cube U

A simple upper bound on the MSD over the cube U is just the stability degree of the system

evaluated at the midpoint of the cube. Thus:

�ub(U) = SD(A(0)) = SD(A): (6)

Computation of the lower bound is a little more involved; it is based on the application of

the small gain theorem (SGT) [DV75]. SGT states that the system in �gure 1 is well-posed

and robustly stable (with Q = U) if kHk1 < 1, where

kHk1 = sup
Re s>0

�max(H(s))

is the H1 norm of the transfer matrix H. Thus, we have

kHk1 < 1 =) A is well-posed over U and MSD(A;U) > 0:

To derive a better lower bound on MSD(A;U), we consider the exponentially time-

weighted system
_z = (A+ �I)z +Bu; z(0) = x0;

y = Cz +Du;

u = �y:

(7)

Note that the solutions of equations (7) and (1) are simply related by z(t) = e�tx(t). There-

fore,

MSD(A+ �I;U) = MSD(A;U)� �:

Thus we have

MSD(A;U) � �; whenever kHk1;� < 1;

where

kHk1;� = sup
Re s>��

�max(H(s))
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Figure 2: When �max(D) < 1, a bisection method can be used to compute �lb.

is the �-shifted H1 norm of H [BB91b]. Therefore, we de�ne �lb(U) as

�lb(U) = inf f� : kHk1;� � 1g : (8)

(Note that if kHk1;� � 1 for all �, then �lb(U) = �1.)

We now show how to compute �lb(U). We �rst observe that:

� kHk1;� is a nondecreasing function of �.

� kHk1;� =1 for � � SD(A).

� kHk1;� ! �max(D) as �! �1.

Obviously, �lb(U) = �1 if and only if �max(D) � 1, in which case SGT cannot even

establish well-posedness. However, �max(D) < 1 ensures that (I �D�) is invertible for all

q 2 U , and the situation shown in �gure 2 obtains.

In [BBK89, BB90], it is shown that provided �max(D) < 1 and � < SD(A),

kHk1;� < 1 ()

M� =

"
A+ �I +BR�1DTC �BR�1BT

CTS�1C �AT � �I �CTDR�1BT

#
has no imaginary eigenvalues;

where R = (I � DTD) and S = (I � DDT ). Therefore, we may compute �lb(U) via a

bisection on �, by checking whether M� has any imaginary eigenvalues.

We note that the above procedure for computing �lb(U) is an application of the \shifted

circle criterion" (Anderson and Moore [AM69]).
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Figure 3: Loop Transformation.

3.1.2 Normalization of the parameter rectangle Q

We demonstrate how, given a general rectangle Q, we may perform a loop transformation

so that the transformed system has perturbations that lie in [�1; 1]m, so that then we

may directly apply the results of the previous subsection. Figure 3 demonstrates the loop

transformation, where the symbols ~H(s) and ~� refer to the \new" system and the normalized

perturbation. (See [DV75] for a complete discussion of loop transformations.)

The loop transformation can be interpreted as translating Q to the origin, and then

scaling it to the hypercube [�1; 1]m.

K = diag(
u1 + l1

2
I1;

u2 + l2

2
I2; : : : ;

um + lm

2
Im);

F = diag(
u1 � l1

2
I1;

u2 � l2

2
I2; : : : ;

um � lm

2
Im)

are the o�set and scaling respectively that accomplish this.

It is now easily veri�ed that ~� has the form diag( ~q1I1; ~q2I2; : : : ; ~qmIm), where ~q lies in

the m-dimensional cube [�1; 1]m. It is also easily veri�ed that a state-space representation

of the loop-transformed system ~H(s) is given by f ~A; ~B; ~C; ~Dg, where

~A = A+B(I �KD)�1KC; ~B = B(I �KD)�1F 1=2;
~C = F 1=2(I �DK)�1C; ~D = F 1=2D(I �KD)�1F 1=2:

(9)

Performing this loop transformation immediately checks the well-posedness of the closed-

loop system in �gure 1 with � = K: the system is well-posed for � = K if and only if

(I �KD) is invertible. We can also check how close the closed-loop system in �gure 1 is to

being ill-posed for � = K by checking the condition number of the matrix (I �KD).

We �nally summarize the computation of the lower bound �lb(Q).
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1. Compute ~A, ~B, ~C and ~D according to equation (9).

2. Check that ~R = (I � ~DT ~D) > 0 and ~S = (I � ~D ~DT ) > 0. If either fails to hold, then

our lower bound on the MSD is �1, i.e., we cannot even be sure that the system

is well-posed over Q. Otherwise, we have established well-posedness of the feedback

system in �gure 1 for all q 2 Q.

3. If the feedback system is well-posed, then compute the lower bound as

�lb(Q) = inf

8>>>><
>>>>:
� :

"
~A+ �I � ~B ~R�1 ~DT ~C � ~B ~R�1 ~BT

~CT ~S�1 ~C � ~AT � �I + ~CT ~D ~R�1 ~BT

#

has imaginary eigenvalues

9>>>>=
>>>>;
:

We show in the appendix that the bounds that we have derived above satisfy the second

requirement (R2) listed at beginning of section 2, i.e., that the di�erence between the two

bounds converges uniformly to zero as the size of the parameter region goes to zero.

3.2 Remarks

The branch and bound algorithm outlined in x2 may now be directly used to compute the

MSD. We observe the following:

� The algorithm �rst tries to establish well-posedness, and then goes on to compute

the MSD. To see this, we note that during the kth iteration, the branch and bound

algorithm splits a rectangleQ which satis�es �lb(Q) = Lk, where Lk is the lower bound

on the MSD. Therefore, if Lk = �1, the rectangles which are split are those over which

the algorithm has been unable to establish well-posedness. And the algorithm continues

to concentrate on such rectangles until it either establishes well-posedness through

determining a lower bound for the MSD that is greater than �1 or �nds a parameter

value qill posed such that the feedback system is not well-posed for q = qill posed.

� If �lb(Q) > �1, the algorithm also provides a \certi�cate" that proves that �lb(Q)

is a lower bound: it is shown in [BBK89] (see also [HB91, Wil73]) how to construct a

quadratic positive de�nite Lyapunov function V (x) that satis�es

_V (x) � �2�lb(Q)V (x) for all x 2 R
n; q 2 Q:

This proves that SD(A(q)) � �lb(Q) for all q 2 Q. Thus the algorithm proves every

lower bound on the MSD by \paving" the parameter space with quadratic Lyapunov

functions.

� The algorithm provides a \bad" parameter value on exit: the parameter vector qbad
which achieves the upper bound on the MSD satis�es

SD(A(qbad))�MSD(A;Qinit) < �:

12



��
��
+

��
��
�q3

��
��
�q2

��
��
�q1

6

B
B
B
B
B
BBM

J
J
J
JJ]

-

�

�

�

-- RRR x3x2x1

Figure 4: Family of systems whose characteristic polynomials lie in a rectangle.

4 Some examples

4.1 A rectangle of polynomials

We �rst consider a simple problem for which an analytical result allows us to compute the

MSD exactly. We consider the system shown below in �gure 4, with parameter ranges

2 � q1 � 3; 3 � q2 � 5; �1 � q3 � 1:

Kharitonov's theorem [Kha78, Bar84] can be used to determine robust stability of this

system. An extension due to Petersen [Pet90] shows that the MSD of this system is the

minimum of the stability degrees of the eight systems where the parameters assume their

extreme values, and is �0:2757.

Figure 5 shows the convergence of the upper and lower bounds, the total percentage

pruned volume, that is, the total volume of the pruned rectangles divided by the volume

of the original rectangle, and the total number of active rectangles, that is, the number of

rectangles at the end of each iteration. We observe that after 50 iterations, 37 rectangles have

been pruned corresponding to about 30% of Qinit in volume. Moreover, for any parameter

vector lying in the pruned region, we have SD(A(q)) > U50 = �0:239 (recall that Uk is

the upper bound after k iterations). The algorithm takes about 215 iterations to return

MSD = �0:275 to within an absolute accuracy of 0:001.

13



-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0 50 100 150 200 250

B
ou

nd
s

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

Pr
un

ed
 v

ol
um

e 
(%

)

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200 250

N
o.

 o
f a

ct
iv

e 
re

ct
an

gl
es

Iterations

Figure 5: A rectangle of polynomials.
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4.2 An interval matrix problem

Many researchers have considered questions of robust stability of \interval matrices," i.e.,

matrices whose entries lie in intervals [Hei84, MK87, Xin87, Bia83, BH84, BFS88, DPA+88].

However there are no known analytical results that allow the computation of the MSD (or

indeed, the determination of robust stability) for such systems, except in special cases.

We consider the family of 3� 3 matrices lying in the \interval"

2
64 �1 [1; 4] [0:5; 1]

0 �2 [2; 3]

[�6;�3] 1 [�4;�3]

3
75 :

This can be expressed in our framework with:

A =

2
64
�1 0 0

0 �2 0

0 1 0

3
75 ; B =

2
64
1 1 0 0 0

0 0 1 0 0

0 0 0 1 1

3
75 ;

C =

2
6666664

0 1 0

0 0 1

0 0 1

1 0 0

0 0 1

3
7777775
; D =

2
6666664

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
7777775
;

and � = diag(q1; q2; q3; q4; q5), with 1 � q1 � 4, 0:5 � q2 � 1, 2 � q3 � 3, �6 � q4 � �3,

�4 � q5 � �3. The reader can easily construct the associated block diagram of the standard

form.

Figure 6 gives a plot of the upper and lower bounds on the MSD, the pruned volume

percentage and the number of active rectangles, versus iterations. We note that unlike the the

previous example, the algorithm does not prune any volume at all until about 100 iterations.

By about 1000 iterations, 82% of the volume of Qinit has been pruned and the di�erence

between the upper and lower bounds on the MSD is down to 0:0155. The algorithm takes

about a thousand more iterations to return an MSD of �0:148 to within an accuracy of

0:001.
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Figure 6: An interval matrix problem.
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4.3 Matrices with entries that are rational functions of the pa-

rameters

We consider a family of systems described by

_x =

2
6664

q2

1 + q2
2

q2

1 + q1

q1

1 + q22

3
7775x;

where 1 � q1 � 2 and 0 � q2 � 0:5.

The block diagram shown in �gure 7 shows that this family can be described in our setup

as follows.

A =

"
0 2

0 0

#
; B =

"
0 0 1 �1 0 0

�1 1 1 0 0 �1

#
;

C =

2
666666664

0 0

0 1

1 0

0 0

0 0

0 0

3
777777775
; D =

2
666666664

�1 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 �1 0 0

0 1 0 0 0 �1

0 0 0 0 1 0

3
777777775
;

and � = diag(q1; q1; q2; q2; q2; q2).

Figure 8 shows the partition of rectangles at three di�erent points during the course of

the algorithm. At the end of 200 iterations, the algorithm guarantees that MSD cannot be

achieved outside the regions shaded black. From the �gure, it seems likely that the minimum

is achieved at the lower right hand corner of the parameter region. However, our branch and

bound algorithm eventually shows that this is not the case (it �nds that the stability degree

of the system is lower than at any other vertex for the point q1 = 2:00, q2 = 0:0913). This

example demonstrates that there is no guarantee that a worst parameter lies at a vertex of

Qinit (in fact, in general, there is no guarantee that it lies even on the boundary; it is quite

easy to construct examples that show this).

Figure 9 shows the performance of the algorithm on this problem. It is interesting to

note that the algorithm, once again, prunes a large fraction of Qinit very quickly, and spends

the rest of the time re�ning the bounds on the remaining volume in parameter space. The

algorithm returns an MSD of �2:015 after about 700 iterations to within an absolute accuracy

of 0:001.
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4.4 A mechanical example

We consider the system described by

M �x+D _x +Kx = 0; (10)

where x(t) 2 Rn andM = M0+�1M1,D = D0+�2D1,K = K0+�3K1 and j�ij � 1; i = 1; 2; 3.

Thus Qinit = [�1; 1]3. This system might represent a mechanical system with mass matrix

M , damping matrix D and sti�ness matrix K, which depend on the parameters �1, �2 and

�3 respectively.

Of course, there exist many analytical results for such systems. For example, a su�cient

condition for robust stability of the system over [�1; 1]3 is that M , D and K are all pos-

itive de�nite over [�1; 1]3, which in turn, may be checked via three generalized eigenvalue

problems.

We will demonstrate the branch and bound algorithm on this problem. Our example

uses the matrices

M0 =

2
64 1 0 1

0 1 0

1 0 2

3
75 ; D0 =

2
64 3 0 0

0 3 1

0 1 3

3
75 ; K0 =

2
64 4 1 0

1 1 0

0 0 4

3
75 ;

M1 = m1m
T
1 ;D1 = d1d

T
1 and K1 = k1k

T
1 , where

m1 =

2
64 1 �1

�1 1

0 0

3
75 ; d1 =

2
64 0

1

1

3
75 ; and k1 =

2
64 1

1

0

3
75 :

In particular, rank(M1) = 2, and D1 andK1 are rank one matrices, so that the parameters

induce rank two variations in theM matrix and rank one variations in theD and K matrices.

Figure 10 shows that this problem can be cast into our framework as follows.

A =

2
666666664

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

�8 �2 4 �6 1 3

�1 �1 0 0 �3 �1

4 1 �4 3 �1 �3

3
777777775
; B =

2
666666664

0 0 0 0

0 0 0 0

0 0 0 0

2 �2 �1 2

�1 1 1 1

�1 1 1 �1

3
777777775
;

C =

2
6664

7 1 �4 6 �4 �4

�7 �1 4 �6 4 4

0 0 0 0 �1 �1

�1 �1 0 0 0 0

3
7775 ; D =

2
6664
�3 3 2 �1

3 �3 �2 1

0 0 0 0

0 0 0 0

3
7775 :

Note the � = diag(�1; �1; �2; �3), so that the �rst parameter �1 has two channels, corre-

sponding to rank(M1) = 2.

Figure 11 shows the performance of the algorithm. The algorithm returns an MSD of

0:177 after 250 iterations.
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5 Conclusions

We have described a simple branch and bound algorithm for computing the minimum stabil-

ity degree of parameter-dependent linear systems. The algorithm maintains provable upper

and lower bounds on the MSD as it proceeds: it \paves" the parameter space with quadratic

positive de�nite Lyapunov functions that prove the lower bound, and gives a parameter value

that achieves the upper bound. The upper and lower bounds are guaranteed to converge to

the MSD. As iterations progress, the algorithm prunes regions of parameter space, elimi-

nating the possibility of the MSD being achieved in these regions. Thus, the algorithm may

be terminated at any stage giving useful information about the MSD. The algorithm often

performs well, but, in the worst case, e�ectively grids the parameter space in which case the

computational e�ort will increase exponentially with the number of parameters.

There are some obvious ways in which the algorithm may be improved. The upper bound

computation may be improved through a local optimization or line search (see, for example,

[Lue84]). The lower bound computation can be improved via scaling the transfer matrix

H so as to reduce its H1 norm [Gha90, Saf86, Doy82]. At present, the best lower bound

available is from [FTD91], which requires the solution of a convex optimization problem at

each frequency. While these improvements can substantially reduce computation times, they

do not alter the worst-case combinatorial nature of the algorithm, as far as we know.

The branch and bound algorithm may be readily applied towards the computation of

many other quantities of interest for linear systems with parameters (see [BB91a, BB92]).

Appendix

In the following, we show that the branch and bound algorithm converges in a �nite number

of steps, provided the bound functions �lb(�) and �ub(�) satisfy conditions (R1) and (R2)

listed at the beginning of x2. We then show that the bounds for the MSD satisfy these

conditions.

An upper bound on the number of branch and bound iterations

The derivation of an upper bound on the number of iterations of the branch and bound

algorithm involves the following steps. We �rst show that after a large number of iterations

k, the partition Lk must contain a rectangle of small volume. We then show that this

rectangle has a small size, and this in turn implies that Uk � Lk is small.

First, we observe that the number of rectangles in the partition Lk is just k (without

pruning, which in any case does not a�ect the number of iterations). The total volume of

these rectangles is vol(Qinit), and therefore

min
Q2Lk

vol(Q) �
vol(Qinit)

k
: (11)
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Thus, after a large number of iterations, at least one rectangle in the partition has small

volume.

Next, we show that small volume implies small size for a rectangle in any partition. We

de�ne the condition number of a rectangle Q =
Q

i[li; ui] as

cond(Q) =
maxi(ui � li)

mini(ui � li)
:

We then observe that our splitting rule, which requires that we split rectangles along

a longest edge, results in a uniform bound on the condition number of rectangles in our

partition.

Lemma 1 For any k and any rectangle Q 2 Lk,

cond(Q) � maxfcond(Qinit); 2g: (12)

Proof

It is enough to show that when a rectangle Q is split into rectangles Q1 and Q2,

cond(Q1) � maxfcond(Q); 2g; cond(Q2) � maxfcond(Q); 2g:

Let �max be the maximum edge length of Q, and �min, the minimum. Then cond(Q) =

�max=�min. When Q is split into Q1 and Q2, our splitting rule requires that Q be split along

an edge of length �max. Thus, the maximum edge length of Q1 or Q2 can be no larger than

�max. Their minimum edge length could be no smaller than the minimum of �max=2 and �min,

and the result follows.

We note that there are other splitting rules that also result in a uniform bound on the

condition number of the rectangles in any partition generated. One such rule is to cycle

through the index on which we split the rectangle. If Q was formed by splitting its parent

along the ith coordinate, then when we split Q, we split it along the (i + 1)modulo m

coordinate.

We can bound the size of a rectangle Q in terms of its volume and condition number,

since

vol(Q) =
Y
i

(ui � li)

� max
i
(ui � li)

�
min
i
(ui � li)

�m�1

=
(2 size(Q))

m

cond(Q)m�1

�

 
2 size(Q)

cond(Q)

!m

:
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Thus,

size(Q) �
1

2
cond(Q)vol(Q)1=m: (13)

Combining equations (11), (12) and (13) we get

min
Q2Lk

size(Q) �
1

2
maxfcond(Qinit); 2g

 
vol(Qinit)

k

!1=m

: (14)

Thus, for large k, the partition Lk must contain a rectangle of small size.

Finally, we show that if a partition has a rectangle of small size, the upper and lower

bounds cannot be too far apart. More precisely, we show that given some � > 0, there is

some N such that UN � LN � � for some N � k.

First, let � be small enough such that if size(Q) � 2� then �ub(Q)� �lb(Q) � � (recall

requirement (R2) at the beginning of x2). Let k be large enough such that

maxfcond(Qinit); 2g

 
vol(Qinit)

k

!1=m

� 2 �: (15)

Then from equation (14), some Q 2 Lk satis�es size(Q) � �. Then the rectangle ~Q, one of

whose halves is Q, must satisfy size( ~Q) � 2�, and therefore

�ub( ~Q)� �lb( ~Q) � �:

However, since ~Q was split at some previous iteration, it must have satis�ed �lb( ~Q) = LN

for some N � k. Thus

UN � LN � �ub( ~Q)� LN � �;

or we have an upper bound on the number of branch and bound iterations.

Convergence of the bounds for the MSD

We now show that the bounds that we have derived for the MSD satisfy condition (R2) of

x2. Indeed, we will show that there exist positive real numbers M , � and � such that for

every rectangle Q � Qinit such that size(Q) < �,

�ub(Q)� �lb(Q) < M size(Q)� : (16)

We assume that the system is well-posed.

Recall that given a rectangle Q � Qinit, the lower bound �lb(Q) is

�lb(Q) = inf
n
� : k ~Hk1;� � 1

o
;

where ~H(s) has a state space representation f ~A, ~B, ~C, ~Dg and

~A = A+B(I �KD)�1KC; ~B = B(I �KD)�1F 1=2;
~C = F 1=2(I �DK)�1C; ~D = F 1=2D(I �KD)�1F 1=2:
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The upper bound �ub(Q) is just SD( ~A). Note that �max(F ) = size(Q).

Now, let �1; �2; : : : ; �l, be the distinct eigenvalues of ~A, with SD( ~A) = Re ��1 = �0 (say).

Then, we may write down a residue expansion for the transfer matrix ~H(s) as

~H(s) = F 1=2

0
@ lX

i=1

riX
j=1

Rij

(s� �i)j
+ D̂

1
A

| {z }
Ĥ(s)

F 1=2: (17)

The residue expansion above depends on the o�set K of Q; we do not show this dependence

explicitly.

Then for any � < �0 such that k ~Hk1;� � 1, we have from equation (17),

size(Q) kĤk1;� � 1;

which implies that

size(Q)

0
@ lX

i=1

riX
j=1

�max(Rij)

 1

(s� �i)j


1;�

+ �max(D̂)

1
A � 1:

Since Re �1 � Re �i; i = 1; 2; : : : ; l and �0 = �Re �1; we have

0 > �� �0 � � +Re �i; i = 1; 2; :::; l;

and therefore  1

(s� �i)j


1;�

=

����� 1

(�Re �i � �)j

����� � 1

(�0 � �)j
:

Thus,

size(Q)

0
@ lX

i=1

riX
j=1

�max(Rij)

(�0 � �)j
+ �max(D̂)

1
A � 1: (18)

If size(Q) is small enough such that

size(Q)

0
@X

i;j

(�max(Rij)) + �max(D̂)

1
A < 1=2;

then from equation (18) we must have (�0 � �) < 1 and therefore equation (18) yields

size(Q)

0
@X

i;j

(�max(Rij)) + �max(D̂)

1
A > (�0 � �)maxi ri � (�0 � �)n:

(Recall that A 2 Rn�n.) Thus,

size(Q)1=n

0
@�max(D̂) +

X
i;j

�max(Rij)

1
A
1=n

> (�0 � �);
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and therefore

size(Q)1=n

0
@�max(D̂) +

X
i;j

�max(Rij)

1
A
1=n

> (�ub(Q)� �lb(Q)):

The above equation almost gives us the quantities that we seek in order to show that the

bounds we have derived satisfy the requirement (16). However, the quantities Rij depend

on the o�set K of the rectangle under consideration, while the requirement (16) should be

satis�ed uniformly, irrespective of the K. In order to show this, we de�ne

M = max
Q�Qinit

0
@�max(D̂) +

X
i;j

�max(Rij)

1
A
1=n

:

Note that M < 1, as long as all the entries of A(q) are bounded for all q 2 Qinit, which

holds since the system is well-posed. This de�nition for M , along with � = 1=n yields

(�ub(Q)� �lb(Q)) < M size(Q)� ;

for every Q � Qinit such that size(Q) < 1=(2Mn).
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