
 Open access Journal Article DOI:10.1007/S12532-017-0122-5

Branch-and-cut for linear programs with overlapping SOS1 constraints
— Source link

Tobias Fischer, Marc E. Pfetsch

Institutions: Technische Universität Darmstadt

Published on: 19 Mar 2018 - Mathematical Programming Computation (Springer Berlin Heidelberg)

Topics: Branch and cut, Heuristics, Graph (abstract data type) and Bounded function

Related papers:

 Branching on multi-aggregated variables

 Information-theoretic approaches to branching in search

 Redundant constraints in the standard formulation for the clique partitioning problem

Mathematical Programs with Cardinality Constraints: Reformulation by Complementarity-Type Conditions and a
Regularization Method

 Polyhedral Study of Mixed Integer Sets Arising from Inventory Problems

Share this paper:

View more about this paper here: https://typeset.io/papers/branch-and-cut-for-linear-programs-with-overlapping-sos1-
13ss7z4wsp

https://typeset.io/
https://www.doi.org/10.1007/S12532-017-0122-5
https://typeset.io/papers/branch-and-cut-for-linear-programs-with-overlapping-sos1-13ss7z4wsp
https://typeset.io/authors/tobias-fischer-3xjagmnasc
https://typeset.io/authors/marc-e-pfetsch-3zfbkpmu0r
https://typeset.io/institutions/technische-universitat-darmstadt-j98k567k
https://typeset.io/journals/mathematical-programming-computation-1f2iwpl8
https://typeset.io/topics/branch-and-cut-34vq723u
https://typeset.io/topics/heuristics-3tfiftpc
https://typeset.io/topics/graph-abstract-data-type-1ax3631y
https://typeset.io/topics/bounded-function-1gdgagxh
https://typeset.io/papers/branching-on-multi-aggregated-variables-hu2hxnhcek
https://typeset.io/papers/information-theoretic-approaches-to-branching-in-search-1i6tdhdbk6
https://typeset.io/papers/redundant-constraints-in-the-standard-formulation-for-the-pp9d53rm54
https://typeset.io/papers/mathematical-programs-with-cardinality-constraints-3paze0l0i3
https://typeset.io/papers/polyhedral-study-of-mixed-integer-sets-arising-from-2rmjmi79ol
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/branch-and-cut-for-linear-programs-with-overlapping-sos1-13ss7z4wsp
https://twitter.com/intent/tweet?text=Branch-and-cut%20for%20linear%20programs%20with%20overlapping%20SOS1%20constraints&url=https://typeset.io/papers/branch-and-cut-for-linear-programs-with-overlapping-sos1-13ss7z4wsp
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/branch-and-cut-for-linear-programs-with-overlapping-sos1-13ss7z4wsp
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/branch-and-cut-for-linear-programs-with-overlapping-sos1-13ss7z4wsp
https://typeset.io/papers/branch-and-cut-for-linear-programs-with-overlapping-sos1-13ss7z4wsp

Noname manuscript No.
(will be inserted by the editor)

Branch-and-Cut for Linear Programs with

Overlapping SOS1 Constraints

Tobias Fischer · Marc E. Pfetsch

Received: date / Accepted: date

April 1, 2015

Abstract SOS1 constraints require that at most one of a given set of variables is

nonzero. In this article, we investigate a branch-and-cut algorithm to solve linear pro-

grams with SOS1 constraints. We focus on the case in which the SOS1 constraints

overlap. The corresponding conflict graph can algorithmically be exploited, for in-

stance, for improved branching rules, preprocessing, primal heuristics, and cutting

planes. In an extensive computational study, we evaluate the components of our im-

plementation on instances for three different applications. We also demonstrate the

effectiveness of this approach by comparing it to the solution of a mixed-integer pro-

gramming formulation, if the variables appearing in SOS1 constraints are bounded.

Keywords Complementarity constraints · Special ordered sets · Mixed-integer

programming · Branch-and-cut · SOS1 branching · Bipartite branching

1 Introduction

This article deals with optimization problems of the following form:

(LPCC) min
x∈Rn

c⊤x

s.t. Ax = b,

0≤ x≤ u,

xi · x j = 0 ∀{i, j} ∈ E,

Tobias Fischer

TU Darmstadt, Graduate School of Computational Engineering

Dolivostraße 15, 64293 Darmstadt, Germany

E-mail: fischer@gsc.tu-darmstadt.de

Marc E. Pfetsch

TU Darmstadt, Department of Mathematics, Research Group Optimization

Dolivostraße 15, 64293 Darmstadt, Germany

E-mail: pfetsch@mathematik.tu-darmstadt.de

mailto:fischer@gsc.tu-darmstadt.de
mailto:pfetsch@mathematik.tu-darmstadt.de

2 Tobias Fischer, Marc E. Pfetsch

where A ∈ R
m×n, b ∈ R

m, c ∈ R
n, and u ∈ (R∪ {∞})n. Moreover, E ⊆

(

V
2

)

with

V := {1, . . . ,n}. This yields the so-called conflict graph G = (V,E). We assume G to

be simple and we identify variables by their nodes in G.

The conditions xi · x j = 0, {i, j} ∈ E, are called complementarity constraints and

the above problem consequently Linear Program with Complementarity Constraints

(LPCC). Complementarity constraints form a special case of Special Ordered Set

of type 1 (SOS1) constraints, which are defined by cliques in G. Thus, for a set of

variables S⊆V forming a clique, i.e., {i, j} ∈ E for every i, j ∈ S with i 6= j, at most

one variable is allowed to be nonzero.

LPCCs are a common class of NP-hard (see, e.g., Chung [15]) mathematical

optimization problems. The classical paper of Beale and Tomlin [7] of the early

1970s showed how to treat SOS1 constraints via branching. Most mixed-integer pro-

gramming (MIP) solvers allow to handle SOS1 constraints in this way. LPCCs have

many applications. These include communication systems (see, e.g., Gupta and Ku-

mar [25]), logistics (see, e.g., Cao [14]), finance (see, e.g., Lin [38]), and scheduling

(see, e.g., Baker and Coffman [5], Dowsland [16]).

In some of the applications of (LPCC), the conflict graph G consists of disjoint

cliques, i.e., every variable i ∈ V is contained in at most one SOS1 constraint. One

example are KKT conditions of linear optimization problems with a quadratic objec-

tive, see, e.g., Hu et al. [29, 30]. In other applications, however, the conflict graph G

contains intersecting cliques, i.e., some of the SOS1 constraints overlap. In this ar-

ticle, we concentrate on this latter case. Our goal is to exploit the structure of the

conflict graph G in order to derive and implement an efficient branch-and-cut solu-

tion approach.

As one main component we discuss new branching rules (Section 2). One way

is to branch on the neighborhood of a single variable i, i.e., in one branch xi is fixed

to 0 and in the other its neighbors. This imitates standard 0/1-branching on a bi-

nary variable and can result in an unbalanced branch-and-bound tree. In contrast, the

classical SOS1 branching strategy proposed by Beale and Tomlin ensures a certain

balance between the branching nodes. We further develop this approach for the case

of overlapping SOS1 constraints by considering complete bipartite subgraphs. We

also investigate ways to strengthen the resulting subproblems by adding complemen-

tarity constraints. Finally, we consider different selection rules of different branching

possibilities.

In order to obtain an efficient solution method for (LPCC), we then present sev-

eral additional solver components. This includes presolving techniques (Section 3),

primal heuristics (Section 4), and cutting planes (Section 5). In each case, we take

ideas from the literature and adapt and extend them to the LPCC case.

We will demonstrate computationally in Section 6.2 that this yields an efficient

branch-and-cut solver, which we implemented using SCIP [2, 43]. We first introduce

three applications of “overlapping” LPCCs and then examine the effectiveness of our

solver for these applications.

It is important to note that if the variable bounds u are finite, (LPCC) can be refor-

mulated as an MIP with the help of auxiliary binary variables, see Section 1.2. SOS1

constraints are then turned into set packing constraints and the wealth of solution

techniques for MIPs can be used. Thus, ideas for MIPs with set packing constraints

Branch-and-Cut for Linear Programs with Overlapping SOS1 Constraints 3

can be carried over to (LPCC) and conversely. Note, however, that the resulting MIP

contains up to twice as many variables as (LPCC) and its effectiveness will depend

on the size of the variable bounds and the instance. We demonstrate by computational

experiments that for the three applications considered in this article, our branch-and-

cut solver outperforms CPLEX 12.6.

1.1 Literature Overview

Beale and Tomlin [7] were the first to explicitly introduce SOS1 constraints and

SOS1 branching, which allows to handle SOS1 constraints in a branch-and-bound

search; this was first implemented in the programming system UMPIRE (see Forrest

et al. [22]). Much later, de Farias et al. [17–19] analyzed the polyhedral properties

of “nonoverlapping” LPCCs and extended the approach of Beale and Tomlin to a

branch-and-cut scheme with promising computational results. Their cutting planes

are derived by a sequential lifting procedure of cover inequalities.

A further class of cutting planes are disjunctive cuts, which can be directly gen-

erated from the simplex tableau. Disjunctive cuts for SOS1 constraints have been

investigated in the literature since the 1970s (see Owen [40]). In recent years, their ef-

fectiveness was confirmed by computational results: Audet et al. [4] incorporated dis-

junctive cuts in a branch-and-cut algorithm for bilevel problems. In addition, Júdice

et al. [37] tested them on several problem classes such as bilevel or bilinear problems,

which were reformulated as LPCCs using KKT-conditions.

Moreover, complementarity conditions arising from KKT conditions for linear

problems with quadratic objective are the subject of Hu et al. [29, 30], who proposed

a Benders type approach for solving the resulting LPCC. In their algorithm, they iter-

atively generate cutting planes, so-called point and ray cuts, which express feasibility

and objective bound requirements in a combinatorial way.

LPCCs also form a special case of mathematical programs with equilibrium con-

straints (MPECs), which are often investigated in the context of Nash equilibria.

There are many articles investigating solution approaches for finding local optima of

MPECs and corresponding constraint qualifications; in the context of (LPCC) these

methods provide primal heuristics. As one example, we mention the article of Ho-

heisel et al. [28] and the references therein.

The feasibility problems corresponding to LPCCs are also strongly related to the

linear complementarity problem (LCP), see Murty [39] for an extensive study. Here,

for a given square matrix M ∈ R
n×n and a vector q ∈ R

n, the goal is to find some

vector x ∈R
n
+ satisfying the orthogonality constraint x⊥ (q+M x) and q+M x≥ 0.

Introducing an auxiliary vector w = q+Mx, these orthogonality constraints can be

enforced via complementarity constraints xi ·wi = 0, i ∈V .

All of the references mentioned so far focus on nonoverlapping SOS1 constraints.

For the first time, probably Benichou et al. [8] explicitly mentioned the appearance

of overlapping SOS1 constraints. Later, Hummeltenberg [31] investigated a reformu-

lation of the “overlapping” problem description with auxiliary binary variables, such

that all the resulting SOS1 constraints are disjoint under certain conditions.

4 Tobias Fischer, Marc E. Pfetsch

To the best of our knowledge, the direct treatment of overlapping SOS1 con-

straints has been widely unexplored so far.

1.2 Mixed-Integer Programming Reformulation

In this section, we discuss the relation of (LPCC) to its reformulation as a mixed-

integer program.

Before we start, we observe that the requirement of nonnegativity of the vari-

ables in (LPCC) is not restrictive: Free variables xi can be split into two nonnegative

variables x+i and x−i with xi = x+i − x−i . Complementarity constraints involving xi are

replaced by two constraints with xi being replaced by x+i and x−i . Moreover, we add

the complementarity constraint x+i · x
−
i = 0. Furthermore, we may assume that the

upper bounds ui, i ∈ V , of the nonnegative variables are nonzero, since otherwise

variables can be removed from the model.

If all bounds ui, i ∈V , are finite, (LPCC) can be reformulated as a Mixed-Integer

Program with Packing Constraints (MIPPC):

(MIPPC) min
x∈Rn

c⊤x

s.t. Ax = b,

0≤ xi ≤ ui yi ∀ i ∈V,

yi + y j ≤ 1 ∀{i, j} ∈ E,

y ∈ {0,1}n.

Note that if the bounds are infinite, complementarity constraints are not MIP-repre-

sentable in sense of Jersolow [36].

Using the (MIPPC) reformulation has several advantages and disadvantages: On

the positive side, standard MIP-solving techniques can be used to solve (MIPPC).

Moreover, the LP-relaxation of (MIPPC) contains a representation of the comple-

mentarity constraints via the packing constraints yi + y j ≤ 1; this is different for the

LP-relaxation of (LPCC), which is obtained by neglecting the complementarity con-

straints. On the other hand, (MIPPC) contains up to twice the number of variables.

Moreover, there exist feasible points (x,y) of the LP-relaxation of (MIPPC) such

that x is feasible for (LPCC), but y is not integral. Furthermore, if the bounds u are

large, the resulting LP-relaxation turns out to be weak (the typical “big-M” behav-

ior). Thus, this might lead to an increased number of branch-and-bound nodes. We

will return to the comparison of (MIPPC) and (LPCC) in the computational results in

Section 6.2.

In order to strengthen the weak LP-relaxation of (LPCC), consider an SOS1 con-

straint on variables S⊆V , denoted by SOS1(S). Thus, we have xi ·x j = 0 for every i,

j ∈ S, i 6= j. If u j < ∞ for all j ∈ S, we can add a bound inequality of the form

∑
j∈S

x j

u j

≤ 1.

Branch-and-Cut for Linear Programs with Overlapping SOS1 Constraints 5

This inequality arises from the projection of the clique inequality

∑
j∈S

y j ≤ 1

for (MIPPC) to the x-variables.

The benefit of clique inequalities in comparison to bound inequalities is that they

have 0/1 coefficients. However, as a result of the before mentioned aspects, handling

(LPCC) can compensate this circumstance in many cases. Moreover, unlike clique

inequalities, a bound inequality may be further strengthened if every variable x j, for

j ∈ S, is restricted by a variable bound constraint x j ≤ u j zi, where zi is some variable

of (LPCC) with 0≤ zi ≤ 1. The resulting strengthened bound inequality is

∑
j∈S

x j

u j

≤ zi. (1.1)

Such variable bound constraints often occur if a certain event is time-limited. One

example – routing in multi-hop wireless networks – will be explained in detail in

Section 6.1.1, compare Inequality (6.3).

We will use the following notation: For i ∈ V , define Γ (i) as the neighbors of i

in G. Note that i /∈ Γ (i). Furthermore, let Γ (M) :=
⋃

i∈M Γ (i) for a subset M ⊆ V .

The support of a vector x ∈ Rn is supp(x) = {i ∈ V : xi 6= 0}. By xM we denote the

subvector of x restricted to entries in a set M ⊆V .

2 Branching Approaches

In this section, we discuss branching rules in a branch-and-bound approach for solv-

ing (LPCC). That is, we define ways how to subdivide a given subproblem into two

further subproblems Π1 and Π2. We say a branching rule is correct if the feasible

area of the corresponding subproblem is covered by the feasible areas of Π1 and Π2.

Ideally Π1 and Π2 should be disjoint or, at least, tend to disjointness.

All presented branching rules are based on selecting two sets C1, C2 ⊆ V and to

add domain fixings x j = 0 for every j ∈ C1 on the left branch and x j = 0 for every

j ∈C2 on the right one. Using the sets C1 and C2 defines a branching rule that splits

some of the original SOS1 constraints into two smaller ones. Note that this branching

rule is correct if {i, j} ∈ E for every (i, j) ∈C1×C2. Moreover, the feasible areas of

the left and the right branching node are not necessarily disjoint, since 0 is feasible

for both if it is feasible for Ax = b. In fact, there might exist points with xC1
= 0 and

xC2
= 0, which are thus feasible for both nodes.

In the following, we present three branching rules based on this idea and two fur-

ther branching variations dealing especially with the disjointness aspect. Throughout

this section, we let x∗ be the current LP solution and we consider G as the local con-

flict graph which is induced by the variables not fixed to 0. Furthermore, we require

that propagation has already been performed, i.e., if it is known that some variable xi

has to be nonzero for the current branching node, then we assume that all the variables

x j, j ∈ Γ (i), are locally fixed to zero (and removed from G).

6 Tobias Fischer, Marc E. Pfetsch

2.1 SOS1 Branching

We start with reviewing the SOS1 branching approach of Beale and Tomlin [7], which

is predominantly used for solving optimization problems with SOS1 constraints.

Let SOS1({1, . . . ,s}) be an SOS1 constraint that is violated by the current LP

solution x∗. For SOS1 branching, a problem specific ordering of the variables is used.

This ordering arises from predefined weights w∈Rs and we assume that the variables

x1, . . . ,xs are increasingly sorted according to w1 < w2 < · · · < ws. If no weights are

specified beforehand, one usually takes w j = j, j ∈ {1, . . . ,s}.
The task is now to split the set {1, . . . ,s} into two disjoint parts C1 = {1, . . . ,r}

and C2 = {r + 1, . . . ,s} for some index r with 1 ≤ r ≤ s− 1. To achieve a suitable

balance, this is done by choosing r such that wr ≤ w̄ < wr+1 for the average weight

w̄ :=
∑

s
j=1 w j · x

∗
j

∑
s
j=1 x∗j

.

Note that the denominator is nonzero by assumption.

2.2 Neighborhood Branching

A further branching rule arises from the neighborhood of some variable i ∈ V with

x∗i > 0 such that at least one complementarity constraint {i, j} ∈ E is violated. In this

case, we simply use C1 = {i} and C2 = Γ (i). Note that x∗C2
6= 0.

This branching rule may result in an unbalanced branching tree, since on the left

branch we fix only one variable to zero and may fix multiple variables in the right

branch. Nevertheless, our computational results in Section 6.2 show that this rule is

effective for some problem instances.

Observe that neighborhood branching corresponds to standard 0/1-branching on

the binary variables of (MIPPC): Using the big-M and packing constraints, branching

on variable yi, i ∈V , results in xi = 0 in one branch and x j = 0, j ∈ Γ (i), in the other;

i.e., the same outcome as with neighborhood branching.

2.3 Bipartite Branching

The branching rule we describe in the following is especially designed to obtain a

more balanced search tree for LPCCs with overlapping SOS1 constraints. We branch

using complete bipartite subgraphs of G associated to some node partition C1 ∪̇C2,

i.e., we have {i, j} ∈ E for every (i, j) ∈C1×C2. It follows that this branching rule

established by C1 and C2 is correct. Note that SOS1 and neighborhood branching

represent special forms of bipartite branching, since the sets C1 and C2 define the

parts of a complete bipartite subgraph of G in these cases.

Clearly, C1 and C2 should be as large as possible and of about equal size in order

to obtain an effective and balanced branching rule. Note that finding a maximum

balanced complete bipartite subgraph is NP-hard (see Garey and Johnson [23]). In

Branch-and-Cut for Linear Programs with Overlapping SOS1 Constraints 7

i=1

2

3

4

5

6

M

Fig. 2.1: Illustration of bipartite branching

order to determine the sets C1 and C2 in practice, we proceed in the following way:

Given some node i ∈V , we select a nonempty subset M ⊆ Γ (i) and define the sets

C1 :=
⋂

j∈M

Γ (j), C2 :=
⋂

j∈C1

Γ (j).

An example is shown in Figure 2.1. Here, the choice i = 1 and M = {2,3} leads to

C1 = {1,5,6} and C2 = {2,3,4}. Note that the presence of the gray edge {3,4} has

no relevance, since we are only interested in complete bipartite subgraphs, which are

not necessarily induced.

The sets C1 and C2 have the following properties:

Lemma 1 For i ∈V , let M ⊆ Γ (i), M 6= /0. Then C1 and C2 satisfy

(i) C1 6= /0 and C2 6= /0,

(ii) C1 =
⋂

j∈C2
Γ (j), and

(iii) the bipartite graph B with node partition C1 ∪̇C2 is a maximal complete bipartite

subgraph of G.

Proof Statement (i) follows from i ∈ C1 and /0 6= M ⊆ C2. For the proof of (ii), we

observe that C1 ⊆ Γ (j) for every j ∈ C2 by definition of C2. This implies C1 ⊆
⋂

j∈C2
Γ (j). Because of M ⊆C2, we get the other inclusion C1 ⊇

⋂

j∈C2
Γ (j).

Finally, we show (iii): As seen above C1 ⊆ Γ (j) for every j ∈ C2. Analogously

one can see that C2 ⊆ Γ (j) for every j ∈C1. Since, by assumption, there are no self-

loops in G, we also know that C1∩C2 = /0. Therefore, the graph B with node partition

C1 ∪̇ C2 is a complete bipartite subgraph in G. By the presentation of C1 in (ii) and

the definition of C2, it is easy to see that this subgraph is maximal. ⊓⊔

We observe that the larger C1 is, the smaller C2 becomes, and vice versa. This

shows that the set M should be carefully selected. In practice, it will be hard to estab-

lish which choice of M results in a good balance between C1 and C2. Nevertheless, in

preliminary tests we have made good experience using

M = { j ∈ Γ (i) : x∗j 6= 0}

8 Tobias Fischer, Marc E. Pfetsch

for some given i ∈V if the resulting sets C1 and C2 satisfy

|{ j ∈C1 : x∗j 6= 0}|> 1, |{ j ∈C2 : x∗j 6= 0}|> 1.

It the above condition is not fulfilled, we use M =Γ (i). Note that this often yields

neighborhood branching (C1 = {i} and C2 = Γ (i)). However, C1) {i} is possible.

2.4 Further Branching Variations

As mentioned before, the branching rules above have the undesired property that

their two branching nodes are not necessarily disjoint, since both of them contain

feasible points with xC1
= 0 ∧ xC2

= 0. In the following, we present further branching

variations dealing with this issue.

2.4.1 Nonzero Fixing

If neighborhood branching is used, i.e., C1 = {i} and C2 = Γ (i) for some i ∈ V , we

can additionally fix the lower bound of xi to “nonzero” for the right branching node.

In practice, this can be done by adding xi ≥ ε , where ε is the feasibility tolerance

(e.g., ε = 10−6 in SCIP). This excludes points x with xC1
= 0 ∧ xC2

= 0 from the

right node. Of course, nonzero fixing has only a small effect on the solution and

objective function. However, it sometimes may lead to an infeasible solution area

such that nodes can be pruned from the branch-and-bound tree.

2.4.2 Adding Complementarity Constraints

In addition to variable domain fixings, it is sometimes also possible to add new com-

plementarity constraints to the branching nodes. This results in a nonstatic conflict

graph, which may change dynamically with every branching node.

Applying one of the above mentioned branching rules to the subgraph induced

by the variables not fixed to 0, we get nonempty sets C1 and C2, leading to variable

domain fixings for the left and the right branching node, respectively. The following

lemma shows how the conflict graph of the left branching node can be modified

locally.

Lemma 2 Let B1,B2 ⊆V be sets with

(i) (B1∪B2)∩C1 = /0,

(ii) (B1∪B2)∩C2 = /0,

(iii) C2 ⊆ Γ (i)∪Γ (j) for every (i, j) ∈ B1×B2.

Then for every (i, j) ∈ B1×B2 (with {i, j} /∈ E), we can add the complementarity

constraint xi · x j = 0 to the left branching node.

Proof The statement is obviously correct if B1 = /0 or B2 = /0. Thus, we assume that

B1 6= /0 and B2 6= /0. Let (i, j)∈ B1×B2, and let x̄ be a feasible point for the left branch

with x̄i 6= 0 and x̄ j 6= 0; this is possible by (i). Due to (ii) and (iii), we get x̄C2
= 0.

Therefore, x̄ is feasible for the right branching node as well. Thus, the constraint

xi · x j = 0 can be added to the left branching node. ⊓⊔

Branch-and-Cut for Linear Programs with Overlapping SOS1 Constraints 9

Algorithm 1: Computing sets B1, B2 for adding complementarity constraints

Input: sets C1,C2 ⊆V with {i, j} ∈ E for every (i, j) ∈C1×C2

Output: sets B1,B2 ⊆V satisfying (i)–(iii) of Lemma 2

1 R← Γ (C2)\ (C1 ∪C2);
2 if R = /0 then

3 B1← /0, B2← /0;

4 else

5 select ℓ ∈ R;

6 N1←C2 ∩Γ (ℓ);
7 N2←C2 \N1;

8 B2←
⋂

j∈N2

Γ (j)\ (C1 ∪C2);

9 M2←C2 ∩
⋂

j∈B2

Γ (j);

10 M1←C2 \M2;

11 B1←
⋂

j∈M1

Γ (j)\ (C1 ∪C2);

Remark 1 An analogous statement to Lemma 2 holds for the right branching node.

However, note that adding constraints to both nodes needs special care, see [21].

Remark 2 A natural question is whether Lemma 2 gives a complete characterization

of all the complementarity constraints that may be added to the branching nodes if

the sets C1 and C2 form the partition of a maximal complete bipartite subgraph of the

current conflict graph. This is studied further in [21].

The sets B1, B2 can be computed as indicated in Algorithm 1.

Theorem 1 Algorithm 1 computes sets B1,B2 ⊆V satisfying (i)–(iii) of Lemma 2.

Proof If R = Γ (C2) \ (C1 ∪C2) in Step 1 is not empty, then ℓ in Step 5 exists and

has at least one neighbor in C2. Thus, the set N1 =C2∩Γ (ℓ) in Step 6 is nonempty.

If N2 = C2 \N1 = /0, then B2 = /0 would be the output of the algorithm. In this case,

we know that C1 ∪̇ C2 does not define a maximal partition of a complete bipartite

subgraph, since an even larger one exits: (C1∪{ℓ}) ∪̇C2.

Otherwise, if B2 6= /0, then the reverse conclusion shows that M2 ⊇ N2 6= /0 in

Step 9, and by Lemma 1, the sets B2 and M2 define the partition of a maximal

complete bipartite subgraph of the induced subgraph G[C2 ∪̇ R]. Similarly, if M1 =
C2 \M2 6= /0 in Step 10, we see that B1 in Step 11 is nonempty due to ℓ ∈ B1 and

that M1 ∪̇ B1 defines the partition of a complete bipartite subgraph (only maximal

w.r.t. B1) of the induced subgraph G[C2 ∪̇ R]. The assertion now follows by construc-

tion of B1 and B2, since C2 = M1∪M2. ⊓⊔

Remark 3 Clearly, Algorithm 1 may be executed several times with different choices

of the node ℓ in Step 5. If one executes it for every ℓ ∈ R, one may set B1 = {ℓ} and

stop already after Step 8.

For an illustration, we consider the graph in Figure 2.2. Let the input of Algo-

rithm 1 be C1 = {1,2} and C2 = {3,4,5}. We obtain R = {6,7,8} in Step 1. Suppose

we select ℓ = 7 in Step 5, which has the two neighbors 4 and 5 in C2. This yields

10 Tobias Fischer, Marc E. Pfetsch

1

2

3

4

5

6

ℓ=7

8

C2

C1

R

Fig. 2.2: Illustration of Algorithm 1

the set N1 = {4,5} in Step 6. Then N2 = {3}. After the computation of B2 = {6} in

Step 8, the sets M1 and M2 are {5} and {3,4}, respectively. Finally, the algorithm

returns B1 = {7,8} and B2 = {6}. Subsequently, the complementarity constraints

x6 · x7 = 0 and x6 · x8 = 0 may be added to the left branching node.

We use Algorithm 1 as a subroutine of our branching procedure. The computed

sets B1 and B2 allow to add the complementarity constraint xi ·x j = 0 for each (i, j) in

B1×B2 to the left branching node. Clearly, a bound inequality derived from a clique

S with {i, j} ⊆ S can be added as well. Observe that B1 ∩B2 6= /0 is possible if C1 is

not maximal. In this case, it follows that xi = 0 for all i ∈ B1∩B2.

Switching from one branching node to another may be very time consuming when

a large number of local constraints is present. Therefore, we only add local constraints

with sufficiently large violation of the current LP solution: xi · x j = 0 is added if

x∗i /ui + x∗j/u j > 0.4 and a bound inequality if it is violated by more than 0.5. If no

complementarity constraints were added to the left node, one may check whether it is

possible to add complementarity constraints to the right one by repeating Algorithm 1

in an analogue manner. We do not add complementarity constraints to both nodes,

since this only would be possible with limitations, as mentioned in Remark 1. Of

course, the above operations should always be performed on the locally valid conflict

graph.

2.5 Selection Rules

Branching is performed if the LP solution violates at least one complementarity con-

straint. Since after each branching step at least one variable is additionally fixed to 0,

the branch-and-bound tree has a maximal depth of n and therefore at most 2n nodes.

This proves finite termination of the algorithm.

A selection rule defines on which system of variables or constraints to branch

next. The general goal is to find a fast strategy that tends to result in a small number

of total branching nodes. In the following, we present two different selection rules

which we used in our implementation.

Branch-and-Cut for Linear Programs with Overlapping SOS1 Constraints 11

2.5.1 Most Infeasible Branching

Depending on the used branching rule, the most infeasible rule simply chooses the

sets C1 and C2 with largest value

ρ(C1,C2) = ∑
i∈C1

∑
j∈C2

x∗i · x
∗
j . (2.1)

This value tries to capture the amount by which the current LP-relaxation solution

would be changed by branching on C1 and C2; the hope is that this leads to a signifi-

cant change of the current dual bound.

2.5.2 Strong branching

We also generalize the idea of strong branching (see, e.g., Achterberg et al. [3]). Here,

the LP-relaxation is partially solved for each branching decision among a candidate

list. Then the decision with best progress is chosen.

For our purposes, we decided to use the following strong branching settings. Let d

be the depth of the current branching node. The maximal size of the candidate list is

κ =











max(10,⌊log10(n)⌋), if d ≤ 10,

max(5,⌊(log10(n))
0.7⌋), if 10 < d ≤ 20,

1, else.

Clearly, if κ = 1, no LP needs to be solved.

The members of the candidate list are determined with the help of the measure

in (2.1) preferring largest values. For each candidate, we tentatively branch by cre-

ating the two subproblems and perform a limited number of dual simplex iterations

on each; in our implementation, we use a limit of 10,000 iterations. In this way, we

can estimate the change ∆1 and ∆2 in the objective function w.r.t. the left and the

right branching node, respectively. We also tested an adaptive iteration rule like im-

plemented in SCIP. However, this did not improve the CPU time. We follow Achter-

berg [2] and select a branching decision with largest score value

score(∆1,∆2) = max(∆1,ε) ·max(∆2,ε),

where ε is some small positive number (we use the feasibility tolerance in our imple-

mentation).

3 Presolving

The purpose of presolving techniques is to simplify the formulation of a given opti-

mization problem with the goal to speed up the solution process. This can lead both to

reduced memory requirements and a tightened LP-relaxation. In the context of SOS1

constraints, the handling of cliques is of particular importance.

Let S be the initial set of cliques in G, such that each edge of G is contained in at

least one of these cliques (S = E is possible). Since S may include non-maximal or

12 Tobias Fischer, Marc E. Pfetsch

duplicate cliques, we perform a clique extension procedure as follows: In descending

order of their size, we check for each clique S ∈ S whether it is a subset of any of

the already examined ones. If this is the case, the corresponding SOS1 constraint can

be deleted from (LPCC). Otherwise, we perform k iterations of the Bron-Kerbosch

Algorithm (see [13]), which enumerates with each iteration one different maximal

clique that contains S. The resulting SOS1 constraints can then be added to the prob-

lem description. Besides the memory aspect, a positive effect of clique extension is

that it may improve the efficiency of SOS1 branching, and also a special class of

disjunctive cuts that originate from cliques (see Section 5.1).

Preliminary tests indicated that k = 1 is an adequate choice for the instances we

considered. For larger k, the large total number of SOS1 constraints compensates

the positive effects of additional cliques. Moreover, the cliques the Bron-Kerbosch

Algorithm computes mostly differ in only a few components.

Furthermore, standard presolving techniques are applied, see, e.g., [1,42]. In par-

ticular, strengthening variable bounds improves bound inequalities.

4 Primal Heuristics

During the branch-and-bound process we make use of several primal heuristics that

attempt to derive a good feasible solution from the current LP solution x∗. Primal

heuristics can considerably speed up the entire solution process by allowing for prun-

ing of nodes in the enumeration tree. In the following, we present three diving heuris-

tics, one simple variable fixing heuristic based on independent sets, and one improve-

ment heuristic.

4.1 Diving Heuristics

Starting from the current LP solution, diving heuristics iteratively choose a branching

decision and resolve the LP (see, e.g., Achterberg [1], Bonami and Gonçalves [11]).

In other words, one examines a single root-to-leaf path of the branch-and-bound tree;

sometimes limited backtracking is allowed as well.

In the context of (LPCC), we restrict attention to fixing variables to 0, without

backtracking. We present three rules to select variables to be fixed, resulting in three

different diving heuristics, which we call violation diving, objective shift diving, and

fractional diving.

For a given i ∈V with x∗i 6= 0, let ν(i) = |supp(x∗Γ (i))| denote the number of vari-

ables that violate a complementarity constraint together with i for the current LP

solution. In the following, we require that the upper bounds u are finite. In practice,

this always can be ensured by using min{ui,K} as upper bounds, where K ∈ R is

some very large value.

Violation diving Select a variable i with x∗i 6= 0 and ν(i)≥ 1 that minimizes

ωi :=
1

ν(i)
·

x∗i

∑ j∈Γ (i) x∗j
. (4.1)

Branch-and-Cut for Linear Programs with Overlapping SOS1 Constraints 13

Note that ∑ j∈Γ (i) x∗j 6= 0 by assumption. The second term of (4.1) describes the viola-

tion ratio, i.e., the ratio of the change of ∑ j∈V x∗j due to fixing xi to zero and fixing all

the neighboring variables of xi to zero. Additionally, we scale by the inverse of ν(i)
in order to prefer variables that violate many complementarity constraints together

with their neighbors.

Objective shift diving Let ε > 0. Select a variable i with x∗i 6= 0 and ν(i) ≥ 1 that

minimizes

ωi :=
1

ν(i)
·

|ci x∗i |+ ε

|∑ j∈Γ (i) c j x∗j |+ ε
. (4.2)

Here we again scale by the inverse of ν(i).

Fractional diving For this selection rule, we use the ratio x∗i /ui for each variable i;

this amounts to the values of the y-variables of (MIPPC) in an LP solution. We also

allow that xi has a variable upper bound ui zi for some variable zi with zi ≥ 0. Thus,

the resulting weights are either

ωi =
x∗i
ui

or ωi =
x∗i

ui z∗i
. (4.3)

We then choose some variable i with ν(i)≥ 1 that has maximum weight (4.3), and fix

all neighboring variables x j, j ∈Γ (i), to zero. The idea is that a large weight (tending

to be one) often indicates that the neighboring variables will be zero in a feasible

solution. In contrast, our experience has shown that a small weight (4.3) usually does

not provide an appropriate indication for fixing variable xi itself to zero and not its

neighbors. This can be explained by the fact that the upper bounds ui, i ∈V , are often

quite large.

After the selection of the variable(s), we fix it (them) to zero, resolve the LP, and

iterate further until the LP gets infeasible or we obtain a solution that is feasible for

the original problem.

4.2 Maximum Weighted Independent Set Fixing

The next heuristic is based on independent sets in G, i.e., subsets of the nodes V for

which no two nodes are adjacent. For an independent set I⊆V , consider the following

linear program

ξ (I) := min
x∈Rn

c⊤x

s.t. Ax = b,

xi = 0 ∀ i /∈ I,

0≤ x≤ u.

(4.4)

In fact, every feasible solution of (4.4) is a feasible solution of (LPCC). Thus, using

the LP solution x∗ of (LPCC), the goal is to find some independent set I for which ξ (I)

14 Tobias Fischer, Marc E. Pfetsch

gives an improvement of the current primal bound. To find I, we solve the maximum

weighted independent set (MWIS) problem

max
y∈{0,1}V

{ω⊤ y : yi + y j ≤ 1, {i, j} ∈ E}. (4.5)

The weights ωi ∈R, i ∈V , can be chosen by all three options (4.1)–(4.3). We use the

weights in (4.3), since this produced the best results.

The computation of the optimal solution of (4.5) is NP-hard in general. It is thus

advisable to use a heuristic. In our implementation we apply the branch-and-bound

algorithm tclique that is a subroutine of SCIP (see also Borndörfer and Kormos [12]).

Limiting the number of branching nodes turns it into a heuristic. Then ξ (I) is solved

for the resulting independent set I. This possibly leads to a good feasible solution of

(LPCC).

4.3 Local Search

In order to improve feasible solutions, we use the following local search procedure.

Let I0 be some initial independent set we get, for instance, by solving (4.5) or a

diving-based heuristic. In case I0 is not maximal, we greedily extend it to a maximal

independent set. Starting from I0, we then move iteratively from one maximal inde-

pendent set Ik to another Ik+1. For the selection of Ik+1, we scan a set of promising

candidates C(Ik). If possible, we choose one that leads to the best improvement w.r.t.

the problem ξ (Ik+1) defined in (4.4). This process is continued until no improvement

occurs anymore. Note that in each iteration (4.4) has to be solved several times.

It remains to specify an adequate candidate set C(Ik). Let ω be the weights defined

in (4.1). For an independent set I ⊂ V and i ∈ V \ I, we consider I∗ :=C(I, i) to be a

possible candidate containing i if it is computed according to the following rule:

1. Initialize I∗← (I \Γ (i))∪{i}.
2. Compute L := {ℓ ∈ V : I∗ ∩ ({ℓ}∪Γ (ℓ)) = /0}, the set of possible extensions

for I∗.

3. If L = /0, then I∗ is a maximal independent set and we stop. Otherwise, select the

smallest (for uniqueness) index ℓ ∈ L with ωℓ = max j∈L ω j. Set I∗ ← I∗ ∪{ℓ}
and go to Step 2.

As candidate set, we choose

C(Ik) := {C(Ik, i) : i ∈V \ Ik, ωi ≥ α}

for some α ≥ 0. In our implementation, α is chosen such that the size of C(Ik) is

restricted to 40.

5 Cutting Planes

To tighten the LP-relaxation of (LPCC), we adapt several classes of cutting planes

known from the literature to (LPCC) with overlapping SOS1 constraints. All of them

Branch-and-Cut for Linear Programs with Overlapping SOS1 Constraints 15

might as well be used for (MIPPC), for which some can even be equivalently stated

with 0/1-coefficients. This is one advantage of (MIPPC) in comparison to (LPCC),

for which the coefficients often are real valued. However, as already mentioned, we

will substantiate with our computational results in Section 6.2 that using (LPCC) can

be beneficial in many cases.

5.1 Disjunctive Cuts

We first recall different variants of disjunctive cuts, taking special structures of the

problem description into account. In their simplest form, i.e., for edge disjunctions

xi≤ 0∨ x j ≤ 0 with {i, j}∈E, they already appeared in the early 1970s in Owen [40].

Later, de Farias et al. [18] mentioned in passing the idea to generate disjunctive cuts

for more general disjunctions derived from cliques in G. As far as we know, dis-

junctive cuts until now have been tested only for edge disjunctions of conflict graphs

consisting of a matching (see, e.g., Audet et al. [4] and Júdice et al. [37]).

Let x∗ a feasible basic solution of the LP-relaxation of (LPCC)

min{c⊤x : Ax = b, 0≤ x≤ u}.

We denote by B and N the indices of its basic and nonbasic variables, respectively.

To simplify the presentation, we assume that all nonbasic variables are at their lower

bound 0; the general case can be handled by variable complementation, i.e., replacing

xi by ui− xi (see Júdice et al. [37] for further information). In terms of the simplex

tableau, each feasible point x satisfies

xB(k) = ak0− ∑
ν∈N

akν xν ∀k ∈ {1, . . . ,m}, (5.1)

where B(k) is the kth entry of B, the coefficients akν are entries of the matrix A−1
B A,

and ak0 = (A−1
B b)k.

5.1.1 Disjunctive Cuts on Two-Term Disjunctions

If x∗ satisfies all complementarity constraints, then it is feasible for (LPCC). Other-

wise, there exist i, k ∈ {1, . . . ,m}, i 6= k, with {B(i),B(k)} ∈ E and x∗
B(i), x∗

B(k) both

positive. We consider the two term disjunction

xB(i) = ai0− ∑
ν∈N

aiν xν ≤ 0 ∨ xB(k) = ak0− ∑
ν∈N

akν xν ≤ 0,

which is a reformulation of xB(i) · xB(k) = 0 and thus satisfied by each feasible point.

Since ar0 = x∗r > 0 for r = i,k, one can observe that the disjunctive cut

∑
ν∈N

max

{

aiν

ai0
,

akν

ak0

}

xν ≥ 1 (5.2)

is valid for (LPCC). Moreover, (5.2) is violated by x∗ because x∗N = 0.

16 Tobias Fischer, Marc E. Pfetsch

This method can easily be generalized to two-term disjunctions of the form

∑
i∈C1

xi ≤ 0 ∨ ∑
i∈C2

xi ≤ 0, (5.3)

for disjoint C1, C2 ⊆ V such that {i, j} ∈ E for all (i, j) ∈C1×C2 and ∑i∈C1
x∗i > 0

and ∑i∈C2
x∗i > 0. We choose C1 and C2 by one of the following criteria:

1. Edge: For an edge {i, j} ∈ E, choose C1 = {i} and C2 = { j}.
2. Neighborhood: For a node i ∈V , choose C1 = {i} and C2 ⊆ Γ (i).
3. Clique: For a clique S in G, choose disjoint subsets C1, C2 ⊆ S.

4. Bipartite: Choose C1, C2 as the partition of a complete bipartite subgraph of G.

We can compute C1 and C2 by analogous methods as for branching rules in Section 2.

Here, it is sensible to concentrate on the positive components of x∗C1
and x∗C2

.

5.1.2 Disjunctive Cuts on Box Disjunctions

Assume that xi and x j with i, j ∈ V and {i, j} /∈ E are restricted by upper bounds ui

and u j, respectively. Further assume that we know that there exists an optimal solu-

tion x̄ of (LPCC) which satisfies

xi ≤ 0 ∨ xi ≥ ui ∨ x j ≤ 0 ∨ x j ≥ u j. (5.4)

Similarly, if there exist variable upper bounds xi ≤ ui zi and x j ≤ u j z j for nonnegative

variables zi and z j, we assume that the optimal solution (x̄, z̄) satisfies

xi ≤ 0 ∨ xi ≥ ui zi ∨ x j ≤ 0 ∨ x j ≥ u j z j. (5.5)

We call (5.4) or (5.5) four-term disjunction in box-shaped form. These arise, for ex-

ample, in flow problems with parallel arcs, see Section 6.1 for applications. In this

case, one may assume that at most one flow value on parallel arcs does not attain the

bounds. Moreover, in the complementarity constrained continuous knapsack prob-

lem this can be seen by the well-known fact that there always must exist an optimal

solution x̄ with at most one component x̄i not being equal to its bounds.

Remark 4 Note that any optimal solution to an LPCC coincides with a solution of an

LP in which appropriate variables are fixed to 0, compare (4.4). Thus, the property

of the LP-relaxation having at most one variable value that is not at its bound carries

over to the corresponding LPCC.

If x∗ violates (5.4) or (5.5), one can then generate a disjunctive cut by inserting

the four corresponding rows (5.1) of the simplex tableau and proceeding analogously

as in Section 5.1.1.

To illustrate the approach, we consider the following example:

max
6

5
x1 + x2 + x3

s.t. x1 + x2 + x3 ≤
3

2
,

0≤ x1,x2,x3 ≤ 1,

x1 · x2 = 0, x1 · x3 = 0.

Branch-and-Cut for Linear Programs with Overlapping SOS1 Constraints 17

We add the bound inequalities x1 + x2 ≤ 1 and x1 + x3 ≤ 1. Then the solution of

the LP-relaxation is x∗ = (1
2
, 1

2
, 1

2
)⊤ with objective value 1.6, which violates the dis-

junction x2 ≤ 0 ∨ x2 ≥ 1 ∨ x3 ≤ 0 ∨ x3 ≥ 1; note that {2,3} /∈ E. If we proceed as

described above, we obtain (after some calculations) the disjunctive cut 6x1 +4x2 +
4x3 ≤ 6, which is added to the LP-relaxation. Resolving yields the (feasible) optimal

solution x̄ = (0, 1
2
,1)⊤ with objective value 1.5.

5.2 Bound Cuts

The separation of bound inequalities that we defined in Section 1.2 is NP-hard, as

already well-known for clique inequalities (see Nemhauser and Wolsey [47]). Never-

theless, there exist fast separation heuristics. The one we present in the following is

an adaptation of the clique inequality separator implemented in SCIP.

We consider the induced subgraph G[U] of G on U := {i ∈ V : ui < ∞}. Let

Ē = {{i, j} : i, j ∈U, i 6= j, and {i, j} /∈ E} be the edges of its complement graph.

The separation procedure is based on the maximum weighted clique problem

max
y∈{0,1}U

{ω⊤ y : yi + y j ≤ 1, {i, j} ∈ Ē}. (5.6)

Using the weights ω defined in (4.3), every feasible solution of (5.6) with objective

value greater than 1 defines a (strengthened) bound inequality that cuts off x∗. In our

cutting plane separator, we again use the tclique algorithm of SCIP using a node limit

of 10 000 in order to solve (5.6) heuristically.

5.3 Cover Cuts

In this section, we introduce a family of cover inequalities of the form ∑i∈I
xi
ui
≤

|I| − 1, for I ⊆ V , which represent a linear relaxation of the nonlinear cardinality

constraints |supp(xI)| ≤ |I|−1.

Let S ⊆ V and {Sk : k ∈ K} be a clique partition of G[S], i.e., S =
⋃

k∈K Sk and

each node of S belongs to exactly one clique Sk, k ∈ K. Note that the trivial case

Sk = {k} for K =V is possible, but leads to trivial cuts. We then consider the system

∑
i∈S

xi ≥ β ,

0≤ xi ≤ ui ∀ i ∈ S,

SOS1(Sk) ∀k ∈ K,

(5.7)

with β > 0 and ui > 0 for every i ∈ S.

Let I ⊆ V be an independent set. Note that if I ∩ Sk 6= /0, then |Sk \Γ (I)| = 1.

Using the convention max(/0) = 0, we define

φ I
k := max{ui : i ∈ Sk \Γ (I)},

18 Tobias Fischer, Marc E. Pfetsch

for k ∈ K. Assuming that

∑
k∈K

φ I
k < β , (5.8)

it is impossible for all variables xi with i∈ I to be nonzero while the feasibility of (5.7)

is maintained, since every solution that satisfies the SOS1 constraints would violate

∑i∈S xi ≥ β . In this case, we say that I is a cover. Every cover induces a cardinality

constraint |supp(xI)| ≤ |I|−1; thus, if ui < ∞, i ∈ I, the cover inequality

∑
i∈I

xi

ui

≤ |I|−1 (5.9)

is valid. In order to get strong cover inequalities, we require that I is a minimal cover,

i.e.,

∑
k∈K

φ
I\{i}
k ≥ β ,

for every i ∈ I.

We use the following separation heuristic: First, we compute a clique partition

of G[S]. For this, we recursively search for some maximal clique and remove its

induced graph from G[S] until no node remains. To compute a minimal cover, we

initialize I = /0. Then, in decreasing order of weights ωi = x∗i /ui, we iteratively add

an element i ∈ S \Γ (I) to I until (5.8) is satisfied. Afterwards, in reverse order, we

iteratively delete an element from I if its deletion still leaves a cover. The resulting I

is a minimal cover, and inequality (5.9) may be added to the cutting plane pool if it is

violated by x∗.

6 Computational Experiments

We implemented all ideas presented in this paper in C using the framework SCIP [2,

43] version 3.1.1 with CPLEX 12.6 as LP-solver. We compare its results with the

MIP-solver CPLEX 12.6, which we apply to (LPCC) as well as (MIPPC), and the

MIP-solver SCIP 3.1.1, which we apply to (MIPPC). We used a time limit of two

hours. Our tests were run on a linux cluster with 64 bit Intel dual core i3 CPUs with

3.2 GHz, 4 MB cache, and 8 GB main memory.

6.1 Instance Sets

As stated before, optimization problems with complementarity constraints arise in

many areas. In the following, we describe three applications for which we will gen-

erate instances, used for our computational experiments.

Branch-and-Cut for Linear Programs with Overlapping SOS1 Constraints 19

6.1.1 Maximum Flow Problem with Conflicts

Gupta and Kumar [25] present the so-called protocol model for modeling interfer-

ence in a multi-hop wireless network. Based on this, Jain [34] and Shi et al. [44]

investigated different variants with different assumptions for computing the optimal

throughput on such a network. In the following, we present a combination of both.

A multi-hop wireless network consists of a set N of transmission nodes that may

receive or transmit data over wireless links L. We assume that multiple frequencies

are not available for data transmission. Instead, we suppose that there exists only one

frequency, but each time period is split into different time slots T of variable length;

an assumption that is made in [34] as well. Given a source node s and a destination

node d, the objective is to find a maximum data flow from s to d subject to the

condition that interference is avoided. Interference is caused due to the reuse of the

same time slot on nearby links.

In the protocol model, interference is modeled in the following way: For a given

u ∈ N, let Tu its transmission area and Iu its interference area. For simplicity of

presentation, it is assumed that the nodes are placed in the Euclidean plane and Tu,

Iu are determined by disks with center u ∈ N and radius RT and RI , respectively. In

general, RT should be smaller than RI . We define

L = {(u,v) ∈ N×N : v ∈ Tu, v 6= u}

as the set of available links and

E = {{(u,v),(w,q)} ∈ L×L : q ∈ Iu, (u,v) 6= (w,q)}

as the set of interfering links. Thus, if there is a transmission from u to v over time

slot t ∈ T , then every node q ∈ Iu may not receive data from some node w over the

same time slot t. This includes that every node may neither transmit to more than one

other node nor receive from more than one other node at the same time.

Let xt
ℓ be the flow on link ℓ ∈ L at time slot t ∈ T . The sets δ−(u) and δ+(u)

denote the incoming and the outgoing links of each node u ∈ N, respectively. The

variable zt with t ∈ T describes the relative share of time slot t of each time period.

We consider the Maximum Flow Problem with Conflicts (MFPC) which computes the

optimal periodic throughput (in a steady state). The MFPC is defined formally as

(MFPC) max r

s.t. ∑
t∈T

(

∑
ℓ∈δ+(u)

xt
ℓ− ∑

ℓ∈δ−(u)

xt
ℓ

)

= βu ∀u ∈ N, (6.1)

∑
t∈T

zt ≤ 1, (6.2)

0≤ xt
ℓ ≤Cℓ zt ∀ℓ ∈ L, t ∈ T, (6.3)

zt ≥ 0 ∀ t ∈ T, (6.4)

xt
ℓ · x

t
ℓ̄
= 0 ∀{ℓ, ℓ̄} ∈ E, t ∈ T, (6.5)

where βu is r if u is the source,−r if u is the destination and 0 otherwise. The first set

of constraints (6.1) are the flow conservation constraints, which enforce the balance

20 Tobias Fischer, Marc E. Pfetsch

between the incoming and the outgoing flow over the time period. Constraint (6.2) de-

scribes the partitioning of each time period into time slots. In (6.3), the value Cℓ ∈R,

ℓ ∈ L, denotes the capacity of ∑t∈T xt
ℓ, which depends on the distance between the

endnodes of ℓ and the maximum transmission power (see the formula in [44]). The

subsequent complementarity constraints (6.5) model mutual interference between

links. Optionally, one can add symmetry-breaking constraints zt−1≤ zt , t = 2, . . . , |T |,
to reduce the negative effect of symmetry with respect to arbitrary permutations of

the time slots.

For the MFPC, we generated instances of three different types; type one with 25,

type two with 35, and type three with 50 transmission nodes, from which we selected

three to be the sources (all connected to a virtual super-source) and one to be the des-

tination, respectively. The nodes were located on a 1000×1000 grid. Their position

in the grid is chosen uniformly at random for the instances of type two. Therefore, it

might happen that there is no connection from all the sources to the destination. For

type one and three, we first positioned the source in the center of the grid. For each

source-destination pair we then generated a connecting path of length three, each arc

having a length uniformly distributed in the interval [90,180] and a direction change

from the former arc direction of at most 90◦. The position of the remaining nodes was

chosen at random. Further parameter settings are RT = 200, RI = 300, and |T |= 8.

6.1.2 Transportation Problem with Exclusionary Side Constraints

A common scenario of logistic problems is the cost-effective transportation of goods

from several sources i ∈ S to destinations j ∈ D. For the Transportation Problem

with Exclusionary (or Nonlinear) Side Constraints (TPESC) – originally proposed

by Cao [14] and also studied by Sun [45], Syarif and Gen [46] – it is not allowed to

carry certain goods to the same destination. This type of problems has many appli-

cations. For instance, hazardous materials (toxic, corrosive, flammable, etc.) may not

be stored in the same warehouse or vehicle.

The transportation network has nodes S∪D and source-destination pairs L = S×
D as arcs. The flow on ℓ ∈ L is given by xℓ. TPESC can be modeled as a classical

transportation problem with additional complementarity constraints:

(TPESC) min ∑
ℓ∈L

cℓ xℓ

s.t. ∑
ℓ∈δ+(i)

xℓ = αi ∀ i ∈ S,

∑
ℓ∈δ−(j)

xℓ = β j ∀ j ∈ D,

x≥ 0,

xℓ · xℓ̄ = 0 ∀{ℓ, ℓ̄} ∈ E,

where the supplies and demands are given by α ∈ R
S
+, β ∈ R

D
+, respectively. We

assume that the balancing condition ∑i∈S αi = ∑ j∈D β j is satisfied. Moreover, cℓ de-

notes the transportation costs for arc ℓ. Every source i is assigned to a given category

Branch-and-Cut for Linear Programs with Overlapping SOS1 Constraints 21

Ci ∈ {1, . . . , t}, where t ∈ N. We assume transportation of sources from conflict-

ing categories to the same destination is not allowed. This defines a conflict graph

G = (L,E) with node set L and edge set

E = {{(i, j),(k, j)} ∈ L×L : Ci and Ck are in conflict}.

We use ui j := min{αi,β j} as a big-M value for the MIP-reformulation of (TPESC).

We generated three instance sets of three different types; type one and two with

|S| = 150 and |D| = 15, type three with |S| = 200 and |D| = 15. The other in-

puts were randomly generated; cℓ is chosen uniformly at random from [3,8], αi

and β j on [100,500]∩N and [1000,5000]∩N, respectively. In case of a surplus, i.e.,

∑i∈S αi > ∑ j∈D β j, the αi values were evenly reduced until the sums are balanced.

We analogously treated the β j values in case of an undersupply. The categories were

also assigned randomly to each source. Conflicts between different categories were

determined by the entries of a conflict matrix Z ∈ {0,1}t×t . For type one, we used

for all instances the same 9× 9 realistic conflict matrix from Hamdi et al. [26]. For

each instance of type two and three, we used a different randomly generated conflict

matrix of size 15×15 and expected density 0.35 (w.r.t. the nondiagonal entries).

6.1.3 Continuous Knapsack Problem with Conflicts

Our last instance sets arise from the Continuous Knapsack Problem with Conflicts

(CKPC). Let V = {1, . . . ,n} and G = (V,E) be an undirected conflict graph. The

mathematical formulation of CKPC is

(CKPC) max ∑
i∈V

ci xi

s.t. ∑
i∈V

ai xi ≤ b,

0≤ x≤ 1,

xi · x j = 0 {i, j} ∈ E,

where b ≥ 0 and c, a ∈ R
V
+. We assume w.l.o.g. that the upper bounds are scaled

to be 1. The CKPC, specifically with nonoverlapping SOS1 constraints, was first

investigated by Ibaraki et al. [32, 33]. Later, de Farias et al. [17] studied inequalities

that define facets of the convex hull of its feasible area. Applications arise, e.g., in

capital budgeting (see Lin [38]). Other articles (see, e.g., Hifi and Michrafy [27],

Pferschy and Schauer [41]) deal with the knapsack problem with overlapping SOS1

constraints, but binary variables.

As an application, we consider the following scenario: Given is a set of jobs V

of different sizes ai and benefit ci, as well as a processor with a certain capacity b.

The goal is to optimally assign a subset I ⊆ V of jobs to the processor, where some

jobs may be incompatible with one another, i.e., they cannot be executed both on the

processor; reasons are given in Baker, Coffmann [5] and Jansen [35]. In the context

of the CKPC, we assume it is permissible that jobs are only partly executed.

22 Tobias Fischer, Marc E. Pfetsch

Table 6.1: Statistics of the problem instances after presolving (in arithmetic mean)

Problem Type # #vars #linear #SOS1 SOS1 size

1 20 746.6 766.1 1031.5 27.6

MFPC 2 20 977.2 1007.9 1445.7 18.0

3 20 2085.8 2131.3 3554.6 39.4

1 20 2250.0 165.0 56496.0 3.4

TPESC 2 40 2250.0 165.0 55604.2 3.1

3 30 3000.0 215.0 92598.0 3.0

1 30 200.0 1.0 1849.3 4.9

CKPC 2 30 250.0 1.0 2739.7 5.2

3 20 260.0 1.0 2929.7 5.2

The input data for three different types of our problem generation are n = 200

for type one, n = 250 for type two, and n = 260 for type three. The objective coef-

ficients ci and row coefficients ai were generated uniformly at random in the inter-

val [10,25]. In order to show the effect of disjunctive cuts on box disjunctions (see

Section 5.1.2), we ensured, especially for the type three instances, that several objec-

tive coefficients are of equal value. This was done by choosing ci among 20 different

random values. The right hand side b was determined according to b = 0.3 ·1⊤a,

which comes from de Farias and Nemhauser [20]. Mutual conflicts between variables

were generated uniformly at random with expected density 0.35.

6.2 Experimental Results

Table 6.1 gives statistics on the test sets that we used for our experiments. The data

relate to the transformed instances after the presolving step. Column “#” denotes

the number of instances of the given problem type. Moreover, in arithmetic mean

over all instances of each problem type, we list the number of variables in column

“#vars”, the number of linear constraints in “#linear”, the number of SOS1 constraints

in “#SOS1”, and the arithmetic mean over the size of the SOS1 constraints in “SOS1

size”. All instances are available for download from the web pages of the authors.

The computations are organized into six experiments. The goal of the first four

experiments is to compare the different branching rules and cutting planes introduced

in Section 2 and 5, respectively. For this purpose, we initialized the algorithm with

a precomputed optimal solution in order to eliminate the impact of heuristics on the

performance. In Experiment 5, we evaluate the use of heuristics. Finally, in Experi-

ment 6, we compare our implementation with other branch-and-cut solvers and with

the (MIPPC) formulation.

For SOS1, neighborhood, and bipartite branching, we use the following common

settings:

Branching Rules: Use most infeasible branching as a selection rule.

Cutting Planes: Add (strengthened) bound inequalities during the separation phase

at the root node; all the other cutting planes are turned off.

Branch-and-Cut for Linear Programs with Overlapping SOS1 Constraints 23

In each experiment, we additionally turn different components of our solver on or off.

The data of Tables 6.3–6.5 report aggregated results of our first four experi-

ments. In each table, we list the number of instances that reached the time or memory

limit (column “limit”), the shifted geometric mean1 of the number of nodes (column

“nodes”), and the CPU time (column “time”). We used a shift of 100 for the number

of nodes and 10 for the CPU time, see [1]. Detailed results for each instance can be

found in the online supplement.

Table 6.2: Average size of the

smaller part of each complete bi-

partite subgraph

Problem Type bip. size

1 2.1

MFPC 2 1.9

3 2.6

1 28.5

TPESC 2 13.8

3 17.7

1 1.0

CKPC 2 1.0

3 1.0

Experiment 1: Basic Branching Variants We start

with an evaluation of the three basic branching vari-

ants SOS1, neighborhood, and bipartite branching,

denoted by “B-SOS1”, “B-neigh” and “B-bip”, re-

spectively. SOS1 branching turns out to have a poor

performance on all instance sets. If the SOS1 con-

straints overlap, this leads to the fact that neighbor-

hood and bipartite branching usually fix more vari-

ables to zero; consider a star graph, for example.

For the TPESC instances, a very good per-

formance of bipartite branching in comparison to

neighborhood branching is clearly noticeable. For

these instances, the conflict graph consists of fami-

lies of vertices with an identical neighborhood struc-

ture; a characteristic that usually results in large bi-

partite subgraphs. This statement is confirmed by

Table 6.2, where we present in column “bip. size”

the average size of the smaller part of each com-

plete bipartite subgraph that the algorithm selects for

branching.

In contrast, the “unbalanced” neighborhood branching performed better for the

the MFPC instances. Here, few large “balanced” bipartite subgraphs exist in the prob-

lem specific conflict graph structure. Recall that a graph might have large neighbor-

hoods, but only small balanced bipartite subgraphs. This is true even for the CKPC

instances, whose conflict graph is generated randomly without any clear structure.

Here, the algorithm automatically nearly always prefers to branch on a neighborhood,

see the remark at the end of Section 2.3.

Experiment 2: Further Branching Variations In the second experiment, we investi-

gate the use of nonzero fixing (“B-nonzero”) and adding complementarity constraints

during the branching process in combination with either bipartite or neighborhood

branching (“B-bip-comp” and “B-neigh-comp”).

Recall that “B-nonzero” is a variant of neighborhood branching with additional

fixings. In fact, nonzero fixing does not have a positive effect w.r.t. the standard neigh-

borhood branching rule. It seems to rarely allow for pruning nodes in the branch-and-

bound tree and sometimes increases the number of nodes.

1 The shifted geometric mean of values t1, . . . , tn with shift value δ is defined as
(

Π n
i=1(ti +δ)

)1/n
−δ .

24 Tobias Fischer, Marc E. Pfetsch

Table 6.3: Experiments on the MFPC instances (nodes and time in shifted geometric mean)

MFPC type 1 (20) MFPC type 2 (20) MFPC type 3 (20)

Setting limit nodes time limit nodes time limit nodes time

B-SOS1 11 593535 2426.0 17 861814 3680.5 18 452631 6364.2

B-neigh 0 19106 79.7 3 131716 619.7 3 86885 1204.5

B-bip 0 21991 95.7 3 146992 714.5 4 98423 1499.3

B-nonzero 0 19199 84.3 3 132680 645.3 3 86950 1267.6

B-neigh-comp 0 19099 79.9 3 131808 620.5 3 86819 1206.1

B-bip-comp 0 21970 96.1 3 145745 710.1 4 98594 1507.6

B-neigh-strong 0 8651 91.0 2 61713 397.1 3 55451 1153.8

B-bip-strong 0 8702 104.2 2 68055 460.7 3 72541 1686.7

B-neigh-noC-bds 20 5803068 7200.0 20 6154051 7200.0 20 1773165 7200.0

B-neigh-noC-strBds 20 5551050 7200.0 20 5919731 7200.0 20 961099 7200.0

B-neigh-C-bds10 0 18470 79.3 3 120043 596.8 2 68325 1014.9

B-neigh-C-edge 0 17270 79.5 0 54093 344.2 0 16880 362.1

B-neigh-C-neigh 0 18440 81.7 2 99247 601.5 1 19541 400.1

B-neigh-C-clique 0 19143 88.2 0 75565 470.7 2 23342 479.7

B-neigh-C-bip 0 17661 78.1 2 90875 538.9 1 19416 393.0

B-neigh-C-box 0 18078 78.1 1 76323 413.6 1 32354 538.1

B-neigh-C-cover – – – – – – – – –

B-neigh-favor 0 17068 80.3 0 52167 336.6 0 15862 348.5

Table 6.4: Experiments on the TPESC instances (nodes and time in shifted geometric mean)

TPESC Type 1 (20) TPESC Type 2 (40) TPESC Type 3 (30)

Setting limit nodes time limit nodes time limit nodes time

B-SOS1 20 508073 7200.0 40 457255 7200.0 30 255846 7200.0

B-neigh 0 7103 49.8 0 108461 680.2 3 171970 1852.9

B-bip 0 971 9.3 0 15871 105.6 0 18587 202.4

B-nonzero 0 7103 57.0 0 108460 817.3 3 167342 2186.7

B-neigh-comp 0 1230 10.4 0 17762 136.3 0 19488 264.0

B-bip-comp 0 971 9.3 0 15550 105.5 0 18099 202.0

B-neigh-strong 0 373 93.4 0 22174 762.8 2 42756 1834.3

B-bip-strong 0 247 39.6 0 3725 341.6 0 4869 661.6

B-bip-noC-bds 0 229503 701.8 40 1796328 7200.0 30 1127433 7200.0

B-bip-noC-strBds – – – – – – – – –

B-bip-C-bds10 0 628 8.1 0 3020 41.0 0 3665 82.8

B-bip-C-edge 0 553 20.1 0 6001 84.8 0 7143 161.6

B-bip-C-neigh 0 559 29.7 0 6702 98.0 0 7694 189.2

B-bip-C-clique 0 586 20.2 0 6588 89.0 0 7723 171.5

B-bip-C-bip 0 565 30.8 0 6486 101.3 0 8359 195.8

B-bip-C-box – – – – – – – – –

B-bip-C-cover 0 1022 13.2 0 15573 105.2 0 18317 208.2

B-bip-favor 0 419 19.5 0 1819 53.6 0 1990 99.8

Branch-and-Cut for Linear Programs with Overlapping SOS1 Constraints 25

Table 6.5: Experiments on the CKPC instances (nodes and time in shifted geometric mean)

CKPC Type 1 (30) CKPC Type 2 (30) CKPC Type 3 (20)

Setting limit nodes time limit nodes time limit nodes time

B-SOS1 30 1069555 7200.0 30 575127 7200.0 20 521383 7200.0

B-neigh 0 50291 119.0 0 360323 1133.3 0 551661 1780.1

B-bip 0 50270 126.0 0 360229 1195.8 0 551531 1880.4

B-nonzero 0 50291 119.3 0 360324 1139.3 0 551661 1776.7

B-neigh-comp 0 50290 119.7 0 360317 1134.9 0 551652 1782.4

B-bip-comp 0 50268 126.8 0 360221 1197.5 0 551519 1876.0

B-neigh-strong 0 33423 184.0 0 306294 1336.1 0 480013 2018.6

B-bip-strong 0 33416 190.2 0 306230 1392.9 0 479926 2109.3

B-neigh-noC-bds 0 13949991 1622.2 30 52249068 7200.0 20 51160687 7200.0

B-neigh-noC-strBds – – – – – – – – –

B-neigh-C-bds10 0 28038 92.3 0 195702 827.7 0 303616 1307.3

B-neigh-C-edge 0 38523 141.5 0 286272 1298.4 0 438290 2013.2

B-neigh-C-neigh 0 37116 151.9 0 274376 1328.0 0 420269 2049.5

B-neigh-C-clique 0 37157 144.7 0 277114 1326.7 0 418592 2032.4

B-neigh-C-bip 0 37116 152.0 0 274376 1328.3 0 420269 2052.5

B-neigh-C-box – – – – – – 0 472244 1986.7

B-neigh-C-cover – – – – – – – – –

B-neigh-favor 0 24979 118.3 0 171534 1004.6 0 262269 1547.4

Adding complementarity constraints during the branching process significantly

speeds up neighborhood branching for the TPESC instances. However, neighbor-

hood branching with the addition of complementarity constraints is still slower than

bipartite branching on these instances. For bipartite branching, adding complemen-

tarity constraints reduces the number of nodes, but not the CPU time (a Wilcoxon

signed rank test, see Berthold [10], confirmed a statistically significant reduction in

the number of nodes with a p-value of less than 0.0005, but the time reduction is not

significant with a p-value larger than 0.1). The reason is that adding complementarity

constraints increases the time needed for node-switching. Moreover, for the MFPC

and CKPC instances, adding complementarity constraints essentially does not make

a difference. As before, one can explain this with the specific structure of the conflict

graph of these instances. We conclude that adding complementarity constraints only

is an option for hard instances with a structure similar to the TPESC instances.

Experiment 3: Selection rules In this last experiment regarding branching rules, we

analyze the behavior of strong branching (“B-bip-strong” and “B-neigh-strong”). The

outcome reflects the expected behavior: On the one hand, strong branching signifi-

cantly reduces the number of branching nodes. On the other hand, it is very time

consuming; on average, it uses around 20% of the total CPU time. Nevertheless, for

the MFPC type two and three instance sets, strong branching reduces the CPU time

or solves more instances within the limits. For the TPESC type three instances, this is

only true w.r.t. the neighborhood branching setting. Summarizing, the results indicate

that strong branching can be useful for certain instances that are hard to solve, but in

26 Tobias Fischer, Marc E. Pfetsch

Table 6.6: Different options for cutting planes

shortcut explanation

bds bound cuts (Section 5.2)

bds10 bound cuts separated with a node-depth frequency of 10

strBds strengthened bound cuts (Section 5.2)

edge disjunctive cuts w.r.t. edges (Section 5.1.1)

neigh disjunctive cuts w.r.t. neighborhoods (Section 5.1.1)

clique disjunctive cuts w.r.t. cliques (Section 5.1.1)

bip disjunctive cuts w.r.t. bipartite subgraphs (Section 5.1.1)

box disjunctive cuts w.r.t. boxes (Section 5.1.2)

cover cover cuts (Section 5.3)

the presented form it should not be used as default strategy. A careful fine-tuning will

be necessary to keep the execution time of strong branching in balance.

Experiment 4: Cutting planes For the cutting plane experiments, we use neighbor-

hood branching for the MFPC and CKPC and bipartite branching for the TPESC

instance sets. In the related part of Tables 6.3–6.5, we report on the results with nine

settings “B-<branching>-noC-<cutting>” and “B-<branching>-C-<cutting>”. Here,

the term <branching> takes the choice from {neigh, bip} and <cutting> from the op-

tions listed in Table 6.6. The terms “C” and “noC” declare whether the correspond-

ing cutting plane is turned on or off, in contrast to the default setting. All cutting

planes were separated only in the root node, with the exception of “B-<branching>-

C-bds10”, where we separate bound inequalities as local cuts with a node-depth fre-

quency of 10 by using locally valid bounds on the variables.

The separation time of all classes of cutting planes for MFPC and CKPC was

negligible compared to the total CPU time. For TPESC, the separation time was sig-

nificant, e.g., for “B-bip-C-edge” separation used 35.9% (7.1 s), 10.9% (8.3 s), and

9.4% (13.7 s) of the total time on average for types 1, 2, and 3, respectively. This is

partly due to the fact that these instances are easier to solve and thus take less nodes,

increasing the relevance of the time for the root node.

In our experiments, “stalling” was an issue: A separation round is said to stall,

if it does not cause a change in the dual objective bound. Nevertheless, sometimes

it is necessary to overcome some stalling rounds in order to generate efficient cuts;

reasons can be symmetry or structures like bottlenecks in flow problems. We therefore

allow for a maximal number of 200 stalling rounds.

In order to avoid numerical instabilities, we discard disjunctive cuts that have

a high rank: We say a disjunctive cut has rank r + 1 if it is constructed from sim-

plex tableau rows whose coefficients are affected by some rank-r cut from a former

separation round, where r is maximal. In our default setting, we limit the maximum

permissible rank to be at 20.

If separation of bound inequalities is turned off (“B-<branching>-noC-bds”), we

observe a significant increase in the CPU time. Moreover, the same holds for strength-

ened bound inequalities for the MFPC instances, see row “B-neigh-noC-strBds” in

Table 6.3. For the other instances, strengthened bound cuts are not relevant, and the

respective rows “B-<branching>-noC-strBds” are left empty in Tables 6.4–6.5.

Branch-and-Cut for Linear Programs with Overlapping SOS1 Constraints 27

It is important to note that box disjunctive cuts have relevance for CKPC type

three, but no relevance for CKPC type one and two, see the way the instances of

these types are generated at the end of Section 6.1.3. Summarizing the results of all

classes of disjunctive cuts, we see that they bring benefit in the CPU time for the

harder (type two and three) MFPC and TPESC instances. For the CKPC instances,

they have a very positive effect w.r.t. the number of nodes, but not w.r.t. the CPU

time. Obviously, here the cutting planes cannot compensate the larger solving time

of the LP-relaxations. If we compare among the different classes of disjunctive cuts,

it is easy to identify edge disjunctive cuts as a clear favorite among them. Moreover,

separation of cover inequalities only has significance for the TPESC instance sets.

However, they do not have a measurable effect on the performance. In the following,

we analyze this behavior in more detail with the help of Table 6.7.

Table 6.7: Number of cutting planes applied (in shifted geometric mean)

Problem Type bds bds10 edge neigh clique bip box cover

1 361.8 731.5 52.2 32.2 37.2 28.5 4.2 –

MFPC 2 248.7 2936.9 52.7 29.6 36.8 25.5 6.8 –

3 375.4 5102.9 40.6 21.5 20.9 19.4 3.0 –

1 532.9 1272.9 47.7 36.3 43.2 27.0 – 59.3

TPESC 2 607.3 9630.5 58.3 35.7 48.6 30.4 – 85.3

3 856.0 11238.0 62.6 39.4 54.0 30.4 – 146.9

1 780.4 38225.7 20.2 20.0 20.0 20.0 – –

CKPC 2 1032.0 196744.8 20.1 20.1 20.0 20.1 – –

3 1079.1 273866.2 20.1 20.1 20.0 20.1 20.1 –

The columns in Table 6.7 have the same names as the <cutting> choices. Each of

them refers to the setting in which the corresponding class of cutting planes is turned

on, in addition to (strengthened) bound cuts, which are always applied here. For each

instance class, we present the number of applied cuts in shifted geometric mean with

a shift of 10. We highlight the following aspects:

– As expected, a relatively large number of the very efficient (strengthened) bound

inequalities were added. Clearly, this number rigorously increases if separation is

performed with a node-depth frequency of 10.

– For the CKPC instances, almost always 20 disjunctive cuts were added. This is due

to the restriction of the maximal possible rank number to be at most 20. Because

there is only a single linear (knapsack) inequality, disjunctive cuts often recur-

sively depend on the previously separated cuts. Furthermore the LP solution often

violates only one complementarity constraint, see the discussion in Section 5.1.2.

– For the MFPC and TPESC instances, from all classes of disjunctive cuts, the most

inequalities were added for edge disjunctive cuts. This has several reasons:

First, the rank of cuts from the other classes of disjunctive inequalities grows

faster, since they are usually generated from more rows of the simplex tableau.

However, even if there are no rank restrictions, edge disjunctive cuts empirically

produced the best results: edge cuts tend to produce stronger cuts, since they do

28 Tobias Fischer, Marc E. Pfetsch

not aggregate inequalities as in (5.3). By solving a (relatively large) cut generating

linear program, as investigated in the article of Balas and Perregaard [6], one can

avoid this aggregation. However, until now, we have not tested this in practice.

A further reason for the low number of added neighborhood, clique, and bipartite

cuts is that they aggregate several edge cuts in one single inequality.

– The fewest disjunctive inequalities were added for box cuts. This can be explained

by the fact that they only can be applied to a very special structure, appearing less

often for the considered problem instances.

– Finally, we have a closer look at the number of added cover inequalities. Although

this number is relatively large, our tests have shown that the separation of cover

inequalities does not yield significant changes in the root gap. A possible reason

for this could be that for separation, we reduce the conflict graph to a clique cover

and do not take the overlapping structure of the SOS1 constraints into account.

Experiment 5: Heuristics After evaluation of the former experiments, we decided

to use the combination of “B-neigh”, “C-bds10”, and “C-edge” as our favorite set-

ting for the MFPC and CKPC instances and the combination of “B-bip-comp”, “C-

bds10”, and “C-edge” as the one for the TPESC instances. On average, these set-

tings clearly produced the fewest number of nodes and seem to provide a relatively

good compromise, although they are not the fastest for all instances. In the last row

of each of the Tables 6.3–6.5, we report on the results using our favorite settings

(“B-<branching>-favor”). We also use these favorite settings in our fifth experiment,

which we explain in the following.

For each test run of this experiment, we turn different heuristics on and do not

initialize the algorithm with a precomputed optimal solution. We use the following

abbreviations as column labels for Tables 6.8 and 6.9: “none” for using none of the

heuristics, “MWIS” for maximum weighted independent set fixing, “viol” for viola-

tion diving, “obj” for objective shift diving, “frac” for fractional diving, and “frac-LS”

for fractional diving in combination with local search.

To compare the performance of the heuristics, we make use of the primal-dual

integral (see Berthold [9]). The primal-dual integral is the value we obtain by inte-

grating the gap between the primal and dual bound over time2. To ensure a fair com-

parison, we divide the primal-dual integral by the maximum total CPU time among

the six variants from the column labels. Thus, a smaller scaled primal-dual integral

indicates a higher solution quality.

Table 6.8 shows the scaled primal-dual integral on average over all the instances

of each problem type. The provided information can be summarized as follows:

– For the MFPC instances, the solution quality is already relatively high for the test

run using none of the heuristics. This partly explains the fact why the heuristics

do not bring a significant benefit on these instances. Nevertheless, there is still

a potential for improvement. We think that one needs a heuristic which takes

greater account of the equality system Ax= b, i.e., prefer variable fixings that not

only reduce the violation of the complementarity constraints, but also maintain

the feasibility for the linear constraints.

2 We define the gap between primal bound p and dual bound d as 100 · |p−d|/max(|d|, |p|).

Branch-and-Cut for Linear Programs with Overlapping SOS1 Constraints 29

– On the other hand, for the TPESC instances, all heuristics seem to perform well,

especially for the harder type two and three instances. This motivates us to ac-

cept the relatively high execution time (see Table 6.9 below).

– For the CKPC instances, only slight improvements can be achieved. This can

be explained with the help of Table 6.10. Here, column “heur” denotes the ratio

of the CPU time without precomputed optimal solutions, but with the use of

fractional diving as primal heuristic, to the CPU time with precomputed optimal

solutions. Since the ratio is nearly 1.1 for the CKPC instance types, this shows

that the use of heuristics generally cannot lead to major improvements on these

instance sets.

– Fractional diving seems to perform best among the presented heuristics. If one

combines it with local search, then this only leads to slight improvements for

the CKPC type two and three instances. In all other cases, the solution does not

significantly improve, but the increased run time leads to a detoriation of the

primal integral. For the future, one could investigate a tabu search approach (see

Glover [24]) which might have the potential to enhance the performance of our

local search algorithm.

Table 6.8: Scaled primal-dual integral for test runs with different heuristics

Problem Type none MWIS viol obj frac frac-LS

1 4.4 4.3 4.8 5.0 4.3 4.5

MFPC 2 5.0 5.1 5.1 5.0 4.8 5.0

3 3.2 3.2 3.4 3.5 3.3 3.4

1 56.7 47.2 45.6 46.1 44.4 44.7

TPESC 2 69.5 14.3 15.8 15.0 13.3 14.9

3 64.0 14.5 15.3 14.4 12.3 12.4

1 19.6 17.9 18.4 18.4 16.7 16.9

CKPC 2 17.2 16.8 17.1 17.1 16.5 16.4

3 17.0 16.9 16.9 17.0 16.7 16.5

The data of Table 6.9 refers to the relative execution time of the heuristics in

percent. For MFPC and CKPC the execution time is negligible compared to the total

CPU time. On the other hand, for TPESC, it has a much larger share of the run time.

Therefore, we recommend to use only one of the heuristics and not multiple of them

at once. Among the diving heuristics, fractional diving is the fastest, since it usually

fixes more variables to zero in each diving LP iteration, see Section 4.1.

Experiment 6: Comparison with other MIP-solvers. Finally, in Table 6.10 we com-

pare the performance of SCIP and CPLEX on our instance sets. We apply both to

(LPCC) formulated with SOS1 constraints and (MIPPC) formulated as a MIP with

packing constraints. The resulting four variants are denoted as “SCIP-SOS1”, “SCIP-

MIP”, “CPLEX-SOS1”, and “CPLEX-MIP”. Especially for “SCIP-SOS1”, we make

use of the new solver components using the “B-<branching>-favor” settings with

fractional diving as primal heuristic.

30 Tobias Fischer, Marc E. Pfetsch

Table 6.9: Percentage of relative execution time of heuristics w.r.t. the total CPU time

Problem Type MWIS viol obj frac frac-LS

1 0.3 2.2 2.0 0.9 1.4

MFPC 2 0.3 0.9 0.8 0.6 1.3

3 0.1 0.9 1.0 0.5 1.1

1 22.56 28.1 26.8 23.1 25.3

TPESC 2 7.5 21.8 20.7 6.9 12.8

3 10.9 23.5 22.4 8.1 13.4

1 1.8 2.8 2.8 0.8 1.6

CKPC 2 0.4 0.7 0.7 0.1 0.3

3 0.3 0.5 0.5 0.1 0.2

It is noticeable that SCIP-SOS1 considerably outperforms the other branch-and-

cut solvers. Surprisingly, CPLEX-MIP performs better in comparison to CPLEX-

SOS1, which for many instances does not even find a feasible solution.

7 Conclusion

In this article, we discussed a branch-and-cut algorithm for solving LPs with overlap-

ping SOS1 constraints. We exploited the structure of the corresponding conflict graph

for developing branching rules, preprocessing, primal heuristics, and cutting planes.

The algorithm was tested with different settings on randomly generated problem in-

stances from three different applications.

The computational experience can be summarized as follows: The performance

of a branching rule strongly depends on the specific structure of the problem instance.

For conflict graphs consisting of large cliques that predominantly overlap with one

another (as it is the case for the MFPC instances), neighborhood branching performs

best. The same is true for completely random and disordered conflict graphs (as for

the CKPC instances). For conflict graphs that consist of groups of vertices with iden-

tical or similar neighborhood properties (as for the TPESC instances), the more bal-

anced bipartite branching performs better.

Moreover, locally adding complementarity constraints reduces the number of

nodes for some instances, but does in general not reduce the solving time in com-

parison to the best branching rule. Furthermore, using strong branching significantly

reduces the number of nodes, but in its current version often increases the solution

time.

Among the variety of tested cutting planes, bound inequalities (not surprisingly)

are the most important, since they provide a representation of the complementarity

constraints in the LP relaxation. The disjunctive cuts clearly reduce the number of

nodes, but sometimes increase the solution time.

For the considered problem instances, our algorithm outperforms SOS1 branch-

ing by Beale and Tomlin and the big-M reformulation of (LPCC) both in SCIP and

CPLEX. This indicates the effectiveness of directly enforcing the SOS1 constraints

without introducing auxiliary binary variables for the considered instances. Recall,

Branch-and-Cut for Linear Programs with Overlapping SOS1 Constraints 31
T

a
b

le
6

.1
0

:
R

es
u

lt
s

o
f

S
C

IP
an

d
C

P
L

E
X

ap
p

li
ed

to
(L

P
C

C
)

in
co

lu
m

n
“S

C
IP

-S
O

S
1

”/
“C

P
L

E
X

-S
O

S
1

”
an

d
(M

IP
P

C
)

in
co

lu
m

n
“S

C
IP

-M
IP

”/
“C

P
L

E
X

-M
IP

”,
w

h
er

e
“S

C
IP

-

S
O

S
1

”
d

en
o

te
s

th
e

im
p

le
m

en
ta

ti
o

n
o

f
th

is
ar

ti
cl

e.
T

h
e

n
u

m
b

er
o

f
n

o
d

es
an

d
th

e
C

P
U

ti
m

e
ar

e
p

re
se

n
te

d
in

sh
if

te
d

g
eo

m
et

ri
c

m
ea

n
.

P
ro

b
le

m
T

y
p

e
#

S
C

IP
-S

O
S

1
S

C
IP

-M
IP

C
P

L
E

X
-S

O
S

1
C

P
L

E
X

-M
IP

li
m

it
n

o
d

es
ti

m
e

h
eu

r
li

m
it

n
o

d
es

ti
m

e
li

m
it

n
o

d
es

ti
m

e
li

m
it

n
o

d
es

ti
m

e

1
2

0
0

2
8

8
5

8
1

1
2

.7
1

.4
2

0
4

7
3

6
9

0
7

2
0

0
.0

2
0

6
1

9
5

2
8

6
7

2
0

0
.0

2
0

5
1

9
1

6
0

6
3

3
2

.3

M
F

P
C

2
2

0
0

9
6

2
7

9
4

9
5

.8
1

.5
2

0
1

2
2

4
6

7
9

7
2

0
0

.0
2

0
7

1
2

8
3

9
4

7
2

0
0

.0
1

8
1

6
6

8
9

2
1

6
5

9
2

.6

3
2

0
0

3
3

0
4

8
6

1
1

.7
1

.8
2

0
3

0
2

0
0

7
2

0
0

.0
2

0
3

5
5

2
6

2
9

7
1

6
9

.5
2

0
3

7
3

0
4

7
1

9
3

.7

1
2

0
0

4
5

5
2

3
.1

1
.2

1
6

8
5

5
4

5
9

0
.3

2
0

2
8

2
9

5
4

2
7

2
0

0
.0

0
9

9
1

7
4

9
.8

T
P

E
S

C
2

4
0

0
1

9
2

5
6

6
.1

1
.2

3
2

9
3

9
8

6
3

7
9

.2
4

0
2

7
9

4
2

3
5

7
2

0
0

.0
1

8
5

3
4

6
3

9
6

7
.2

3
3

0
0

2
1

3
8

1
2

5
.8

1
.3

3
0

3
8

3
4

7
2

0
0

.0
3

0
1

8
8

0
2

4
8

7
2

0
0

.0
2

7
3

1
0

2
6

4
7

6
.4

1
3

0
0

2
8

1
1

5
1

3
0

.2
1

.1
0

2
3

2
5

9
3

1
5

3
9

.8
3

0
6

5
6

5
2

2
7

7
2

0
0

.0
0

6
1

7
4

1
3

2
5

.4

C
K

P
C

2
3

0
0

2
0

2
5

4
2

1
1

3
3

.3
1

.1
3

0
7

9
7

8
2

5
7

2
0

0
.0

3
0

5
5

6
3

0
6

3
7

2
0

0
.0

0
4

1
7

6
3

0
3

0
2

9
.3

3
2

0
0

3
0

5
7

6
9

1
7

3
0

.7
1

.1
2

0
7

3
0

0
7

1
7

2
0

0
.0

2
0

6
5

4
5

2
3

3
4

7
2

0
0

.0
1

5
9

4
2

6
9

4
8

5
6

.5

32 Tobias Fischer, Marc E. Pfetsch

however, that there exist problem instances for which the techniques considered in

this paper do not improve w.r.t. the big-M model.

Our implementation will be incorporated in one of the next releases of SCIP.

In the future, we will investigate how to derive strong cover inequalities taking the

overlapping structure of the SOS1 constraints directly into account. Furthermore, one

could think of combining our branching strategy with the standard reliability branch-

ing approach (see Achterberg et al. [3]).

Acknowledgements The work of Tobias Fischer is supported by the Excellence Initiative of the German

Federal and State Governments and the Graduate School of Computational Engineering at Technische

Universität Darmstadt. We thank Norbert Fabritius for the implementation of test instance generators.

References

1. Achterberg, T.: Constraint integer programming. Ph.D. thesis, Technical University Berlin (2007)
2. Achterberg, T.: SCIP: Solving constraint integer programs. Mathematical Programming Computation

1(1), 1–41 (2009)
3. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Operations Research Letters 33, 42–54

(2004)
4. Audet, C., Savard, G., Zghal, W.: New branch-and-cut algorithm for bilevel linear programming.

Journal of Optimization Theory and Applications 134(2), 353–370 (2007)
5. Baker, B.S., Jr., E.G.C.: Mutual exclusion scheduling. Theoretical Computer Science 162(2), 225–243

(1996)
6. Balas, E., Perregaard, M.: A precise correspondence between lift-and-project cuts, simple disjunctive

cuts and mixed integer gomory cuts for 0-1 programming. In: Mathematical Programming B, pp.

221–245 (2003)
7. Beale, E.M.L., Tomlin, J.A.: Special facilities in general mathematical programming system for non-

convex problems using ordered sets of variables. In: J. Lawrence (ed.) Proc. 5th International Confer-

ence on Operations Research, pp. 447–454. Travistock Publications, London (1970)
8. Benichou, M., Gauthier, J.M., Hentges, G., Ribiere, G.: The efficient solution of large-scale linear

programming problems–some algorithmic techniques and computational results. Mathematical Pro-

gramming 13(1), 280–322 (1977)
9. Berthold, T.: Measuring the impact of primal heuristics. Operations Research Letters 41(6), 611–614

(2013)
10. Berthold, T.: Heuristic algorithms in global MINLP solvers. Ph.D. thesis, TU Berlin (2014)
11. Bonami, P., Gonçalves, J.P.: Heuristics for convex mixed integer nonlinear programs. Computational

Optimization and Applications 51(2), 729–747 (2012)
12. Borndörfer, R., Kormos, Z.: An algorithm for maximum cliques. Manuscript (1997)
13. Bron, C., Kerbosch, J.: Algorithm 457: Finding all cliques of an undirected graph. Commun. ACM

16(9), 575–577 (1973)
14. Cao, B.: Transportation problem with nonlinear side constraints a branch and bound approach.

Zeitschrift für Operations Research 36(2), 185–197 (1992)
15. Chung, S.J.: NP-completeness of the linear complementarity problem. Journal of Optimization The-

ory and Applications 60, 393–399 (1989)
16. Dowsland, K.A.: Nurse scheduling with tabu search and strategic oscillation. European Journal of

Operational Research 106(2–3), 393–407 (1998)
17. de Farias, I.R., Johnson, E.L., Nemhauser, G.L.: Facets of the complementarity knapsack polytope.

In: Mathematics of Operations Research, pp. 210–226 (1998)
18. de Farias, I.R., Johnson, E.L., Nemhauser, G.L.: Branch-and-cut for combinatorial optimization prob-

lems without auxiliary binary variables. Knowl. Eng. Rev. 16(1), 25–39 (2001)
19. de Farias, I.R., Kozyreff, E., Zhao, M.: Branch-and-cut for complementarity-constrained optimization.

Mathematical Programming Computation pp. 1–39 (2014)
20. de Farias, I.R., Nemhauser, G.L.: A polyhedral study of the cardinality constrained knapsack problem.

In: W.J. Cook, A.S. Schulz (eds.) Integer Programming and Combinatorial Optimization, Lecture

Notes in Computer Science, vol. 2337, pp. 291–303. Springer-Verlag Berlin Heidelberg (2002)

Branch-and-Cut for Linear Programs with Overlapping SOS1 Constraints 33

21. Fischer, T., Pfetsch, M.E.: On the structure of linear programs with overlapping cardinality constraints.

Manuscript (2015)
22. Forrest, J.J.H., Hirst, J.P.H., Tomlin, J.A.: Practical solution of large mixed integer programming

problems with UMPIRE. Management Science 20(5), 736–773 (1974)
23. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness.

W. H. Freeman & Co., New York, USA (1979)
24. Glover, F.: Future paths for integer programming and links to artificial intelligence. Computers &

Operations Research 13(5), 533–549 (1986). Applications of Integer Programming
25. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Transactions in Information Theory

46(2), 388–404 (2000)
26. Hamdi, K., Labadi, N., Yalaoui, A.: Evaluation and optimization of innovative production systems of

goods and services: An iterated local search algorithm for the vehicle routing problem with conflicts

(2010). 8th International Conference of Modeling and Simulation - MOSIM10
27. Hifi, M., Michrafy, M.: Reduction strategies and exact algorithms for the disjunctively constrained

knapsack problem. Computers and Operations Research 34(9), 2657–2673 (2007)
28. Hoheisel, T., Kanzow, C., Schwartz, A.: Theoretical and numerical comparison of relaxation methods

for mathematical programs with complementarity constraints. Mathematical Programming 137, 257–

288 (2013)
29. Hu, J., Mitchell, J.E., Pang, J.S., Bennett, K.P., Kunapuli, G.: On the global solution of linear programs

with linear complementarity constraints. SIAM Journal on Optimization 19(1), 445–471 (2008)
30. Hu, J., Mitchell, J.E., Pang, J.S., Yu, B.: On linear programs with linear complementarity constraints.

Journal of Global Optimization 53(1), 29–51 (2012)
31. Hummeltenberg, W.: Implementations of special ordered sets in MP software. European Journal of

Operational Research 17(1), 1–15 (1984)
32. Ibaraki, T.: Approximate algorithms for the multiple-choice continuous knapsack problem. Journal

of the Operations Research Society of Japan 23(1), 28–62 (1980)
33. Ibaraki, T., Hasegawa, T., Teranaka, K., Iwase, J.: The multiple-choice knapsack problem. Journal of

the Operations Research Society of Japan 21(1), 59–95 (1978)
34. Jain, K., Padhye, J., Padmanabhan, V.N., Qiu, L.: Impact of interference on multi-hop wireless net-

work performance. In: MobiCom ’03: Proceedings of the 9th annual international conference on

mobile computing and networking, pp. 66–80. ACM Press, New York, USA (2003)
35. Jansen, K.: An approximation scheme for bin packing with conflicts. In: S. Arnborg, L. Ivansson (eds.)

Algorithm Theory – SWAT’98, Lecture Notes in Computer Science, vol. 1432, pp. 35–46. Springer-

Verlag Berlin Heidelberg (1998)
36. Jeroslow, R.G.: Representability in mixed integer programming, I: Characterization results. Discrete

Applied Mathematics 17(3), 223–243 (1987)
37. Júdice, J.J., Sherali, H.D., Ribeiro, I.M., Faustino, A.M.: A complementarity-based partitioning and

disjunctive cut algorithm for mathematical programming problems with equilibrium constraints. Jour-

nal of Global Optimization 36(1), 89–114 (2006)
38. Lin, E.Y.H.: Multiple choice knapsack problems and its extensions on capital investment. In: D.Z.

Du, X.S. Zhang, K. Cheng (eds.) Operations Research and its Applications (ISORA’98), vol. 2, pp.

406–417. World Publishing Corporation (1998)
39. Murty, K.G.: Linear Complementarity, Linear and Non Linear Programming. Sigma series in applied

mathematics. Heldermann Verlag (1988)
40. Owen, G.: Cutting planes for programs with disjunctive constraints. Journal of Optimization Theory

and Applications 11(1), 49–55 (1973)
41. Pferschy, U., Schauer, J.: The knapsack problem with conflict graphs. J. Graph Algorithms Appl.

13(2), 233–249 (2009)
42. Savelsbergh, M.W.P.: Preprocessing and probing techniques for mixed integer programming prob-

lems. ORSA J. Comput. 6(4), 445–454 (1994)
43. SCIP: Solving Constraint Integer Programs. http://scip.zib.de
44. Shi, Y., Hou, Y.T., Liu, J., Kompella, S.: How to correctly use the protocol interference model for

multi-hop wireless networks. In: MobiHoc ’09: Proceedings of the tenth ACM international sympo-

sium on Mobile ad hoc networking and computing, pp. 239–248. ACM, New York, USA (2009)
45. Sun, M.: A tabu search heuristic procedure for solving the transportation problem with exclusionary

side constraints. Journal of Heuristics 3(4), 305–326 (1998)
46. Syarif, A., Gen, M.: Solving exclusionary side constrained transportation problem by using a hybrid

spanning tree-based genetic algorithm. Journal of Intelligent Manufacturing 14(3–4), 389–399 (2003)
47. Wolsey, L.A., Nemhauser, G.L.: Integer and Combinatorial Optimization. Wiley Series in Discrete

Mathematics and Optimization. Wiley (1999)

http://scip.zib.de

